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Introduction

Apart from the study of Lie Theory from a purely theoretical view-point, exten-
sive research about this theory exists due to its many applications in Engineering,
Physics and, above all, Applied Mathematics. However, some aspects of Lie algebras
still remain to be studied. Indeed, the classi�cation of nilpotent and solvable Lie
algebras is still an open problem, although the classi�cation of other types of Lie
algebras (like semisimple and simple ones) was already obtained in 1890. In order
to solve these and other problems, the need of studying additional properties of Lie
algebras arises. For example, conditions on the lattice of subalgebras of a Lie algebra
often lead to information about the Lie algebra itself. In fact, studying abelian Lie
subalgebras and ideals of a �nite-dimensional Lie algebra constitutes the main goal
of this dissertation.

It is also convenient to indicate the motivations leading to obtain more infor-
mation about Lie algebras in general. In a high percentage, the reasons lie in the
possibility of using Lie algebras and their properties as tools in the study of several
topics in Physics and Economics, for instance. Indeed, at present, Lie algebras and
groups are widely used in Modern Physics. For example, a classic use of Lie Theory
corresponds to the study of symmetries (see [55, 87]). Nowadays, symmetries are
not limited to those geometrical versions of space-time; but there are other new
symmetries associated with �internal� degrees of freedom of particles and �elds. Re-
garding to possible economic and �nance applications, we advise to consult [53] as
starting point.

Another application of Lie groups and algebras corresponds to Einstein spaces
and manifolds. To classify Einstein spaces according to their respective isometry
groups in dimension 4, Petrov [85] used Bianchi's works and applied the classi�ca-
tion of low dimensional Lie algebras to General Relativity (see also [93]). Besides,
a particular type of Einstein solvmanifold (which is called standard) is based on
computing an abelian orthogonal complement [51] and, therefore, it would be in-
teresting to obtain an algorithmic method which computes abelian subalgebras in a
given non-abelian Lie algebra.

v



vi Introduction

Let us consider a �nite-dimensional Lie algebra, g. Let α(g) denote the maximal
dimension of an abelian subalgebra of g, and β(g) the maximal dimension of an
abelian ideal of g. Both invariants are important for many subjects. First of all
they are very useful in the study of Lie algebra contractions and degenerations.
There is extensive literature on these topics, in particular for low-dimensional Lie
algebras, as can be seen in [19, 48, 49, 77, 92] and the references given therein.

The �rst author dealing with the invariant α(g) was Schur [91], who studied in
1905 the abelian subalgebras of maximal dimension contained in the Lie algebra
of n × n square matrices. Schur proved that the maximum number of linearly in-

dependent commuting n × n matrices over an algebraically closed �eld is
[
n2

4

]
+ 1,

which is the maximal dimension of abelian ideals of Borel subalgebras in the general
linear Lie algebra gl(n) (where [x] denotes the integer part of a real number x). Let
us note that this result was obtained only over algebraically closed �elds such as
the complex number �eld. Almost forty years later, in 1944, Jacobson [57] gave a
simpler proof of Schur's results, extending them from algebraically closed �elds to
arbitrary �elds. This fact allowed several authors to deal later with the study of the
abelian subalgebras of maximal dimension of many di�erent types of Lie algebras.

As it is well-known, Lie algebras can be distinguished in three di�erent types:
solvable ones, semisimple ones and the remaining algebras which do not belong to
any of the two previous types. More concretely, Levi [69] and Malcev [72] proved
(in 1905 and 1945, respectively) that every �nite-dimensional Lie algebra can be
expressed as a semi-direct sum of a semisimple subalgebra and its radical (i.e. a
solvable ideal). Regarding this, it was also proved that every semisimple Lie algebra
can be decomposed in a direct sum of simple Lie algebras. Hence, the classi�cation
of Lie algebras can be reduced to obtain the classi�cation of both semisimple and
solvable Lie algebras.

Additionally, Killing [59, 60, 61, 62] and Cartan [20] (among others) obtained the
classi�cation of simple Lie algebras at the end of the nineteenth century. Moreover,
taking advantage of Killing and Cartan's classi�cation, Malcev [72] computed the α
invariant for semisimple Lie algebras in 1945 giving the value of this invariant for
simple ones according to Table 1.

Since there are no abelian ideals in a simple Lie algebra s, we have β(s) = 0.
Very recently, the study of abelian ideals in a Borel subalgebra b of a simple complex
Lie algebra s has drawn considerable attention. In this case, α(s) = β(b) holds, and
this value can be computed purely in terms of certain root system invariants, see
[97]. Konstant [66] also dealt with the topic of abelian ideals in a Borel subalgebra of
a given Lie algebra g by studying the proof of the following theorem, which has been
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Table 1: The invariant α for simple Lie algebras

s dim(s) α(s)

An, n ≥ 1 n(n+ 2) ⌊(n+1
2
)2⌋

B3 21 5

Bn, n ≥ 4 n(2n+ 1) n(n−1)
2

+ 1

Cn, n ≥ 2 n(2n+ 1) n(n+1)
2

Dn, n ≥ 4 n(2n− 1) n(n−1)
2

G2 14 3

F4 52 9

E6 78 16

E7 133 27

E8 248 36

attributed to Peterson in [66]: the number of abelian ideals in a �xed Borel subalgebra

of g is 2r, where r = rank(g). Regarding this, some authors like Cellini, Papi and
Orsina [30, 80] have recently obtained new properties of the maximal abelian ideals
in a Borel subalgebra as well as a generalization of Peterson's theorem from abelian
ideals to ad-nilpotent ones.

Furthermore, Kostant [66, 67] found a relation of these invariants α and β with
discrete series representations of the corresponding Lie group, and with powers of
the Euler product. In fact, there are much more results concerning the invariants α
and β for simple Lie algebras and their Borel subalgebras.

There are also several results concerning the question of how large or small
these maximal dimensions can be, in comparison with the dimension of the Lie
algebra (see [73, 88, 94] for example). The results show, roughly speaking, that a
Lie algebra of large dimension contains abelian subalgebras of large dimension. For
example, the dimension of a nilpotent Lie algebra g satisfying α(g) = ℓ is bounded
by dim(g) ≤ ℓ(ℓ+1)

2
[88, 94]. There is a better bound in [74] for 2-step nilpotent Lie

algebras with α(g) = l and ℓ ≥ 8: dim(g) ≤ [ ℓ
2+4
8

] + ℓ. If g is a complex solvable
Lie algebra with α(g) = ℓ, then the bound dim(g) ≤ ℓ(ℓ+3)

2
was proved in [73]. In

general, dim(g) ≤ ℓ(ℓ+17)
2

for any complex Lie algebra g with α(g) = ℓ, see [73].

The problem of classifying abelian subalgebras of Lie algebras also has a long
history, starting from the Killing-Cartan classi�cation of semisimple Lie algebras.
However, the problem of determining such subalgebras is far from being solved, due
to the lack of structural criteria for general types of Lie algebras.
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Bearing in mind the results obtained by Schur [91], Jacobson [57] and Malcev
[72], some authors have dealt with this topic in order to achieve new results for
abelian subalgebras of an arbitrary Lie algebra. For example, let us recall that
Suprunenko and Tyshkevich [96] dealt in 1968 with the problem of determining
abelian subalgebras of maximal dimension of nilpotent type. Now, we are going to
analyze and summarize some important papers about this subject.

First, Stewart [94] studied in 1970 some properties about nilpotent Lie algebras
containing abelian ideals of maximal dimension. Some results in this paper are the
following

Lemma.

1. A maximal abelian ideal of a nilpotent Lie algebra is self-centralizing.

2. The Fitting ideal (sum of all nilpotent ideals) of a solvable Lie algebra contains
its centralizer.

Lemma. Let L be a �nite-dimensional nilpotent Lie algebra and any maximal
abelian ideal A of L. Suppose that dim(A) ≤ a. Then L/A is isomorphic to a Lie
algebra of a× a zero-triangular matrices.

Theorem. If L is nilpotent and the dimension of all its abelian ideals is at most
n, then L has dimension ≤ n(n+1)

2
, nilpotency class ≤ 2n − 1 and derived length

≤ 2 + log2(n).

After that, Bratzlavsky [14] studied in 1974 the law of some nilpotent Lie algebras
of dimension n and class n − 1. These algebras are known as �liform Lie algebras
and were introduced by Vergne [107]. More concretely, Bratzlavsky obtained the
canonical forms for the structure of �liform Lie algebras having an abelian derived
Lie algebra. One of the results obtained in that article was the following

Theorem. For a �liform Lie algebra whose derived Lie algebra is abelian, there
exists a basis {x1, . . . , xn} such that

[x1, xi] = xi+1, 2 ≤ i ≤ n− 1; [xi, xj] = 0, for 3 ≤ i < j and

[x2, xi] =
∑

λrxi+2+r, for 3 ≤ i ≤ n− 2, and r ≤ n− i− 2.

Later, Kubo [68] in 1978 wondered whether there would exist some inclusions
between the following families of Lie algebras: a) those containing �nite-dimensional
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abelian ideals; b) those containing �nite-dimensional nilpotent ideals; c) those satis-
fying the maximal condition for abelian, nilpotent and solvable ideals respectively;
and �nally, d) those satisfying the minimal condition for abelian, nilpotent and
solvable ideals respectively.

Answering himself that question in his own paper [68], Kubo obtained the two
following results by using several tools like tensorial extensions, adjoint transforma-
tions and central simple Lie algebras, for instance.

Theorem. The class of Lie algebras which contains �nite-dimensional abelian ideals
is not equal to the one which contains �nite-dimensional nilpotent ideals.

Theorem. It is possible to �nd a Lie algebra verifying the maximal and minimal
condition for abelian ideals which does not verify the same conditions for solvable
ideals.

Three years later, in 1981, Zaicev [110] proved a result about the relative distri-
bution of an abelian ideal and a positive polarization in an arbitrary Lie algebra,
applying this result to �nd representations of Lie groups with an abelian normal sub-
group. Additionally, Zaicev also developed in that reference a theory (introduced
by Kirillov [63]) about the extension of orbits to solvable Lie groups. He used the
notion of polarization to deal with arbitrary Lie algebras and Lie groups instead of
solvable ones. Moreover, Zaicev considered abelian ideals instead of abelian subal-
gebras, which requires more restrictive conditions. Let us note that this notion of
polarization has also an independent algebraic interest.

In his work, Zaicev used the following main tools: real Lie groups, their associa-
ted Lie algebras, dual spaces of Lie algebras, stationary groups, the total positive
polarization of an element in the dual space of a given Lie algebra with respect to a
stationary group and the regular intersection with a polarization.

However, some authors thought that introducing new models of Lie algebras
was completely necessary, since the classi�cation of Lie algebras was an unsolved
problem. For example, Bowman and Towers [11] studied in 1996 those Lie algebras
whose proper subalgebras are nilpotent-by-abelian but which themselves are not
nilpotent-by-abelian. They analyzed the structure and existence of such algebras.
Previously, other authors (like Elduque [39], Farnsteiner [41, 42], Gein [45, 46] and
Varea [106], for instance) had studied simple semiabelian Lie algebras. Besides this,
almost nilpotent Lie algebras (i.e. those containing a �nite-dimensional nilpotent
ideal) were studied and analyzed by Stitzinger [95], Gein and Kuznecov [47] and
Towers [100, 102], whereas almost supersolvable Lie algebras were dealt with by
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Towers [101] and Elduque and Varea [40].
At this respect, Bowman and Towers [11] obtained several results when studying

almost nilpotent-by-abelian Lie algebras. Some of them are the following

Lemma. Let L be any Lie algebra. Then L is nilpotent-by-abelian if and only if
its derived algebra C2(L) = L2 is nilpotent.

Theorem. Let L be any Lie algebra over a �eld F of characteristic zero. Then the
following statements are equivalent

• L is almost nilpotent-by-abelian.

• L is simple semiabelian or else L = sl2(F ).

To obtain both results, the main tools used were Frattini subalgebras and ideals,
algebraically closed �elds and the following structures of Lie algebras: Heisenberg,
solvable, nilpotent, semisimple and simple. Let us note that Frattini structures have
relation with maximal subalgebras and maximal ideals. In their article, Bowman
and Towers also considered the cases of an algebraically closed �eld of characteristic
zero and one of characteristic p > 0. In this sense, some theorems were stated about
the structure of certain solvable almost nilpotent-by-abelian algebras.

In addition, some articles also deal with important and useful properties of Lie
subalgebras like decomposability. For example, Petravchuk [84] obtained in 1999 a
Lie algebra L over an arbitrary �eld decomposed into the sum L = A + B of an
almost abelian subalgebra A and a subalgebra B �nite-dimensional over its center.
His main goal was to prove that this algebra was almost solvable (i.e. containing a
solvable ideal of �nite dimension) and that the sum of an abelian Lie algebra and
an almost abelian one was an almost solvable Lie algebra.

To do this, he �rstly wrote an historical introduction of the problem, recalling one
of Ito's classic theorems ([31, 56], for instance) about the solvability of a product
of two abelian groups. This result can also be translated into Lie algebras: A

Lie algebra decomposable into the sum of two of its abelian subalgebras is solvable.
Furthermore, Petravchuk himself recalled the following open problem: it is unknown
whether the product of two almost abelian groups is solvable. In this sense, the main
result in [84] pursued to answer this open problem. The statement is the following

Theorem. Let L be a Lie algebra over an arbitrary �eld that is decomposable into
the sum L = A + B of a subalgebra A �nite-dimensional over its center and an
almost abelian subalgebra B. Then, the algebra L is almost solvable.
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As an immediate consequence, the following result holds: The sum of abelian
and almost abelian Lie groups is almost solvable.

To prove the previous theorem, some local results were considered in the article.
Some of them were necessary conditions for almost solvable Lie algebras and su�-
cient conditions for almost solvable Lie algebras or Lie algebras containing a solvable
or almost solvable subalgebra. In addition, some statements about operations with
brackets and sums were also proved.

Later, some papers appeared in about 2004 dealing with abelian ideals in Borel
subalgebras. As a sake of example, Suter [97] started from a complex Lie algebra g

and a �xed Borel subalgebra b of it, describing all abelian ideals of b in a uniform way
and independently of the classi�cation of complex simple Lie algebras. Besides, as an
application of this description, a formula was obtained for the maximal dimension
of an abelian Lie subalgebra of g. In this article, the maximal dimension among
abelian subalgebras of g was determined in terms of certain invariants such as the
dual Coxeter number and the number of positive roots of some associated root
subsystems of g. Other tools used in that article were fundamental alcoves (see [3,
page 70]), symmetric groups, Dihedral and Weyl groups and the Hasse graph of
Young's lattice (i.e. the lattice of integer partitions).

Taking into account the result commented in the previous paragraph, Suter ans-
wered and solved Panyushev and Röhrle's question [83] about a uniform explanation
for the one-to-one correspondence between maximal abelian ideals in b and long
simple roots. This answer was given by emerging all positive long roots in a natural
way (a very interesting overview about this question can be consulted in the very
recent paper [70]). Finally, Suter also gave a generalization of the symmetry property
of a certain subposet of Young's lattice.

Simultaneously, Cellini, Frajria and Papi [29] studied some properties of abelian
subalgebras in the particular case of Z2-graded Lie algebras. More concretely, they
considered a simple Z2-graded Lie algebra g = g0

⊕
g1 and a �xed Borel subalgebra

of g0, b0. The main goal of [29] was to describe and enumerate abelian b0-stable
subalgebras of g1, which is a problem previously posed by Panyushev [82]. Besides,
some formulas were obtained in terms of combinatorial data associated to the Z2-
graduation.

The main interest of this question lies in Kostant's theorem [65] relating abelian
subalgebras to the maximal eigenvalue of the Casimir element. This theorem was
later generalized to Z2 by Panyushev [81], who solved the problem posed in [82] for
the very special case of the little adjoint module by identifying the abelian b0-stable
subalgebras of g1 with the abelian ideals of long roots of a Borel subalgebra of the
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Langlands dual of g0.

The approach given in [29] for describing abelian b0-stable subalgebras of g1
is based on a suitable combination of ideas given by Garland, Lepowsky [44] and
Kostant [66, 67], using several types of Lie algebras such as a�ne Kac-Moody Lie
algebras, Cartan algebras, graded algebras and Borel algebras.

Later, a recent new research was developed in 2008 by Romanovskii and Shes-
takov [89], who proved some properties of abelian Lie algebras. More concretely,
they studied whether a wreath product of abelian Lie algebras is Noetherian with
respect to the equations of the universal enveloping algebra. This was done with
the objective of obtaining some improvements about algebraic geometry over Lie
algebras, by proving that a wreath product of two �nite-dimensional abelian Lie al-
gebras over a �eld of characteristic zero is Noetherian with respect to the equations
of the universal enveloping algebra. They previously recalled several earlier papers
constructing examples of groups that are not equationally Noetherian in several
cases, as well as similar examples of Lie algebras over any �eld.

By using di�erent techniques (like the concepts and properties of equationally
Noetherian Lie algebras, abelian normal subgroups, Noetherian Lie algebras, soluble
free Lie algebras, algebraic subsets or coordinate algebras), the main result obtained
was the following

Theorem. A wreath product of two �nite-dimensional abelian Lie algebras over a
�eld of characteristic 0 is Noetherian with respect to the equations of the universal
enveloping algebra.

As an immediate consequence of this theorem, Romanovskii and Shestakov proved
that an index 2 soluble free Lie algebra of �nite rank is Noetherian with respect to
the equations of a universal enveloping algebra.

In order to advance in this subject, it was very useful to deal with the dimension
of abelian subalgebras of a given Lie algebra. In this sense, Milentyeva [73] studied
this topic, obtaining some functions as bounds for the dimension of an abelian
subalgebra in �nite-dimensional associative algebras and Lie algebras. The same
results were also obtained for the largest abelian subgroup of a Lie group.

Moreover, the growth of the functions previously developed to bound these di-
mensions was studied in [73] too. To do so, several di�erent cases were considered
depending on the �eld which the algebras are de�ned over. In this way, the functions
were well-de�ned and �nite for the case of complex and real number �elds, having
quadratic growth in other cases.

The families of associative and Lie algebras satisfying that the dimension of all
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its abelian subalgebras is at most n (denoted by condition A(n)) were also studied
by Milentyeva in [73]. Besides, the set of the greatest integer h such that there exists
a Lie algebra (respectively, an associative algebra) of dimension h and verifying the
condition A(n) was considered. Finally, the goal was to �nd the greatest k satisfying
that there exists a Lie group of dimension k over an arbitrary �eld verifying that
the dimension of all its abelian Lie subgroups is less than or equal to n.

Because of the great importance of Milentyeva's article, we think appropriate to
describe the procedure. The general structure of the article was the following: �rst,
an introduction showed the most important and essential concepts and de�nitions,
as well as expounding the main result to be proved about inequalities for the bound
functions. The next section was devoted to study quadratic upper bounds for the
relation between the dimension of a given Lie algebra and the dimension of an
abelian subalgebra of maximal dimension. This whole study was carried out for Lie
algebras over both the complex and real number �elds, as well as repeating this
study for associative algebras. The third section computed quadratic lower bounds
for Lie algebras over an arbitrary �eld. Finally, more details were shown about the
bounds given for nilpotent algebras and groups.

One year later, Milentyeva [74] continued her work computing the functions
which bounded the dimensions of �nite-dimensional nilpotent both associative and
Lie algebras of class 2 over an algebraically closed �eld in terms of the dimensions of
their abelian subalgebras. Whereas her previous article only gave bounds for these
functions, they were now completely determined and computed as a expression of a
value n which bounds (or is exactly equal to) the α invariant of the associative or
Lie algebra given for these functions.

In this way, the main theorem of [74] consisted of the mathematical expression
of these functions expressed with respect to the value n. To obtain this result,
Milentyeva had to prove a lemma assuring the existence of a vector subspace in
a �xed and given vector space and which is simultaneously isotropic for all the
components in any tuple (with a �xed dimension) of alternating bilinear forms. The
proof of this lemma was based on the application of Zariski topology over projective
spaces and the notions of projective and quasiprojective varieties in those spaces, as
well as the notion of regular map from quasiprojective varieties to projective spaces
(not necessarily the same containing such varieties). Other mathematical objects
used in the proof are Grassmann varieties, Plücker coordinates of a vector subspace
and Schubert cells in a Grassmann variety.

The last stage of Milentyeva's theorem was to reduce the associative case to
the Lie case. In fact, she proved that the value of the functions was the same
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independently of using associative algebras or Lie ones. After this, she determined
both upper and lower bounds of the function for the Lie case, by using the previously
referred lemma and the results already obtained in [73]. The proof concluded when
she obtained that upper and lower bounds were the same.

After having commented this brief historical view on Lie algebras in general and
on abelian Lie subalgebras in particular, now we will deal with this dissertation.
Its structure is the following: Chapter 1 recalls those more general concepts on Lie
algebras which will be cited throughout this dissertation. Chapter 2 constitutes a
theoretical study of abelian subalgebras and ideals contained in Lie algebras. First,
we give some general properties and bounds. More concretely, we want to point out
an interesting result for solvable Lie algebras: if g is a solvable Lie algebra over an
algebraically closed �eld of characteristic zero, then α(g) = β(g). This means that,
given an abelian subalgebra of maximal dimension m there exists also an abelian
ideal of dimension m. For a given value of α(g), the dimension of g is bounded in
terms of this value, as mentioned above. It is natural to ask what we can say on
an n-dimensional Lie algebra g involving the value of α(g) is close to n. Indeed, if
α(g) = n, then g is abelian and α(g) = β(g). If α(g) = n−1, then also β(g) = n−1.
This means that g has an abelian ideal of codimension 1 and is almost abelian. In
particular, g is 2-step solvable. In this case the structure of g, and even all its
degenerations are quite well-understood, see [48]. These two easy cases suggest to
consider Lie algebras g satisfying α(g) = n − 2. Here we can classify all such non-
solvable Lie algebras. For the solvable case, we characterize these algebras and prove
that every supersolvable Lie algebra with an abelian subalgebra of codimension 2

has also an abelian ideal with the same dimension. We also give a method to obtain
an abelian ideal of codimension 2 from an abelian subalgebra of the same dimension
in a nilpotent Lie algebra. Let us note that for many problems concerning the
cohomology of nilpotent Lie algebras, the subclass of those having an abelian ideal
of codimension 1 or 2 is very important, as can be seen in [2, 86] and the references
given therein. In order to conclude the chapter, we prove that nilpotent Lie algebras
with an abelian subalgebra of codimension 3 contain an abelian ideal with the same
dimension, provided that the characteristic of the underlying �eld is not two. We
also give several examples to clarify some results.

Chapter 3 is devoted to show several algorithmic methods and results about
the abelian subalgebras of maximal dimension for the most important families of
solvable Lie algebras: Lie algebra gn, of n × n strictly upper-triangular matrices,
Lie algebra hn, given by n × n upper-triangular matrices, Heisenberg algebras and
�liform Lie algebras. First, we show a method to compute an abelian subalgebra of
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maximal dimension for Lie algebras gn, hn and Heisenberg algebras. This procedure
is de�ned as follows: given a Lie algebra, g, we consider an arbitrary basis of an
r-dimensional subalgebra with respect to the basis Bg of the Lie algebra g in which
its law is expressed. Then the vectors in Bg are divided in main vectors or non-
main vectors according to a echelon matrix associated with Bg. Finally it is studied
whether the subalgebra is abelian or not. When only non-abelian subalgebras are
obtained, we have proved that the α invariant of g is less than r. The main reason
why we have focused on the Lie algebras hn and gn is that every �nite-dimensional
solvable Lie algebra can be represented by a Lie subalgebra of some hn (see [43,
Theorem 9.11] or [105, Theorem 3.7.3]) and every �nite-dimensional nilpotent Lie
algebra is isomorphic to a subalgebra of gn ([105, Proposition 3.6.6]). Another reason
is that its applications to Physic are many and varied (e.g. [54, 87]). In order to
conclude the chapter, we study the abelian subalgebras of maximal dimension for
�liform Lie algebras. We prove that there exists a unique abelian ideal of maximal
dimension for these algebras and we give several results concerning the description of
the general law of a �liform Lie algebras by using several invariants. Finally, we give
an algorithmic procedure which computes the law of an n-dimensional non-model
�liform Lie algebra g starting from the value of α(g).

In Chapter 4, we show an algorithmic method to compute abelian subalgebras
and ideals of any �nite-dimensional Lie algebra, starting from the non-zero brackets
in its law. To implement this algorithm we use the symbolic computation package
Maple 12. Additionally, we give a brief computational study considering both the
computing time and the memory used in the two main routines of the implementa-
tion. We have also studied the complexity and number of operations. Moreover, we
have included in this chapter two di�erent applications of the previous results. The
�rst is related to the computation of the α and β invariants for low dimensional Lie
algebras. More concretely, we compute these invariants for Lie algebras of dimension
less than 5 in general, solvable Lie algebras of dimension less than 7 and nilpotent
Lie algebras of dimension less than 8. The second application consists in the study
of minimal faithful unitriangular matrix representations for �liform Lie algebras.
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Spanish summary

En esta sección exponemos un resumen en español del contenido de este trabajo, en el
que se estudian dos invariantes de las álgebras de Lie: las dimensiones maximales de
sus subálgebras e ideales abelianos. Así, si g es un álgebra de Lie de dimensión �nita,
denotamos por α(g) y β(g) al máximo entre la dimensión de todas las subálgebras
e ideales abelianos de g, respectivamente. Estos invariantes fueron introducidos por
Schur en 1905 al estudiar las subálgebras abelianas maximales en el álgebra formada
por matrices cuadradas. Se usan en el estudio de contracciones y degeneraciones de
álgebras de Lie. Hay muchos artículos tratando estos temas, por ejemplo: [49, 19,
77, 92, 48]. Asimismo, algunos resultados comparan el valor de estos invariantes con
la dimensión de la propia álgebra ([94, 88, 73]).

En el Capítulo 1 exponemos conceptos preliminares necesarios para la adecuada
comprensión del resto del trabajo. A continuación, en el Capítulo 2, se analizan
propiedades básicas y generales de los invariantes α y β, como son la aditividad
y monotonía, y diversas cotas. También se exponen una serie de resultados com-
parando ambos invariantes. En concreto, se demuestra que si g un álgebra de Lie
de dimensión �nita y se consideran su descomposición de Levi-Malcev g = s n r,
entonces α(s n r) ≤ α(s ⊕ r). También se prueba que si g es un álgebra de Lie
resoluble sobre un cuerpo algebraicamente cerrado de característica cero, entonces
ambos invariantes coinciden. A continuación, se estudian dos casos particulares co-
rrespondientes a subálgebras abelianas de codimensión 1 y 2. Para el primer caso, se
prueba que si g un álgebra de Lie de dimensión n veri�cando α(g) = n−1, entonces
β(g) = n− 1. Las álgebras de Lie veri�cando β(g) = n− 1 son álgebras de Lie casi
abelianas, que son álgebras de Lie resolubles 2-step. En el caso de codimensión 2,
también podemos dar una caracterización: Si g es un álgebra de Lie de dimensión
n veri�cando α(g) = n − 2, entonces, o bien g es isomorfa a sl2(C) ⊕ Cℓ o bien es
resoluble. Además damos una caracterización en ambos casos. También se prueba
que toda álgebra de Lie nilpotente con una subálgebra abeliana de codimensión 2,
contiene un ideal abeliano de la misma dimensión. Notemos que los ideales abelianos
de álgebras de Lie nilpotentes de codimensión 1 y 2 juegan un papel importante en
problemas de cohomología de estas álgebras (ver [2, 86]). Por último, estudiamos el
caso de codimensión 3 para las álgebras nilpotentes sobre un cuerpo de característica
distinta de dos en el que se muestra un método para obtener un ideal abelian de
codimensión 3 a partir de una subálgebra abeliana de la misma dimensión.

En el tercer capítulo, se analizan las subálgebras e ideales abelianos en varias
familias de álgebras de Lie resolubles. En concreto, estudiamos las álgebras de Lie gn,
dadas por matrices cuadradas estrictamente triangulares superiores, las álgebras hn,



Spanish summary xvii

dadas por matrices cuadradas triangulares superiores y las álgebras de Heisenberg.
La principal razón por la que hemos estudiado estas familias es que cada álgebra
de Lie resoluble de dimensión �nita se puede representar por una subálgebra de hn
(ver [43, Theorem 9.11] o [105, Theorem 3.7.3]) y cada álgebra de Lie nilpotente
de dimensión �nita es isomorfa a una subálgebra de gn ([105, Proposition 3.6.6]).
Otra razón es por sus múltiples aplicaciones en Física (por ejemplo [54, 87]). Para
concluir este capítulo, estudiamos las álgebras de Lie �liformes. Se prueba que para
estas álgebras existe un único ideal abeliano de máxima dimensión. También damos
algunos resultados sobre la descripción de la ley general de estas álgebras a paritr de
varios invariantes. Finalmente damos un procedimiento algorítmico para calcular la
ley general de un álgebra de Lie �liforme a partir del valor del invariante alfa.

En el Capítulo 4, mostramos un método algorítmico para calcular subálgebras
e ideales abelianos de un álgebra de Lie arbitraria a partir de su ley. Para imple-
mentar este procedimiento, hemos utilizado el programa de computación simbólica
Maple 12. Además, damos un breve estudio computacional de las principales ruti-
nas analizando el tiempo computacional y la memoria usada. Se adjunta también
una tabla con la complejidad computacional y el número de operaciones para estas
rutinas. A continuación, y para �nalizar este capítulo, hemos incluido dos aplica-
ciones correspondientes al cálculo del invariante α para álgebras de Lie de pequeña
dimensión y la representación matricial de álgebras de Lie �liformes. Más concreta-
mente, estudiamos el valor de α para álgebras de Lie de dimensión menor que 5 de
cualquier tipo, álgebras de Lie resolubles de dimensión menor que 7 y nilpotentes
de dimensión menor que 8. Para las representaciones matriciales de álgebras de Lie
�liformes, se consideran las álgebras gn y sus subálgebras abelianas calculadas en el
capítulo anterior. Mostramos la representación general de las álgebras de Lie �li-
formes modelos, un método para el cálculo de la representación para las no modelos
y, como ejemplo, varias tablas con la representación de álgebras de Lie �liformes de
dimensión menor que 9.





Chapter 1

Preliminaries

This chapter is devoted to recall some preliminary concepts and results on Lie alge-
bras. For a general overview, the interested reader can consult [105]. Throughout
this dissertation, g will denote a �nite-dimensional Lie algebra over a �eld K. The
assumptions on K will be speci�ed in each section or result.

1.1 De�nitions and notations

De�nition 1.1. A Lie algebra g over an arbitrary �eld K is a vector space over

K endowed with a second inner law, named the bracket product, and verifying the

following three properties

1. Bilinearity: [αu+ βv, w] = α[u,w] + β[v, w], [u, αv+ βw] = α[u, v] + β[u,w],

for α, β ∈ K,∀u, v ∈ g.

2. [u, u] = 0, ∀u ∈ g.

3. Jacobi Identity: [[u, v], w] + [[v, w], u] + [[w, u], v] = 0, ∀u, v, w ∈ g.

De�nition 1.2. The dimension of a Lie algebra is its dimension as a vector space.

Let us consider a Lie algebra g with a basis {ei}ni=1. Such a basis can be character-

ized by the structure constants (or Maurer-Cartan constants), de�ned by [ei, ej] =∑
chi,jeh for any 1 ≤ i < j ≤ n. These constants determine the whole structure of

the Lie algebra.

Remark 1.1. The second condition in De�nition 1.1, together with the bilinearity of

the bracket product, implies the skew-symmetry over a �eld of characteristic di�erent

from 2; i.e. [u, v] = −[v, u], for all u, v ∈ g.

1
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De�nition 1.3. Given a Lie algebra g, a vector subspace h of g is a subalgebra if

[u, v] ∈ h, for all u, v ∈ h. Moreover, the subalgebra h is an ideal of g if [h1, g1] ∈ h,

for all h1 ∈ h and for all g1 ∈ g.

De�nition 1.4. Given a subalgebra h of a Lie algebra g, the core of h, denoted by

hg, is the largest ideal of g contained in h.

De�nition 1.5. Given a subalgebra h of a Lie algebra g, the ideal closure of h,

denoted by hg, is the smallest ideal of g containing h.

De�nition 1.6. Let g be a �nite-dimensional Lie algebra and h ⊆ g a subalgebra.

The centralizer of h in g is de�ned as Cg(h) = {g ∈ g | [g, h] = 0, ∀h ∈ h}.

De�nition 1.7. Let g be a �nite-dimensional Lie algebra and h ⊆ g a subalgebra.

We de�ne the normalizer of h in g as Ng(h) = {g ∈ g | [g, h] ∈ h, ∀h ∈ h}.

De�nition 1.8. Given an element x ∈ g, the adjoint endomorphism or adjoint
action is a Lie-algebra endomorphism adx : g → g de�ned as y ∈ g 7→ adx(y) =

[x, y].

De�nition 1.9. A derivation on a Lie algebra g is a linear map D : g → g verifying

D([x, y]) = [D(x), y] + [x,D(y)].

The set of all derivations of g will be denoted by Der(g). Let us note that adx is a

derivation for all x ∈ g and ad : g → Der(g).

De�nition 1.10. The Frattini subalgebra F (g) of a Lie algebra g is de�ned as the

intersection of all maximal subalgebras of g. The Frattini ideal ϕ(g) is the largest

ideal contained in F (g).

De�nition 1.11. The linear adjoint group of G, AdG, is the image of the Lie group

or algebraic group G under the adjoint representation. The adjoint group AdG is

contained in the group Aut(g) of automorphisms of the Lie algebra g of G and its

Lie algebra coincides with the adjoint algebra ad(g) of g.

Theorem 1.1 (Borel �xed-point theorem in Borel [9]). Let G be a connected, sol-

vable algebraic group acting regularly on a non-empty, complete algebraic variety V

over an algebraically closed �eld K. Then G has a �xed point in V .

There exist three di�erent types of Lie algebras: solvable algebras, semisimple
ones and those which do not belong to these two previous types, but can be expressed
as a semidirect sum of two algebras of the previous types.
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De�nition 1.12. A Lie algebra g over a a �eld of characteristic zero is semisimple if
g is not abelian and does not contain any non-zero proper abelian ideal. In addition,

the Lie algebra g is said to be simple if it is not abelian and does not contain any

non-zero proper ideal.

De�nition 1.13. Let g be a �nite-dimensional Lie algebra. The upper central series
or derived series of g is de�ned by

C1(g) = g, C2(g) = [g, g], C3(g) = [C2(g), C2(g)], . . . , Ck(g) = [Ck−1(g), Ck−1(g)], . . .

If there exists m ∈ N such that Cm(g) ≡ 0, the Lie algebra g is called solvable.
Moreover, g is (m − 1)-step solvable if there exists m ∈ N such that Cm(g) ≡ {0}
and Cm−1(g) ̸= {0}.

A special class of solvable Lie algebras is formed by abelian algebras.

De�nition 1.14. A Lie algebra g is abelian if [v, w] = 0, for all v, w ∈ g.

A very important and interesting abelian subalgebra (in fact, an abelian ideal)
in a given Lie algebra g is the center of the algebra.

De�nition 1.15. The center Z(g) of a Lie algebra g, is de�ned as follows

Z(g) = {u ∈ g | [u, v] = 0, ∀ v ∈ g}.

De�nition 1.16. The lower central series or simply central series of a Lie algebra

g is de�ned by

C1(g) = g, C2(g) = [C1(g), g], C3(g) = [C2(g), g], . . . , Ck(g) = [Ck−1(g), g], . . .

If there exists m ∈ N such that Cm(g) ≡ 0, the Lie algebra g is called nilpotent. We

will say that g is (m− 1)-step nilpotent if there exists m ∈ N such that Cm(g) ≡ {0}
and Cm−1(g) ̸= {0}.

De�nition 1.17. The derived Lie algebra D(g) of a Lie algebra g is given by D(g) =

C2(g) = C2(g).

Remark 1.2. Lie algebras with its derived algebra being abelian correspond to 2-step

solvable ones and are usually called metabelian.

Remark 1.3. Let us note that every nilpotent Lie algebra is also solvable, because

Ci(g) ⊆ Ci(g), ∀i.

Related to the lower central series associated with a subalgebra of g, the following
result holds
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Proposition 1.1. Let h be a subalgebra of a Lie algebra g. Then Ck(h) ⊆ Ck(g),

for all k ∈ N.

De�nition 1.18. The radical of a Lie algebra g is de�ned as its maximal solvable

ideal and the nilradical is its maximal nilpotent ideal.

De�nition 1.19. A Borel subalgebra of a Lie algebra g is a maximal solvable sub-

algebra of g.

De�nition 1.20. A Cartan subalgebra of g is a nilpotent subalgebra which is self-

normalizing. The rank of g is given by the dimension of its Cartan subalgebras.

De�nition 1.21. A Lie algebra g is supersolvable if there is a chain 0 = I0 ⊂ I1 ⊂
. . . ⊂ In−1 ⊂ In = g, where Ik is a k-dimensional ideal of g

Remark 1.4. It is well-known that every supersolvable Lie algebra is also solvable.

Moreover, these classes coincide over an algebraically closed �eld of characteristic

zero (Lie's Theorem [105]). There are, however, examples of solvable Lie algebras

over algebraically closed �eld of non-zero characteristic which are not supersolvable,

as can be seen in [5] or [58, page 53].

De�nition 1.22. A subalgebra h of g is said to be triangulable on g if adgh =

{adgx |x ∈ h} is a Lie algebra of linear transformations of g which is triangulable

over the algebraic closure of K.

Proposition 1.2 (Theorem 2.2 in [109]). A subalgebra h of g is triangulable on g

if and only if every element of D(h) acts nilpotently on g.

De�nition 1.23. Let us consider a vector space V and an endomorphism f over

it. Then, V can be decomposed into the direct sum of two subspaces which are

invariants under the action of f as V = V0 ⊕ V1, where f|V0 is nilpotent and f|V1 is

an isomorphism. The de�nition of these subspaces is as follows

V1 =
∞∩
i=1

f i(V ) and V0 = {v ∈ V | ∃r ∈ N, f rv = 0}.

This is known as the Fitting decomposition.

De�nition 1.24. A nilpotent Lie algebra g is said to be �liform if it veri�es that

dim(C2(g)) = n− 2; . . . dim(Ck(g)) = n− k; . . . dim(Cn(g)) = 0,

where dim( g) = n.
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A basis {ei}ni=1 of g is called adapted if

[e1, e2] = 0, [e1, eh] = eh−1 (3 ≤ h ≤ n),

[e2, eh] = 0 (3 ≤ h ≤ n), [e3, eh] = 0 (4 ≤ h ≤ n).

Remark 1.5. Note that the de�nition of �liformity assures that every �liform Lie

algebra has an adapted basis, as it was proved in [107].

Remark 1.6. It is easy to deduce that, with respect to adapted bases, the following

conditions hold.

C2(g) ≡ {ei}n−1
i=2 , C3(g) ≡ {ei}n−2

i=2 , . . . , Cn−1(g) ≡ {e2}, Cn(g) ≡ {0}.

Proposition 1.3. Let g be a n-dimensional �liform Lie algebra with an adapted

basis {ei}ni=1, then it is veri�ed that [Cp(g), Cq(g)] ⊂ Cmin{p,q}+1(g).

Proof. Let us note that if p < q then Cq(g) ⊂ Cp(g). Therefore, [Cp(g), Cq(g)] ⊂
[Cp(g), Cp(g)] ⊂ [Cp(g), g] = Cp+1(g).

De�nition 1.25. A �liform Lie algebra g is said to be model if the only non-

zero brackets between the elements of an adapted basis are: [e1, eh] = eh−1, for

h = 3, . . . , n.

In [34] (although by using a di�erent notation, which was later improved in [35]),
the following invariants were introduced

De�nition 1.26. Let g be an n-dimensional complex �liform Lie algebra. Then,

the following invariants of g are de�ned

z1 = z1(g) = max{k ∈ N | Cg(Cn−k+2(g)) ⊃ C2(g) },

z2 = z2(g) = max{k ∈ N | Cn−k+1(g) is abelian}.

Remark 1.7. The de�nition of z1 means that Cn−z1+2(g) is the largest ideal of

g whose centralizer contains C2(g); i.e., the ideal whose centralizer is the ideal g,

generated by {ei}n−1
i=2 with respect to an adapted basis {ei}ni=1

In addition, z1(g) is an invariant for non-model �liform Lie algebras. In terms

of an adapted basis, it is deduced in [34] that it can be written as follows

z1 = min{k ∈ N− {1} | [ek, en] ̸= 0}.

and

[eh, ek] = 0, for 1 < h < z1 and k > 1. (1.1)
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Remark 1.8. By de�nition, z2 means that z2 is an invariant of complex non-model

�liform Lie algebras and the ideal Cn−z2+1(g) ≡ {ei}z2i=2 is the largest abelian ideal in

the lower central series.

Moreover, there exists at least some bracket [ek, ek+1] ̸= 0, for k < n, in every

complex non-model �liform Lie algebra of dimension n. Consequently, an equivalent

de�nition for z2 is the following z2(g) = min {k ∈ N | [ek, ek+1] ̸= 0}.

If the sets in the de�nition of z1(g) and z2(g) are empty, then g is a model
�liform Lie algebra and both invariants are not de�ned. Moreover, the smallest
possible value for z2(g) is 4, because of [e1, e2] = [e2, e3] = [e3, e4] = 0 for all adapted
basis of g.

With respect to these invariants, the following results were proved in [36]

Lemma 1.1. Under previous conditions, it is deduced that [ez1+k−1, ez2+1] = α1ek+1+

α2ek + . . .+ αk−1e3 + αke2, with 1 ≤ k ≤ z2 − z1 + 1. Moreover, αp ̸= 0, for some p

such that 1 ≤ p ≤ z2 − z1 + 1.

Lemma 1.2. Under previous conditions, it is deduced that [ez1 , ez2+k] = α1ek+1 +

α1
2ek + . . .+ αk−1

k e2, with 1 ≤ k ≤ n− z2. Moreover, αq−1
q ̸= 0, for some q such that

1 ≤ q ≤ n− z2.

Finally, it is also proved in [37] the following relation among the invariants z1,
z2 and n, which will be used later

4 ≤ z1 ≤ z2 < n ≤ 2z2 − 2. (1.2)

1.2 Families of solvable Lie algebras

In this section, we show some special families of solvable Lie algebras. More con-
cretely, we are interested in the Lie algebra hn, of n× n upper-triangular matrices;
the Lie algebra gn, of n × n strictly upper-triangular matrices; and the Heisenberg
algebra Hk.

The main reason to deal with the Lie algebras hn and gn is that every �nite-
dimensional solvable Lie algebra is isomorphic to a subalgebra of hn [105, Propo-
sition 3.7.3] and every �nite-dimensional nilpotent Lie algebra is isomorphic to a
subalgebra of gn [105, Proposition 3.6.6]).

Regarding Heisenberg algebras, they constitute a special subclass of nilpotent Lie
algebras and are interesting for their applications to both the theory of nilpotent
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Lie algebras itself and Theoretical Physics. With respect to the �rst subject, a well-
known result [90] sets that a nilpotent Lie algebra g is abelian if and only if g does
not contain a subalgebra isomorphic to the 3-dimensional Heisenberg algebra H1.
In Theoretical Physics, these algebras are also very interesting because of several
reasons. The �rst of them is based on the origin itself of Heisenberg algebras.
These algebras appeared at the beginnings of the 20th century when introducing
Quantum Mechanics. In Classic Mechanics, the state of a particle in a given time
t is determined by both its position vector Q ∈ R3 and its momentum vector P ∈
R3. Heisenberg [52] took the components of these two vectors, considering them
as operators in a Hilbert space such that the following commutation relations were
veri�ed

[Qi, Qj] = 0, [Pi, Pj] = 0, [Pi, Qj] = −i ~ δij, ∀i, j = 1, 2, 3,

where δij is the named Kronecker delta and ~, called the deformation parameter,
represents the choice of a measure unit (usually ~ = 1).

1.2.1 Lie algebras hn

Let us denote by hn the complex solvable Lie algebra of n × n upper-triangular
matrices having the following structure

hn(xr,s) =


x11 x12 · · · x1n

0 x22 · · · x2n
...

. . .
. . .

...

0 · · · 0 xnn

 .

The basis Bn of hn is formed by the vectors Xij = hn(xr,s), where 1 ≤ i ≤ j ≤ n and

xr,s =

{
1, if (r, s) = (i, j);

0, if (r, s) ̸= (i, j).

In this way, the dimension of hn is dim(hn) = dhn=
n(n+1)

2
. Let us note that the

center Z(hn) of the Lie algebra hn is generated by the vector
∑n

i=1Xi,i, coming from
the main diagonal. This vector is the only one which commutes with all the vectors
in hn. Additionally, the non-zero brackets of hn with respect to the basis Bn are the
following

[Xi,j, Xj,k] = Xi,k, ∀i = 1 . . . n− 2, ∀j = i+ 1 . . . n− 1, ∀k = j + 1 . . . n;

[Xi,i, Xi,j] = Xi,j, ∀j > i;

[Xk,i, Xi,i] = Xk,i, ∀k < i.
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1.2.2 Lie algebras gn

Let us denote by gn the complex nilpotent Lie algebra of n × n strictly upper
triangular matrices, with n ∈ N \ {1}. The expression of the vectors in gn is the
following

gn(xr,s) =


0 x1,2 · · · x1,n−1 x1,n

0 0 · · · x2,n−1 x2,n
...

...
. . .

...
...

0 0 · · · 0 xn−1,n

0 0 · · · 0 0

 .

The dimension of gn is dim(gn) = dgn = n(n−1)
2

and, from now on, we will use
the basis of gn given by the vectors

Xi,j = gn(xr,s), with 1 ≤ i < j ≤ n, and xr,s =

{
1, if (r, s) = (i, j);

0, if (r, s) ̸= (i, j)

Let us note that the center of this algebra is given by ⟨X1,n⟩. The law of gn with
respect to this basis is expressed as follows

[Xi,j, Xj,k] = Xi,k, 1 ≤ i < j < k ≤ n

1.2.3 Heisenberg algebras

Heisenberg Lie algebras constitutes a special class of nilpotent Lie algebras and the
applications of these algebras are many and varied (e.g. [54, 87]).

De�nition 1.27. For a given k ∈ N, the Heisenberg algebra Hk is the (2k + 1)-

dimensional Lie algebra having the following law with respect to a certain basis

{x1, . . . xk, y1, . . . , yk, z}

[xi, yi] = z, ∀i = 1, . . . , k.

Let us note that the center of the Heisenberg algebra is given by ⟨z⟩.
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1.3 Main and non-main vectors

Fixed and given a n-dimensional Lie algebra g, every r-dimensional (abelian) sub-
algebra (with r ≤ n) is generated by a basis B = {vh}rh=1. Each vector vh ∈ B
is expressible as a linear combination vh =

∑
i a

h
iXi of the vectors in the basis

Bg = {Xi}ni=1 of g. Therefore, the basis B can be translated into a matrix in which
the hth row corresponds to the coordinates of vh with respect to the basis Bg

a11,2 a11,3 · · · a11,n a12,3 · · · a1n−1,n
...

...
. . .

...
...

. . .
...

ar1,2 ar1,3 · · · ar1,n ar2,3 · · · arn−1,n

 (1.3)

This matrix is equivalent to the following echelon form, obtained by using elementary
row and column transformations

b1,1 0 · · · 0 b1,r+1 · · · b1,n

0 b2,2 · · · 0 b2,r+1 · · · b2,n
...

...
. . .

...
...

. . .
...

0 0 · · · br,r br,r+1 · · · br,n

 (1.4)

Let us note that the vector Xi,j ∈ Bg associated with each row in (1.4) can be
di�erent from the one in (1.3).

Therefore, given a subalgebra h of hn, we can suppose, without loss of generality,
that every basis B of h is expressible by a matrix similar to (1.4) and that each
vector in B is a linear combination of two di�erent types of vectors Xi,j: the ones
corresponding to the pivots in (1.4) and the remaining ones. Each vector Xi,j corres-
ponding to a pivot position is called a main vector of B, with respect to the basis
Bn, whereas the rest are called non-main vectors. These concepts and notations
were introduced �rstly in [8] in order to study the maximal dimension of abelian
subalgebras.





Chapter 2

Theoretical study

In this chapter, we develop a theoretical study about abelian subalgebras and ideals
of maximal dimension contained in a �nite-dimensional Lie algebra. Hereafter, al-
gebra direct and semidirect sums will be denoted by ⊕ and n, respectively; whereas
vector space direct sums will be denoted by +̇. The content of this chapter can be
seen in the papers [18] and [28]. In the �rst place, we de�ne the following invariants.

α(g) = max{ dim(a) | a is an abelian subalgebra of g},

β(g) = max{ dim(b) | b is an abelian ideal of g}.

2.1 Some properties and bounds

First, let us note that an abelian subalgebra of maximal dimension is maximal
abelian with respect to inclusion. However, a maximal abelian subalgebra may not
be of maximal dimension. We show the following

Example 2.1. Let fn be the model �liform nilpotent Lie algebra of dimension n.

Let {ei}ni=1 be an adapted basis, such that [e1, eh] = eh−1, for 3 ≤ h ≤ n. Then a =

⟨e1, e2⟩ is a maximal abelian subalgebra of dimension 2, but α(fn) = β(fn) = n− 1.

Clearly, we have β(g) ≤ α(g). In general, both invariants are di�erent. A
complex semisimple Lie algebra s has no abelian ideals, hence β(s) = 0. We already
saw in Table 1 in Introduction, that this is not true for the invariant α(s). As
mentioned before, the following result holds, see [97]

Proposition 2.1. Let s be a complex simple Lie algebra and let b be a Borel subal-

gebra of s. Then the maximal dimension of an abelian ideal in b coincides with the

11
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maximal dimension of a commutative subalgebra of s, i.e., α(s) = β(b). Furthermore

the number of abelian ideals in b is 2rank(s).

This implies α(b) = β(b), because we have α(b) ≤ α(s) = β(b), since α is
monotone.

Lemma 2.1. The invariant α is monotone and additive: for a subalgebra h ⊆ g,

α(h) ≤ α(g) holds; and for two Lie algebras a and b, α(a⊕ b) = α(a) + α(b).

The invariant β need not be monotone. For example, consider a Cartan subal-
gebra h in g = sl2(C). Then β(h) = 1 > 0 = β(g).

If K is the algebraic closure of K we put h = h⊗K K for every subalgebra h of g.
We have the following

Lemma 2.2. It is veri�ed that α(g) ≥ α(g) and β(g) ≥ β(g).

Considering the Levi decomposition, we can set the following result.

Lemma 2.3. Let g be a complex Lie algebra with a Levi decomposition g = s n r.

Then, α(sn r) ≤ α(s) + α(r).

Proof. Let a be an abelian subalgebra in g of maximal dimension and π : sn r −→
s, (x, a) −→ (x, 0) be the projection. Restricting this Lie algebra homomorphism to
a yields dim(a) = dim(ker(πa)) + dim(im(πa)). Since im(πa) is the homomorphic
image of a subalgebra of snr, we can assume that im(πa) is an abelian subalgebra of
s. In particular we have dim(im(πa)) ≤ α(s). Furthermore we have ker(πa) = a∩ r.
Hence ker(πa) is an abelian subalgebra of r and we have dim(ker(πa)) ≤ α(r).
Finally we obtain α(snr) = dim(a) = dim(ker(πa))+dim(im(πa)) ≤ α(s)+α(r).

We will also need the following lemma.

Lemma 2.4. The center Z(g) of g is contained in any abelian subalgebra of maximal

dimension.

Proof. We know that an abelian subalgebra a of maximal dimension is self-centralizing,
i.e., a = Cg(a) = {x ∈ g | [x, a] = 0}. Since Z(g) ⊂ Cg(a), the claim follows.

The fact that α(b) = β(b) for a Borel subalgebra b of a complex simple Lie
algebra can be generalized to all solvable Lie algebras.

Proposition 2.2. Let g be a solvable Lie algebra over an algebraically closed �eld

K of characteristic zero. Then, β(g) = α(g).
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Proof. The result follows easily from the proof of Theorem 4.1 of [38]. For the
convenience of the reader we give the details. Let G be the adjoint algebraic group
of g. This is the smallest algebraic subgroup of the automorphisms of g, Aut(g),
such that its Lie algebra Lie(G) contains ad(g). Then Lie(G) is the algebraic hull
of ad(g). Since ad(g) is solvable, so is Lie(G). Therefore G is a connected solvable
algebraic group. Let us suppose that m = α(g). Consider the set C of all abelian
subalgebras of g of dimension m. This is, by assumtion, a non-empty set, which
can be considered as a subset of the Grassmannian Gr(g,m), which is an irreducible
complete algebraic variety. Hence, C is a non-empty complete variety, andG operates
morphically on it, mapping each commutative subalgebra h on g(h), for g ∈ G. By
Borel's �xed point theorem, G has a �xed point I in C, i.e., a subalgebra I of g with
g(I) = I for all g ∈ G. In particular we have ad(x)(I) = I for all x ∈ g. Hence I is
an abelian ideal of dimension m of g.

Borel's �xed point theorem relies on the closed orbit lemma. As a corollary one
can also obtain the Lie-Kolchin theorem [64]. We note that the assumption on K is
really necessary.

Example 2.2. Let g be the solvable Lie algebra of dimension 4 over R de�ned by

[x1, x2] = x2 − x3, [x1, x4] = 2x4,

[x1, x3] = x2 + x3, [x2, x3] = x4.

We prove that, over R, we have α(g) = 2, but β(g) = 1. Let K be equal to R or

C. Obviously, ⟨x3, x4⟩ is an abelian subalgebra of dimension 2 over K. Assume that

α(g) = 3. Then g is almost abelian, hence 2-step solvable. This is impossible, as g

is 3-step solvable. Hence α(g) = 2 over K.
Assume that I is a 2-dimensional abelian ideal over K. It is easy to see that we

can represent I as ⟨ax2 + bx3, x4⟩ with a, b ∈ K. Obviously both x2 and x3 cannot

belong to I. Hence a ̸= 0 and b ̸= 0. We have ax2 + bx3 ∈ I and [x1, ax2 + bx3] =

(a + b)x2 − (a − b)x3 ∈ I. This implies a2 + b2 = 0. This is a contradiction over

R, so that β(g) = 1 in this case. Over C we may take a = 1 and b = i, and

I = ⟨x2 + ix3, x4⟩ is a 2-dimensional abelian ideal.

In Section 2.4, we will see an example concerning the fact that the assumption
on the characteristic of the �eld K is really necessary.

As a consequence, we have the following bounds for α invariant.
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Lemma 2.5. Let g be a complex, non-abelian, nilpotent Lie algebra of dimension

n. Then √
8n+ 1− 1

2
≤ α(g) ≤ n− 1

Proof. The estimate is well-known for β(g), see [38]. By Proposition 2.2, it follows
for α(g).

Lemma 2.6. Let g be any solvable Lie algebra with nilradical N . Then Cg(N) ⊆ N .

Proof. Suppose that Cg(N) ̸⊆ N . Then there is a non-trivial abelian ideal I/(N ∩
Cg(N)) of g/(N∩Cg(N)) inside Cg(N)/(N∩Cg(N)). But now C3(I) ⊆ [I,N ] = 0, so
I is a nilpotent ideal of g. It follows that I ⊆ N∩Cg(N), which is a contradiction.

Next, we have a bound of β(g) for certain metabelian Lie algebras.

Proposition 2.3. Let g be a metabelian Lie algebra of dimension n, and suppose

that dim(D(g)) = k. Then dim(g/Cg(D(g))) ≤ [k2/4] + 1. If, further, g splits over

D(g), then β(g) ≥ n− [k2/4]− 1.

Proof. Let ad : g → Der D(g) be de�ned by adx(y) = [y, x] for all y ∈ D(g). Then
ad is a homomorphism with kernel Cg(D(g)). It follows that g/Cg(D(g)) ∼= D where
D is an abelian subalgebra of Der D(g) ∼= gl(k,K). It follows from Schur's Theorem
on commuting matrices (see [58]) that dim(g/Cg(D(g)) ≤ [k2/4] + 1.

Now suppose that g = D(g) ⊕ B, where B is an abelian subalgebra of g. Then
Cg(D(g)) = D(g)⊕B ∩ Cg(D(g)) which is an abelian ideal of g.

Now, we obtain bounds for supersolvable Lie algebras by following a development
similar to [94, Lemma 2].

Lemma 2.7. Let g be a supersolvable Lie algebra and let I be a maximal abelian

ideal of g. Then, Cg(I) = I.

Proof. We have that Cg(I) is an ideal of g. Suppose that Cg(I) ̸= I. Let J/I be a
minimal ideal of g/I with J ⊂ Cg(I). Then, for some j ∈ J , J = I + ⟨j⟩, which is
an abelian ideal of g, contradicting the maximality of I.

Proposition 2.4. Let g be a supersolvable Lie algebra and let I be any maximal

abelian ideal of g. Suppose that dim(I) ≤ k. Then, g/I is isomorphic to a Lie

algebra of k × k lower triangular matrices.
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Proof. Let ad : g → Der(I) be de�ned by ad x(y) = [y, x] for all x ∈ g and
y ∈ I. Then, ad is a homomorphism with kernel Cg(I) = I by Lemma 2.7. Since
g is supersolvable there is a �ag of ideals 0 = I0 ⊂ I1 ⊂ . . . ⊂ Ik = I of g.
Choose a basis {ei}ki=1 for I with ei ∈ Ii. With respect to this basis the action of
g on I is represented by k × k lower triangular matrices, since [Ii, g] ⊆ Ii for each
0 ≤ i ≤ k.

Corollary 2.1. Let g be a supersolvable Lie algebra with a maximal abelian ideal

I of dimension at most k. Then dim(g) ≤ k(k+3)
2

and g has derived length at most

k + 1.

Proof. The Lie algebra of k × k lower triangular matrices has dimension k(k+1)
2

and
derived length k.

Corollary 2.2. If g is supersolvable of dimension n, then

β(g) ≥
⌊√

8n+ 9− 3

2

⌋
.

Corollary 2.3. If g is solvable, but non-abelian of dimension n over an algebraically

closed �eld K of characteristic zero, then⌊√
8n+ 9− 3

2

⌋
≤ α(g) ≤ n− 1.

Proof. Simply use Corollary 2.2 and Proposition 2.2.

2.2 Abelian subalgebras of codimension 1

Let g be a Lie algebra satisfying α(g) = n − 1. We will show that β(g) = n − 1

without using Proposition 2.2. Our proof will be constructive. We do not only show
the existence of an abelian ideal of dimension n − 1, but really construct such an
ideal from a given abelian subalgebra of dimension n− 1. Note that Lie algebras g
with β(g) = n − 1 are called almost abelian. As mentioned before, they are 2-step
solvable, and their structure is well-known (see [48, Section 3] and [98]).

Proposition 2.5. Let g be an n-dimensional Lie algebra satisfying α(g) = n − 1.

Then we have β(g) = n− 1, and g is almost abelian.



16 Chapter 2. Theoretical Study

Proof. Let a be an abelian subalgebra of dimension n − 1. If D(g) ⊆ a, then a is
also an abelian ideal, and we are done. Otherwise we choose a basis {ei}ni=1 of g
such that a = ⟨e2, . . . , en⟩. We have [ej, eℓ] = 0 for all j, ℓ ≥ 2. There exists k ≥ 2

such that [e1, ek] is not contained in a. We may assume that k = 2 by relabelling e2
and ek. For j ≥ 2, let us consider

[e1, ej] = αj,1e1 + αj,2e2 + · · ·+ αj,nen.

We have α2,1 ̸= 0. Rescaling e1 we may assume that α2,1 = 1. Using the Jacobi
identity we have for all j ≥ 2

0 = [e1, [e2, ej]] = −[e2, [ej, e1]]− [ej, [e1, e2]] = −αj,1[e1, e2] + [e1, ej]

This implies [e1, ej] = αj,1[e1, e2] and [e1, αj,1e2 − ej] = 0 for all j ≥ 2. Let us de�ne
vj = αj,1e2 − ej. Note that every vj lies in the center of g, and that the derived
subalgebra D(g) is 1-dimensional, generated by [e1, e2]. Now de�ne

I := ⟨[e1, e2], v3, . . . , vn⟩.

This is an abelian subalgebra of dimension n− 1 which contains the derived subal-
gebra D(g). Hence I is an abelian ideal of maximal dimension n − 1, and we have
β(g) = n− 1.

Remark 2.1. Here, we give an alternative proof for the fact that g is almost abelian.

Let a be an abelian subalgebra of dimension n − 1. We choose a complement

space ⟨x⟩ with a⊕ ⟨x⟩ = g. If [a, ⟨x⟩] ⊂ a, then a is an abelian ideal of codimension

1 and we are done. If [a, ⟨x⟩] * a, it is non-zero and contained in ⟨x⟩, hence it is

veri�ed that [a, ⟨x⟩] = ⟨x⟩. Then, every two linear independent vectors in the Lie

algebra g generate a 2-dimensional subalgebra. By applying Lemma 5.3 of [111], we

can conclude that g is almost abelian.

Proposition 2.6. Let g be a supersolvable Lie algebra and let a be an abelian sub-

algebra of g. Suppose that b = a + ⟨e1⟩ is a subalgebra of g, and that there is an

x ∈ g such that [x, b] ⊆ b, but [x, a] ̸⊆ a. Then, D(b) is one dimensional and Z(b)

has codimension at most one in a.

Proof. Let {ei}ki=2 be a basis for a such that e1 = [x, e2]. Let [x, ej] =
∑k

i=1 αj,iei
for 1 ≤ j ≤ k. Then [e2, [x, ej]] = αj,1[e2, e1], so, for 2 ≤ j ≤ k,

0 = [x, [e2, ej]] = −[e2, [ej, x]]− [ej, [x, e2]] = αj,1[e2, e1]− [ej, e1].

Hence [e1, ej] = αj,1[e1, e2]. It follows that D(b) = ⟨[e1, e2]⟩. Put vj = αj,1e2 − ej for
3 ≤ j ≤ k. Then {vi}ki=3 ∈ Z(b) ∩ a.
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The above result deals with the case where an abelian subalgebra of maximal
dimension has codimension one in an ideal of g.

Corollary 2.4. Let g be a supersolvable Lie algebra and let a be an abelian subalgebra

of maximal dimension in g. If a ⊂ b where b is an ideal of g and a has codimension

1 in b, then α(g) = β(g).

Proof. If a is an ideal of g then the result is clear, so suppose that it is not. With
the same notation as Proposition 2.6 the hypotheses of that result are satis�ed.
Then {v3, . . . , vk} ⊂ Z(b); in fact, the maximality of a gives Z(b) = ⟨v3, . . . , vk⟩.
Let c/⟨v3, . . . , vk⟩ be a chief factor of g (minimal ideal of g/⟨v3, . . . , vk⟩) with c ⊂ b.
Then c is an abelian ideal of g with the same dimension as a. The result follows.

Next we consider the situation where g has a maximal subalgebra that is abelian:
�rst when g is any non-abelian Lie algebra and K is algebraically closed, and then
when g is solvable but K is arbitrary.

Proposition 2.7. Let g be a non-abelian Lie algebra of dimension n over an alge-

braically closed �eld K of any characteristic. Then, g has a maximal subalgebra a

which is abelian if and only if g has an abelian ideal of codimension one in g. So

α(g) = β(g) = n− 1.

Proof. Suppose �rst that g has a maximal subalgebra a which is abelian. If a is an
ideal of g the proof is �nished. So suppose that a is self-idealising, in which case
it is a Cartan subalgebra of g. Let g = a+̇g1(a) be the Fitting decomposition of
g relative to a. Then {(adm)|g1(a) : m ∈ a} is a set of simultaneously triangulable
linear mappings. So, there exists 0 ̸= b ∈ g1(a) such that [m, b] = λ(m)b for every
m ∈ a, where λ(m) ∈ K. Then we have that a + ⟨b⟩ is a subalgebra of g strictly
containing a, whence a+̇⟨b⟩ = g and D(g) = ⟨b⟩. But now dim(g/Cg(D(g))) = 1 and
Cg(D(g)) = D(g)+̇(a ∩ Cg(D(g))) is an abelian ideal of codimension one in g. The
converse is clear.

The following is a generalisation of [103, Proposition 3.1]

Proposition 2.8. Let g be a solvable Lie algebra. Then g has a maximal subalgebra

a which is abelian if and only if either

(i) g has an abelian ideal of codimension one in g; or

(ii) C3(g) = ϕ(g) = Z(g), C2(g)/C3(g) is a chief factor of g, and g splits over C2(g).
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Proof. Suppose �rst that g has a maximal subalgebra a which is abelian. If a is an
ideal of g we are in case (i). So suppose that a is self-idealising, in which case it is
a Cartan subalgebra of g. There is a k ≥ 1 such that Ck(g) * a but Ck+1(g) ⊆ a.
Then g = a + Ck(g), which implies that C2(g) ⊆ Ck(g). It follows that C3(g) ⊆ a.
If h is a subalgebra of g denote by h̃ its image under the canonical homomorphism
onto g/C3(g). Then ã is a Cartan subalgebra of g̃ and g̃ has a Fitting decomposition
g̃ = ã+̇g̃1. Now g̃1 ⊆ C2(g̃) = C̃2(g), which is abelian, so g̃1 is an ideal of g̃. Moreover,
since ã is a maximal subalgebra of g̃, g̃1 is a minimal ideal of g̃ and C̃2(g) = g̃1. It
follows that C2(g)/C3(g) is a chief factor of g. Clearly ϕ(g̃) = 0, whence ϕ(g) ⊆ C3(g).
Also g = a+C2(g), so letting b be a subspace of a such that a = b+̇(a∩C2(g)) we see
that b is a subalgebra of g and g splits over C2(g). Next, [a, C3(g)] ⊆ C2(a) = 0, so
a ⊆ Cg(C3(g)). Since a is a self-idealising maximal subalgebra of g and Cg(C3(g)) is
an ideal of g, we have Cg(C3(g)) = g, whence C3(g) = Z(g). Finally, this means that
C2(g) is nilpotent, giving C3(g) = ϕ(C2(g)) ⊆ ϕ(g) by [99, Lemma 4.1 and Section
5], whence ϕ(g) = C3(g).

Consider now the converse. If (i) holds the converse is clear. So suppose that (ii)
holds. Then g = b+̇C2(g), where b is an abelian subalgebra of g. Put a = b+ C3(g),
so a is clearly abelian. Let a ⊆ c ⊆ g. Then ã ⊆ c̃ ⊆ g̃. But g̃ = ã+̇C̃2(g) and C̃2(g)
is a minimal abelian ideal of g̃. So ã ̸= c̃ implies that c̃ = g̃. It follows that a is a
maximal subalgebra of g.

2.3 Abelian subalgebras of codimension 2

Let g be a complex Lie algebra of dimension n satisfying α(g) = n − 2. We will
show that g must be solvable except for the cases sl2(C)⊕Cℓ, for ℓ ≥ 0. We use the
convention that the Lie algebra sl2(C) is included in this family, for ℓ = 0.

Proposition 2.9. Let g be an n-dimensional complex Lie algebra with α(g) = n−2,

then either g is isomorphic to one of the Lie algebras sl2(C)⊕Cℓ, or g is a solvable

Lie algebra.

Proof. Let g = sn r be a Levi decomposition, where r denotes the solvable radical
of g. For a semisimple Levi subalgebra s we have

α(s) ≤ dim(s)− 2,

where equality holds if and only if s is sl2(C). This follows from Table 1 and Lemma
2.1. By Lemma 2.3, we have that α(sn r) ≤ α(s) +α(r). Assume that s ̸= 0. Then
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it follows that

α(g) ≤ α(s) + α(r) ≤ dim(s)− 2 + dim(r) = n− 2.

Since we must have an equality, it follows that s is isomorphic to sl2(C), and
α(r) = dim(r). Therefore r is abelian and g ≃ sl2(C) nϕ Cℓ with a homomor-
phism ϕ : sl2(C) → Der(Cℓ). This Lie algebra contains an abelian subalgebra
of codimension 2 if and only if ϕ is trivial. Indeed, the Lie bracket is given by
[(x, a), (y, b)] = ([x, y], ϕ(x)b − ϕ(y)a), for x, y ∈ sl2(C) and a, b ∈ Cℓ. Since there
is an abelian subalgebra of codimension 2, there must be a non-zero element (x, 0)
commuting with all elements (0, b), i.e., (0, 0) = [(x, 0), (0, b)] = (0, ϕ(x)b) for all
b ∈ Cℓ. It follows that ker(ϕ) is non-trivial. Since sl2(C) is simple, ϕ = 0. In the
other remaining case we have s = 0. In that case, g is solvable.

It is easy to classify such Lie algebras in low dimensions.

Proposition 2.10. Let g be a complex Lie algebra of dimension n and α(g) = n−2.

(1) For n = 3, it follows g ≃ sl2(C).

(2) For n = 4, g is isomorphic to one of the following Lie algebras

Table 2.1: Lie algebras of dimension 4 whose α invariant is 2.

g Lie brackets

g1 = r2(C)⊕ r2(C) [e1, e2] = e2, [e3, e4] = e4

g2 = sl2(C)⊕ C [e1, e2] = e2, [e1, e3] = −e3, [e2, e3] = e1

g3 [e1, e2] = e2, [e1, e3] = e3, [e1, e4] = 2e4, [e2, e3] = e4

g4(α), α ∈ C [e1, e2] = e2, [e1, e3] = e2 + αe3, [e1, e4] = (α+ 1)e4, [e2, e3] = e4

Proof. The proof is straightforward, using a classi�cation of low-dimensional Lie
algebras (see [19] for example). Note that g4(α) ≃ g4(β) if and only if αβ = 1 or
α = β.

Moreover, we can characterise solvable Lie algebras g whose biggest abelian sub-
algebras have codimension two in g.
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Theorem 2.1. Let g be a solvable Lie algebra of dimension n with α(g) = n − 2,

and let a be an abelian subalgebra of dimension n − 2. Then one of the following

occurs

(i) β(g) = n− 2;

(ii) g = C2(g)+̇b, where b is an abelian subalgebra of g, C2(g) is the three-dimensional

Heisenberg algebra, C3(g) = ϕ(g) = Z(g) and C2(g)/Z(g) is a two-dimensional

chief factor of g (in which case β(g) ≤ n− 3);

(iii) a has codimension one in the nilradical, N , of g, which itself has codimension

one in g. Moreover, C2(N) is one dimensional, Z(N) is an abelian ideal of

maximal dimension and β(g) = n− 3.

Proof. Let a be a maximal abelian subalgebra of g of dimension n− 2 and suppose
that (i) does not hold. Suppose �rst that a is a maximal subalgebra of g. Then g is as
in Proposition 2.8(ii) and a is a Cartan subalgebra of g. Let g = a+̇g1 be the Fitting
decomposition of g relative to a. Then g1 ⊆ C2(g) and dim g1 = 2. Let g1 = ⟨x, y⟩.
If [x, y] = 0 then g1 is an ideal of g and g/g1 is abelian, so C2(g) ⊆ g1 ⊆ C2(g). This
yields that g is metabelian and C2(g) is a two dimensional minimal ideal over which
g splits. It follows from Proposition 2.3 that β(g) ≥ n− 2, a contradiction.

If [x, y] ̸= 0, then C2(g) = ⟨[x, y]⟩ + g1 and ⟨[x, y]⟩ ⊆ C3(g) = Z(g), so ⟨[x, y]⟩ =
Z(g) and we have case (ii). Let c be a maximal abelian ideal of g. Then Z(g) ⊆ c

(Lemma 2.4) and C2(g) ̸⊆ c. It follows that c ∩ C2(g) = Z(g). If dim c = n − 2,
then dim(C2(g) + c) = dim C2(g) + dim c − dim(c ∩ C2(g)) = 3 + n − 2 − 1 = n, so
g = C2(g) + c. But then C2(g) = Z(g), a contradiction. Hence, β(g) ≤ n− 3.

So suppose that a is not a maximal subalgebra of g. Then a ⊂ d ⊂ g, where
dim d = n − 1. Moreover, there is such a subalgebra a of d which is an ideal of d,
by Proposition 2.5. Suppose �rst that a does not act nilpotently on g. Then the
Fitting decomposition of g relative to a is g = d+̇g1, and g1 is a one-dimensional
ideal of g. Put b = a+̇g1, which is an ideal of g. Then Cb(g1) has codimension one
in b and so is an abelian ideal of codimension two in g. It follows that β(g) = n− 2,
a contradiction.

Finally, suppose that a is an ideal of d and that a acts nilpotently on g. Then
there is a k ≥ 0 such that g(ad a)k ̸⊆ d but g(ad a)k+1 ⊆ d. Let x ∈ g(ad a)k \ d,
so g = d+̇⟨x⟩. Suppose �rst that d is not an ideal of g. Then the core of d, dg
has codimension one in d, by [1, Theorem 3.1]. If a = dg then we have case (i), so
suppose that a ̸= dg and d = a + dg. Then [a, x] ⊆ d which implies that [g, a] ⊆ d

and [g, d] = [g, dg] + [g, a] ⊆ d; that is, d is an ideal of g.



Abelian subalgebras of codimension 2 21

Let N be the nilradical of g. If N ⊆ a then a ⊆ Cg(N) ⊆ N , so N = a and we
have case (i) again. If a ⊂ N then N = g or we can assume that N = d. If a ̸⊆ N

and N ̸⊆ a then either a + N = g, in which case g is nilpotent, or we can assume
that a + N = d, in which case d is a nilpotent ideal of g and so d = N . If g is
nilpotent, then we have case (i), as it will be seen in Proposition 2.11.

So suppose that g = N + ⟨e1⟩, N = a + ⟨e2⟩ and a = ⟨e3, . . . , en⟩. If a is an
ideal of g then we have case (i) again, so suppose further that [e1, e3] = e2 and
[e1, ej] =

∑n
i=2 αj,iei for j ≥ 2. Following the proof of Proposition 2.6, we get

[e2, ej] = αj,2[e2, e3] for j ≥ 3 and C2(N) = ⟨[e2, e3]⟩. Let [e2, e3] =
∑n

i=2 λiei. Then
[[e2, e3], e3] = λ2[e2, e3], and nilpotency of N implies that λ2 = 0. It follows that
[e2, e3] ∈ a. Similarly, [e2, [e2, e3]] = µ[e2, e3] (where µ = λ3 +

∑n
j=4 λjαj,2), whence

µ = 0. We thus have that C3(N) = 0. Put vj = αj,2e3 − ej for j ≥ 3. Then
⟨v3, . . . , vn⟩ ⊆ Z(N), which is an abelian ideal of g. This is case (iii).

Corollary 2.5. Let g be a supersolvable Lie algebra with α(g) = n − 2. Then

β(g) = n− 2.

Proof. We use the same notation as in Theorem 2.1 and show that cases (ii) and
(iii) cannot occur. Clearly case (ii) cannot occur, since in that case C2(g)/Z(g)
is a two-dimensional minimal ideal of g/Z(g). So suppose that case (iii) occurs.
Then dimZ(N) = n − 3. Since g is supersolvable, there is an ideal b ⊂ N of g
with dim(b/Z(N)) = 1. But clearly b is abelian, contradicting the maximality of
Z(N).

Note that algebras of the type described in Theorem 2.1 (ii) and (iii) do exist
over the real �eld, as the following examples show.

Example 2.3. Let g be the four-dimensional Lie algebra over R with basis {e1, e2, e3, e4}
and non-zero products

[e1, e2] = e3, [e1, e3] = −e2, [e2, e3] = e4.

Then this algebra is as described in Theorem 2.1(ii). For C2(g) = ⟨e2, e3, e4⟩ is the
three-dimensional Heisenberg algebra, g = C2(g)+̇⟨e1⟩, C3(g) = ⟨e4⟩ = Z(g) = ϕ(g),

and C2(g)/Z(g) is a two-dimensional chief factor of g. This algebra has α(g) = 2 and

β(g) = 1. We could take a = ⟨e1, e4⟩, for example, but ⟨e4⟩ is the unique maximal

abelian ideal of g.

Example 2.4. Let g be the four-dimensional Lie algebra over R with basis {e1, e2, e3, e4}
and non-zero products

[e1, e2] = e2 − e3, [e1, e4] = 2e4, [e1, e3] = e2 + e3, [e2, e3] = e4.
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Then this algebra is as described in Theorem 2.1(iii). We can take a = ⟨e3, e4⟩,
N = ⟨e2⟩+ a, so C2(N) = ⟨e4⟩, Z(N) = ⟨e4⟩. We have α(g) = 2 and β(g) = 1.

Now, we study the case of nilpotent Lie algebras containing an abelian subalgebra
of codimension 2. In a nilpotent Lie algebra g any subalgebra of codimension 1 is
automatically an ideal. Hence given an abelian subalgebra of maximal dimension
n − 1 we obtain an abelian ideal of dimension n − 1. In particular, α(g) = n − 1

for a nilpotent Lie algebra implies β(g) = α(g), and we can explicitly provide such
ideals. We are able to extend this result to the case α(g) = n− 2. Given an abelian
subalgebra of dimension n− 2 we can construct an abelian ideal of dimension n− 2.
This is non-trivial, since the abelian subalgebra of maximal dimension n−2 need not
be an ideal in general. Of course, over an algebraically closed �eld of characteristic
zero, the existence of such an ideal already follows from Proposition 2.2, as does the
equality α(g) = β(g). However, the existence proof is not constructive. Our proof
will be constructive and elementary, which might be more appropriate to our special
situation.

Proposition 2.11. Let g be a nilpotent Lie algebra of dimension n satisfying α(g) =

n−2. Then there exists an algorithm to construct an abelian ideal of dimension n−2

from an abelian subalgebra of dimension n− 2. In particular we have β(g) = α(g).

Proof. Let a be an abelian subalgebra of g of maximal dimension n − 2. Choose
a basis (e3, . . . , en) for a. The normalizer of a, Ng(a) = {x ∈ g | [x, a] ⊆ a}, is a
subalgebra strictly containing a. We may assume that Ng(a) has dimension n − 1,
because otherwise Ng(a) = g, implying that a is already an abelian ideal of maximal
dimension n− 2.
We may extend the basis of a to a basis {ei}ni=1 of g, such that Ng(a) = ⟨e2, . . . , en⟩.
Since Ng(a) has codimension 1, it is an ideal in g. In particular we have [e1, Ng(a)] ⊆
Ng(a).
On the other hand, [e1, a] is not contained in a, since e1 is not in Ng(a). Hence there
exists a vector ek such that [e1, ek] is not in a. By relabelling e3 and ek we may
assume that k = 3. Hence writing [e1, ej] = αj,2e2 + · · · + αj,nen for j ≥ 2, we may
assume that α32 = 1, i.e., [e1, e3] = e2 + α3,3e3 + · · ·+ α3,nen.

In order to continue with our line of argument, we have to prove the following
lemma. The result says

Lemma 2.8. The following statements hold

(1) [e2, ej] = αj,2[e2, e3], for all j ≥ 3.

(2) The element [e2, e3] is non-zero and contained in the center of g.
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(3) The normalizer Ng(a) is two-step nilpotent.

(4) [Ng(a), vj] = 0, for all j ≥ 3, where vj = αj,2e3 − ej.

Proof. The �rst statement follows from the Jacobi identity. We have, for all j ≥ 3,

0 = [e1, [e3, ej]] = −[e3, [ej, e1]]− [ej, [e1, e3]] = −αj,2[e2, e3] + [e2, ej].

Concerning (2), assume �rst that [e2, e3] = 0. Then the subalgebra given by
⟨e2, e3, v4, . . . , vn⟩ would be an abelian subalgebra of dimension n − 1, with the vj
de�ned as in (4). This is a contradiction to α(g) = n− 2. Hence [e2, e3] is non-zero.
Since e2 ∈ Ng(a), we have that [e2, e3] ∈ a. We write, [e2, e3] = β3,3e3 + · · ·+ β3,nen.
We have [e3, [e2, e3]] = 0 and [e2, [e2, e3]] = (β3,3α3,2 + . . . + β3,nαn,2)[e2, e3]. Since
ad(e2) is nilpotent, it follows [e2, [e2, e3]] = 0. In the same way, [e1, [e2, e3]] =

[e2, [e1, e3]]− [e3, [e1, e2]] = λ[e2, e3], so that [e1, [e2, e3]] = 0, because ad(e1) is nilpo-
tent. Finally, [ej, [e2, e3]] = 0 for all j ≥ 3, since [e2, e3] ∈ a. It follows that [e2, e3]
lies in the center of g.
To show (3), note that [Ng(a), Ng(a)] is generated by [e2, e3], so that [Ng(a), Ng(a)] ⊆
Z(g). This proves (3). The statement (4) follows from (1).

Now we continue with the proof of Proposition 2.11. Let us consider a1 =

⟨v4, . . . vn⟩. This is an abelian subalgebra a1 ⊆ a ⊆ g of dimension n − 3. There
exists an integer ℓ ≥ 1 satisfying

ad(e1)
ℓ−1(e2) ̸∈ a1,

ad(e1)
ℓ(e2) ∈ a1,

because ad(e1) is nilpotent. We de�ne

I := ⟨ad(e1)ℓ−1(e2), v4, . . . , vn⟩

We will show that I is an abelian ideal of maximal dimension n − 2. First of all,
I is a subalgebra of dimension n − 2. It is also abelian: because Ng(a) is an ideal,
ad(e1)

k(e2) ∈ Ng(a) for all k ≥ 0. Then

[ad(e1)
k(e2), vj] = [λ2e2 + · · ·λnen, αj,2e3 − ej] = λ2αj,2[e2, e3]− λ2[e2, ej] = 0.

It remains to show that I is an ideal, i.e., that ad(ei)(I) ⊆ I, for all i ≥ 1. We have

[e1, ad(e1)
ℓ−1(e2)] = ad(e1)

ℓ(e2) ∈ a1 ⊆ I,

[ek, ad(e1)
ℓ−1(e2)] ∈ [Ng(a), Ng(a)] ⊆ Z(g) ⊆ I,
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for all k ≥ 2. Here we have used Lemma 2.4 to conclude that Z(g) ⊆ I. Also,
[ek, vj] = 0 ∈ I, for all k ≥ 2 and j ≥ 4. We only must show that [e1, vj] ∈ I, for all
j ≥ 4. E�ectively, we have

[e2, [e1, vj]] = [e1, [e2, vj]] + [vj, [e1, e2]] = 0.

This implies that [e1, vj] commutes with all elements from I. If it were not in I, then
⟨[e1, vj], I⟩ would be an abelian subalgebra of dimension n− 1, which is impossible.
It follows that [e1, vj] ∈ I.

Remark 2.2. In connection with the Toral Rank Conjecture (TCR), introduced in

[50] and asserting that any �nite-dimensional, complex nilpotent Lie algebra should

satisfy

dimH∗(g,C) ≥ 2dimZ(g),

there are interesting examples of nilpotent Lie algebras g with β(g) = n − 2 and of

dimension n ≥ 10, as can be seen in [86]. These algebras also have the property that

all its derivations are singular.

2.4 Abelian subalgebras of codimension 3

In this section, we prove that nilpotent Lie algebras with an abelian subalgebra of
codimension 3 contain an abelian ideal with the same dimension, provided that the
characteristic of the underlying �eld is not two. We also give an example to show
that the restriction on the �eld is necessary.

Theorem 2.2. Let g be a nilpotent Lie algebra of dimension n over a �eld of cha-

racteristic di�erent from two with α(g) = n− 3. Then, β(g) = n− 3.

Proof. Let a be an abelian subalgebra of g with dim a = n− 3, let c be a maximal
subalgebra containing a and suppose that a is not an ideal of g. Then c is an ideal of
g, and a is a maximal abelian subalgebra of c of codimension 2 in c. By Proposition
2.11, we can assume that a is an ideal of c. Let {ei}ni=4 be an arbitrary basis for
a and g = ⟨e1⟩ + c. We may suppose that e3 = [e1, e4] /∈ a; set b = ⟨e3⟩ + a. If
[e1, b] ⊆ b, then b is an ideal of g, and the result follows from Corollary 2.4. Hence
there exists k such that e2 = [e1, ek] /∈ b, where 3 ≤ k ≤ n and k ̸= 4. Clearly,
c = ⟨e2⟩+ b. Let [e1, ej] =

∑n
i=2 αj,iei, for 2 ≤ j ≤ n. Then,

[e3, ej] = [[e1, e4], ej] = −[[e4, ej], e1]− [[ej, e1], e4] (2.1)

= αj,2[e2, e4] + αj,3[e3, e4] for j ≥ 4. (2.2)
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Put uj = ej − αj,3e4, for j ≥ 5. Then [e3, uj] = αj,2[e2, e4], for j ≥ 5. Therefore, we
can choose the elements {ei}5i=1 in our basis so that

[e3, ej] = αj,2[e2, e4] and αj,3 = 0, ∀j ≥ 5. (2.3)

Case 1: Suppose that αj,2 = 0, for all j ≥ 4. So [e3, ej] = 0, for j ≥ 5, [g, a] ⊆ b

and we can put e2 = [e1, e3]. We have

[e2, ej] = [[e1, e3], ej] = −[[e3, ej], e1]− [[ej, e1], e3] (2.4)

= αj4[e4, e3] for j ≥ 5. (2.5)

If αj,4 = 0, for all j ≥ 5, then dimZ(c) ≥ n − 4, and if we choose I/Z(c) to be a
chief factor of g with I ⊂ c, I is an abelian ideal of g with dim I ≥ n− 3.

So suppose that α5,4 ̸= 0. Put vj = α5,4ej − αj,4e5, for j ≥ 6. Then [e2, vj] = 0,
for j ≥ 6 and dimZ(c) ≥ n − 5. So, we can choose the terms {ei}ni=6 in the initial
basis such that they belong to Z(c). Let us note that C2(c) is spanned by [e2, e3],
[e2, e4] and [e3, e4]. Now

[e1, [e2, e5]] = −[e2, [e5, e1]]− [e5, [e1, e2]] = α5,4[e2, e4] + α5,5[e2, e5] + α2,2[e2, e5],

and
[e1, [e4, e3]] = −[e4, [e3, e1]]− [e3, [e1, e4]] = [e4, e2].

It follows from (2.5) that

2α5,4[e2, e4] = (α5,5 + α2,2)α5,4[e3, e4],

so dim C2(c) ≤ 2. Let I/Z(c) be a chief factor of g with I ⊂ c. Then I is an
abelian ideal of g of dimension at least n − 4. Suppose that dim I = n − 4 and
that this is a maximal abelian ideal of g. Then Cg(I) = I by [94, Lemma 1]. Put
I = Z(c) + ⟨b⟩. Now [e3, b], [e4, b], [e5, b] ∈ C2(c). Since dim C2(c) ≤ 2 these elements
are linearly dependent. Hence we have β3[e3, b] + β4[e4, b] + β5[e5, b] = 0 for some
β3, β4, β5 ∈ K, not all zero. It follows that β3e3 + β4e4 + β5e5 ∈ Cg(I) = I, whence
I = ⟨β3e3 + β4e4 + β5e5⟩+ Z(c). Now e5 ∈ Cg(I) = I, so I = Z(c) + ⟨e5⟩. But then
e4 ∈ Cg(I) \ I, which is a contradiction. It follows that there is an abelian ideal of
dimension n− 3.

Case 2: Suppose that α5,2 ̸= 0, so [e1, e5] /∈ b. Put e2 = [e1, e5], so that α5,2 = 1,
α5,j = 0, for j ̸= 2; put also vj = ej − αj,2e5, for j ≥ 6. Then [e3, vj] = 0, for j ≥ 6.
Using (2.3), we also have

[e1, vj] = [e1, ej]− αj,2[e1, e5] ∈ a, for j ≥ 6.
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Thus, [e2, vj] = [[e1, e5], vj] = −[[e5, vj], e1] − [[vj, e1], e5] = 0 for j ≥ 6. So again
dimZ(c) ≥ n− 5, we can choose {ei}ni=6 in our original basis to belong to Z(c), and
C2(c) is spanned by [e2, e3], [e2, e4], [e2, e5] and [e3, e4]. Now

[e1, [e2, e4]] = −[e2, [e4, e1]]− [e4, [e1, e2]] = [e2, e3] + α2,2[e2, e4] + α2,3[e3, e4],

and

[e1, [e3, e5]] = −[e3, [e5, e1]]− [e5, [e1, e3]] = [e3, e2] + α3,2[e2, e5] + α3,3[e3, e5].

Since [e3, e5] = [e2, e4], this yields

2[e2, e3] = (α3,3 − α2,2)[e2, e4]− α2,3[e3, e4] + α3,2[e2, e5], (2.6)

so C2(c) is spanned by [e2, e4], [e2, e5] and [e3, e4].

We have C2(c) ⊆ a, since dim c/a = 2. Suppose �rst that C2(c) ̸⊆ Z(c). Then
choose I ⊆ C2(c) + Z(c) such that I/Z(c) is a chief factor of g. Then I ⊂ a and
a ⊆ Cg(I) \ I. It follows that g has an abelian ideal of dimension n− 3.

So consider now the case where C3(c) = 0. We have dim g/(C2(g)+Z(c)) ≤ 3 since
e2, e3 ∈ C2(g). Suppose �rst that dim g/(C2(g) + Z(c)) = 3, so that C2(g) + Z(c) =

⟨e2, e3⟩+ Z(c) = J . This is an ideal of g, so α2,4 = α2,5 = α3,4 = α3,5 = 0. Now

[e1, [e2, e3]] = −[e2, [e3, e1]]− [e3, [e1, e2]] = α3,3[e2, e3] + α2,2[e2, e3] = (α3,3 + α2,2)[e2, e3].

Since g is nilpotent we must have α3,3 = −α2,2. Now

dim([g, J ] + Z(c))/Z(c) ≤ 1,

so [e1, e3] + Z(c) = λ[e1, e2] + Z(c) for some λ ∈ K. It follows that α3,2 = λα2,2,
−α2,2 = α3,3 = λα2,3 and I = ⟨e3 − λe2⟩ + Z(c) is an abelian ideal of g. Suppose
�rst that λ ̸= 0. Then

[e3 − λe2, λe2 + e3 − λα2,3e4 − α3,2e5]

= −2λ[e2, e3] + (λ2α2,3 − α3,2)[e2, e4]− λα2,3[e3, e4] + λα3,2[e2, e5]

= λ(−2[e2, e3] + (α3,3 − α2,2)[e2, e4]− α2,3[e3, e4] + α3,2[e2, e5])

= 0,

using (2.6). It follows that Cg(I) ̸= I, so I is not a maximal abelian ideal of g and
the result holds.

If λ = 0, then α3,2 = α3,3 = α2,2 = 0 and (2.6) becomes 2[e2, e3] = −α2,3[e3, e4].
But this implies that [2e2 − α2,3e4, e3] = 0, and Cg(I) ̸= I again.
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So suppose now that dim g/(C2(g) + Z(c)) = 2. Then there is an c1 ∈ c such
that g = ⟨e1, c1, c2, c3, c4⟩ + Z(c), where c2 = [e1, c1], c3 = [e1, c2], c4 = [e1, c3],
[e1, c4] ∈ Z(c). Now

[e1, [c1, c2]] = −[c1, [c2, e1]]− [c2, [e1, c1]] = [c1, c3],

[e1, [c1, c3]] = −[c1, [c3, e1]]− [c3, [e1, c1]] = [c1, c4] + [c2, c3],

[e1, [c1, c4]] = −[c1, [c4, e1]]− [c4, [e1, c1]] = [c2, c4],

[e1, [c2, c4]] = −[c2, [c4, e1]]− [c4, [e1, c2]] = [c3, c4],

[e1, [c2, c3]] = −[c2, [c3, e1]]− [c3, [e1, c2]] = [c2, c4].

Since dim C2(c) ≤ 3 we have 0 = [e1, [e1, [e1, [c1, c2]]]] = 2[c2, c4]. Clearly I = ⟨c4⟩ +
Z(c) is an abelian ideal and c2 ∈ Cg(I) \ I, which completes the proof.

The restriction on the characteristic in the above result is necessary, as the
following example shows.

Example 2.5. Let g be the nine-dimensional Lie algebra over any �eld K of cha-

racteristic two, with basis {e1, e2, e3, e4, e5, e6, e7, e8, e9} and non-zero products

[e1, e2] = e6, [e1, e3] = e2, [e1, e4] = e3, [e1, e5] = e4, [e1, e8] = e7,

[e1, e9] = e8, [e2, e3] = e7, [e2, e4] = e8, [e2, e5] = e9, [e3, e4] = e9.

This is a nilpotent Lie algebra whose abelian subalgebras of maximal dimension are

⟨e3 + λe4, e5, e6, e7, e8, e9⟩ and ⟨λe3 + e4, e5, e6, e7, e8, e9⟩ (λ ∈ K),

so α(g) = 6. However, none of these are ideals of g. In fact the abelian ideal of

maximal dimension is

⟨e2, e6, e7, e8, e9⟩,

so β(g) = 5.
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Chapter 3

Abelian ideals and subalgebras in

some solvable Lie algebras

In this chapter, we show several results and algorithmic methods to compute abelian
ideals and subalgebras of some special families of solvable Lie algebras over the �eld
K = C. More concretely, we deal with Lie algebras gn, given by n × n strictly
upper-triangular matrices; Lie algebras hn, given by n×n upper-triangular matrices,
Heisenberg algebras and �liform Lie algebras. The content of this chapter can be
seen in the papers [23] and [26].

The main interest to deal with the Lie algebras hn and gn lies in the fact that eve-
ry �nite-dimensional solvable Lie algebra can be represented by a Lie subalgebra of
some hn (see [43, Theorem 9.11] or [105, Theorem 3.7.3]) and every �nite-dimensional
nilpotent Lie algebra is isomorphic to a subalgebra of gn ([105, Proposition 3.6.6]).
Another reason is that their applications to Physic are many and varied as can be
seen in [54, 87].

Heisenberg algebras constitute a special subclass of nilpotent Lie algebras and
are also very interesting for several reasons. For example, their applications to both
the theory of nilpotent Lie algebras itself and Theoretical Physics. With respect to
the �rst subject, a well-known result sets that a nilpotent Lie algebra g is abelian
if and only if g does not contain a subalgebra isomorphic to the 3-dimensional
Heisenberg algebra H1 [90]. Heisenberg algebras appeared at the beginnings of the
20th century when introducing Quantum Mechanics. In Classic Mechanics, the state
of a particle in a given time t is determined by both its position vector Q ∈ R3 and
its momentum vector P ∈ R3. Heisenberg [52] took the components of these two
vectors, considering them as operators in a Hilbert space such that the following

29
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commutation relations were veri�ed

[Qi, Qj] = 0, [Pi, Pj] = 0, [Pi, Qj] = −i ~ δij, ∀i, j = 1, 2, 3,

where δij is the named Kronecker delta and ~, called the deformation parameter,
represents the choice of a measure unit (usually ~ = 1).

Filiform Lie algebras constitute a very special subclass of nilpotent Lie algebras.
In fact, they are the most structured Lie algebras in the nilpotent class and were
introduced by Vergne [107] in 1966. The classi�cation of solvable and nilpotent
Lie algebras is still an open problem. Therefore, it seems convenient to reduce this
problem by dealing with subclasses of nilpotent Lie algebras. Hence, studying and
classifying �liform Lie algebras is a �rst step towards the classi�cation of solvable
Lie algebras in general.

The method to compute an abelian subalgebra of maximal dimension of a Lie
algebra g is based on the technique introduced in [6, 8] for subalgebras and consisting
in considering an arbitrary basis of an r-dimensional subalgebra with respect to the
basis Bg of the Lie algebra g in which its law is expressed. Then the vectors in
Bg are divided in main vectors or non-main vectors according to a echelon matrix
associated with Bg. Finally it is studied whether the subalgebra is abelian or not
and if it is an ideal.

3.1 Lie algebra gn

Now, we show an algorithmic procedure which allows us to obtain abelian ideals of
the Lie algebra gn. A �rst version of this algorithm for subalgebras was given in [6].

Case 1: n is even and n ≥ 4 (i.e., n = 2 k, with k ∈ N \ {1}).

Step 1: (2k)th column. Let us consider the 2k − 1 vectors corresponding to
this column. So, we obtain the abelian ideal ⟨X1,2k, . . . , X2k−1,2k⟩.

Step 2: (2k− 1)th column. Now, we add the 2k− 2 vectors corresponding to
this column and the unique vector coming from the (2k− 1)th row has to
be removed. In this way, we obtain the abelian ideal ⟨X1,2k, . . . , X2k−2,2k,

X1,2k−1, . . . , X2k−2,2k−1⟩.

Step 2k − i+ 1: ith column, with 2k > i > k+1. After adding the i−1 vectors
corresponding to the ith column, the 2k − i vectors corresponding to ith

row are removed. In this way, the dimension of the obtained abelian ideal
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increases 2i−2k−1, while i > k+1/2. So, k is the last step in which the
number of vectors generating the obtained abelian ideal is greater than
the one obtained in the previous step.

Step k: (k + 1)th column. The k vectors corresponding to this column are
added, whereas the 2k − (k + 1) = k − 1 ones corresponding to the
(k+1)th row are removed. So, a k2-dimensional abelian ideal is obtained,
being its basis formed by

X1,k+1 . . . X1,2k

X2,k+1 . . . X2,2k

...
. . .

...

Xk,k+1 . . . Xk,2k

Case 2: n is odd and n ≥ 4 (i.e., n = 2k + 1, with k ∈ N \ {1}).

Analogously to the Case 1, we can settle the following procedure to obtain an
abelian ideal with dimension as large as possible.

Step 1: (2k + 1)th column. Firstly, we consider the 2k vectors corresponding
to this column. So we obtain the abelian ideal ⟨X1,2k+1, . . . X2k,2k+1⟩.

Step 2: 2kth column. Now the 2k − 1 vectors corresponding to this column
are added, removing the vector coming from the 2kth row. In this way,
the abelian ideal ⟨X1,2k+1, . . . X2k−1,2k+1, X1,2k, . . . X2k−1,2k⟩ is obtained.

Step 2k − i+ 2: ith column, with 2k+1 > i > k+2. There exist i−1 vectors
corresponding to the ith column, which are added to the generators of
the abelian ideal obtained in the previous step. Then the 2k + 1 − i

vectors corresponding to the ith row are removed, obtaining an abelian
ideal whose dimension increases 2i− 2k − 2 with respect to the previous
step. The dimension increases only when i > k + 1. Hence, Step k is the
last step and the procedure will be stopped after it.

Step k: (k+2)th column. Now the k+1 vectors corresponding to the (k+2)th

column are added, whereas the k−1 vectors corresponding to the (k+2)th

row are removed, which allows us to obtain a (k2+k)-dimensional abelian
ideal with the basis

X1,k+1 . . . X1,2k+1

X2,k+1 . . . X2,2k+1

...
. . .

...

Xk,k+1 . . . Xk,2k+1
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By using a similar procedure we can compute this other (k2 + k)-dimensional
abelian ideal

X1,k+2 . . . X1,2k+1

X2,k+2 . . . X2,2k+1
...

. . .
...

Xk+1,k+2 . . . Xk+1,2k+1

According to the results obtained, an abelian ideal of gn has been computed for
all n ∈ N. Indeed, the dimension of such a ideal is

An =


n− 1, if n < 4;

k2, if n = 2k, n ≥ 4;

k2 + k, if n = 2 k + 1, n ≥ 4.

Therefore, α(gn) = β(gn) is lower bounded by the value An. Now we prove that the
value of the invariants α and β for gn is An, improving the bound given by Jacobson
[57] and Schur [91].

Let us remember that dgn denotes the dimension of gn. Now, we give a sketch
for the proof of the following fact: it is not possible to obtain an abelian subalgebra
of the Lie algebra gn with dimension greater than An. A more detailed information
about this proof can be consulted in [8]. For it, three preliminary results are needed

Proposition 3.1 (Theorem 3.1 in [6]). Let us consider n ∈ N, with n ≥ 4. Then

the abelian Lie algebra of dimension dgn − 1 is not a subalgebra of gn. �

Lemma 3.1 (Lemma 4.1 in [8]). Let us consider n ∈ N, with n ≥ 3. Then,

dgn − dgn−1 = n− 1. �

Lemma 3.2 (Lemma 4.2 in [8]). Let us consider n ∈ N, with n ≥ 3. Then,

An −An−1 =
[
n
2

]
, where

[
n
2

]
denotes the integral part of n

2
. �

Combining the previous results, a proof can be provided for

Theorem 3.1 (Theorem 4.1 in [8]). Let us consider n ∈ N, with n ≥ 2. The α

invariant of the Lie algebra gn is given by

α(gn) = An =

{
k2, if n = 2k, with k ∈ N,
k2 + k, if n = 2k + 1, with k ∈ N.

Proof. We use an iterative procedure based on studying the impossibility of obtain-
ing a (dgn − r)-dimensional abelian Lie subalgebra in gn for 0 < r ≤ dgn −An − 1.
Cases g2 and g3 are trivial. Moreover, Proposition 3.1 implies this result for g4. So
we only need to prove it for n ≥ 5.

Given an abelian subalgebra of gn, our proof is based on the number of main
vectors coming from the nth column in an arbitrary basis B of that subalgebra.



Lie algebra gn 33

(dgn − 2)-dimensional abelian subalgebra: We have to consider three di�erent
cases

Case 1: The two non-main vectors correspond to the nth column. Each vector
Xi,j ∈ gn−1 is main, but gn−1 is not abelian.

Case 2: A unique non-main vector corresponds to the nth column. A (dgn−1 −
1)-dimensional abelian subalgebra has to be contained in gn−1, but it is
not possible according to Proposition 3.1.

Case 3: No non-main vector corresponds to the nth column. [Xi0,n−1, Xn−1,n]

is non-zero where Xi0,n−1 is a main vector, with i0 as greater as possible.

(dgn − 3)-dimensional abelian subalgebra: There are three non-main vectors in
B and the four following cases have to be considered

Case 1: The three non-main vectors correspond to the nth column. This is in
contradiction with the law of gn−1.

Case 2: Two non-main vectors correspond to the nth column. Due to Propo-
sition 3.1, we cannot �nd a (dgn−1 −1)-dimensional abelian subalgebra
in gn−1.

Case 3: A unique non-main vector corresponds to the nth column. Only one
vector coming form the nth column of gn is non-main. So we need to �nd
a (dgn−1−2)-dimensional abelian subalgebra in gn−1.

• If Xn−1,n is main, [Xi0,n−1, Xn−1,n] is non-zero where Xi0,n−1 is a main
vector with i0 as greater as possible.

• If Xn−1,n is non-main, Xi,n is main for 1 ≤ i ≤ n − 2. If n = 5, we
choose the main vectors X2,5 and X1,2 to obtain a non-zero bracket.
If n > 5, [Xj0,n−2, Xn−2,n] is non-zero with j0 as greater as possible
such that Xj0,n−2 is a main vector.

Case 4: No non-main vector corresponds to the nth column. If n > 5, there
exists i0 as greater as possible such that Xi0,n−1 is main and the bracket
[Xi0,n−1, Xn−1,n] is non-zero. If n = 5, we consider the main vectors X3,5

and X1,3 to get a non-zero bracket.
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(dgn − r)-dimensional abelian subalgebra, where 4≤r≤dgn−An−1: We
have to prove the non-existence of (dgn − r)-dimensional abelian subalgebras
in gn, with 4 ≤ r ≤ dgn −An−1. Our proof is based on an iterative procedure
supposing that, for 1 ≤ s ≤ r − 1, no abelian subalgebra of dimension dgn − s

can be contained in gn. Remember that s ≤ dgn −An. We consider �ve cases

Case 1: r non-main vectors correspond to the nth column. Then the algebra
gn−1 would be abelian and this is not possible.

Case 2: r−1 non-main vectors correspond to the nth column. There exists one
non-main vector in gn−1 and a (dgn−1 −1)-dimensional abelian subalgebra
is contained in gn−1. It is not possible either due to Proposition 3.1.

Case 3: r − k non-main vectors correspond to the nth column (with 2 ≤ k ≤
min{r− 1, dgn−1 −An−1 − 1}). There are k non-main vectors in gn−1 and
a (dgn−1 − k)-dimensional abelian subalgebra is looked for in gn−1. This
stands in contradiction with our iterative assumption.

Case 4: r−k non-main vectors correspond to the nth column (with dgn−1 −
An−1≤k≤r−1). There exist k non-main vectors in gn−1 and n−1−r+k

main ones coming from the nth column, satisfying 1+
[
n
2

]
≤n−1−r+k≤n−1.

Thus, there are, at least, 1+
[
n
2

]
main vectors with the form Xi,n and, at

most, n−
[
n
2

]
−2 non-main ones. So, more than the half of the vectors

coming from the nth column are main. Now, we choose w ∈ B such
that its main vector Xj0,h0 , with 1 ≤ j0 < h0 < n, belongs to gn−1 and
the vector Xh0,n is the main vector of a basis vector v ∈ B. So the
bracket [v,w] is non-zero. To assert it, j0 has to be chosen as greater as
possible.

Case 5: No non-main vector corresponds to the nth column. There exists a
main vectorXi0,j0∈gn−1 with i0 as greater as possible and [Xi0,j0,Xj0,n]̸=0. �

3.2 Lie algebra hn

We explain an algorithmic method to obtain abelian ideals in an arbitrary Lie alge-
bra hn, with n ≥ 4. The content of this section can be seen in [21]. Depending on
the parity of n, two possible cases have to be considered
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Case 1: n is even and n ≥ 4 (i.e., n = 2 k, with k ∈ N \ {1}).

We consider the vectors in the basis of hn, corresponding to the columns in the
matrix expression of hn. When the vectors corresponding to the ith column
are chosen, all the vectors corresponding to the ith row have to be removed.
In this way, all the non-zero brackets are avoided and it is an ideal.

Step 1: (2k)th column. We add the 2k vectors corresponding to the (2k)th

column. The vector coming from the (2k)th row has to be removed,
obtaining the abelian subalgebra ⟨X1,2k, . . . , X2k−1,2k⟩.

Step 2k − i+ 1: ith column, with 2k > i > k + 1. After adding the i vectors
corresponding to the ith column, the 2k − (i − 1) vectors corresponding
to ith row are removed. In this way, we obtain an abelian ideal whose
dimension increases 2i− 2k − 1, while i > k + 1/2. So k is the last step
in which the dimension increases with this adding-removing procedure.

Step k: (k + 1)th column. The k + 1 vectors corresponding to the (k + 1)th

column are added, whereas the k ones corresponding to the (k+1)th row
are removed.

Step k+1: Adding the vector
∑n

i=1Xi,i to the basis computed in Step k, we
obtain a (k2 + 1)-dimensional abelian ideal whose basis is shown next

X1,k+1 . . . X1,2k

X2,k+1 . . . X2,2k

...
. . .

...
Xk,k+1 . . . Xk,2k

and
n∑

i=1

Xi,i

Case 2: n is odd and n ≥ 4 (i.e., n = 2k + 1, with k ∈ N \ {1}).

By arguing analogously to the Case 1, we can settle the following procedure
to obtain an abelian ideal with dimension as large as possible.

Step 1: (2k + 1)th column. After adding the 2k + 1 vectors corresponding to
this column, the unique vector coming from the (2k+1)th row is removed,
obtaining the abelian ideal ⟨X1,2k+1, . . . , X2k,2k+1⟩.

Step 2k − i+ 2: ith column, with 2k+1 > i > k+2. The i vectors correspond-
ing to the ith column are added and the 2k−(i−1) vectors corresponding
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to the ith row are removed, obtaining an abelian ideal whose dimension
increases 2i − 2k − 2. This dimension increases while i > k + 1. Hence,
Step k is the last step for the adding-removing procedure.

Step k: (k+2)th column. Now the k+2 vectors corresponding to this column
are added and, then, the 2k + 1− (k + 2− 1) = k vectors corresponding
to the (k + 2)th row are removed, which allows us to obtain a (k2 + k)-
dimensional abelian ideal.

Step k + 1: Adding the vector
∑n

i=1Xi,i to the basis computed in Step k,
we obtain the (k2 + k + 1)-dimensional abelian ideal determined by the
basis

X1,k+2 . . . X1,2k+1

X2,k+2 . . . X2,2k+1

...
. . .

...
Xk+1,k+2 . . . Xk+1,2k+1

and
n∑

i=1

Xi,i

By using a similar procedure we can compute this other (k2+k+1)-dimensional
abelian ideal

X1,k+1 . . . X1,2k+1

X2,k+1 . . . X2,2k+1

...
. . .

...

Xk,k+1 . . . Xk,2k+1

and
n∑

i=1

Xi,i

According to the results obtained in this section, an abelian ideal of hn has been
computed for all n ∈ N. Indeed, the dimension of such a subalgebra is

Bn =


n, if n < 4;

k2 + 1, if n = 2k, n ≥ 4;

k2 + k + 1, if n = 2 k + 1, n ≥ 4.

Therefore, we can a�rm that α(hn) = β(hn) is lower bounded by the value Bn,
which is equal to the upper bound of α(hn) given by Jacobson [57] and Schur [91].
So, for the Lie algebras hn, α and β invariants are equal to Bn.

3.3 Heisenberg algebras

This subsection is devoted to compute the α invariant for complex Heisenberg alge-
bras. To do so, lower and upper bounds of α(Hk) are computed for k ∈ N using the
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proof introduced in [78]. According to the law of Hk and the basis Bk = {Xi}2k+1
i=1

expressed in preliminaries, ak = ⟨{X2i+1|i = 0, . . . , k}⟩ is a (k + 1)-dimensional
abelian ideal of Hk. So we can a�rm that k+1 ≤ α(Hk) for k ∈ N. In this way, our
main goal comes down to proving the non-existence of abelian subalgebras in Hk

with dimension greater than k + 1. The following technical lemma has to be used
to settle the previous statement, whose proof is based in solving a system with a
symbolic computation package

Lemma 3.3. The system of equations with complex unknowns ai and bi has not any

complex solutions

E1 : a1 · b2 − a2 · b1 = −1; E6 : a2 · b4 − a4 · b2 = 0;

E2 : a1 · b3 − a3 · b1 = 0; E7 : a2 · b5 − a5 · b2 = 0;

E3 : a1 · b4 − a4 · b1 = 0; E8 : a3 · b4 − a4 · b3 = −1;

E4 : a1 · b5 − a5 · b1 = 0; E9 : a3 · b5 − a5 · b3 = 0;

E5 : a2 · b3 − a3 · b2 = 0; E10 : a4 · b5 − a5 · b4 = 0.

(3.1)

�

By using the previous lemma, the following theorem can be proved, settling lower
and upper bounds for α(Hk) = β(Hk).

Theorem 3.2 (Theorem 3.1 in [78]). For k∈N and γ∈N ∪{0}, α(Hk) = β(Hk) is

bounded by k + 1 ≤ α(Hk) ≤ 2k − γ, for all k ≥ γ + 1.

Proof. The �rst inequality is trivial due to the existence of the subalgebra ak for
k∈N. To obtain the upper bound for α(Hk), we only need to prove the non-existence
of abelian subalgebras b of Hk whose dimension is 2k−γ+1. Since k is lower bounded
by γ + 1, the dimension of Hk can be lower bounded by

dim(Hk) = 2k + 1 ≥ 2γ + 3. (3.2)

Any (2k − γ + 1)-dimensional subalgebra of Hk has (2k − γ + 1) main vectors and
the number of the non-main ones is dim(Hk) − (2k − γ + 1) = γ. By combining
this expression with (3.2), the number of main vectors is greater than the number
of non-main ones; that is 2k − γ + 1 ≥ γ + 3.

The basis Bk of Hk is structured in pairs of basic vectors (Xi, Xi+1) such that
i is an even natural number less than or equal to 2k. For each of these pairs, its
corresponding bracket is equal to the vector X1 ∈ Bk. Let us call non-zero pair

to each of these pairs. Therefore, Hk is formed by k non-zero pairs and the vector
resulting from all these brackets.

There are, at most,
⌊
γ
2

⌋
non-zero pairs which are formed by non-main vectors;

whereas the number of non-zero pairs which only contain main vectors is at least
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one. Starting from this minimum, there is one non-zero pair formed by main vectors
more for each new non-zero pair formed by non-main vectors.

To distinguish between main vectors and non-main vectors for the basis B of the
subalgebra studied, the vectors in Bk are arranged in two sets, which are reordered
as follows

SNMV={Xi∈Hk|i=1, . . . , 2k+1 ∧Xi is a non-main vector}={Xih |h = 1, . . . , γ}
SMV ={Xi∈Hk|i=1, . . . , 2k + 1 ∧Xi is a main vector}={Xih |h=γ+1, . . . , 2k+1}

(3.3)

So the proof of α(Hk)≤ 2k−γ starts by considering each possible case for non-zero
pairs formed by non-main vectors and proving that the subalgebra cannot be abelian.
Hence, if b is an arbitrary (2k−γ+1)-dimensional subalgebra of Hk, the vectors in

an arbitrary basis B={ωir}2k+1
r=γ+1 of b can be expressed as ωir =Xir +

γ∑
h=1

λr
ih
·Xih ,

∀r∈{γ+1, . . . , 2k+1}. Now three steps are considered

No non-zero pair in SNMV : The bracket between two vectors in B is given by

[ωir1 , ωir2 ] = [Xir1 , Xir2 ] +

γ∑
h=1

λr2
ih
· [Xir1 , Xih ] +

γ∑
h=1

λr1
ih
· [Xih , Xir2 ]. (3.4)

We can suppose that the unique non-zero pair of main vectors is (Xir1 , Xir2).
The bracket [Xir1 , Xir2 ] is equal to X1 and the rest of the brackets in (3.4) are
zero because they do not correspond to non-zero pairs. Hence, the subalgebra
b cannot be abelian.

One non-zero pair in SNMV : We can suppose that there exists only the non-zero
pair formed by Xi1 and Xi2 . The bracket between two vectors in B is ex-
pressed as

[ωir1 , ωir2 ] = [Xir1 , Xir2 ] +

γ∑
h=1

λr2
ih

· [Xir1 , Xih ] +

γ∑
h=1

λr1
ih

· [Xih , Xir2 ]

+(λr1
i1

· λr2
i2

− λr2
i1

· λr1
i2
) · [Xi1 , Xi2 ].

(3.5)

We can suppose that the non-zero pairs of vectors in SMV are (Xiγ+1 , Xiγ+2)

and (Xiγ+3 , Xiγ+4) because there is one non-zero pair formed by vectors in
SNMV . Besides, there exists another vector Xiγ+5 ∈ SMV which does not
form a non-zero pair with any vectors in SNMV , because one of the following
conditions is true

a) X1∈SMV : Hence, we can suppose Xiγ+5 =X1, which generates the center
of Hk.
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b) X1∈SNMV : Since there are, at least, γ+3 main vectors, one main vector
does not correspond to the non-main vector nor to the non-zero pairs
in SMV .

So b is abelian if and only if every bracket [ωir1, ωir2] is zero. The brackets
between two vectors in {Xiγ+1, Xiγ+2, Xiγ+3, Xiγ+4, Xiγ+5} leads to the system
of equations without solutions shown in Lemma 3.3. Therefore, b cannot
be abelian.

General case: m non-zero pairs in SNMV : There arem non-zero pairs in SNMV

and m+1 in SMV . Hence we only have to consider the cases

a) A vector in a non-zero pair in SNMV has zero coe�cients in each vector
ωir . In this case, the problem is reduced to only m−1 non-zero pairs in
SNMV (i.e. those which do not contain the vector with zero coe�cients).

b) A vector in a non-zero pair in SNMV has non-zero coe�cient in some
vector ωir . Let us suppose that such a vector is Xi1 . We apply the
corresponding basis change on the basis B to place Xi1 as a main vector
and Xir as a non-main vector. After this change, there are only m−1

non-zero pairs in SNMV and, besides, there are m non-zero pairs in SMV .

In this way, this case is reduced tom−1 non-zero pairs in SNMV . By repeating
m − 2 times more this reduction, the resulting case is the following: there is
one non-zero pair in SNMV . As this case has already been solved, the proof is
�nished. �

Theorem 3.3 ( Theorem 3.2 in [78] ). Given k ∈ N, α(Hk) = k + 1. Moreover, a

(k + 1)-dimensional abelian ideal is ak = ⟨{X2i+1}ki=0⟩.

Proof. According to the previous Theorem, α(Hk) is bounded by k + 1 ≤ α(Hk) ≤
2k−γ, for γ ≤ k−1. Replacing γ with k−1, the inequalities k+1 ≤ α(Hk) ≤ k+1

are obtained. �

3.4 Filiform Lie algebras

Firstly, we show the following example of a characteristically nilpotent Lie algebra,
that is, in fact, a �liform Lie algebra of dimension 7 with α invariant equals 5.
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Example 3.1. The Lie algebra of dimension n = 7 de�ned by [x1, xi] = xi+1, 2 ≤
i ≤ 6 and [x2, x3] = x6 + x7, [x2, x4] = x7 is characteristically nilpotent, i.e., all of

its derivations are nilpotent. Furthermore it satis�es α(g) = n− 2 = 5.

We can �nd such examples in all dimensions n ≥ 7. This suggests that nilpotent
Lie algebras g with α(g) = n−2 are not easy to understand. For the case of �liform
nilpotent, we can say something more on α(g).

Proposition 3.2. Let g be an n-dimensional non-model �liform Lie algebra. Then,

Cn−z2+1(g) is the unique abelian ideal of maximal dimension. Consequently, α(g) =

β(g) = z2 − 1.

Proof. Let us consider an adapted basis {eh}nh=1 of g. Since g is �liform, its lower
central series is given by

C1(g) = ⟨e1, . . . , en⟩, C2(g) = ⟨e2, . . . , en−1⟩, . . . , Ck(g) = ⟨e2, . . . , en−k+1⟩.

According to the de�nition of the invariant z2, the ideal Cn−z2+1(g) is abelian but
Cn−z2(g) is not. Let I be an abelian ideal of g. We are going to prove that I ⊂
Cn−z2+1(g). To do so, we suppose that I * Cn−z2+1(g). In this way, let x be an
element of I such that x /∈ Cn−z2+1(g). This implies that x =

∑n
h=1 αheh such that

∃h ∈ {z2 + 1, . . . , n} with αh ̸= 0.
Additionally, if αp ̸= 0, for some p ∈ N∩[z2+1, n], then Cn−p+1(g) = ⟨e2, . . . , ep⟩ ⊆

I. This fact is because I is an ideal and hence adq(e1)(x) = αq+2e2 + . . .+αpep−q +

. . .+αnen−q ∈ I, for each q ∈ N∩ [0, n−2]. In consequence, since p ≥ z2+1, we have
the following chain of inclusion relations: Cn−z2(g) ⊂ Cn−p+1(g) ⊂ I. This implies
that I is non-abelian, which comes into contradiction with our initial hypothesis.

Proposition 3.3. Let g be an n-dimensional non-model �liform Lie algebra. Then,

the law of g is given by the following brackets

[e1, eh] = eh−1, for 3 ≤ h ≤ n;

[ez1+i, ez2+1] = α1ei+2 + α2ei+1 + . . .+ αi+1e2, 0 ≤ i ≤ z2 − z1;

[ez1 , ez2+j] = α1ej+1 + α1
2ej . . .+ αj−1

j e2, 2 ≤ j ≤ n− z2;

[ez1+k, ez2+l] =
∑k

h=2 Ph([ez1+k−1, ez2+l] + [ez1+k, ez2+l−1])eh+1 +∑k+l
h=k+1 Ph−k+1(

∑k
m=0

(
k
m

)
[ez1+m, ez2+l−m])eh+1 + αk+l−1

k+l e2,

where 2 ≤ l ≤ n− z2, 0 < k < z2 − z1 + l and Pr (2 ≤ r ≤ n) is the function

Pr : g → C : u 7→ Pr(u) := coordinate of uwith respect to the basis vector er.

Remark 3.1. Let us note that the complex coe�cients αi and αj−1
j are the ones

indicated in Lemmas 1.1 and 1.2, respectively. We will say that g is a �liform Lie

algebra associated with the triple (z1, z2, n).
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Proof of Proposition 3.3. The brackets [ez1+i, ez2+1] and [ez1 , ez2+j] are obtained from
the Lemmas 1 and 2, respectively. We only need to prove the following condition
for 2 ≤ l ≤ n− z2 and 0 < k < z2 − z1 + l: [ez1+k, ez2+l] =

∑k
h=2 Ph([ez1+k−1, ez2+l] +

[ez1+k, ez2+l−1])eh+1 +
∑k+l

h=k+1 Ph−k+1(
∑k

m=0

(
k
m

)
[ez1+m, ez2+l−m])eh+1 + αk+l−1

k+l e2.
In fact, the Jacobi identity J(e1, ez1+k, ez2+l) = 0 involves

[e1, [ez1+k, ez2+l]] = [[e1, ez1+k], ez2+l] + [[ez2+l, e1], ez1+k] =

= [ez1+k−1, ez2+l] + [ez1+k, ez2+l−1],

so [ez1+k, ez2+l] =
∑k+l

h=2 Ph([ez1+k−1, ez2+l] + [ez1+k, ez2+l−1])eh+1 + αk+l−1
k+l e2.

Now, by using this relation, we get

Ph([ez1+k−1, ez2+l] + [ez1+k, ez2+l−1]) = Ph−1([ez1+k−2, ez2+l] + 2[ez1+k−1, ez2+l−1]+

[ez1+k, ez2+l−2]) = . . . = Ph−k+1(
∑k

m=0[ez1+m, ez2+l−m])eh+1 if h− k + 1 ≥ 2.

Therefore, we obtain this family of brackets

[ez1+k, ez2+l] =
∑k

h=2 Ph([ez1+k−1, ez2+l] + [ez1+k, ez2+l−1])eh+1+∑k+l
h=k+1 Ph−k+1(

∑k
m=0

(
k
m

)
[ez1+m, ez2+l−m])eh+1α

k+l−1
k+l e2,

where 2 ≤ l ≤ n− z2, 0 < k < z2 − z1 + l.

Next, by using the de�nition of z2 and Equation (1.2), we obtain the following
two results

Corollary 3.1. Let g be an n-dimensional non-model �liform Lie algebra with

α(g) = k ∈ N. Then, z2 = k + 1 and the following relation holds: 3 ≤ z1 − 1 ≤ k <

n− 1 ≤ 2k − 1.

Proof. It is trivial starting from Proposition 2.2 and Equation (1.2).

Corollary 3.2. Let g and {eh}nh=1 be an n-dimensional non-model �liform Lie al-

gebra and an adapted basis of g, respectively. If h is the subalgebra ⟨e2, . . . , en⟩
of g, then the derived subalgebra D(h) = [h, h] satis�es that D(h) = C2(h) ⊂
⟨e2, e3, . . . , e2n−(z1+z2)⟩.

Proof. It is su�cient to consider the bracket [en−1, en] in the general law given in
Proposition 3.3.

Let us note that Corollary 3.1 improves the bound for α(g) in a complex non-
abelian nilpotent Lie algebra g given in Lemma 2.5:

√
8n+1−1

2
≤ α(g) ≤ n− 1.

Next, we show several results concerning the value of β(g) and the coe�cients
given in the general law of Proposition 3.3. The �rst two results correspond to the
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cases β(g) = n − 1 and n − 2. For those cases, we can characterize the law of a
general �liform Lie algebra.

Proposition 3.4. Let g be an n-dimensional �liform Lie algebra verifying β(g) =

n− 1, then g is isomorphic to the model �liform Lie algebra.

Proof. This is trivial, since ⟨e2, . . . , en⟩ is an abelian ideal.

Proposition 3.5. Let g be an n-dimensional �liform Lie algebra verifying β(g) =

n− 2, then the law of g is expressed as in Proposition 3.3 with no restrictions over

the coe�cients αi and αj−1
j .

Proof. Since the derived Lie algebra D(g) is abelian, all the Jacobi identities are
trivially null.

We can even obtain a more general result about the non-existence of restrictions
over the coe�cients αi and αj−1

j in Proposition 3.3 in virtue of a relation between
the invariants z1 and z2.

Proposition 3.6. Let g be an n-dimensional non-model �liform Lie algebra asso-

ciated with the triple (z1, z2, n). If z1 ≥ n− z2
2
, then the law of g is expressed as in

Proposition 3.3 and there are no restrictions over the coe�cients αi and αj−1
j .

Proof. If z1 ≥ n− z2
2
, then D(h) ⊂ ⟨e2, . . . , ez1⟩ in virtue of Corollary 3.2 and every

Jacobi identity is satis�ed using Equation (1.1).

Now, we show this proposition where we have studied the �rst restriction over
the coe�cients in the law of g.

Proposition 3.7. Let g be a n-dimensional non-model �liform Lie algebra associ-

ated with the triple (z1, z2, n). If all the Jacobi identities are not identically null,

then the �rst restriction for the coe�cients in the law of g is α1 = 0.

Proof. In order to prove this result, we are going to consider the Jacobi identity
J(ez2 , ez2+1, en) = 0, which is given by

[[ez2 , zz2+1], en] + [[ez2+1, en], ez2 ] + [[en, ez2 ], ez2+1] = 0.

According to Proposition 1.3, [ez2+1, en] ∈ ⟨e2, . . . , ez2⟩, which is an abelian ideal
due to the de�nition of z2. Therefore, the bracket [[ez2+1, en], ez2 ] is zero. Now, we
compute the expression of the bracket
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[[ez2 , ez2+1], en] = [α1ez2−z1+2 + α2ez2−z1+1 + . . .+ αz2−z1e3 + αz2−z1+1e2, en]

= [α1ez2−z1+2 + α2ez2−z1+1 + . . .+ αz2−2z1+3ez1 , en]

=αz2−2z1+3[ez1 , en] + . . .+ α2[ez2−z1+1, en] + α1[ez2−z1+2, en]

=αz2−2z1+3(α1en−z2+1 + α1
2en−z2 + . . .+ αn−z2−1

n−z2 e2) + . . .

+α1(Pn−2z1+2([ez2−z1+1, en] + [ez2−z1+2, en−1])en−2z1+3

+Pn−2z1+1([ez2−z1+1, en] + [ez2−z1+2, en−1])en−2z1+2 + . . .

+αn−2z1+1
n−2z1+2e2).

Now, we compute the expression of the bracket

[[ez2 , en], ez2+1] = [
∑n−z1

h=2 Ph([ez2−1, en] + [ez2 , en−1])eh+1 + αn−z1−1
n−z1 e2, ez2+1]

= [
∑n−z1

h=z1−1 Ph([ez2−1, en] + [ez2 , en−1])eh+1, ez2+1]

=Pz1−1(v)[ez1 , ez2+1] + Pz1(v)[ez1+1, ez2+1] + . . .

+Pn−z1(v)[en−z1+1, ez2+1] = Pz1−1(v)α1e2 + Pz1(v)(α1e3 + α2e2)

+ . . .+ Pn−z1(v)(α1en−2z1+3 + . . .+ αn−2z1+2e2)

=α1Pn−z1(v)en−2z1+3 + (α1Pn−z1−1 + α2Pn−z1)(v)en−2z1+2 + . . .

+(α1Pz1−1 + α2Pz1 + . . .+ αn−2z1+2Pn−z1)(v)e2,

where v = [ez2−1, en] + [ez2 , en−1]. Therefore, the Jacobi identity J(ez2 , ez2+1, en) = 0

is given by

αz2−2z1+3(α1en−z2+1 + α1
2en−z2 + . . .+ αn−z2−1

n−z2 e2) + . . .

+α2(Pn−2z1+1([ez2−z1 , en] + [ez2−z1+1, en−1])en−2z1+2 + . . .+ αn−2z1
n−2z1+1e2)

+α1(Pn−2z1+2([ez2−z1+1, en] + [ez2−z1+2, en−1])en−2z1+3

+Pn−2z1+1([ez2−z1+1, en] + [ez2−z1+2, en−1])en−2z1+2 + . . .+ αn−2z1+1
n−2z1+2e2)

−α1Pn−z1(v)en−2z1+3 − (α1Pn−z1−1 + α2Pn−z1)(v)en−2z1+2 − . . .

−(α1Pz1−1 + α2Pz1 + . . .+ αn−2z1+2Pn−z1)(v)e2 = 0

Next, we compute the coe�cient of the vector en−2z1+3. To do so, we consider the
following expressions

Pn−2z1+2([ez2−z1+1, en]+[ez2−z1+2, en−1])=Pn−z2+1

(
z2−2z1+2∑

k=0

(
z2−2z1+2

k

)
[ez1+k, en−k]

)
;

Pn−z1(v)=Pn−z1([ez2−1, en] + [ez2 , en−1])=Pn−z2+1

(
z2−z1∑
k=0

(
z2−z1

k

)
[ez1+k, en−k]

)
.

Therefore, the coe�cient of en−2z1+3 is

α1 ·

(
z2−2z1+2∑

k=0

(
z2−2z1+2

k

)
Pn−z2+1([ez1+k, en−k])−

z2−z1∑
k=0

(
z2−z1

k

)
Pn−z2+1([ez1+k, en−k])

)
.
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Since
(
z2−2z1+2

0

)
=
(
z2−z1

0

)
= 1, the coe�cient of en−2z1+3 is

α1 ·

(
z2−2z1+2∑

k=1

(
z2−2z1+2

k

)
Pn−z2+1([ez1+k, en−k])−

z2−z1∑
k=1

(
z2−z1

k

)
Pn−z2+1([ez1+k, en−k])

)
.

Let us note that z2 − z1 > z2 − 2z1 + 2, since z1 > 2. Consequently, the coe�cient
of en−2z1+3 is

α1 ·

(
z2−2z1+2∑

k=1

((
z2−2z1+2

k

)
−
(
z2−z1

k

))
Pn−z2+1([ez1+k, en−k])

−
z2−z1∑

k=z2−2z1+3

(
z2−z1

k

)
Pn−z2+1([ez1+k, en−k])

)
.

Now, we consider the family of functions {Φh : Z → N ∪ {0}}h∈N∪{−1,0}, de�ned as

Φ−1(n) =

{
1, if n ∈ N;
0, otherwise.

and Φh(n) =


n∑

i=1

Φh−1(i), if n ∈ N;

0, otherwise.

∀h ∈ N∪{0}.

With this notation, we obtain

Pn−z2+1([ez1+k, en−k]) =

(
k∑

l=0

(
k
l

)
Φk−1−l(n− z2 − 2k + l)

)
α1.

and the coe�cient of en−2z1+3 turns out to be

(α1)
2 ·

(
z2−2z1+2∑

k=1

((
z2−2z1+2

k

)
−
(
z2−z1

k

)) k∑
l=0

(
k
l

)
· Φk−1−l(n− z2 − 2k + l)

−
z2−z1∑

k=z2−2z1+3

(
z2−z1

k

) k∑
l=0

(
k
l

)
Φk−1−l(n− z2 − 2k + l)

)
.

If n − z2 − 2k + l ≤ 0 for 1 ≤ k ≤ z2 − z1 and 0 ≤ l ≤ k, then the Jacobi identity
J(ez2 , ez2+1, en) = 0 is identically null. Otherwise, the previous expression is zero if
and only if α1 = 0.

Next, we have this result for the case β(g) = n− 3.

Proposition 3.8. Let g be a n-dimensional �liform Lie algebra verifying β(g) =

n− 3. Then the triples ([n−(2k+1)
2

] + 2, n− 2, n), where n ≥ 2k + 5, correspond to a

�liform Lie algebra with unique restrictions given by {αi = 0}ki=1.
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Proof. In this case, we have to impose the Jacobi identity J(en−2, en−1, en) = 0 over
the general law given in Proposition 3.3 with (z1, z2, n) = ([n−(2k+1)

2
] + 2, n − 2, n).

This identity is given by [[en−2, en−1], en] + [[en, en−2], en−1] = 0. Next, we compute
both brackets, starting with

[[en−2, en−1], en] = [α1en−z1 + α2en−z1−1 + . . .+ αn−2−z1e3 + αn−z1−1e2, en]

= [α1en−z1 + α2en−z1−1 + . . .+ αn−2z1+1ez1 , en]

=α1[en−z1 , en] + α2[en−z1−1, en] + . . .+ α2k−2[ez1 , en]

=α1((2k − 2)α1e2k + ((2k − 3)α2 + α1
2)e2k−1

+((2k − 4)α3+α2
3)e2k−2+. . .+(α2k−2+α2k−3

2k−2)e3+α2k−2
2k−1e2)

+α2((2k − 3)α1e2k−1 + ((2k − 4)α2 + α1
2)e2k−2

+((2k − 5)α3+α2
3)e2k−3+. . .+(α2k−3+α2k−4

2k−3)e3+α2k−3
2k−2e2)

+ . . .+ α2k−2(α1e3 + α1
2e2).

and continuing with the second taking into account that [[en, en−2], en−1] = −[[en−2, en], en−1]

[[en−2, en], en−1] = [(n− z1 − 1)α1en−z1+1 + ((n− z1 − 2)α2 + α1
2)en−z1 + . . .

+(αn−z1−1 + αn−z1−2
n−z1−1)e3 + αn−z1−1

n−z1 e2, en−1]

= (n−z1−1)α1[en−z1+1, en−1]+((n−z1−2)α2+α1
2)[en−z1 , en−1]

+ . . .+ (αn−z1−1 + αn−z1−2
n−z1−1)[e3, en−1] + αn−z1−1

n−z1 [e2, en−1]

= (n−z1−1)α1[en−z1+1, en−1]+((n−z1−2)α2+α1
2)[en−z1 , en−1]

+ . . .+ ((z1 − 2)α2k−1 + α2k−2
2k−1)[ez1 , en−1]

= (n− z1 − 1)α1(α1e2k + α2e2k−1 + . . .+ α2k−1e2)

+((n− z1 − 2)α2 + α1
2)(α1e2k−1 + α2e2k−2

+ . . .+ α2k−2e2) + . . .+ ((z1 − 2)α2k−1 + α2k−2
2k−1)α1e2.

Combining both brackets, the Jacobi identity J(en−2, en−1, en) = 0 is

α1((2k − 2)α1e2k + ((2k − 3)α2 + α1
2)e2k−1 + ((2k − 4)α3 + α2

3)e2k−2 + . . .

+(α2k−2+α2k−3
2k−2)e3+α2k−2

2k−1e2)+α2((2k−3)α1e2k−1+((2k−4)α2+α1
2)e2k−2

+((2k − 5)α3 + α2
3)e2k−3 + . . .+ (α2k−3 + α2k−4

2k−3)e3 + α2k−3
2k−2e2) + . . .

+(α2k−3 + α2k−4
2k−3)e3 + α2k−3

2k−2e2) + . . .+ α2k−2(α1e3 + α1
2e2)

−(n− z1 − 1)α1(α1e2k + α2e2k−1 + . . .+ α2k−1e2)

−((n− z1 − 2)α2 + α1
2)(α1e2k−1 + α2e2k−2 + . . .+ α2k−2e2)

−((n− z1 − 3)α3 + α2
3)(α1e2k−2 + α2e2k−3 + . . .+ α2k−3e2)− . . .

−((z1 − 2)α2k−1 + α2k−2
2k−1)(α1e2) = 0.

Note that, according to the previous computations, the coe�cient of the vector
e2k is (α1)

2 · (2k− n+ z1 − 1). Fixing 0 < h ≤ 2k− 2, we compute the coe�cient of
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the vector e2k−h as follows

αh+1(2k−(h+2))α1+
h∑

i=1

αi((2k−(h+2))αh+2−i+αh+1−i
h+2−i)−(n−z1−1)α1αh+1

−
h+1∑
i=2

((n−z1−i)αi+αi−1
i )αh+2−i=(2k−(h+2))α1αh+1+

h∑
i=1

αiαh+2−i(2k−(h+2))

−(n− z1 − 1)α1αh+1 −
h+1∑
i=2

αiαh+2−i(n− z1 − i) = (2k − n− h+ 1)α1αh+1

+
h∑

i=2

αiαh+2−i(2k − n− h− 2 + z1 + i).

In this way, we have to consider the following equations for 0 < h ≤ 2k − 2,
(α1)

2(2k − n+ z1 − 1) = 0,

(2k − n− h+ 1)α1αh+1 +
h∑

i=2

αiαh+2−i(2k − n− h− 2 + z1 + i) = 0.

From the �rst equation, we obtain α1 = 0, since n ≥ 2k + 5. Consequently, the
second equation turns into

h∑
i=2

αiαh+2−i(2k − n− h− 2 + z1 + i) = 0, ∀ 2 < h ≤ 2k − 2.

This involves the condition αl = 0 for h = 2l−2, where l = 2, 3, . . . , k, leading to
the conclusion that the Jacobi identity J(en−2, en−1, en) = 0 implies {αi = 0}ki=1.

Moreover, we can set the following result for the coe�cients in a �liform Lie
algebra associated with a general triple (z1, z2, n)

Proposition 3.9. Let g be a n-dimensional non-model �liform Lie algebra associa-

ted with the triple (z1, z2, n). All the Jacobi identities in g correspond to a system

of equations whose solutions are a combination of the following expressions

(βαp + γαp−1
p )(λαq + µαq−1

q ) = 0, where β, γ, λ, µ ∈ C and p, q ∈ {2, . . . , n− z2}

Therefore, we always obtain linear relations between the coe�cients in the law

of g.

Proof. Let g be a �liform Lie algebra associated with (z1, z2, n). We suppose that
there are restrictions over the coe�cients {α1, α2, . . . , αz2−z1+1, α

1
2, . . . , α

n−z2−1
n−z2 }. By

using Proposition 3.7, we can take α1 = 0. The general law of g is given by
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[e1, eh] = eh−1, ∀3 ≤ h ≤ n

[ez1+i, ez2+1] = α2ei+1 + . . .+ αi+1e2, 1 < i ≤ z2 − z1. (3.6)

[ez1 , ez2+j] = α1
2ej . . .+ αj−1

j e2, 2 ≤ j ≤ n− z2. (3.7)

[ez1+p, ez2+k] =

p+k∑
h=2

Ph([ez1+p−1, ez2+k] + [ez1+p, ez2+k−1])eh+1 + αk+p−1
k+p e2,

2 ≤ k ≤ n− z2, 0 < p < z2 − z1 + k. (3.8)

The family of brackets (3.6), (3.7) and (3.8) will be called brackets of type 1, 2
and 3, respectively. We need to impose the Jacobi identities J(ea, eb, ec) = 0, where
z1 ≤ a < b < c ≤ n. According to the law of g, we have to study the identities
involving the brackets of type 1, 2 and 3. Therefore, we study the following Jacobi
identities

J(ez1+i, ez1+i′ , ez2+1) = 0, J(ez1 , ez1+i, ez2+1) = 0, J(ez1 , ez1+i, ez2+j) = 0,

J(ez1 , ez2+1, ez2+j) = 0, J(ez1+i, ez2+1, ez2+j) = 0, J(ez1+i, ez2+j, ez2+k) = 0.

• For J(ez1+i, ez1+i′ , ez2+1) = 0, all the brackets involved are of type 1. This
identity is given by

[[ez1+i, ez1+i′ ], ez2+1] + [[ez1+i′ , ez2+1], ez1+i] + [[ez2+1, ez1+i], ez1+i′ ].

The bracket [ez1+i, ez1+i′ ] = 0 since ⟨e2, . . . , ez2⟩ is an abelian ideal. Therefore,
J(ez1+i, ez1+i′ , ez2+1) = 0 is expressed as follows

[α2ei′+1 + . . .+ αi′+1e2, ez1+i]− [α2ei+1 + . . .+ αi+1e2, ez1+i′ ].

and both brackets are zero since i′ + 1, i + 1 ≤ z2 − z1 + 1 ≤ z2 − 3 < z2 + 1.
Consequently, this Jacobi identity is identically null.

• The Jacobi identity J(ez1 , ez1+i, ez2+1) = 0, with i ≤ z2 − z1, is given by

[[ez1 , ez1+i], ez2+1] + [[ez1+i, ez2+1], ez1 ] + [[ez2+1, ez1 ], ez1+i],

where [ez1 , ez2+1] = [ez1 , ez1+i] = 0 since α1 = 0 and ⟨e2, . . . , ez2⟩ is an abelian
ideal. Therefore, the identity is given by [[ez1+i, ez2+1], ez1 ] = [α2ei+1 + . . . +
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αi+1e2, ez1 ]. Let us note that if i+1 ≤ z2, then this bracket is null. We consider
i+ 1 > z2. In that case, we have

[[ez1+i, ez2+1], ez1 ] = −[ez1 , α2ei+1 + . . .+ αi+2−z2ez2+1] = −αi+2−z2 [ez1 , ez2+1]

−αi+1−z2 [ez1 , ez2+2]− . . .− α2[ez1 , ei+1]

= −αi+1−z2α
1
2e2 − αi−z2(α

1
2e3 + α2

3e2)− . . .

−α2(α
1
2ei+2−z2 + . . .+ αi+1−z2

i+2−z2
e2)

= −α2α
1
2ei+2−z2 − (α2α

2
3 + α3α

1
2)ei+1−z2 − . . .

−(α2α
i−z2−1
i−z2

+ . . .+ αi+1−z2α
1
2)e2 = 0.

obtaining the following system of equations

α2α
1
2 = 0,

α2α
2
3 + α3α

1
2 = 0,

α2α
3
4 + α3α

2
3 + α4α

1
2 = 0,

...
...

α2α
i−z2−1
i−z2

+ . . .+ αi+1−z2α
1
2 = 0.

which only returns solutions of type αp = 0 or αq−1
q = 0.

• For J(ez1 , ez1+i, ez2+j) = 0, we have the following expression

[[ez1 , ez1+i], ez2+j] + [[ez1+i, ez2+j], ez1 ] + [[ez2+j, ez1 ], ez1+i].

Let us note that [ez1 , ez1+i] = 0 since ⟨e2, . . . , en⟩ is an abelian ideal. Moreover,
[ez1 , ez2+j] = α1

2ej+. . .+αj−1
j e2 with 2 ≤ j ≤ n−z2. From j ≤ n−z2 ≤ z2−2 <

z2 and the de�nition of z2, we can a�rm that [[ez1 , ez2+j], ez1+i] = 0. Hence,
the Jacobi identity J(ez1 , ez1+i, ez2+j) = 0 is given by [[ez1+i, ez2+j], ez1 ] = 0.
Developing the �rst term, we obtain

[[ez1+i, ez2+j ], ez1 ] = [
∑i+j

h=2 Ph([ez1+i−1, ez2+j ] + [ez1+i, ez2+j−1])eh+1 + αi+j−1
i+j e2, ez1 ]

= [
∑i+j

h=z2+1 Ph(u)eh+1, ez1 ] = −Pz2+1(u)[ez1 , ez2+2]− . . .

− Pi+j(u)[ez1 , ei+j+1] = −Pz2+1(u)(α
1
2e2)− . . .

− Pi+j(u)(α
1
2ei+j+1−z2 + . . .+ αi+j−z2

i+j+1−z2
e2)

= −α1
2Pi+j(u)ei+j+1−z2 − (α2

3Pi+j + α1
2Pi+j−1)(u)ei+j−z2 − . . .

− (αi+j−z2
i+j+1−z2

Pi+j + . . .+ α1
2Pz2+1)(u)e2 = 0,

where u = [ez1+i−1, ez2+j]+ [ez1+i, ez2+j−1]. Consequently, we have to solve the
system of equations

α1
2Pi+j(u) = 0,

α2
3Pi+j(u) + α1

2Pi+j−1(u) = 0,
...

...

αi+j−z2
i+j+1−z2

Pi+j(u) + . . .+ α1
2Pz2+1(u) = 0.
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Now, we compute the expression of Pi+j(u), Pi+j−1(u), . . . , Pz2+1(u) by using
the reasoning of the proof of Proposition 3.7.

Pi+j(u) = α1

i∑
k=0

k∑
l=0

(
i
k

)(
k
l

)
Φk−1−l(z2 + j − 2k + l);

Pi+j−1(u) = α1
2

i∑
k=0

k∑
l=0

(
i
k

)(
k
l

)
Φk−1−l(z2 + j − 2k + l);

...
...

Pz2+1(u) = αi+j−z2−1
i+j−z2

i∑
k=0

k∑
l=0

(
i
k

)(
k
l

)
Φk−1−l(z2 + j − 2k + l).

When solving this system of equations, we obtain solutions of type αq−1
q = 0.

• For the Jacobi identities J(ez1 , ez2+1, ez2+j) = 0, J(ez1+i, ez2+1, ez2+j) = 0 and
J(ez1+i, ez2+j, ez2+k) = 0, only brackets of type 3 are involved. We will study
this type of brackets.

We de�ne the degree function deg : N × N → N, where N = {1, . . . , n}, as
deg(a, b) = a+ b. Notice that, according to Proposition 3.3, deg([a, b]) = a+ b

implies [ea, eb] ∈ ⟨e2, . . . , ea+b−z1−z2⟩. The brackets of type 3 are given by

[ez1+p, ez2+k] =

p+k∑
h=2

Ph([ez1+p−1, ez2+k] + [ez1+p, ez2+k−1])eh+1 + αk+p−1
k+p e2

Let us note that deg(z1+p−1, z2+k) = z1+z2+p+k−1 = deg(z1+p, z2+k−1).
In order to compute the term

∑p+k
h=2 Ph([ez1+p−1, ez2+k]+[ez1+p, ez2+k−1])eh+1 in

a bracket of type 3, we have to decompose it by using the following brackets
of type 1 and 2

[ez1+l, ez2+1] = α2el+1 + . . .+ αl+1e2, 1 ≤ l ≤ z2 − z1;

[ez1 , ez2+l+1] = α1
2el+1 + . . .+ αl

l+1e2, 2 ≤ l + 1 ≤ n− z2,

and their index pairs have the same degree. In fact, we obtain that

Ph([ez1+l, ez2+1]+[ez1 , ez2+l+1])=(αl−h+3+αl−h+2
l−h+3), for

{
1≤ l≤z2−z1;

2≤h≤ l+1.

Ph([ez1+l, ez2+1]+[ez1 , ez2+l+1])=αl−h+2
l−h+3, for

{
z2−z1<l≤n−z2−1;

2≤h≤ l+1.

From the remaining Jacobi identities, we obtain this type of equations

(βαp+γαp−1
p )(λαq+µαq−1

q )=0, β, γ, λ, µ∈C, and p, q∈{2, . . . , n− z2}.
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Now, we show an algorithmic procedure which computes the law of an n-dimensional
non-model �liform Lie algebra g starting from the value of α(g). More concretely,
we give a step-by-step explanation of this algorithm for obtaining the law of g with
α(g) = k ∈ N.

Input

1. The dimension n of a non-model �liform Lie algebra g.

2. The value k of the invariant α(g).

Output

1. A list with the triples (z1, z2, n) such that there exist non-model �liform Lie
algebras associated with them.

2. The law of each family of �liform Lie algebras for each triple.

Method

1. First, computing the value of the invariant z2 by using Proposition 3.2. Accor-
ding to this value and Expression (1.2), several possibilities appear for the
invariant z1.

2. For each value of z1, computing all the possible non-zero brackets of g given
by Proposition 3.3.

3. Then, ruling out those values of z1 not satisfying the Jacobi identities
J(eh, ek, el) = 0, for z1 ≤ h < k < l ≤ n.

4. Next, obtaining a list with all the triples (z1, z2, n) such that there exist non-
model �liform Lie algebras having such invariants.

5. By using Proposition 3.3 again, computing the law of each Lie algebra asso-
ciated with a triple given in the previous step.

Now, we show the implementation of the previous algorithm. To do so, we
have used the symbolic computation package MAPLE 12. Note that before ru-
nning any sentence or loading a package, we must restart all the variables and
delete all the computations with the command restart. After that, we load the
library DifferentialGeometry, LieAlgebras to activate commands related to Lie
algebras such as BracketOfSubspaces.
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First, we show the implementation of a routine which computes the law of a
�liform Lie algebra from the triple (z1, z2, n) by using Proposition 3.3. This routine,
named law, receives the triple (z1, z2, n) as input and returns the �liform Lie algebra
associated with this triple. For the implementation, we de�ne a list as a local variable
L. This list saves the indexes and the value of the structure constants corresponding
with the non-zero brackets of the �liform Lie algebra. First, L saves the brackets
given by �liformity (i.e. [e1, eh] = eh−1, ∀ 3 ≤ h ≤ n) and the bracket [ez1 , ez2+1] =

α1e2. Then, a loop is programmed for including the indexes of the rest of non-zero
brackets in L.

> law:=proc(z_1,z_2,n)

> local L; L:=[seq([[1,h,h-1],1],h=3..n),

> [[z_1,z_2+1,2],a[1]]];

> for i from 1 to n do for j from 1 to n do c[i,i][j]:=0; od; od;

> for i from 1 to z_2-z_1 do for l from 1 to i+1 do

> L:=[op(L),[[z_1+i,z_2+1,i+3-l],a[l]]];

> c[z_1+i,z_2+1][i+3-l]:=a[l];

> od; od;

> for i from 2 to n-z_2 do

> L:=[op(L),[[z_1,z_2+i,i+1],a[1]]];

> c[z_1,z_2+i][i+1]:=a[1];

> for j from 2 to i do

> L:=[op(L),[[z_1,z_2+i,i+2-j],a[j][j-1]]];

> c[z_1,z_2+i][i+2-j]:=a[j][j-1];

> od; od;

> for i from 2 to n-z_2 do for j from 1 to z_2-z_1+i-1 do

> L:=[op(L),[[z_1+j,z_2+i,2],

> a[i+j][i+j-1]]];

> c[z_1+j,z_2+i][2]:=a[i+j][i+j-1];

> for h from 2 to i+j do

> L:=[op(L),[[z_1+j,z_2+i,h+1],

> c[z_1+j-1,z_2+i][h]+c[z_1+j,z_2+i-1][h]]];

> c[z_1+j,z_2+i][h+1]:=c[z_1+j-1,z_2+i][h]+

> c[z_1+j,z_2+i-1][h];

> od;od;od;

> return _DG([["LieAlgebra",Alg1,[n]],L]);

> end proc:

Next, we implement the routine coefficients, which receives as input the triple
(z1, z2, n) and returns a list with all the structure constants αi and αj−1

j involved in
the law of the associated �liform Lie algebra.

> coefficients:=proc(z_1,z_2,n)



52 Chapter 3. Theoretical Study

> local M; M:={}; for i from 1 to

> z_2-z_1+1 do M:={op(M),a[i]}; od;

> for j from 2 to 2*n-z_1-z_2-1 do

> M:={op(M),a[j][j-1]}; od;

> return M; end proc:

> DGsetup(law(z_1,z_2,n));

From here on, we can operate over the Lie algebra associated with the output
given by law. This algebra is denoted by Alg1. Now, we change the format of the
subindexes of the basis vectors with the command assign.

> assign([seq(e||i=e[i],i=1..n)]);

After that, we have to de�ne the variable Eq from the output of the routine law.
Now, we execute this sentence

Alg1 > L := LieAlgebraData(Eq,[seq(e[i],i=1..n)], Alg2);

> DGsetup(L);

From here on, we work over the Lie algebra Alg2. With the command
LieAlgebraData we can evaluate the following sentence

Alg2 > TF, EQ, SOLN, AlgList :=Query(coefficients(z_1,z_2,n),"Jacobi");

This sentence provides us the conditions given by the Jacobi identities in terms
of equations for the �liform Lie algebra. Additionally, AlgList shows us a list with
all the non-zero brackets. Finally, for each term given by the previous output, we
have to write the following commands

Alg2 > DGsetup(AlgList[i]);

Alg2_i > f:=proc() if BracketOfSubspaces([ez_1],[en])=[] then

Alg2_i > return "It is not a filiform Lie algebra"; end if; if

Alg2_i > BracketOfSubspaces([ez_2],[ez_2+1])=[] then return

Alg2_i > "It is not a filiform Lie algebra"; end if; else return

Alg2_i > AlgList[i],SOLN[i]; fi; end proc:

Alg2_i > f()

With these sentences, we program a routine which studies if the Lie algebra given
in AlgList[i] is compatible with the de�nition of the invariants z1 and z2. In the
a�rmative case, the output is the set of conditions for the structure constants given
by the routine coefficients and the non-zero brackets of the Lie algebra. In case
of incompatibility, the output is the message �It is not a �liform Lie algebra".
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Using this algorithm and its implementation, we have computed the triples
(z1, z2, n) associated with non-model �liform Lie algebras up to dimension 14. This
triples are shown in Tables 3.1�3.3, structured according to the maximal dimension
for their abelian ideals and including the restrictions for the coe�cients αi and αj−1

j ,
if they exist.

Next, we show a computational study of the algorithm. To do so, we have used
an Intel Core 2 Duo T 5600 with a 1.83 GHz processor and 2.00 GB of RAM.
Table 3.4 shows some computational data about both the computing time and the
memory usage. These data were obtained considering the family of �liform Lie
algebras associated with the triple (n− 3, n− 3, n).

Additionally, we show some brief statistics about the relation between the com-
puting time and the memory usage by the implementation. In this sense, Fig. 3.1
shows the behavior of both the computing time and the memory usage according
to the dimension n. In fact, the computing time increases more quickly than the
memory usage. As we can observe in Fig. 3.2, the increase of the computing time
corresponds to a positive exponential model, whereas the memory usage does not
follow such a model. Finally, we have also studied the quotients between memory
usage and computing time, obtaining the frequency diagram shown in Fig. 3.3. In
this case, the behavior can be also considered exponential, although this time is
negative.
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Table 3.1: Triples for non-model �liform Lie algebras of dimension less than 12.

Dim β(g) Triples Restrictions

5 3 (4,4,5) None

6 3 (4,4,6) None

4 (4,5,6) None

(5,5,6) None

7 4 (4,5,7) {α1 = 0}
(5,5,7) None

5 (k,6,7) None

k = 4..6

8 4 (4,5,8) {α1, α2
3 = 0, α2 = −α1

2}
(5,5,8) @ algebra

5 (4,6,8) {α1 = 0}
(5,6,8) None

(6,6,8) None

6 (k,7,8) None

k = 4..7

9 5 (4,6,9) {α1, α2, α1
2 = 0, α2

3 = ( 1
2
±

√
33
6

)α3}
(5,6,9) {α1 = 0, α1

2 = − 2
3
α2}, {α1 = 0, α1

2 = α2}
(6,6,9) @ algebra

6 (4,7,9) {α1, α2 = 0}
(5,7,9) {α1 = 0}
(6,7,9) None

(7,7,9) None

7 (k,8,9) None

k = 4..8

10 5 (k,6,10) @ algebra

k = 4...6

6 (4,7,10) {α1, α2, α1
2 = 0, α2

3 = − 1
3
α3, α3

4 = − 17
10

α4}
(5,7,10) {α1, α2, α1

2 = 0}, {α1, α2 = 0, α2
3 = −7α3},

{α1 = 0, α1
2 = −α2, α2

3 = − 5
8
α3}

(6,7,10) @ algebra

(7,7,10) None

7 (4,8,10) {α1, α2 = 0}
(5,8,10) {α1 = 0}
(k,8,10) None

k = 6..8

8 (k,9,10) None

k = 4..9

11 6 (k,7,11) @ algebra

k = 4...7

7 (4,8,11) @ algebra

(5,8,11) {α1, α2, α1
2 = 0, α2

3 = 1±
√
21

4
α3}

(6,8,11) {α1 = 0, α1
2 = − 5

4
α2}

(7,8,11) None

(8,8,11) None

8 (4,9,11) {α1, α2, α3 = 0}
(5,9,11) {α1, α2 = 0}
(6,9,11) {α1 = 0}
(k,9,11) None

k = 7..9

9 (k,10,11) None

k = 4..10
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Table 3.2: Triples for non-model �liform Lie algebras of dimension 12 and 13.

Dim β(g) Triples Restrictions

12 6 (k,7,12) @ algebra

k = 4...7

7 (4,8,12) @ algebra

(5,8,12) {α1, α2, α3, α1
2, α

2
3, α

4
5 = 0, α4 = −7±2

√
21

5
α3
4}

(6,8,12) {α1, α2, α1
2 = 0, α2

3 = 11±
√

321
20

α3}
(7,8,12) {α1 = 0, α2

3 = 0, α1
2 = − 5

9
α2}

(8,8,12) None

8 (4,9,12) @ algebra

(5,9,12) {α1, α2, α1
2 = 0, α3 = − 4

3
α2
3, α4 = − 23

47
α3
4}

(6,9,12) {α1, α2, α1
2 = 0}, {α1, α1

2 = 0, α2
3 = 14α3}

{α1 = 0, α1
2 = − 3

2
α2, α2

3 = − 28
25

α3}
(7,9,12) {α1 = 0, α1

2 = 14
5
α2}

(8,9,12) None

(9,9,12) None

9 (4,10,12) {α1 = α2 = α3 = 0}
(5,10,12) {α1 = α2 = 0}
(6,10,12) {α1 = 0}
(k,10,12) None

k = 7...11

10 (k,11,12) None

k = 4...11

13 7 (k,8,13) @ algebra

k∈ [4, 8]

8 (4,9,13) @ algebra

(5,9,13) {αi, α
i
i+1 = 0}, for 1 ≤ i ≤ 4

(6,9,13) @ algebra

(7,9,13) {α1, α2, α3, α1
2, α

2
3=0, α4=−2α3

4}
{α1, α2, α1

2 = 0}
{α1, α3

4 = 0, α2 = −5±3
√

65
28

α1
2, α

2
3 = −α3

5
(297±3

√
65)

(−5±3
√
65)

}
(8,9,13) {α1, α1

2 = 0}, {α1=0, α2=− 9
5
}

(9,9,13) None

9 (4,10,13) @ algebra

(5,10,13) @ algebra

(6,10,13) {α1, α2, α1
2=0, α3=±

√
5

3
α2
3}

(7,10,13) {α1 = 0, α2 = − 5
9
α1
2}, {α1 = 0, α2 = α1

2}
(8,10,13) {α1 = 0}
(9,10,13) None

(10,10,13) None

10 (4,11,13) {α1, α2, α3, α4 = 0}
(5,11,13) {α1, α2, α3 = 0}
(6,11,13) {α1, α2 = 0}
(7,11,13) {α1 = 0}
(k,11,13) None

k∈ [8, 11]

11 (k,12,13) None

k∈ [4, 12]
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Table 3.3: Triples for non-model �liform Lie algebras of dimension 14.

Dim β(g) Triples Restrictions

14 7 (k,8,14) @ algebra

k∈ [4, 8]

8 (k,9,14) @ algebra

k∈ [4, 9]

9 (4,10,14) @ algebra

(5,10,14) @ algebra

(6,10,14) {α1, α2, α3, α1
2, α

2
3 = 0, α4 = −17±

√
327i

28
α3
4,

α5 = − 1
2
(9 + 5−17±

√
327i

28
)α4

5}
(7,10,14) {α1, α2, α1

2, α
3
4=0, α3=− 3

2
α2
3}

{α1, α2, α1
2, α

3
4 = 0, α3 = 5

7
α2
3}, {α1, α2, α3, α1

2, α
2
3 = 0}

(8,10,14) {α1, α2, α1
2 = 0}, {α1, α2 = 0, α2

3=− 5
14

α3}
{α1 = 0, α2 = α1

2, α
2
3 = − 5

14
α3}

(9,10,14) {α1 = 0}
(10,10,14) None

10 (4,11,14) @ algebra

(5,11,14) @ algebra

(6,11,14) {α1, α2, α1
2 = 0, α3 = − 5

6
α2
3, α4 = − 46

109
α3
4}

(7,11,14) {α1, α2, α1
2 = 0}, {α1, α1

2 = 0, α3 = 4
23

α2
3},

{α1 = 0, α2 = − 1
2
α1
2, α3 = − 18

29
α2
3}

(8,11,14) {α1 = 0}, {α1
2 = 23

9
α2}

(9,11,14) None

(10,11,14) None

(11,11,14) None

11 (4,12,14) {α1, α2, α3, α4 = 0}
(5,12,14) {α1, α2, α3 = 0}
(6,12,14) {α1, α2 = 0}
(7,12,14) {α1 = 0}
(k,12,14) None

k∈ [8, 12]

12 (k,13,14) None

k∈ [4, 13]

Table 3.4: Computing time and memory used.

Input Computing time Memory used

n = 10 0.51 s 5.31 MB

n = 15 0.69 s 5.37 MB

n = 20 0.92 s 5.49 MB

n = 25 1.07 s 5.53 MB

n = 30 1.62 s 5.56 MB

n = 35 1.95 s 5.59 MB

n = 40 2.46 s 5.62 MB

n = 45 3.03 s 5.65 MB

n = 50 3.59 s 5.68 MB
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Figure 3.1: Comparative graph between C.T. and M.U. with respect to the dimen-
sion.

Figure 3.2: Graphs for C.T. and M.U. with respect to the dimension.

Figure 3.3: Graph for quotients C.T./M.U. with respect to the dimension.
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Chapter 4

Algorithm and applications

In this chapter, we show an algorithmic method to compute α and β invariants,
as well as the set of all abelian subalgebras and ideals of an arbitrary Lie algebra
over the �eld K = C or R. After that, we develop two di�erent applications. The
�rst one corresponds to the computation of α and β invariants for Lie algebras of
low dimension. To do so, we use the main and non-main vectors and check all the
computations with the algorithm. Finally, we study and determine the minimal
faithful unitriangular matrix representation of non-model �liform Lie algebras and
�liform Lie algebras up to dimension 8 by applying both invariants and the algorithm
to obtain abelian ideals and subalgebras. These representations are computed over
the family of Lie algebras gn formed by strictly upper triangular matrices, using their
abelian subalgebras to make the computations and obtain their representations. The
content of this chapter can be seen in the papers [22, 24, 25, 27].

4.1 Algorithmic method

Let us consider an n-dimensional Lie algebra g with basis Bn = {Zi}ni=1. If n is low,
we can easily compute its abelian subalgebras and ideals because the number of non-
zero brackets with respect to Bn is quite greater in proportion with the dimension
of g. To solve this computational problem, we have implemented an algorithmic
method which computes a basis of each non-trivial abelian subalgebra of g. In this
algorithm, we will use the main and non-main vectors to express any given basis of
the subalgebra in order to determine the existence of non-zero brackets. The vectors
in this basis will be expressed as a linear combination of the vectors in Bn.

To implement the algorithm, we have used the symbolic computation package
MAPLE 12. We start loading the libraries linalg and ListTools to activate co-

59
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mmands like Flatten and others related to Linear Algebra, since Lie algebras are
vector spaces endowed with a second inner structure: the Lie bracket. Besides, the
library combinat has to be also loaded to apply commands related to Combinatorial
Algebra. Finally, we have also loaded the library Maplets[Elements] in order
to display a message so that the user introduces the required input in the �rst
subroutine, which is devoted to de�ne the law of the Lie algebra considered.

Now, we show the di�erent steps constituting the algorithm and its corresponding
implementation. The structure of the algorithm is based on two main routines calling
several other subroutines with di�erent functions. Let us note that all the routines
are written in the same worksheet in order to run it after introducing the data asked
for the dialog window built with the library Maplets[Elements].

1. Implementing a subroutine which computes the Lie bracket between two arbi-
trary basis vectors in Bn. This subroutine depends on the law of g.

The �rst subroutine, named law, receives two natural numbers as inputs.
These numbers represent the subindexes of two basis vectors in Bn. The sub-
routine returns the result of the bracket between these two vectors. Besides,
conditional sentences are included to determine non-zero brackets (which are
introduced in the subroutine) and the skew-symmetry property. Since the
user has to complete the implementation of this subroutine with the non-zero
brackets of g, we have also added a sentence at the beginning of the imple-
mentation, reminding this fact. Note that before running any other sentence,
we must restart all the variables and delete all the computations saved for
another law used before. Additionally, we must update the value of variable
dim, which saves the dimension of the algebra to be studied.

> restart:

> maplet:=Maplet(AlertDialog("Don't forget to introduce non-zero brackets

of the algebra and its dimension in subroutine law",

'onapprove'=Shutdown("Continue"),'oncancel'=Shutdown("Aborted"))):

> Maplets[Display](maplet):

> assign(dim,...):

> law:=proc(i,j)

> if i=j then return 0; end if;

> if i>j then return -law(j,i); end if;

> if (i,j)=... then return ...; end if;

> if ....

> else return 0; end if;

> end proc;
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The ellipsis in command assign corresponds to write the dimension of the
algebra g to be studied. The following two suspension points are associated
with the computation of [Zi, Zj]: First, the value of the subindexes (i, j) and
second, the result of [Zi, Zj] with respect to Bn. The last ellipsis denotes the
rest of non-zero brackets. For each non-zero bracket, a new sentence if has
to be included in the cluster.

2. Programming a subroutine to compute the bracket between two vectors ex-
pressed as a linear combination of vectors from the basis Bn of g.

Then, we implement a subroutine, bracket, which computes the bracket bet-
ween two arbitrary vectors of g. These vectors are expressed as linear combina-
tion of the vectors in Bn. The subroutine law is called in the implementation.

> bracket:=proc(u,v,n)

> local exp; exp:=0;

> for i from 1 to n do

> for j from 1 to n do

> exp:=exp + coeff(u,Z[i])*coeff(v,Z[j])*law(i,j);

> end do;

> end do;

> return exp;

> end proc:

3. For each k-dimensional subalgebra h of g, computing the bracket between two
arbitrary vectors in the basis of h. Those vectors are linear combinations of
a main vector (whose coe�cient is equal to 1) and the n − k non-main ones.
These expressions depend on the dimension of h.

After introducing the law of g, we have to compute the brackets in an arbitrary
subalgebra h. To do so, we implement the subroutine eq, which requires four
inputs: the dimension n of g; the subindexes i and l, indicating the main
vectors in the bracket to be computed; and a list M with the subindexes of the
non-main vectors in h. To do so, three local variables eqt, L and P are de�ned.
For computing the brackets between the vectors in Bn, the subroutine eq calls
the subroutine bracket, which is necessary to obtain each bracket in the law
of h. Whereas the variable eqt saves the expression of the bracket belonging
to the law of h, the list P takes the elements of M two by two and �nally, L is a
list containing all the coe�cients in the expression of eqt with respect to Bn.
Precisely, the list L is the �rst term of the output of the subroutine eq. The
second is a list with the subindexes i and l corresponding to L. Let us note
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that the subindexes of the main vectors have to be saved together with the
coe�cients in order to use them in a later subroutine.

Each vector in the subalgebra h can be expressed as a linear combination of one
main vector and the n− k non-main ones according to expression (1.4), where
each row represents the coe�cients of one vector in the basis of h. Obviously,
we can assume that the coe�cient of each main vector is equal to 1, because the
row of (1.4) corresponding to that main vector can be divided by its coe�cient.
To implement the subroutine eq, the coe�cients of the non-main vectors are
denoted by b[i,k].

> eq:=proc(n,i,l,M::list)

> local eqt,L,P; L:=[];

> if nops(M)=1 then P:=[[M[1],M[1]]] else P:=choose (M,2); end if;

> eqt:=law(i,l);

> for k from 1 to nops(M) do

> eqt:=eqt + b[l,M[k]]*law(i,M[k]) + b[i,M[k]]*law(M[k],l);

> end do;

> for j from 1 to nops(P) do

> eqt:=eqt+(b[i,P[j][1]]*b[l,P[j][2]]-b[i,P[j][2]]*b[l,P[j][1]])*

law(P[j][1],P[j][2]);

> end do;

> for m from 1 to n do

> L:=[op(L),coeff(eqt,Z[m])];

> end do;

> return L,[i,l];

> end proc;

Let us note that it is also possible to program the subroutine eq by using the
subroutine bracket. However, we will consider the previous implementation
for the computational study due to the fact that if we consider an implemen-
tation of eq which calls the subroutine bracket, both the computing time and
the used memory will increase.

> eq:=proc(n,i,l,M::list)

> local eqt,L,u,v;

> L:=[]; eqt:=0; u:=Z[i]; v:=Z[l];

> for k from 1 to nops(M) do

> u:=u+b[i,M[k]]*Z[M[k]]; v:=v+b[l,M[k]]*Z[M[k]];

> end do;

> eqt:=bracket(u,v,n);

> for m from 1 to n do

> L:=[op(L),coeff(eqt,Z[m])];
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> end do;

> return L,[i,l];

> end proc:

4. Solving a system whose equations are obtained by imposing the abelian law
to the brackects computed in the previous step for the subalgebra h.

Next, we implement the subroutine sys, which receives two inputs: The di-
mension n of g and a list M with the subindexes of the non-main vectors in
the basis of h. This subroutine solves the system of equations generated by
the subroutine eq. Four local variables L, P, R and S have been de�ned for its
implementation: L is a list with the subindexes of the main vectors; the list R
contains the expressions computed by the subroutine eq; P is de�ned as in the
previous subroutine; and, �nally, S is a set where the equations of the system
are saved

> sys:=proc(n,M::list)

> local L,P,R,S; L:=[]; R:=[]; S:={};

> for x from 1 to n do

> if member(x,convert(M,set))=false then L:=[op(L),x]; end if;

> end do;

> if nops(L)=1 then P:=[[L[1],L[1]]] else P:=choose (L,2); end if;

> for j from 1 to nops(P) do

> r[j]:=[eq(n,P[j][1],P[j][2],M)];

> end do;

> R:=[seq(r[i][1],i=1..nops(P))];

> for y from 1 to nops(R) do

> for k from 1 to n do

> S:={op(S),R[y][k]=0};

> end do;

> end do;

> return {solve(S)};

> end proc;

5. Programming a subroutine which determines the existence of abelian subalge-
bras in a �xed dimension.

This subroutine, called absub, is implemented by introducing two natural
numbers n and k, namely: n is the dimension of g and k is less than n. This
subroutine determines the existence of abelian subalgebras with dimension k.
Two local variables are used by the subroutine: L and S. The �rst variable,
L, is a list whose elements are lists with the subindexes of the n−k non-main
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vectors. The variable S is a set with the solutions given by the subroutine
sys. In this way, absub returns a message indicating the non-existence of
k-dimensional abelian subalgebras or, if there exist k-dimensional abelian sub-
algebras, returns the set S. Since the coe�cient of each main vector is 1, the
system given by the subroutine sys has not solutions when S vanishes. When
the system has some solution, the family of computed vectors is linearly inde-
pendent and forms a basis of the subalgebra. Let us note that, the solutions
in S will be determined according to the the �eld K that we are considering.
For example, if the solutions in S contain complex coe�cients, there will be no
real solutions for the system solved by sys and there do not exist any abelian
subalgebras of dimension k for the case K = R. For this �eld, it would be
necessary to include a conditional sentence for determining if such complex
coe�cients appear.

> absub:=proc(n,k)

> local L,S; L:=choose(n,n-k); S:={ };

> for i from 1 to nops(L) do

> if sys(n,L[i])={{}} then S:=S else

> for j from 1 to nops(sys(n,L[i])) do

> S:={op(S),{convert(L[i],set),sys(n,L[i])[j]}};

> end do;

> end if;

> end do;

> if S={} then return "There is no abelian subalgebra"; end if;

> if S={{}} then return "There is no abelian subalgebra" else return S;

> end if;

> end proc;

6. Computing α(g) by ruling out dimensions for abelian subalgebras.

Next, we implement the subroutine alpha, which receives the dimension n

of g as its unique input and returns the α invariant of g. The subroutine
starts studying if α(g) = n by using the subroutine absub. Then, a loop is
programmed to stop when absub does not �nd abelian subalgebras.

> alpha:=proc(n)

> if type(absub(n,n-1),set)=true then return n-1; end if;

> for i from 2 to n-1 do

> if absub(n,i)="There is no abelian subalgebra" then return i-1;

> end if;

> end do;

> end proc;
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7. Computing the basis of an abelian subalgebra of maximal dimension, that is,
a subalgebra with dimension α(g).

The following subroutine, named asmd, receives as input the dimension n of g
and returns the basis of an abelian subalgebra of maximal dimension. To do
so, this subroutine calls the subroutines alpha and absub.

> asmd:=proc(n)

> local u,L,R,S,B,k;

> k:=alpha(n);S:={};L:={}; u:=absub(n,k);

> if k=1 then return {seq({Z[i]},i=1..n)}; end if;

> if type(u[1][1],set(integer))=true

> then R:=u[1][1]; S:=u[1][2] else

> R:=u[1][2]; S:=u[1][1];

> end if;

> for x from 1 to n do

> if member(x,R)=false then L:={op(L),x};

> end if;

> end do;

> for i from 1 to nops(L) do

> b[i]:=Z[L[i]]; end do;

> for i from 1 to nops(L) do

> for j from 1 to nops(R) do

> b[i]:=b[i]+a[L[i],R[j]]*Z[R[j]];

> end do;

> end do;

> B:={seq(b[i],i=1..nops(L))};

> return eval(B,S);

> end proc:

8. Computing the basis of an abelian subalgebra for a �xed set of non-main
vectors and some restrictions given by the previous subroutines.

Now, we implement the subroutine basabsub, which receives three inputs: the
dimension n of g and two sets, S and T, with the subindexes of the non-main
vectors in the basis of h. We will use this subroutine with the solution given by
sys. We have de�ned four local variables R, B, M and N for its implementation.
First, we introduce a conditional sentence if for the sets M and N in the cluster
to �nd out whether S or T is the set of non-main vectors. This is due to the
fact that MAPLE 12 sometimes returns the solutions in di�erent order. R is a
set with the subindexes of the main vectors and, in the set B, we compute the
basis for the abelian subalgebra. In this way, B is the output of this subroutine.
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> basabsub:=proc(n,S::set,T::set)

> local R,B,M,N; R:={};B:={};

> if type(S,set(integer))=true then M:=S; N:=T else M:=T; N:=S; end if;

> for x from 1 to n do

> if member(x,M)=false then R:={op(R),x}; end if;

> end do;

> for i from 1 to nops(R) do

> a[i]:=Z[R[i]];

> end do;

> for i from 1 to nops(R) do

> for j from 1 to nops(M) do

> a[i]:=a[i] + b[R[i],M[j]]*Z[M[j]];

> end do;

> end do;

> B:={seq(a[i],i=1..nops(R))};

> return eval(B,N);

> end proc:

9. Programming a subroutine which computes a list with all the abelian subal-
gebras of g with certain dimension k.

The following subroutine, named listabsub, requires two inputs: the dimen-
sion n of g and a natural number k, less than n and which corresponds with the
dimension of the abelian subalgebra. To implement it, we consider two local
variables S and L. This subroutine calls the subroutine basabsub to compute
a basis for each k-dimensional abelian subalgebra. Whereas this value is saved
in the local variable S, L is a set with the bases of each abelian subalgebra
of g with dimension k. Precisely, the list L is the output of the subroutine
listabsub.

> listabsub:=proc(n,k)

> local S,L; S:=absub(n,k);L:={};

> if k=1 then return {seq({Z[i]},i=1..n)}; end if;

> if S="There is no abelian subalgebra" then return {}; end if;

> for i from 1 to nops(S) do

> L:={op(L),basabsub(n,S[i][1],S[i][2])};

> end do;

> return L;

> end proc:

Let us note that it is also possible to give an equivalent implementation for
the subroutine asmd by using the subroutine listabsub.
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> asmd:=proc(n)

> local k;

> k:=alpha(n);

> return listabsub(n,k);

> end proc:

10. Implementing the routine to compute a list with the bases of all the non-trivial
abelian subalgebras of g by using the previous subroutines.

Now, we implement the routine allabsub, which receives the dimension n of
g as its unique input. The routine allabsub returns a set with the bases of
all the abelian subalgebras of g with dimension less than or equal to α(g). In
this way, the routine starts computing α(g) and then, the output is de�ned by
using the previous subroutine listabsub.

> allabsub:=proc(n)

> local B,k; k:=alpha(n);B:={};

> for i from 1 to k-1 do

> B:={op(B),listabsub(n,i)};

> end do;

> return B;

> end proc:

11. Programming a subroutine which determines if there is an abelian ideal asso-
ciated with a given abelian subalgebra.

Next, we explain the subroutine abideal, which requires two inputs: a set
S with the basis of an abelian subalgebra and the dimension n of g. The
subroutine determines the existence of an abelian ideal from the basis S of
an abelian subalgebra, obtained with the subroutine listabsub for a �xed
dimension. To do so, we impose that S has to be the basis of an abelian ideal.
Then, we solve the system: if there is no solution, the output of this subroutine
is the message �It is not an abelian ideal" and if there is a solution, it returns
the basis of an abelian ideal.

> abideal:=proc(S,n)

> local w, R, L, Q, M; w:=0; R:=[]; L:=[]; Q:={}; M:={}; N:={};

> for i from 1 to nops(S) do

> w:=w + a[i]*S[i];

> end do;

> for i from 1 to nops(S) do

> for j from 1 to n do
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> if bracket(S[i],Z[j],n)<>0 then

> L:=[op(L),bracket(Z[j],S[i],n)]; else L:=L; end if;

> end do;

> end do;

> for i from 1 to nops(L) do r[i]:=0;

> for j from 1 to nops(S) do

> r[i]:=r[i]+c[i,j]*S[j];

> end do;

> end do;

> R:=[seq(r[i],i=1..nops(L))];

> M:={seq(L[k]-R[k], k=1..nops(L))};

> for i from 1 to nops(M) do

> Q:={op(Q),seq(coeff(M[i],Z[j])=0,j=1..n)};

> end do;

> if {solve(Q)}={} then return "It is not an abelian ideal" else

> return eval(S,solve(Q));

> end if;

> end proc:

12. Computing β(g) from α(g) and the previous subroutine.

The subroutine beta receives the dimension n of g as its unique input and
returns the β invariant of g. Let us note that this value can be zero (semisimple
Lie algebras). The subroutine starts computing the value of α. Then, a loop
is programmed by using the previous subroutine and listabsub

> beta:=proc(n)

> local r; r:=alpha(n);

> for k from 0 to r-1 do

> for i from 1 to nops(listabsub(n,r-k)) do

> if abideal(listabsub(n,r-k)[i],n)<>"There is no abelian ideal"

> then return r-k;

> end if;

> end do;

> end do;

> return 0;

> end proc:

13. Implementing a subroutine which determines the set of abelian ideals of ma-
ximal dimension, that is, abelian ideals with dimension β(g).

Next, in this subroutine, named aimd, we compute the basis of an abelian ideal
of maximal dimension; that is, an abelian ideal with dimension β(g). To do so,
the routine aimd calls the subroutines beta, listabsub and abideal. First,
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we compute the set of all abelian subalgebras of dimension β(g) and then we
apply the subroutine abideal to obtain abelian ideals.

> aimd:=proc(n)

> local k,S,T; k:=beta(n);S:=listabsub(n,k);T:={};

> for i from 1 to nops(S) do

> T:={op(T),abideal(S[i],n)};

> end do;

> return T;

> end proc:

14. Programming the routine to compute a list with the bases of all the non-trivial
abelian ideals of g by using the previous subroutines.

The routine allabideal receives the dimension n of g as its unique input.
This routine returns a set with the basis of all the abelian ideals of g with
dimension less than or equal to β(g). The output of this routine is de�ned by
using the subroutines listabsub and abideal.

> allabideal:=proc(n)

> local B, k; k:=beta(n); B:={};

> if k=0 then return {}; else

> for i from 1 to k do

> for j from 1 to nops(listabsub(n,i)) do

> if abideal(listabsub(n,i)[j],n)<>"There is no abelian ideal"

> then B:={op(B),abideal(listabsub(n,i)[j],n)};

> end if;

> end do;

> end do;

> end if;

> return B;

> end proc:

Now, we show an example using the 4-dimensional Lie algebra with non-zero
brackets [Z1, Z2] = Z3, [Z1, Z3] = Z4. First, we have to complete the implementation
of the subroutine law as follows

> restart:

> maplet:=Maplet(AlertDialog("Don't forget to introduce non-zero brackets

of the algebra and its dimension in subroutine law",

'onapprove'=Shutdown("Continue"), 'oncancel'=Shutdown("Aborted"))):

> Maplets[Display](maplet):

> assign(dim,4):
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> law:=proc(i,j)

> if i=j then return 0;end if;

> if i>j then return -law(j,i);end if;

> if (i,j)=(1,2) then return Z[3];end if;

> if (i,j)=(1,3) then return Z[4]

> else return 0;

> end if;

> end proc:

After that, we must run all the routines. Once done this, we can compute the α
and β invariants as well as the set of abelian subalgebras and ideals of g.

> alpha(dim);

3

> listabsub(dim,alpha(dim));

{{Z[2],Z[3],Z[4]}}

> allabsub(dim);

{{{Z[2],Z[3],Z[4]}},{{Z[1]},{Z[2]},{Z[3]},{Z[4]}},

{Z[4],Z[1]+b[1,2]*Z[2]+b[1,3]*Z[3]},{Z[4],Z[2]+b[2,1]*Z[1]+b[2,3]*Z[3]},

{Z[4],Z[3]+b[3,1]*Z[1]+b[3,2]*Z[2]},{Z[2]+b[2,3]*Z[3],Z[4]+b[4,3]*Z[3]},

{Z[2]+b[2,4]*Z[4],Z[3]+b[3,4]*Z[4]},{Z[3]+b[3,2]*Z[2],Z[4]+b[4,2]*Z[2]}}

> beta(dim);

3

> allabideal(dim);

{{Z[4]},{Z[3],Z[4]},{Z[2],Z[3],Z[4]}}

Now, we develop a computational study of the previous algorithm, which has
been implemented with MAPLE 12, in an Intel Core 2 Duo T 5600 with a 1.83
GHz processor and 2.00 GB of RAM. Tables 4.1 and 4.2 show some computational
data about both the computing time and the memory used to return the outputs
according to the value of the dimension n of the algebra.

This computational study was done considering a particular family of Lie alge-
bras: Lie algebra sn with basis {ei}ni=1 and law [ei, en] = ei, for i < n. This family
has been chosen because these algebras constitute a special subclass of non-nilpotent
solvable Lie algebras, which allows us to check empirically the computational data
given for both the computing time and the memory usage.

In Table 4.1, the set of all non-trivial abelian subalgebras has been computed for
the algebras in this family up to dimension n = 13 inclusive. Starting from n = 8,
the computing time is about three times greater when the dimension n is increased
in one unit. In Table 4.2, the set of all non-trivial abelian ideals has been computed
for the same family of Lie algebras up to dimension n = 10 inclusive.
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Table 4.1: Computing time and memory usage for allabsub.

Input Computing time Memory usage

n = 2 0 s 0 MB

n = 3 0 s 0 MB

n = 4 0.11 s 3.13 MB

n = 5 0.15 s 5.06 MB

n = 6 0.43 s 5.38 MB

n = 7 1.05 s 5.56 MB

n = 8 2.67 s 6.06 MB

n = 9 6.98 s 7.06 MB

n = 10 20.27 s 8.25 MB

n = 11 61.17 s 11.50 MB

n = 12 187.89 s 13.87 MB

n = 13 804.73 s 51.93 MB

Table 4.2: Computing time and memory usage for allabideal.

Input Computing time Memory usage

n = 2 0 s 0 MB

n = 3 0.08 s 3.31 MB

n = 4 0.50 s 5.75 MB

n = 5 1.98 s 5.88 MB

n = 6 8.03 s 6.50 MB

n = 7 35.97 s 6.94 MB

n = 8 169.54 s 7.56 MB

n = 9 779.37 s 8.19 MB

n = 10 4118.78 s 9.31 MB
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Next we show a brief statistics about the relation between the computing time
and the memory usage of the main routines allabsub and allabideal for the Lie
algebras sn. These statistics are summarized in Figures 4.1�4.3.

Figure 4.1 and 4.2 show the behavior of the computing time (C.T.) and memory
usage (M.U.) for both routines according to the dimension n of sn. We can observe
that the computing time increases more quickly than the memory usage in both
cases. Moreover, whereas the increase of the computing time corresponds to a
positive exponential model, the memory usage does not follow such a model.

We have also studied the quotients between memory usage and computing time.
The resulting data can be observed in the frequency diagram of Figure 4.3. In this
case, the behavior can be also considered exponential, although this time is negative.

Figure 4.1: Graphs for the C.T. and with respect to the dimension.

Figure 4.2: Graphs for the M.U. with respect to the dimension.

Figure 4.3: Graphs for quotients M.U./C.T. with respect to the dimension.
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Next, we compute the complexity of the algorithm. To do so, we consider the
number of operations carried out in the worst case. We use the big O notation to
express the complexity. To recall the big O notation, the reader can consult [108]:
given two functions f, g : R → R, we say that f(x) = O(g(x)) if and only if there
exist M ∈ R+ and x0 ∈ R such that |f(x)| < M · g(x), for all x > x0.

We denote by Ni(n) the order of the operations when considering the step i.
This function depends on the dimension n of the Lie algebra. Table 4.3 shows the
number of computations and the complexity of each step, as well as indicating the
name of the routine corresponding to each step. In fact, we determine that the
complexity of the algorithm has a polynomial order, where the two last routines are
the most computationally expensive.

Table 4.3: Complexity and number of operations.

Step Routine Complexity Operations

1 law O(n2) N1(n) = O
(

n(n−1)
2

)
2 bracket O(n4) N2(n) =

n∑
i=1

n∑
j=1

N1(n)

3 eq O(n4) N3(n) =

n(n−1)
2∑

j=1

N1(n)

4 sys O(n6) N4(n) =

n(n−1)
2∑

i=1

N3(n)

5 absub O(n10) N5(n) =

n(n−1)
2∑

i=1

n2∑
j=1

(N4(n))

6 alpha O(n11) N6(n) =
n∑

i=1

N5(n)

7 basabsub O(n2) N7(n) = O(n2) +
n∑

i=1

O(n) +
n∑

i=1

n∑
j=1

O(1)

8 listabsub O(n10) N8(n) = N5(n) +
n∑

i=1

N7(n)

9 allabsub O(n11) N9(n) = N6(n) +
n∑

i=1

N8(n)

10 abideal O(n6) N10(n) =
n∑

i=1

n∑
j=1

N2(n)

11 beta O(n12) N11(n) = N6(n) +

n−2∑
k=0

n∑
i=1

(N8(n) +N10(n))

12 allabideal O(n12) N12(n) = N11(n) +
n∑

i=1

n∑
j=1

(N8(n) +N10(n))
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4.2 Computation of α and β invariants for

low-dimensional Lie algebras

In this section, α and β invariants are computed for Lie algebras of dimension less
than 5, solvable Lie algebras of dimension less than 7 and nilpotent Lie algebras of
dimension less than 8. To do so, we consider

• the classi�cation of complex Lie algebras of dimension less than 5 given in [19].

• de Graaf's classi�cation of non-decomposable complex solvable Lie algebras of
dimension less than 5 [32].

• Mubarakzyanov's classi�cation of 5-dimensional non-decomposable real solva-
ble Lie algebras [75].

• Turkowski and Mubarakzyanov's classi�cations of 6-dimensional non-decomposable
real solvable non-nilpotent Lie algebras [104, 76].

• de Graaf and Seeley's classi�cations of 6-dimensional non-decomposable com-
plex nilpotent Lie algebras [33, 92].

• Magnin's classi�cation of non-decomposable complex nilpotent Lie algebras
up to dimension 7 [71].

According to Proposition 2.2, α and β invariants will be the same for all the
cases with the exception of Mubarakzyanov and Turkowski's classi�cations of 5 and
6-dimensional non-decomposable real solvable Lie algebras. In fact, we will deal
with the cases where α and β are di�erent in Remarks 4.1 and 4.2.

4.2.1 Lie algebras of dimension less than 5

Now, we compute the α invariant for Lie algebras up to dimension 4.

Proposition 4.1. Let g be a Lie algebra of dimension less than 5. Then, the possible

values of α(g) are given in Table 4.4.

Proof. Since α invariant of an abelian Lie algebra is exactly its dimension, then
α(Cn) = n, for n ∈ N. Additionally, in virtue of Lemma 2.1, α invariant is additive
and, hence, its value for Lie algebras g3,3, g4,2, g4,3, g4,4, g4,5, g4,6 and g4,7 can be
computed directly. Moreover, α invariant of g3,6 ≡ sl2 was already computed by
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Malcev (see Table 1). Consequently, we only have to compute the value of α for the
Lie algebras g2,2, g3,i, for i = 2, 4, 5 and g4,j, for j = 8, 9, . . . , 16.

The Lie algebra g2,2 is generated by the vectors {e1, e2} and there is a unique
non-zero bracket: [e1, e2] = e1. Hence, g2,2 is non-abelian and α(g2,2) < 2. Since
1-dimensional Lie algebras are abelian, both ⟨e1⟩ and ⟨e2⟩ are abelian subalgebras
of g2,2 and α(g2,2) = 1.

Fixed and given i ∈ {2, 4, 5}, let us prove that α(g3,i) = 2. We have to �nd a 2-
dimensional abelian subalgebra in g3,i, in addition to determining the non-existence
of 3-dimensional abelian subalgebras. First, α(g3,i) ≤ 2 because the Lie algebra g3,i
is non-abelian. Obviously, the subalgebra ⟨e2, e3⟩ of g3,i is abelian for i ∈ {2, 4, 5}.
So, α(g3,i) = 2, for i ∈ {2, 4, 5}.

Now, we prove that α(g4,j) = 3, for j = 8, . . . , 13. To do so, it is su�cient to
bear in mind that these algebras are non-abelian and that ⟨e2, e3, e4⟩ is an abelian
subalgebra.

Finally, we prove that α(g4,k) = 2, for k = 14, 15, 16. We have to �nd a 2-
dimensional abelian subalgebra in g4,k, as well as determining the non-existence of
3-dimensional abelian subalgebras. Since the Lie algebra g4,k is non-abelian, we can
set that α(g4,k) ≤ 3. First, ⟨e2, e4⟩ and ⟨e3, e4⟩ are abelian subalgebras of g4,k. Now,
we de�ne the subalgebras

al = ⟨{ei + λiel | 1 ≤ i ≤ 4 ∧ i ̸= l}⟩,

where el is the non-main vector.

• For l = 1, 4, [e2 + λ2el, e3 + λ3el] = e4 + u is non-zero, because u ∈ ⟨e2, e3⟩.

• For l = 2, 3, [e1 + λ1el, e4 + λ4el] = µe4 + v with µ ̸= 0 and v ∈ ⟨e2, e3⟩.
Consequently, this bracket is non-zero and α(g4,k) = 2, for k = 14, 15, 16.

4.2.2 Solvable non-nilpotent Lie algebras of dimension 5 and 6

Now, α invariant is computed for non-decomposable real solvable non-nilpotent Lie
algebras of dimension 5 and 6. In Tables 4.8-4.10, we denote by g6,i, for 1 ≤ i ≤ 40,
the Lie algebras from Turkowski's classi�cation [104] and for 41 ≤ i ≤ 143 we have
the remaining algebras from Mubarakzyanov's classi�cation [76].

Proposition 4.2. Let g be a 5-dimensional non-decomposable real solvable non-

nilpotent Lie algebra. Then, the possible values of α(g) are given in Tables 4.5�4.6.
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Proof. The 4-dimensional subalgebra of g5,j generated by ⟨e1, e2, e3, e4⟩ is abelian for
j ∈ {7, . . . , 18}. Since g5,j is not abelian, α(g5,j) = 4 and the previous subalgebra is
an abelian subalgebra of maximal dimension. Moreover, D(g5,j) is a 4-dimensional
abelian ideal for j ∈ {7, . . . , 18}. Consequently, these algebras are 2-step solvable.

The subalgebras ⟨e1, e3, e4⟩ and ⟨e1, e2, e3⟩ are abelian subalgebras of g5,j for
j ∈ {19, . . . , 29} and for j ∈ {30, . . . , 35, 38, 39}, respectively. So, we can set that
α(g5,j) ≥ 3, for j ∈ {19, . . . 35, 38, 39}.

Consequently, it is su�cient to prove the non-existence of 4-dimensional abelian
subalgebras of g5,j. Once more, the reasoning is analogous for all these algebras. So
we only study explicitly the algebra g5,22, whose law, with respect to a certain basis
{ei}5i=1, is [e2, e3] = e1, [e2, e5] = e3, [e4, e5] = e4.

By applying the reasoning and notation used in Proposition 4.1, assume the
existence of a 4-dimensional abelian subalgebra and �nd a non-zero bracket in its
law.

• For k ∈ {1, 4, 5}: [e2 + λ2ek, e3 + λ3ek] = e1 + v is non-zero, because v ∈
⟨{ei}5i=2⟩.

• For k ∈ {2, 3}:[e4 + λ4ek, e5 + λ5ek] = e4 + w is non-zero, because w ∈
⟨e1, e2, e3, e5⟩.

So, there do not exist 4-dimensional abelian subalgebras of g5,22 and α(g5,22) = 3.
The subalgebra ⟨e1, e2⟩ is abelian for g5,36 and g5,37. Hence, both α(g5,36) and

α(g5,37) ≥ 2 and we only have to prove the non-existence of abelian subalgebras of
dimension 3. Both cases are analogous, so we will prove it for g5,37.

Let us suppose the existence of a 3-dimensional abelian subalgebra. We can
express 3-dimensional subalgebras as follows

aj,k = ⟨{ei + λiej + µiek | 1 ≤ i ≤ 5 ∧ j, k ≠ i}⟩,

where ej and ek are the two non-main vectors. Proving that aj,k is non-abelian is
equivalent to �nding a non-zero bracket in its law.

• For (j, k) ∈ {(1, 2), (1, 4)}: The bracket [e3 + λ3ej + µ3ek, e5 + λ5ej + µ5ek] =

e2 + v is non-zero, because v ∈ ⟨e1, e3, e4, e5⟩.

• For (j, k) ∈ {(1, 3), (1, 5)}: The bracket [e2 + λ2ej + µ2ek, e4 + λ4ej + µ4ek] =

e2 + v is non-zero, because v ∈ ⟨e1, e3, e4, e5⟩.

• For (j, k) ∈ {(2, 5), (3, 5)}: The bracket [e1 + λ1ej + µ1ek, e4 + λ4ej + µ4ek] =

2e1 + w is non-zero, because w ∈ ⟨ei⟩5i=2.
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• For (j, k) = (4, 5): The bracket [e2 + λ2ej + µ2ek, e3 + λ3ej + µ3ek] = e1 +w is
non-zero, because w ∈ ⟨ei⟩5i=2.

• For (j, k) = (2, 3): If a2,3 is abelian, the bracket

[e1 + λ1e2 + µ1e3, e4 + λ4e2 + µ4e3] = (2 + λ1µ4 − µ1λ4)e1 + λ1e2 + µ1e3

would be zero, obtaining the system {2 + λ1µ4 − µ1λ4 = 0, λ1 = µ1 = 0}, which
has no solution.

• For (j, k) = (2, 4): Consider the brackets

[e3+λ3e2+µ3e4, e5+λ5e2+µ5e4] = −λ5e1+(1+λ3µ5−µ3λ5)e2+(µ5−λ3)e3,

[e1 + λ1e2 + µ1e4, e5 + λ5e2 + µ5e4] = 2µ5e1 − λ1e3 + (λ1µ5 − µ1λ5)e2.

If a2,4 is abelian, these brackets would be zero and the system {1+λ3µ5−µ3λ5=

0, µ5 = λ1 = λ5=0, µ5 − λ3=0, λ1µ5 − µ1λ5 = 0} without solutions would be
obtained.

• For (j, k) = (3, 4): Consider the brackets

[e2 + λ2e3 + µ2e4, e5 + λ5e3 + µ5e4] = λ5e1 + (λ2µ5 − µ2λ5 − 1)e3 + (µ5 + λ2)e2,

[e1 + λ1e3 + µ1e4, e2 + λ2e3 + µ2e4] = −µ1e2 + (2µ2 − λ1)e1 + (λ1µ2 − µ1λ2)e3,

[e1 + λ1e3 + µ1e4, e5 + λ5e3 + µ5e4] = 2µ5e1 + λ1e2 + (λ1µ5 − µ1λ5)e3.

If a3,4 is abelian, these brackets would be zero, obtaining the following system
without solutions {λ2µ5−µ2λ5−1= 0, µ1 = µ5 = λ1 = λ5 = 0, µ5 + λ2 =

0, 2µ2 − λ1 = 0, λ1µ2 − µ1λ2 = 0, λ1µ5 − µ1λ5 = 0}.

Hence, there are no 3-dimensional abelian subalgebras in g5,37 and α(g5,37) = 2.

Remark 4.1. Regarding Lie algebras g5,25, g5,26 and g5,37, we have an analogous

situation to the one shown in Example 2.2. This is due to the fact that over R,
α(g5,25) = α(g5,26) = 3, but β(g5,25) = β(g5,26) = 2 since the abelian ideals of

dimension 3 for both algebras are ⟨e1, e4, e3 ± ie2⟩ and ⟨e1, e4, e2 ± ie3⟩. For Lie

algebra g5,37 we have α(g5,37) = 2, but β(g5,37) = 1 since the 2-dimensional abelian

ideals of g5,37 are ⟨e1, e2 ± ie3⟩ and ⟨e1, e3 ± ie2⟩.

Proposition 4.3. Let g be a 6-dimensional non-decomposable real solvable non-

nilpotent Lie algebra. Then, the possible values of α(g) are given in Tables 4.8�4.14.
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Proof. In order to prove this result, we can use an analogous reasoning to the one
used in the proof of Proposition 4.2 bearing in mind that

• ⟨e3, e4, e5, e6⟩ is an abelian subalgebra of g6,j, for j = 1, . . . , 27.

• ⟨e3, e4, e5⟩ and ⟨e3, e4, e6⟩ are abelian subalgebras of g6,28 and g6,j,
for j = 29, . . . 40, respectively.

• ⟨e1, e2, e3, e4, e5⟩ is an abelian subalgebra of g6,j, for j = 41, . . . , 52.

• ⟨e1, e2, e4, e5⟩ is an abelian subalgebra of g6,j, for j = 53, . . . , 78.

• ⟨e1, e2, e3, e4⟩ is an abelian subalgebra of g6,j, for j = 79, . . . , 115.

• ⟨e1, e2, e3⟩ is an abelian subalgebra of g6,j, for j = 116, . . . , 139.

Remark 4.2. Table 4.7 shows the cases of 6-dimensional non-decomposable real

solvable Lie algebras where α and β invariants are di�erent, due to the fact that the

abelian ideals of dimension α are de�ned over C.

4.2.3 Nilpotent Lie algebras of dimension less than 8

The invariant α(g) for a complex nilpotent Lie algebra g has been obtained up to
dimension 6 in connection with degenerations [19, 92]. We want to give a list here,
thereby correcting a few typos in [92]. In dimension 7 there is no list for α(g), as
far as we know. We use the classi�cation of complex nilpotent Lie algebras up to
dimension 7 by Magnin [71], and for dimension 6 also by de Graaf [33] and Seeley
[92]. The result for the indecomposable algebras in dimension n ≤ 5 is as follows

Proposition 4.4. Let g be a complex nilpotent Lie algebra of dimension less than

6. Then, the possible values of α(g) are given in Table 4.15.

Proof. The α invariant of Lie algebras n3 and n4 was computed and pointed out
in Table 4.4. First, we prove that α(g5,2) = α(g5,5) = 4. Let us note that in this
case, ⟨e2, e3, e4, e5⟩ is an abelian subalgebra of g5,2 and g5,5, that are non-abelian,
so α(g5,2) = α(g5,5) = 4. Now, we compute a 3-dimensional abelian subalgebra
of g5,i, ∀i ∈ {1, 3, 4, 6}, and we have to prove that it is not possible to obtain an
abelian subalgebra of them with dimension greater than 3. The algebra ⟨e3, e4, e5⟩
is an abelian subalgebra of g5,i, for i ∈ {1, 3, 4, 6}. Consequently, it is su�cient to
prove that it is not possible to obtain a 4-dimensional abelian subalgebra of g5,i, for
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i ∈ {1, 3, 4, 6}. For reasons of length, we only study explicitly one example of these
algebras. The other cases are analogous.

Let us consider Lie algebra g5,3 which law with respect to the basis {ei}5i=1 is
given by: [e2, e4] = e3, [e2, e5] = e1, [e4, e5] = e2. Let us suppose that there exists a
4-dimensional abelian subalgebra in g5,3. This subalgebra can be expressed as

ak = ⟨{ei + λiek|1 ≤ i ≤ 5 ∧ i ̸= k}⟩,

where ek is the non-main vector. To prove that ak is non-abelian it is necessary and
su�cient to �nd a non-zero bracket in its law.

• For k ∈ {1, 3, 5}, the following bracket is non-zero: [e2+λ2ek, e4+λ4ek] = e3+v,

because the vector v belongs to ⟨e1, e2, e4, e5⟩.

• For k = 2, a non-zero bracket is given by [e4 + λ4e2, e5 + λ5e2] = e2 + v,

because the vector v belongs to ⟨e1, e3, e4, e5⟩.

• For k = 4, the following bracket is non-zero: [e2 + λ2e4, e5 + λ5e4] = e1 + v,

since v belongs to ⟨{ei}i=5
i=2⟩.

Consequently, there do not exist 4-dimensional abelian subalgebras in g5,3 and
α(g5,3) = 3.

Proposition 4.5. Let g be a nilpotent Lie algebra of dimension 6. Then, the possible

values of α(g) are given in Table 4.16.

Proof. Clearly α(C6) = 6. Since α invariant is additive in virtue of Lemma 2.1, its
value for Lie algebras g5,i ⊕ C, for i = 1, 2, . . . , 6; n3 ⊕ n3; n3 ⊕ C3 and n4 ⊕ C2 can
be computed directly. Consequently, we only have to compute the value of α for Lie
algebras g6,i, for i ∈ {1, . . . , 20}. These algebras are shown in Table 4.17.

Let us note that ⟨e1, e3, e4, e5, e6⟩ and ⟨e2, e3, e4, e5, e6⟩ are 5-dimensional abelian
subalgebras of g6,6 and g6,16, respectively. Since these algebras are non-abelian, we
can conclude that α(g6,6) = α(g6,16) = 5.

Moreover, ⟨e3, e4, e5, e6⟩, ⟨e2, e4, e5, e6⟩ and ⟨e1, e4, e5, e6⟩ are abelian subalgebras
of g6,i, for i ∈ {1, 3, 4, 5, 7, 8, 11, 12, 14, 15, 17, 19}; g6,j, for j ∈ {2, 10, 13} and g6,9,
respectively. So, α invariant of these algebras is, at least, 4. In this way, we have
to see if there exists some abelian subalgebra of them with dimension 5. We study
one example of the Lie algebras considered and the other are analogous.

We consider the algebra g6,19 = ⟨e1, e2, e3, e4, e5, e6⟩ with law [e1, e2] = e3, [e1, e3] =

e4, [e1, e4] = e5, [e1, e5] = e6, [e2, e3] = e5, [e2, e4] = e6. A 5-dimensional abelian sub-
algebra is expressed by ak as in Proposition 4.4.
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• For k ∈ {3, . . . , 6}, the bracket [e1 + λ1ek, e2 + λ2ek] = e3 + v, is non-zero
since v belongs to ⟨{ei}i̸=3⟩.

• For k = 2, a non-zero bracket is [e1 + λ1Z2, e3 + λ3Z2] = e4 + λ3e3 + λ1e5.

• For k = 1, this bracket is non-zero: [e2 + λ2e1, e3 + λ3e1] = e5 − λ3e3 + λ2e4.

There is no 5-dimensional abelian subalgebra in g6,19, so α(g6,19) = 4.

The Hasse diagram for degenerations of nilpotent Lie algebras in dimension 6 is
shown in Figure 4.4, removing the typos in [92]. If g →deg h, then α(g) ≤ α(h).

In dimension 7, we use Magnin's classi�cation of non-decomposable, complex
nilpotent Lie algebras in [71] (see Table 4.18�4.21) to compute the α invariant of
each isomorphism class. Note that 4 ≤ α(g) ≤ 6 in this case according to Lemma
2.5. The result is as follows

Proposition 4.6. Let g be a non-decomposable nilpotent Lie algebra of dimension

7. Then, the possible values of α(g) are the following

α(g) = 4 : g = g7,0.1, g7,0.4(a), g7,0.5, g7,0.6, g7,0.7, g7,0.8, g7,1.02, g7,1.03, g7,1.1(ia),a̸=1,

g7,1.1(ii), g7,1.1(iii), g7,1.1(iv), g7,1.1(v), g7,1.1(vi), g7,1.2(ia),a ̸=1, g7,1.2(ii),

g7,1.2(iii), g7,1.2(iv), g7,1.3(ia),a ̸=0, g7,1.3(ii), g7,1.3(iii), g7,1.3(iv), g7,1.3(v),

g7,1.5, g7,1.8, g7,1.11, g7,1.14, g7,1.17, g7,1.19, g7,1.20, g7,1.21, g7,2.1(ia),a ̸=0,1,

g7,2.1(ii), g7,2.1(iii), g7,2.1(iv), g7,2.1(v), g7,2.2, g7,2.4, g7,2.5, g7,2.6, g7,2.10,

g7,2.12, g7,2.13, g7,2.17, g7,2.23, g7,2.26, g7,2.28, g7,2.29, g7,2.30, g7,2.34,

g7,2.35, g7,2.37, g7,3.1(ia),a ̸=0,1, g7,3.1(iii), g7,3.13, g7,3.18, g7,3.22, g7,4.4.

α(g) = 5 : g = g7,0.2, g7,0.3, g7,1.01(i), g7,1.01(ii), g7,1.1(ia),a=1, g7,1.2(ia),a=1, g7,1.3(ia),a=0,

g7,1.4, g7,1.6, g7,1.7, g7,1.9, g7,1.10, g7,1.12, g7,1.13, g7,1.15, g7,1.16, g7,1.18,

g7,2.1(ia),a=0,1, g7,2.7, g7,2.8, g7,2.9, g7,2.11, g7,2.14, g7,2.15, g7,2.16, g7,2.18,

g7,2.19, g7,2.20, g7,2.21, g7,2.22, g7,2.24, g7,2.25, g7,2.27, g7,2.31, g7,2.32,

g7,2.33, g7,2.36, g7,2.38, g7,2.39, g7,2.40, g7,2.41, g7,2.42, g7,2.43, g7,2.44,

g7,2.45, g7,3.1(ia),a=0,1, g7,3.3, g7,3.4, g7,3.5, g7,3.6, g7,3.7, g7,3.8, g7,3.9,

g7,3.10, g7,3.11, g7,3.12, g7,3.14, g7,3.15, g7,3.16, g7,3.17, g7,3.19, g7,3.21,

g7,3.23 g7,3.24, g7,4.1, g7,4.3.

α(g) = 6 : g = g7,2.3, g7,3.2, g7,3.20, g7,4.2.
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Figure 4.4: Hasse diagram for degenerations of nilpotent Lie algebras in dimension 6.
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4.2.4 Tables

Table 4.4: Lie algebras of dimension less than 5

g dim(g) Lie brackets α(g)

g1,1 = C1 1 1

g2,1 = C2 2 2

g2,2 = r2 2 [e1, e2] = e1 1

g3,1 = C3 3 3

g3,2 = n3 3 [e1, e2] = e3 2

g3,3 = r2 ⊕ C1 3 [e1, e2] = e1 2

g3,4 = r3 3 [e1, e2] = e2, [e1, e3] = e2 + e3 2

g3,5 = r3,λ 3 [e1, e2] = e2, [e1, e3] = λe3, λ ∈ C∗, |λ| ≤ 1 2

g3,6 = sl2 3 [e1, e2] = e3, [e1, e3] = −2e1, [e2, e3] = 2e2 1

g4,1 = C4 4 4

g4,2 = n3 ⊕ C1 4 [e1, e2] = e3 3

g4,3 = r2 ⊕ C2 4 [e1, e2] = e1 3

g4,4 = r3 ⊕ C1 4 [e1, e2] = e2, [e1, e3] = e2 + e3 3

g4,5 = r3,λ ⊕ C1 4 [e1, e2] = e2, [e1, e3] = λe3, λ ∈ C, 0 < |λ| ≤ 1 3

g4,6 = r2 ⊕ r2 4 [e1, e2] = e1, [e3, e4] = e3 2

g4,7 = sl2 ⊕ C1 4 [e1, e2] = e3, [e1, e3] = −2e1, [e2, e3] = 2e2 2

g4,8 = n4 4 [e1, e2] = e3, [e1, e3] = e4 3

g4,9 = r4,α 4 [e1, e2] = e2, [e1, e3] = e3, [e1, e4] = αe4, α ∈ C∗ 3

g4,10 = r4,α,β 4
[e1, e2] = e3, [e1, e3] = e4, [e1, e4] = αe2
−βe3 + e4, α ∈ C∗, β ∈ C or α, β = 0

3

gα4,11 4
[e1, e2] = e3, [e1, e3] = e4,

[e1, e4] = α(e2 + e3), α ∈ C∗ 3

g4,12 4 [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e2 3

g4,13 4 [e1, e2] =
1
3
e2 + e3, [e1, e3] =

1
3
e3, [e1, e4] =

1
3
e4 3

g4,14 4
[e1, e2] = e2, [e1, e3] = e3,

[e1, e4] = 2e4, [e2, e3] = e4
2

g4,15 4 [e1, e2] = e3, [e1, e3] = e2, [e2, e3] = e4 2

gα4,16 4
[e1, e2] = e3, [e1, e3] = −αe2 + e3,

[e1, e4] = e4, [e2, e3] = e4, α ∈ C
2
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Table 4.5: 5-dimensional non-decomposable real solvable non-nilpotent Lie algebras

g Lie brackets α(g) Parameters

g5,7
[e1, e5] = e1, [e2, e5] = αe2,

[e3, e5] = βe3, [e4, e5] = γe4
4

−1 ≤ γ ≤ β ≤ α ≤ 1,

αβγ ̸= 0.

g5,8 [e2, e5] = e1, [e3, e5] = e3, [e4, e5] = γe4, 4 0 < |γ| ≤ 1

g5,9
[e1, e5] = e1, [e2, e5] = e1 + e3,

[e3, e5] = βe3, [e4, e5] = γe4
4 0 ̸= γ ≤ β

g5,10 [e2, e5] = e1, [e3, e5] = e2, [e4, e5] = e4 4

g5,11
[e1, e5] = e1, [e2, e5] = e1 + e2,

[e3, e5] = e2 + e3, [e4, e5] = γe4
4 γ ̸= 0

g5,12
[e1, e5] = e1, [e2, e5] = e1 + e2,

[e3, e5] = e2 + e3, [e4, e5] = e3 + e4
4

g5,13
[e1, e5] = e1, [e2, e5] = γe2,

[e3, e5] = pe3 − se4, [e4, e5] = se3 + pe4
4 γs ̸= 0, |γ| ≤ 1

g5,14
[e2, e5] = e1, [e3, e5] = pe3 − e4,

[e4, e5] = e3 + pe4
4

g5,15
[e1, e5] = e1, [e3, e5] = γe3,

[e2, e5] = e1 + e2, [e4, e5] = e3 + γe4
4 −1 ≤ γ ≤ 1

g5,16
[e1, e5] = e1, [e2, e5] = e1 + e2,

[e3, e5] = pe3 − se4, [e4, e5] = se3 + pe4
4 s ̸= 0

g5,17
[e1, e5] = pe1 − e2, [e2, e5] = e1 + pe2,

[e3, e5] = qe3 − se4, [e4, e5] = se3 + qe4
4 s ̸= 0

g5,18
[e3, e5] = e1 + pe3 − e4, [e2, e5] = e1 + pe2
[e1, e5] = pe1 − e2, [e4, e5] = e2 + e3 − pe4

4 p ≥ 0

g5,19
[e2, e3] = e1, [e1, e5] = (1 + α)e1,

[e2, e5] = e2, [e3, e5] = αe3, [e4, e5] = βe4
3 β ̸= 0

g5,20

[e2, e3] = e1, [e1, e5] = (1 + α)e2,

[e2, e5] = e2, [e3, e5] = αe3,

[e4, e5] = e1 + (1 + α)e4

3

g5,21
[e2, e3] = e1, [e1, e5] = 2e1, [e4, e5] = e4,

[e2, e5] = e2 + e3, [e3, e5] = e3 + e4
3

g5,22
[e2, e3] = e1, [e2, e5] = e3,

[e4, e5] = e4
3

g5,23
[e2, e3] = e1, [e1, e5] = 2e1, [e3, e5] = e3,

[e2, e5] = e2 + e3, [e4, e5] = βe4
3 β ̸= 0

g5,24
[e2, e3] = e1, [e1, e5] = 2e1, [e3, e5] = e3,

[e2, e5] = e2 + e3, [e4, e5] = ϵe1 + 2e4
3 ϵ = ±1

g5,25
[e2, e3] = e1, [e1, e5] = 2pe1, [e4, e5] = βe4,

[e2, e5] = pe2 + e3, [e3, e5] = −e2 + pe3
3 β ̸= 0

g5,26

[e2, e5] = pe2 + e3, [e1, e5] = 2pe1,

[e2, e3] = e1, [e3, e5] = −e2 + pe3,

[e4, e5] = ϵe1 + 2pe4

3 ϵ = ±1

g5,27
[e2, e3] = e1, [e3, e5] = e3 + e4,

[e1, e5] = e1, [e4, e5] = e1 + e4
3

g5,28
[e2, e3] = e1, [e2, e5] = αe2, [e4, e5] = e4,

[e1, e5] = (1 + α)e1, [e3, e5] = e3 + e4
3

g5,29
[e2, e3] = e1, [e1, e5] = e1,

[e2, e5] = e2, [e3, e5] = e4
3

g5,30

[e2, e4] = e1, [e3, e4] = e2,

[e1, e5] = (2 + h)e1, [e4, e5] = e4,

[e2, e5] = (1 + h)e2, [e3, e5] = he3

3



84 Chapter 4. Algorithm and applications

Table 4.6: 5-dimensional non-decomposable real solvable non-nilpotent Lie algebras
(II)

g Lie brackets α(g) Parameters

g5,31

[e2, e4] = e1, [e3, e4] = e2,

[e1, e5] = 3e1, [e3, e5] = e3,

[e2, e5] = 2e2, [e4, e5] = e3 + e4

3

g5,32
[e2, e4] = e1, [e3, e4] = e2, [e1, e5] = e1,

[e2, e5] = e2, [e3, e5] = he1 + e3
3

g5,33
[e1, e4] = e1, [e3, e4] = βe3,

[e2, e5] = e2, [e3, e5] = γe3
3 β2 + γ2 ̸= 0

g5,34
[e1, e4] = αe1, [e2, e4] = e2,

[e3, e4] = e3, [e1, e5] = e1, [e3, e5] = e2
3

g5,35
[e1, e4] = he1, [e2, e4] = e2, [e3, e4] = e3,

[e2, e5] = −e3, [e1, e5] = αe1, [e3, e5] = e2
3 h2 + α2 ̸= 0

g5,36
[e2, e3] = e1, [e1, e4] = e1,

[e2, e4] = e2, [e3, e5] = e3, [e2, e5] = −e2
2

g5,37
[e2, e3] = e1, [e1, e4] = 2e1, [e2, e4] = e2,

[e3, e4] = e3, [e2, e5] = −e3, [e3, e5] = e2
2

g5,38 [e1, e4] = e1, [e2, e5] = e2, [e4, e5] = e3 3

g5,39
[e1, e4] = e1, [e2, e4] = e2,

[e1, e5] = −e2, [e2, e5] = e1, [e4, e5] = e3
3

Table 4.7: Cases when α and β invariants are di�erent in non-decomposable real
solvable Lie algebras of dimension 6

g α(g) β(g) Abelian ideals of dimension α(g) over C
g6,j , for

j = {73, 74, 77, 78}
4 3

⟨e1, e4, e5, e2 ± ie3⟩,
⟨e1, e4, e5, e3 ± ie2⟩

g6,k, for

k = {35, 36, 37, 39, 40}
3 2

⟨e3, e6, e4 ± ie5⟩,
⟨e3, e6, e5 ± ie4⟩

g6,129 3 2
⟨e1, e2, e3 ± ie5⟩, ⟨e1, e2, e5 ± ie3⟩
⟨e1, e4, e3 ± ie5⟩, ⟨e1, e4, e5 ± ie3⟩

g6,130 3 2

⟨e1, e2 ± e4, e3 ± ie5⟩,
⟨e1, e2 ± e4, e5 ± ie3⟩
⟨e1, e4 ± e2, e3 ± ie5⟩,
⟨e1, e4 ± e2, e5 ± ie3⟩
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Table 4.8: 6-dimensional non-decomposable solvable non-nilpotent Lie algebras

g Lie brackets α(g) Parameters

ga,b,c,d6,1

[e1, e3] = ae3, [e1, e4] = ce4, [e1, e6] = e6
[e2, e3] = be3, [e2, e4] = de4, [e2, e5] = e5

4
ab ̸= 0

c2 + d2 ̸= 0

ga,b,c6,2

[e1, e3] = ae3, [e1, e4] = e4, [e1, e5] = e6,

[e2, e6] = e6, [e2, e3] = be3,

[e2, e4] = ce4, [e2, e5] = e5

4 a2 + b2 ̸= 0

ga6,3

[e1, e3] = e3, [e2, e5] = e5, [e1, e4] = e4,

[e1, e5] = e6, [e2, e3] = ae3 + e4,

[e2, e4] = ae4, [e2, e6] = e6

4

ga,b6,4

[e1, e3] = e3, [e1, e4] = e4, [e1, e5] = e6,

[e2, e6] = ae6, [e2, e3] = e4,

[e2, e4] = −e3, [e2, e5] = ae5 + be6

4 a ̸= 0

ga,b6,5

[e1, e3] = ae3, [e1, e5] = e5 + e6, [e1, e6] = e6
[e2, e3] = be3, [e2, e4] = e4

4 a ̸= 0

ga,b6,6

[e1, e3] = ae3, [e1, e4] = ae4, [e1, e5] = e5 + e6
[e1, e6] = e6, [e2, e3] = e3 + e4, [e2, e4] = e4

4 a2 + b2 ̸= 0

ga,b,c6,7

[e1, e3] = ae3, [e1, e4] = ae4, [e2, e5] = be6,

[e1, e6] = e6, [e2, e3] = ce3 + e4,

[e2, e4] = −e3 + ce4, [e1, e5] = e5 + e6

4 a2 + b2 ̸= 0

g6,8
[e1, e3] = e3, [e1, e4] = e6, [e2, e4] = e4

[e2, e5] = e5 + e6, [e2, e6] = e6
4

g6,9
[e1, e3] = e3, [e1, e4] = e6, [e2, e6] = e6
[e2, e4] = e4 + e5, [e2, e5] = e5 + ae6

4

ga,b6,10

[e1, e3] = ae3, [e1, e4] = e3 + be6, [e1, e5] = e5
[e2, e5] = e6, [e1, e6] = e6,

[e2, e3] = e3, [e2, e4] = e5

4

ga6,11

[e1, e3] = e4, [e2, e3] = e3, [e2, e4] = e4,

[e1, e6] = e6, [e2, e5] = ae5,

[e1, e5] = e5 + e6, [e2, e6] = ae6

4

ga,b6,12

[e1, e3] = e3 + e4, [e1, e5] = e5 + e6
[e1, e4] = e4, [e1, e6] = e6,

[e2, e3] = ae4 + e5 − be6, [e2, e4] = e6
[e2, e5] = −e3 + be4 + ae6, [e2, e6] == −e4

4

ga,b,c,d6,13

[e1, e3] = ae3, [e1, e4] = ce4, [e1, e5] = e6,

[e2, e5] = e5, [e1, e6] = −e5, [e2, e3] = be3,

[e2, e4] = de4, [e2, e6] = e6

4

ga,b,c6,14

[e1, e5] = ce5 + e6, [e1, e6] = −e5 + ce6
[e1, e3] = ae3, [e2, e3] = be3, [e2, e4] = e4

4 ab ̸= 0

ga,b,c,d6,15

[e1, e4] = e4, [e1, e5] = ae5 + be6
[e2, e6] = de6, [e1, e6] = −be5 + ae6
[e2, e3] = ce3 + e4, [e2, e5] = de5,

[e1, e3] = e3, [e2, e4] = −e3 + ce4

4 b ̸= 0

ga,b6,16

[e1, e3] = e4, [e1, e5] = ae5 + e6, [e2, e3] = e3,

[e1, e6] = −e5 + ae6, [e2, e4] = e4,

[e2, e5] = be5, [e2, e6] = be6

4

ga6,17
[e1, e3] = ae3 + e4, [e1, e4] = ae4, [e1, e5] = e6

[e1, e6] = −e5, [e2, e5] = e5, [e2, e6] = e6
4

ga,b,c6,18

[e1, e3] = e4, [e1, e5] = ae5 + be6,

[e1, e4] = −e3, [e2, e6] = de6,

[e2, e4] = e4, [e1, e6] = −be5 + ae6,

[e2, e3] = e3, [e2, e5] = ce5

4 b ̸= 0
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Table 4.9: 6-dimensional non-decomposable solvable non-nilpotent Lie algebras (II)

g Lie brackets α(g) Parameters

g6,19

[e1, e3] = e4 + e5, [e1, e6] = −e5, [e1, e5] = e6,

[e2, e5] = e5, [e1, e4] = −e3 + e6, [e2, e3] = e3,

[e2, e4] = e4, [e2, e6] = e6

4

ga,b6,20

[e1, e4] = ae4, [e1, e6] = e6, [e2, e4] = be4
[e2, e5] = e5, [e1, e2] = e3

4 a2 + b2 ̸= 0

ga6,21
[e1, e4] = e4, [e1, e5] = e6, [e2, e4] = ae4
[e2, e5] = e5, [e2, e6] = e6, [e1, e2] = e3

4

ga,ϵ6,22

[e1, e3] = e3, [e1, e5] = e6, [e2, e3] = ae3
[e2, e4] = e4, [e1, e2] = ϵe5

4
a2 + ϵ2 ̸= 0

ϵ = 0, 1

ga,ϵ6,23

[e1, e3] = e3, [e1, e4] = e4, [e1, e5] = e6,

[e2, e3] = e4, [e2, e4] = −e3,

[e2, e5] = ae6, [e1, e2] = ϵe5

4 ϵ = 0, 1

g6,24
[e1, e5] = e5 + e6, [e1, e6] = e6,

[e2, e4] = e4, [e1, e2] = e3
4

ga,b6,25

[e1, e4] = ae4, [e1, e5] = e6, [e1, e6] = −e5,

[e2, e5] = e5, [e2, e6] = e6,

[e1, e2] = e3, [e2, e3] = be4

4 a2 + b2 ̸= 0

ga6,26
[e1, e5] = ae5 + e6, [e1, e6] = −e5 + ae6

[e2, e4] = e4, [e1, e2] = e3
4

gϵ6,27
[e1, e3] = e4, [e1, e5] = e6, [e1, e6] = −e5
[e2, e5] = e5, [e2, e6] = e6, [e1, e2] = ϵe3

4 ϵ = 0, 1

g6,28

[e1, e3] = e3, [e4, e6] = e3, [e1, e5] = −e5,

[e1, e6] = e6, [e2, e4] = e4, [e2, e5] = 2e5,

[e2, e6] = −e6, [e5, e6] = e4

3

ga,b6,29

[e1, e3] = e3, [e4, e5] = e3, [e1, e4] = e4,

[e1, e6] = ae6, [e2, e3] = e3,

[e2, e5] = e5, [e2, e6] = be6

3 a2 + b2 ̸= 0

ga6,30

[e1, e3] = 2e3, [e1, e5] = e5, [e2, e4] = e5,

[e2, e6] = e6, [e1, e6] = ae6,

[e4, e5] = e3, [e1, e4] = e4

3

g6,31
[e1, e4] = e4, [e1, e5] = −e5, [e2, e3] = e3

[e2, e5] = e5, [e2, e6] = e3 + e6, [e4, e5] = e3
3

ga6,32

[e1, e4] = e4, [e1, e5] = −e5, [e1, e6] = e3,

[e2, e6] = e6, [e2, e3] = e3,

[e2, e4] = ae4, [e2, e5] = (1− a)e5, [e4, e5] = e3

3

g6,33
[e1, e3] = e3, [e1, e4] = e4, [e2, e3] = e3

[e2, e5] = e5 + e6, [e2, e6] = e6, [e4, e5] = e3
3

ga6,34

[e1, e3] = e3, [e1, e4] = e4, [e1, e5] = e6,

[e2, e6] = e6, [e2, e3] = (1 + a)e3, [e2, e4] = ae4,

[e2, e5] = e5, [e4, e5] = e3

3

ga,b6,35

[e1, e4] = e5, [e1, e6] = ae6, [e2, e3] = 2e3,

[e2, e4] = e4, [e1, e5] = −e4, [e2, e5] = e5,

[e2, e6] = be6, [e4, e5] = e3

3 a2 + b2 ̸= 0

g6,36

[e1, e4] = e5, [e1, e5] = −e4, [e2, e3] = 2e3,

[e4, e5] = e3, [e2, e4] = e4,

[e2, e5] = e5, [e2, e6] = e3 + 2e6

3

ga6,37

[e2, e4] = e4 + ae5, [e1, e4] = e5, [e1, e5] = −e4,

[e1, e6] = e3, [e2, e3] = 2e3, [e2, e5] = −ae4 + e5,

[e2, e6] = 2e6, [e4, e5] = e3

3

g6,38
[e1, e3] = e3, [e1, e4] = e4, [e2, e3] = e3
[e2, e5] = e5, [e1, e2] = e6, [e4, e5] = e3

3
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Table 4.10: 6-dimensional non-decomposable solvable non-nilpotent Lie algebras
(III)

g Lie brackets α(g) Parameters

g6,39

[e1, e2] = e6, [e2, e5] = e5, [e1, e4] = e5,

[e1, e5] = −e4, [e2, e3] = 2e3,

[e2, e4] = e4, [e4, e5] = e3

3

g6,40
[e1, e2] = e3, [e1, e4] = e5, [e1, e5] = −e4

[e2, e6] = e6, [e4, e5] = e3
3

ga,b,c,d6,41

[e1, e6] = e1, [e2, e6] = ae2, [e3, e6] = be3
[e4, e6] = ce4, [e5, e6] = de5

5
0 < |d| ≤ |c|

≤ |b| ≤ |a| ≤ 1

ga,c,d6,42

[e1, e6] = ae1, [e2, e6] = e1 + ae2, [e3, e6] = e3
[e4, e6] = ce4, [e5, e6] = de5

5 0 < |d| ≤ |c| ≤ 1

ga,d6,43

[e1, e6] = ae1, [e2, e6] = e1 + ae2, [e3, e6] = e2 + ae3
[e4, e6] = e4, [e5, e6] = de5

5 0 < |d| ≤ 1

ga6,44
[e1, e6] = ae1, [e2, e6] = e1 + ae2, [e3, e6] = e2 + ae3

[e4, e6] = e3 + ae4, [e5, e6] = e5
5

g6,45
[e1, e6] = e1, [e2, e6] = e1 + e2, [e3, e6] = e2 + e3

[e4, e6] = e3 + e4, [e5, e6] = e4 + e5
5

gs,h6,46

[e1, e6] = e1, [e2, e6] = se2, [e3, e6] = e2 + se3
[e4, e6] = he4, [e5, e6] = e4 + he5

5 s ≤ h

ga,b6,47

[e1, e6] = ae1, [e2, e6] = e1 + ae2, [e3, e6] = e2 + ae3
[e4, e6] = be4, [e5, e6] = e4 + be5

5 a2 + b2 ̸= 0

ga,b,c,p6,48

[e1, e6] = ae1, [e2, e6] = be2, [e3, e6] = ce3
[e4, e6] = pe4 − e5, [e5, e6] = e4 + pe5

5 0 < |d| ≤ |b| ≤ a

ga,b,p6,49

[e1, e6] = ae1, [e2, e6] = be2, [e3, e6] = e2 + be3
[e4, e6] = pe4 − e5, [e5, e6] = e4 + pe5

5 a ̸= 0

ga,p6,50

[e1, e6] = ae1, [e2, e6] = e1 + ae2, [e3, e6] = e2 + ae3
[e4, e6] = pe4 − e5, [e5, e6] = e4 + pe5

5

ga,p,s,q6,51

[e1, e6] = ae1, [e2, e6] = pe2 − e3, [e3, e6] = e2 + pe3
[e4, e6] = qe4 − se5, [e5, e6] = se4 + qe5

5 as ̸= 0

ga,p6,52

[e1, e6] = ae1, [e2, e6] = pe2 − e3, [e3, e6] = e2 + pe3
[e4, e6] = e2 + pe4 − e5, [e5, e6] = e3 + e4 + pe5

5 a ̸= 0

ga,b,h6,53

[e2, e3] = e1, [e1, e6] = (a+ b)e1, [e2, e6] = ae2,

[e3, e6] = be3, [e4, e6] = e4, [e5, e6] = he5
4

ga,b6,54

[e2, e3] = e1, [e1, e6] = (a+ b)e1, [e2, e6] = ae2,

[e3, e6] = be3, [e4, e6] = e4, [e5, e6] = e1 + (a+ b)e5
4

gh6,55
[e2, e3] = e1, [e1, e6] = (1 + h)e1, [e2, e6] = e2 + e4,

[e3, e6] = he3 + e5, [e4, e6] = e4, [e5, e6] = he5
4

g6,56
[e2, e3] = e1, [e1, e6] = e1, [e2, e6] = e2 + e4,

[e3, e6] = e5, [e4, e6] = e1 + e4
4

ga,ϵ6,57

[e2, e3] = e1, [e1, e6] = ae1, [e2, e6] = ae2,

[e3, e6] = e4, [e4, e6] = ϵe1, [e5, e6] = e5
4

a2 + ϵ2 ̸= 0

aϵ ̸= 0

ga,b6,58

[e2, e3] = e1, [e1, e6] = (1 + a)e1, [e2, e6] = ae2,

[e3, e6] = e3 + e4, [e4, e6] = e4, [e5, e6] = be5
4 b ̸= 0

ga6,59
[e2, e3] = e1, [e1, e6] = (1 + a)e1, [e2, e6] = ae2,

[e3, e6] = e3 + e4, [e4, e6] = e4, [e5, e6] = e1 + (a+ 1)e5
4

gb6,60
[e2, e3] = e1, [e1, e6] = e1,

[e3, e6] = e3 + e4, [e4, e6] = e1 + e4, [e5, e6] = be5
4 b ̸= 0

ga,h6,61

[e2, e3] = e1, [e1, e6] = 2ae1, [e2, e6] = ae2 + e3,

[e3, e6] = ae3, [e4, e6] = e4, [e5, e6] = he5
4 h ̸= 0
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Table 4.11: 6-dimensional non-decomposable solvable non-nilpotent Lie algebras
(IV)

g Lie brackets α(g) Parameters

ga6,62
[e2, e3] = e1, [e1, e6] = 2ae1, [e2, e6] = ae2 + e3,

[e3, e6] = ae3, [e4, e6] = e4, [e5, e6] = e1 + 2ae5
4

ga,ϵ,h6,63

[e2, e3] = e1, [e1, e6] = 2ae1,

[e2, e6] = ae2 + e3, [e3, e6] = ae3 + e4,

[e4, e6] = ae4, [e5, e6] = ϵe1 + (2a+ h)e5

4 ϵh = 0

ga,h6,64

[e2, e3] = e1, [e2, e6] = ae3,

[e3, e6] = e4, [e4, e6] = he1, [e5, e6] = e5
4

gb,h6,65

[e2, e3] = e1, [e1, e6] = (1 + h)e1, [e2, e6] = e2,

[e3, e6] = he3, [e4, e6] = be4 + e5, [e5, e6] = be5
4

gh6,66

[e2, e3] = e1, [e1, e6] = (1 + h)e1,

[e2, e6] = e2, [e3, e6] = he3,

[e4, e6] = (1 + h)e4 + e5, [e5, e6] = e1 + (1 + h)e5

4

ga,b,ϵ6,67

[e2, e3] = e1, [e1, e6] = (a+ b)e1,

[e2, e6] = ae2, [e3, e6] = be3 + e4,

[e4, e6] = be4 + e5, [e5, e6] = ϵe1 + be5

4
a2 + b2 ̸= 0

ϵa = 0

gb6,68
[e2, e3] = e1, [e1, e6] = 2e1, [e2, e6] = e2 + e3,

[e3, e6] = e3, [e4, e6] = be4 + e5, [e5, e6] = be5
4

g6,69
[e2, e3] = e1, [e1, e6] = 2e1, [e2, e6] = e2 + e3,

[e3, e6] = e3, [e4, e6] = 2e4 + e5, [e5, e6] = e1 + 2e5
4

g6,70
[e2, e3] = e1, [e2, e6] = e3,

[e4, e6] = e4 + e5, [e5, e6] = e5
4

g6,71
[e2, e3] = e1, [e1, e6] = 2e1, [e2, e6] = e2 + e3,

[e3, e6] = e3 + e4, [e4, e6] = e4 + e5, [e5, e6] = e5
4

ga,c,h,ϵ6,72

[e2, e3] = e1, [e1, e6] = 2ae1,

[e2, e6] = ae2 + e3, [e3, e6] = −e2 + ae3,

[e4, e6] = ϵe1 + (2a+ h)e4, [e5, e6] = ce5

4
2a+ h > c

ϵh = 0

ga,b6,73

[e2, e3] = e1, [e1, e6] = 2ae1, [e2, e6] = ae2 + e3,

[e3, e6] = −e2 + ae3, [e4, e6] = be4, [e5, e6] = 2ae5 + e1
4 b ≤ 2a

ga,h,ϵ6,74

[e2, e3] = e1, [e1, e6] = 2ae1,

[e2, e6] = ae2 + e3, [e3, e6] = −e2 + ae3,

[e4, e6] = (2a+ h)e4 + e5, [e5, e6] = (2a+ h)e5 + ϵe1

4 ϵh = 0

ga,b,c6,75

[e2, e3] = e1, [e1, e6] = (a+ b)e1, [e2, e6] = ae2,

[e3, e6] = be3, [e4, e6] = ce4 + e5, [e5, e6] = −e4 + ce5
4 a2 + b2 ̸= 0

ga,c6,76

[e2, e3] = e1, [e1, e6] = 2ae1, [e2, e6] = ae2 + e3,

[e3, e6] = ae3, [e4, e6] = ce4 + e5, [e5, e6] = −e4 + ce5
4

ga,b,s6,77

[e2, e3] = e1, [e1, e6] = 2ae1,

[e2, e6] = ae2 + e3, [e3, e6] = −e2 + ae3,

[e4, e6] = be4 + se5, [e5, e6] = −se4 + be5

4 s ̸= 0

ga6,78

[e2, e3] = e1, [e1, e6] = 2ae1,

[e2, e6] = ae2 + e3 + e4, [e3, e6] = −e2 + ae3 + e5,

[e4, e6] = ae4 + e5, [e5, e6] = −e4 + ae5

4

gc,h6,79

[e1, e5] = e2, [e4, e5] = e1, [e1, e6] = (h+ 1)e1,

[e2, e6] = (h+ 2)e2, [e3, e6] = ce3,

[e4, e6] = he4, [e5, e6] = e5

4 c ̸= 0

gh6,80

[e1, e5] = e2, [e4, e5] = e1, [e1, e6] = (h+ 1)e1,

[e2, e6] = (h+ 2)e2, [e3, e6] = e2 + (h+ 2)e3,

[e4, e6] = he4, [e5, e6] = e5

4
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Table 4.12: 6-dimensional non-decomposable solvable non-nilpotent Lie algebras (V)

g Lie brackets α(g) Parameters

gh6,81

[e1, e5] = e2, [e4, e5] = e1, [e1, e6] = (h+ 1)e1,

[e2, e6] = (h+ 2)e2, [e3, e6] = he3,

[e4, e6] = e3 + he4, [e5, e6] = e5

4

gh6,82

[e1, e5] = e2, [e4, e5] = e1, [e1, e6] = (h+ 1)e1,

[e2, e6] = (h+ 2)e2, [e3, e6] = e3,

[e4, e6] = he4, [e5, e6] = e3 + e5

4

g6,83
[e1, e5] = e2, [e4, e5] = e1, [e3, e6] = e2 + e3,

[e2, e6] = e2, [e4, e6] = −e4, [e5, e6] = e3 + e5
4

gc6,84

[e1, e5] = e2, [e4, e5] = e1, [e1, e6] = 2e1,

[e2, e6] = 3e2, [e3, e6] = ce3,

[e4, e6] = e4, [e5, e6] = e4 + e5

4 c ̸= 0

g6,85

[e1, e5] = e2, [e4, e5] = e1, [e1, e6] = 2e1,

[e2, e6] = 3e2, [e3, e6] = e2 + 3e3,

[e4, e6] = e4, [e5, e6] = e4 + e5

4

g6,86

[e1, e5] = e2, [e4, e5] = e1, [e1, e6] = 2e1,

[e2, e6] = 3e2, [e3, e6] = e3,

[e4, e6] = e3 + e4, [e5, e6] = e4 + e5

4

gc,ϵ6,87

[e1, e5] = e2, [e4, e5] = e1, [e1, e6] = e1,

[e2, e6] = e2, [e3, e6] = ce3, [e4, e6] = ϵe2 + e4
4

c ̸= 0,

ϵ = 0,±1

gc,ϵ6,88

[e1, e5] = e2, [e4, e5] = e1, [e1, e6] = e1,

[e2, e6] = e2, [e3, e6] = ce2 + e3, [e4, e6] = ϵe4
4

gϵ6,89
[e1, e5] = e2, [e4, e5] = e1, [e1, e6] = e1,

[e2, e6] = e2, [e4, e6] = ϵe2 + e4, [e5, e6] = e3
4 ϵ = 0,±1

gϵ6,90
[e1, e5] = e2, [e4, e5] = e1, [e1, e6] = e1,

[e2, e6] = e2, [e3, e6] = ϵe2 + e3, [e4, e6] = e3 + e4
4 ϵ = 0,±1

gϵ6,91
[e1, e5] = e2, [e4, e5] = e1,

[e3, e6] = e3, [e4, e6] = ϵe2
4 ϵ = ±1

gϵ6,92
[e1, e5] = e2, [e4, e5] = e1,

[e3, e6] = e3, [e4, e6] = ϵe2, [e5, e6] = e4
4 ϵ = 0,±1

g6,93
[e3, e5] = e1, [e4, e5] = e2, [e3, e6] = e3,

[e4, e6] = e4, [e5, e6] = −e5
4

gc,λ6,94

[e3, e5] = e1, [e4, e5] = e2, [e1, e6] = e1, [e2, e6] = λe2,

[e3, e6] = (1− c)e3, [e4, e6] = (λ− c)e4, [e5, e6] = ce5
4

gc6,95

[e3, e5] = e1, [e4, e5] = e2, [e1, e6] = e1
[e2, e6] = (1 + c)e2, [e3, e6] = (1− c)e3

[e4, e6] = e1 + e4, [e5, e6] = ce5

4

gc6,96

[e3, e5] = e1, [e4, e5] = e2, [e1, e6] = e1
[e2, e6] = (1− c)e2, [e3, e6] = e2 + (1− c)e3

[e4, e6] = (1− 2c)e4, [e5, e6] = ce5

4

gc6,97

[e3, e5] = e1, [e4, e5] = e2, [e1, e6] = e1
[e2, e6] = 2ce2, [e3, e6] = (1− c)e3
[e4, e6] = ce4, [e5, e6] = e4 + ce5

4

gω6,98

[e3, e5] = e1, [e4, e5] = e2, [e1, e6] = 3e1
[e2, e6] = 2e2, [e3, e6] = e2 + 2e3
[e4, e6] = e4, [e5, e6] = ωe4 + e5

4 ω = 0, 1

gh6,99
[e3, e5] = e1, [e4, e5] = e2, [e1, e6] = e1
[e3, e6] = e3, [e4, e6] = e2, [e5, e6] = he4

4

gω6,100
[e3, e5] = e1, [e4, e5] = e2, [e1, e6] = e1

[e2, e6] = 2e2, [e4, e6] = e1 + e4, [e5, e6] = ωe4 + e5
4 ω = 0, 1
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Table 4.13: 6-dimensional non-decomposable solvable non-nilpotent Lie algebras
(VI)

g Lie brackets α(g) Parameters

gλ6,101

[e3, e5] = e1, [e4, e5] = e2, [e1, e6] = 2e1
[e2, e6] = 2λe2, [e3, e6] = e3

[e4, e6] = (2λ− 1)e4, [e5, e6] = e3 + e5

4

gω6,102
[e3, e5] = e1, [e4, e5] = e2, [e1, e6] = 2e1

[e2, e6] = e2, [e3, e6] = e2 + e3, [e5, e6] = ωe3 + e5
4 ω = 0, 1

gλ6,103
[e3, e5] = e1, [e4, e5] = e2, [e1, e6] = e1

[e2, e6] = λe2, [e3, e6] = e3, [e4, e6] = e2 + λe4
4

gh6,104
[e3, e5] = e1, [e4, e5] = e2, [e1, e6] = e1, [e2, e6] = e2,

[e3, e6] = he2 + e3, [e4, e6] = e1 + e4
4

gc,λ6,105

[e3, e5] = e1, [e4, e5] = e2, [e1, e6] = λe1 + e2
[e2, e6] = λe2, [e3, e6] = (1− c)e3 + e4

[e4, e6] = (λ− c)e4, [e5, e6] = ce5

4

gc,λ6,106

[e3, e5] = e1, [e4, e5] = e2, [e1, e6] = λe1 + e2
[e2, e6] = λe2, [e3, e6] = (1− c)e3 + e4

[e4, e6] = (λ− c)e4, [e5, e6] = ce5

4

gh6,107

[e3, e5] = e1, [e4, e5] = e2, [e1, e6] = 2e1 + e2
[e2, e6] = 2e2, [e3, e6] = e3 + e4
[e4, e6] = e4, [e5, e6] = he4 + e5

4

gc6,108
[e3, e5] = e1, [e4, e5] = e2, [e1, e6] = e1 + e2

[e2, e6] = e2, [e3, e6] = e3 + e4, [e4, e6] = ce1 + e4
4

g6,109
[e3, e5] = e1, [e4, e5] = e2, [e1, e6] = e1 + e2

[e2, e6] = e2, [e3, e6] = e3 + e4, [e4, e6] = e2 + e4
4

gp,c6,110

[e3, e5] = e1, [e4, e5] = e2, [e1, e6] = pe1 + e2
[e2, e6] = −e1 + pe2, [e3, e6] = (p− c)e3 + e4

[e4, e6] = −e3 + (p− c)e4, [e5, e6] = ce5

4

gh6,111

[e2, e5] = e1, [e3, e5] = e2, [e4, e5] = e3,

[e1, e6] = (h+ 3)e1, [e2, e6] = (h+ 2)e2,

[e3, e6] = (h+ 1)e3, [e4, e6] = he4, [e5, e6] = e5

4

g6,112

[e2, e5] = e1, [e3, e5] = e2, [e4, e5] = e3,

[e1, e6] = 4e1, [e2, e6] = 3e2, [e3, e6] = 2e3,

[e4, e6] = e4, [e5, e6] = e4 + e5

4

gϵ6,113
[e2, e5] = e1, [e3, e5] = e2, [e4, e5] = e3, [e1, e6] = e1,

[e2, e6] = e2, [e3, e6] = ϵe1 + e3, [e4, e6] = ϵe2 + e4
4 ϵ = ±1

g6,114
[e2, e5] = e1, [e3, e5] = e2, [e4, e5] = e3, [e1, e6] = e1,

[e2, e6] = e2, [e3, e6] = e3, [e4, e6] = e4
4

g6,115
[e2, e5] = e1, [e3, e5] = e2, [e4, e5] = e3, [e1, e6] = e1,

[e2, e6] = e2, [e3, e6] = e3, [e4, e6] = e1 + e4
4

gh6,116

[e2, e4] = e3, [e2, e5] = e1, [e4, e5] = e2,

[e1, e6] = (2h+ 1)e1, [e2, e6] = (h+ 1)e2,

[e3, e6] = (h+ 2)e3, [e4, e6] = e4, [e5, e6] = he5

3

gϵ6,117
[e2, e4] = e3, [e2, e5] = e1, [e4, e5] = e2, [e1, e6] = e1,

[e2, e6] = e2, [e3, e6] = 2e3, [e4, e6] = ϵe1 + e4
3 ϵ = ±1

g6,118
[e2, e4] = e3, [e2, e5] = e1, [e4, e5] = e2, [e3, e6] = e3,

[e1, e6] = −e1, [e4, e6] = e3 + e4, [e5, e6] = −e5
3

g6,119

[e2, e4] = e3, [e2, e5] = e1, [e4, e5] = e2,

[e1, e6] = 3e1, [e2, e6] = 2e2,

[e3, e6] = e1 + 3e3, [e4, e6] = e4 + e5, [e5, e6] = e5

3
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Table 4.14: 6-dimensional non-decomposable solvable non-nilpotent Lie algebras
(VII)

g Lie brackets α(g) Parameters

g6,120
[e2, e4] = e3, [e2, e5] = e1, [e4, e5] = e2, [e2, e6] = e2,

[e1, e6] = 2e1, [e3, e6] = e3, [e5, e6] = e5
3

gϵ6,121
[e2, e4] = e3, [e2, e5] = e1, [e4, e5] = e2, [e2, e6] = e2,

[e1, e6] = 2e1, [e3, e6] = e3, [e5, e6] = ϵe3 + e5
3 ϵ = ±1

ga,λ,λ1
6,122

[e2, e4] = e1, [e3, e5] = e1, [e1, e6] = ae1,

[e2, e6] = (a
2
+ λ)e2, [e3, e6] = (a

2
+ λ1)e3,

[e4, e6] = (a
2
− λ)e4, [e5, e6] = (a

2
− λ1)e5

3 a = 0, 2

ga,λ6,123

[e2, e4] = e1, [e3, e5] = e1, [e1, e6] = ae1,

[e2, e6] = (a
2
+ λ)e2 + e3, [e3, e6] = (a

2
+ λ)e3,

[e4, e6] = (a
2
− λ)e4, [e5, e6] = −e4 + (a

2
− λ)e5

3

g6,124
[e2, e4] = e1, [e3, e5] = e1,

[e2, e6] = e2, [e4, e6] = −e4, [e5, e6] = e3
3

gλ6,125
[e2, e4] = e1, [e3, e5] = e1, [e1, e6] = 2e1, [e2, e6] = (λ+ 1)e2,

[e3, e6] = e3, [e4, e6] = (1− λ)e4, [e5, e6] = e3 + e5
3

g6,126
[e2, e4] = e1, [e3, e5] = e1, [e1, e6] = 2e1, [e3, e6] = e3,

[e2, e6] = e2 + e3, [e4, e6] = e4, [e5, e6] = −e4 + e5
3

g6,127
[e2, e4] = e1, [e3, e5] = e1, [e1, e6] = 2e1, [e4, e6] = e4,

[e2, e6] = e2 + e5, [e3, e6] = e3 + e4, [e5, e6] = e3 + e5
3

ga,µ0,ν0
6,128

[e2, e4] = e1, [e3, e6] = −ν0e2 + (a
2
+ µ0)e3, [e3, e5] = e1,

[e1, e6] = ae1, [e5, e6] = −ν0e4 + (a
2
− µ0)e5,

[e4, e6] = (a
2
− µ0)e4 + ν0e5, [e2, e6] = (a

2
+ µ0)e2 + ν0e3

3

gs,a,ν06,129

[e2, e4] = e1, [e3, e5] = e1, [e1, e6] = ae1,

[e2, e6] = (s+ a
2
)e2, [e3, e6] =

a
2
e3 + ν0e5,

[e4, e6] = (a
2
− s)e4, [e5, e6] = −ν0e3 + a

2
e5

3

ga,ν06,130

[e2, e4] = e1, [e3, e5] = e1, [e1, e6] = ae1,

[e2, e6] =
a
2
e2 + e4, [e3, e6] =

a
2
e3 + ν0e5,

[e4, e6] = e2 + a
2
e4, [e5, e6] = −ν0e3 + a

2
e5

3
ν0 ̸= 1

if a = 0

g6,131
[e2, e4] = e1, [e3, e5] = e1, [e2, e6] = e4,

[e3, e6] = e5, [e4, e6] = e2, [e5, e6] = −e3
3

ga,µ0,ν0
6,132

[e2, e4] = e1, [e3, e5] = e1, [e1, e6] = ae1,

[e2, e6] =
a
2
e2 + ν0e3, [e3, e6] =

a
2
e3 − µ0e2,

[e4, e6] = µ0e5 + a
2
e2, [e5, e6] = −µ0e4 + a

2
e5

3

ga,ν06,133

[e2, e4] = e1, [e3, e5] = e1, [e1, e6] = ae1,

[e2, e6] =
a
2
e2 + e4 + ν0e5, [e3, e6] =

a
2
e3 + ν0e4,

[e4, e6] = e2 − ν0e3 + a
2
e4, [e5, e6] = −ν0e2 + a

2
e5

3

gλ6,134

[e3, e4] = e1, [e2, e5] = e1, [e3, e5] = e2,

[e1, e6] = (λ+ 2)e1, [e2, e6] = (λ+ 1)e2, [e3, e6] = λe3,

[e4, e6] = 2e4, [e5, e6] = e5

3

g6,135
[e3, e4] = e1, [e2, e5] = e1, [e3, e5] = e2, [e2, e6] = e2,

[e1, e6] = 2e1, [e4, e6] = e1 + 2e4, [e5, e6] = e5
3

g6,136
[e3, e4] = e1, [e2, e5] = e1, [e3, e5] = e2, [e4, e6] = e2 + 2e4,

[e1, e6] = 3e1, [e2, e6] = 2e2, [e3, e6] = e3, [e5, e6] = e3 + e5
3

g6,137
[e3, e4] = e1, [e2, e5] = e1, [e3, e5] = e2, [e1, e6] = 4e1,

[e2, e6] = 3e2, [e3, e6] = 2e3 + e4, [e4, e6] = 2e4, [e5, e6] = e5
3

gh6,138
[e3, e4] = e1, [e2, e5] = e1, [e3, e5] = e2, [e1, e6] = e1,

[e2, e6] = he1 + e2, [e3, e6] = e3, [e5, e6] = he4
3

g6,139
[e3, e4] = e1, [e2, e5] = e1, [e3, e5] = e2,

[e4, e5] = e3, [ej , e6] = (6− j)ej , ∀ 1 ≤ j ≤ 5
3
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Table 4.15: α invariant for nilpotent Lie algebras of dimension less than 6.

g dim(g) Lie brackets α(g)

n3 3 [e1, e2] = e3 2

n4 4 [e1, e2] = e3, [e1, e3] = e4 3

g5,6 5 [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e2, e3] = e5 3

g5,5 5 [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5 4

g5,3 5 [e1, e2] = e4, [e1, e4] = e5, [e2, e3] = e5 3

g5,4 5 [e1, e2] = e3, [e1, e3] = e4, [e2, e3] = e5 3

g5,2 5 [e1, e2] = e4, [e1, e3] = e5 4

g5,1 5 [e1, e3] = e5, [e2, e4] = e5 3

Table 4.16: α invariant for 6-dimensional nilpotent Lie algebras

Magnin de Graaf Seeley α(g)

g6,20 L6,14 12346E 3

g6,18 L6,16 12346C 3

g6,19 L6,15 12346D 4

g6,17 L6,17 12346B 4

g6,15 L6,21(1) 1346C 4

g6,13 L6,13 1246 4

g6,16 L6,18 12346A 5

g6,14 L6,21(0) 2346 4

g6,9 L6,19(1) 136A 4

g6,12 L6,11 1346B 4

g5,6 ⊕ C L6,6 1 + 1235B 4

g6,5 L6,24(1) 246E 4

g6,10 L6,20 136B 4

g6,11 L6,12 1346A 4

g5,5 ⊕ C L6,7 1 + 1235A 5

g6,8 L6,24(0) 246D 4

g6,4 L6,19(0) 246B 4

g6,7 L6,23 246C 4

g6,2 L6,10 146 4

g6,6 L6,25 246A 5

g5,4 ⊕ C L6,9 1 + 235 4

g5,3 ⊕ C L6,5 1 + 135 4

n3 ⊕ n3 L6,22(1) 13 + 13 4

n4 ⊕ C2 L6,3 2 + 124 5

g6,1 L6,22(0) 26 4

g6,3 L6,26 36 4

g5,2 ⊕ C L6,8 1 + 25 5

g5,1 ⊕ C L6,4 1 + 15 4

n3 ⊕ C3 L6,2 3 + 13 5

C6 L6,1 0 6
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Table 4.17: 6-dimensional non-decomposable nilpotent Lie algebras

g Lie brackets

g6,1 [e1, e2] = e5, [e1, e4] = e6, [e2, e3] = e6.

g6,2 [e1, e2] = e5, [e1, e5] = e6, [e3, e4] = e6.

g6,3 [e1, e2] = e4, [e1, e3] = e5, [e2, e3] = e6.

g6,4 [e1, e2] = e4, [e1, e3] = e6, [e2, e4] = e5.

g6,5 [e1, e2] = e4, [e1, e4] = e5, [e2, e3] = e6, [e2, e4] = e6.

g6,6 [e1, e2] = e4, [e2, e3] = e6, [e2, e4] = e5.

g6,7 [e1, e2] = e4, [e1, e3] = e5, [e1, e4] = e6, [e2, e3] = −e6.

g6,8 [e1, e2] = e4, [e1, e4] = e5, [e2, e3] = e5, [e2, e4] = e6.

g6,9 [e1, e2] = e4, [e1, e3] = e5, [e2, e5] = e6, [e3, e4] = e6.

g6,10 [e1, e2] = e4, [e1, e3] = e5, [e1, e4] = e6, [e3, e5] = e6.

g6,11 [e1, e2] = e4, [e1, e4] = e5, [e1, e5] = e6, [e2, e3] = e6.

g6,12 [e1, e2] = e4, [e1, e4] = e5, [e1, e5] = e6, [e2, e3] = e6, [e2, e4] = e6.

g6,13 [e1, e2] = e4, [e1, e4] = e5, [e1, e5] = e6, [e2, e3] = e5, [e3, e4] = −e6.

g6,14 [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e2, e3] = e6.

g6,15 [e1, e2] = e3, [e1, e3] = e4, [e1, e5] = e6, [e2, e3] = e5, [e2, e4] = e6.

g6,16 [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e1, e5] = e6.

g6,17 [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e1, e5] = e6, [e2, e3] = e6.

g6,18 [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e2, e5] = e6, [e3, e4] = −e6.

g6,19
[e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5,

[e1, e5] = e6, [e2, e3] = e5, [e2, e4] = e6.

g6,20
[e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5,

[e2, e3] = e5, [e2, e5] = e6, [e3, e4] = −e6.

Table 4.18: 7-dimensional non-decomposable nilpotent Lie algebras (I)

g Lie brackets

g7,0.1
[e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e1, e5] = e6, [e1, e6] = e7,

[e2, e3] = e6, [e2, e4] = e7, [e2, e5] = e7, [e3, e4] = −e7.

g7,0.2
[e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e1, e5] = e6,

[e1, e6] = e7, [e2, e3] = e5 + e7, [e2, e4] = e6, [e2, e5] = e7.

g7,0.3
[e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e1, e5] = e6,

[e1, e6] = e7, [e2, e3] = e6 + e7, [e2, e4] = e7.

g7,0.4(λ)
[e1, e2] = e3, [e1, e3] = e4, [e1, e4] = λe7 + e6, [e1, e5] = e7,

[e1, e6] = e7, [e2, e3] = e5, [e2, e4] = e7, [e2, e5] = e6, [e3, e5] = e7.

g7,0.5
[e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e6 + e7,

[e1, e6] = e7, [e2, e3] = e5, [e2, e5] = e6, [e3, e5] = e7.

g7,0.6
[e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e7, [e1, e5] = e6, [e1, e6] = e7,

[e2, e3] = e5, [e2, e4] = e6, [e2, e5] = e7, [e3, e4] = e7.

g7,0.7
[e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e7, [e1, e5] = e7, [e1, e6] = e7,

[e2, e3] = e5, [e2, e4] = e7, [e2, e5] = e6, [e3, e5] = e7.

g7,0.8
[e1, e2] = e4, [e1, e3] = e7, [e1, e4] = e5, [e1, e5] = e6,

[e2, e3] = e6, [e2, e4] = e6, [e2, e6] = e7, [e4, e5] = −e7.

g7,1.01(i)
[e1, e2] = e4, [e1, e4] = e5, [e1, e5] = e6, [e1, e6] = e7,

[e2, e3] = e5 + e7, [e3, e4] = −e6, [e3, e5] = −e7.

g7,1.01(ii)
[e1, e2] = e4, [e1, e4] = e5, [e1, e5] = e6,

[e1, e6] = e7, [e2, e3] = e6 + e7, [e3, e4] = −e7.

g7,1.02
[e1, e2] = e3, [e1, e3] = e4, [e1, e5] = e6, [e2, e3] = e5,

[e2, e4] = e6, [e2, e5] = e7, [e2, e6] = e7, [e3, e5] = −e7.
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Table 4.19: 7-dimensional non-decomposable nilpotent Lie algebras (II)

g Lie brackets

g7,1.03
[e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e1, e6] = e7,

[e2, e3] = e6, [e2, e4] = e7, [e2, e5] = e7, [e3, e4] = −e7.

g7,1.1(iλ)

[e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5,

[e1, e5] = e6, [e1, e6] = e7, [e2, e3] = e5,

[e2, e4] = e6, [e2, e5] = λe7, [e3, e4] = e7(−λ+ 1).

g7,1.1(ii)
[e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e1, e5] = e6,

[e1, e6] = e7, [e2, e5] = e7, [e3, e4] = −e7.

g7,1.1(iii)
[e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e1, e5] = e6,

[e2, e3] = e5, [e2, e4] = e6, [e2, e5] = −e7, [e3, e4] = e7.

g7,1.1(iv)
[e1, e2] = e3, [e1, e3] = e4, [e1, e5] = e6, [e1, e6] = e7,

[e2, e3] = e5, [e2, e4] = e6, [e2, e5] = e7, [e3, e4] = e7.

g7,1.1(v)
[e1, e3] = e4, [e1, e4] = e5, [e1, e5] = e6, [e1, e6] = e7,

[e2, e3] = e5, [e2, e4] = e6, [e2, e5] = e7, [e3, e4] = −e7.

g7,1.1(vi)
[e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e1, e6] = e7,

[e2, e3] = e5, [e2, e5] = e7, [e3, e4] = −e7.

g7,1.2(iλ)
[e1, e2] = e4, [e1, e3] = e6, [e1, e4] = e5, [e1, e5] = e7,

[e2, e3] = λe5, [e2, e4] = e6, [e2, e6] = e7, [e3, e4] = e7(−λ+ 1).

g7,1.2(ii)
[e1, e2] = e4, [e1, e4] = e5, [e1, e5] = e7, [e1, e6] = e7

[e2, e3] = e6, [e2, e4] = e6, [e2, e5] = e7, [e3, e4] = −e7.

g7,1.2(iii)
[e1, e2] = e4, [e1, e3] = e6, [e1, e4] = e5, [e1, e5] = e7,

[e2, e3] = e5, [e2, e4] = e6, [e3, e4] = −e7.

g7,1.2(iv)
[e1, e2] = e4, [e1, e4] = e6, [e1, e5] = −e7, [e1, e6] = e7,

[e2, e3] = e5, [e2, e5] = e7, [e3, e4] = e7.

g7,1.3(iλ)
[e1, e2] = e4, [e1, e3] = e5, [e1, e4] = e6, [e1, e6] = e7,

[e2, e3] = e6, [e2, e4] = λe7, [e2, e5] = e7, [e3, e5] = e7.

g7,1.3(ii)
[e1, e2] = e4, [e1, e3] = e5, [e1, e4] = e6, [e1, e6] = e7,

[e2, e3] = e6, [e2, e4] = e7, [e2, e5] =
e7
2
, [e3, e4] =

−e7
2

.

g7,1.3(iii)
[e1, e2] = e4, [e1, e3] = e5, [e1, e4] = e6,

[e1, e6] = e7, [e2, e4] = e7, [e3, e5] = e7.

g7,1.3(iv)
[e1, e2] = e4, [e1, e3] = e5, [e1, e4] = e6,

[e2, e3] = e6, [e2, e4] = e7, [e3, e5] = e7.

g7,1.3(v)
[e1, e2] = e4, [e1, e4] = e6, [e1, e6] = e7, [e2, e3] = e6

[e2, e4] = e7, [e3, e4] = −e7, [e3, e5] = −e7.

g7,1.4
[e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e1, e5] = e6

[e1, e6] = e7, [e2, e3] = e6, [e2, e4] = e7.

g7,1.5
[e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e1, e5] = e6

[e2, e3] = e6, [e2, e5] = −e7, [e3, e4] = e7.

g7,1.6
[e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5,

[e1, e5] = e6, [e1, e6] = e7, [e2, e3] = e7.

g7,1.7
[e1, e2] = e4, [e1, e3] = e5, [e1, e4] = e6,

[e1, e5] = e7, [e2, e3] = e6, [e2, e4] = e7.

g7,1.8
[e1, e2] = e4, [e1, e4] = e6, [e1, e6] = e7,

[e2, e3] = e5, [e2, e4] = e7, [e3, e5] = e7.

g7,1.9
[e1, e2] = e4, [e1, e3] = e6, [e1, e4] = e5,

[e1, e5] = e7, [e2, e3] = e7, [e2, e4] = e6.

g7,1.10
[e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e6,

[e1, e6] = e7, [e2, e3] = e5, [e2, e5] = e7.

g7,1.11
[e1, e2] = e4, [e1, e4] = e5, [e1, e5] = e6, [e1, e6] = e7

[e2, e3] = e6, [e2, e4] = e6, [e2, e5] = e7, [e3, e4] = −e7.

g7,1.12
[e1, e2] = e4, [e1, e4] = e5, [e1, e5] = e6, [e1, e6] = e7

[e2, e3] = e7, [e2, e4] = e6, [e2, e5] = e7.

g7,1.13
[e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e6, [e1, e5] = e7

[e1, e6] = e7, [e2, e3] = e5, [e2, e4] = e7.

g7,1.14
[e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e6, [e2, e3] = e5

[e2, e5] = −e7, [e2, e6] = −e7, [e3, e4] = e7.
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Table 4.20: 7-dimensional non-decomposable nilpotent Lie algebras (III)

g Lie brackets

g7,1.15
[e1, e2] = e4, [e1, e4] = e5, [e1, e5] = e6,

[e1, e6] = e7, [e2, e3] = e7, [e2, e4] = e7.

g7,1.16
[e1, e2] = e3, [e1, e3] = e5, [e1, e4] = e6,

[e1, e5] = e7, [e1, e6] = e7, [e2, e3] = e7.

g7,1.17
[e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e6, [e1, e6] = e7, [e2, e3] = e5,

[e2, e5] = e6, [e2, e6] = e7, [e3, e4] = −e7, [e3, e5] = e7.

g7,1.18
[e1, e2] = e4, [e1, e4] = e5, [e1, e5] = e7,

[e2, e3] = e6 + e7, [e2, e4] = e6.

g7,1.19
[e1, e2] = e4, [e1, e3] = e5, [e1, e4] = e7,

[e1, e5] = e6, [e2, e4] = e6, [e3, e5] = e7.

g7,1.20
[e1, e2] = e3, [e1, e5] = e6, [e1, e6] = e7, [e2, e3] = e4,

[e2, e4] = e6, [e2, e5] = e7, [e3, e4] = e7.

g7,1.21
[e1, e2] = e4, [e1, e4] = e5, [e1, e5] = e6, [e2, e3] = e6,

[e2, e4] = e6, [e2, e6] = e7, [e4, e5] = −e7.

g7,2.1(iλ)
[e1, e2] = e4, [e1, e3] = e5, [e1, e4] = e6, [e1, e6] = e7,

[e2, e3] = e6, [e2, e5] = λe7, [e3, e4] = e7(λ− 1).

g7,2.1(ii)
[e1, e2] = e4, [e1, e3] = e5, [e1, e4] = e6,

[e1, e6] = e7, [e2, e5] = e7, [e3, e4] = e7.

g7,2.1(iii)
[e1, e2] = e4, [e1, e4] = e6, [e1, e6] = e7,

[e2, e3] = e6, [e2, e5] = e7, [e3, e4] = −e7.

g7,2.1(iv)
[e1, e3] = e5, [e1, e4] = e6, [e1, e6] = e7,

[e2, e3] = e6, [e2, e5] = e7, [e3, e4] = e7.

g7,2.1(v)
[e1, e2] = e4, [e1, e3] = e5, [e1, e4] = e6,

[e2, e3] = e6, [e2, e5] = e7, [e3, e4] = e7.

g7,2.2
[e1, e2] = e5, [e1, e3] = e6, [e1, e4] = 2e7, [e2, e3] = e4,

[e2, e6] = e7, [e3, e5] = −e7, [e3, e6] = e7.

g7,2.3 [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5, [e1, e5] = e6, [e1, e6] = e7.

g7,2.4
[e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e5,

[e1, e5] = e6, [e2, e5] = −e7, [e3, e4] = e7.

g7,2.5
[e1, e2] = e3, [e1, e3] = e4, [e1, e5] = e6, [e1, e6] = e7,

[e2, e3] = e5, [e2, e4] = e6, [e3, e4] = e7.

g7,2.6
[e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e6,

[e2, e3] = e5, [e2, e6] = e7, [e3, e4] = −e7.

g7,2.7 [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e6, [e1, e6] = e7, [e2, e3] = e5.

g7,2.8 [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e6, [e1, e5] = e7, [e2, e3] = e5, [e2, e4] = e7.

g7,2.9 [e1, e2] = e3, [e1, e3] = e4, [e1, e4] = e6, [e2, e3] = e5, [e2, e5] = e7.

g7,2.10 [e1, e2] = e4, [e1, e3] = e7, [e1, e4] = e5, [e1, e5] = e6, [e2, e6] = e7, [e4, e5] = −e7.

g7,2.11 [e1, e2] = e4, [e1, e4] = e5, [e1, e5] = e7, [e1, e6] = e7, [e2, e3] = e6, [e2, e4] = e6.

g7,2.12 [e1, e2] = e4, [e1, e3] = e5, [e1, e4] = e6, [e2, e4] = e7, [e3, e5] = e7.

g7,2.13 [e1, e2] = e4, [e1, e4] = e5, [e1, e5] = e6, [e2, e3] = e6, [e2, e6] = e7, [e4, e5] = −e7.

g7,2.14
[e1, e2] = e4, [e1, e4] = e5, [e1, e5] = e6, [e1, e6] = e7,

[e2, e3] = e5, [e3, e4] = −e6, [e3, e5] = −e7.

g7,2.15
[e1, e2] = e4, [e1, e4] = e5, [e1, e5] = e6,

[e1, e6] = e7, [e2, e3] = e6, [e3, e4] = −e7.

g7,2.16 [e1, e2] = e4, [e1, e4] = e5, [e1, e5] = e6, [e1, e6] = e7, [e2, e3] = e7.

g7,2.17 [e1, e2] = e4, [e1, e4] = e5, [e1, e5] = e7, [e2, e3] = e5, [e2, e4] = e6, [e3, e4] = −e7.

g7,2.18 [e1, e2] = e4, [e1, e4] = e5, [e1, e5] = e7, [e2, e3] = e7, [e2, e4] = e6.

g7,2.19 [e1, e2] = e4, [e1, e3] = e6, [e1, e4] = e5, [e1, e5] = e7, [e2, e4] = e6.

g7,2.20 [e1, e2] = e4, [e1, e3] = e5, [e1, e5] = e6, [e1, e6] = e7, [e3, e5] = e7.

g7,2.21 [e1, e2] = e4, [e1, e3] = e5, [e1, e4] = e6, [e1, e6] = e7, [e2, e3] = e7.

g7,2.22 [e1, e3] = e4, [e1, e4] = e6, [e1, e6] = e7, [e2, e3] = e5, [e3, e4] = e7.
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Table 4.21: 7-dimensional non-decomposable nilpotent Lie algebras (IV)

g Lie brackets

g7,2.23 [e1, e4] = e6, [e1, e6] = e7, [e2, e3] = e5, [e2, e5] = e7, [e3, e4] = e7.

g7,2.24 [e1, e2] = e4, [e1, e4] = e6, [e1, e5] = −e7, [e1, e6] = e7, [e2, e3] = e5, [e3, e4] = e7.

g7,2.25 [e1, e2] = e5, [e1, e5] = e6, [e1, e6] = e7, [e2, e3] = e6, [e3, e4] = −e7, [e3, e5] = −e7.

g7,2.26 [e1, e2] = e4, [e1, e3] = e5, [e1, e5] = e6, [e2, e5] = e7, [e3, e4] = e7, [e3, e5] = e6.

g7,2.27 [e1, e2] = e5, [e1, e3] = e7, [e1, e5] = e6, [e2, e4] = e7, [e2, e5] = e7.

g7,2.28 [e1, e2] = e5, [e1, e3] = e6, [e1, e6] = e7, [e2, e5] = e7, [e3, e4] = e7.

g7,2.29 [e1, e2] = e5, [e1, e5] = e6, [e2, e3] = e6, [e2, e5] = e7, [e3, e4] = e7.

g7,2.30 [e1, e2] = e5, [e1, e5] = e6, [e1, e6] = e7, [e2, e5] = e7, [e3, e4] = e7.

g7,2.31 [e1, e2] = e4, [e1, e4] = e6, [e1, e6] = e7, [e2, e3] = e5, [e2, e5] = e7.

g7,2.32 [e1, e2] = e4, [e1, e3] = e5, [e1, e4] = e6, [e1, e6] = e7, [e3, e5] = e7.

g7,2.33 [e1, e2] = e4, [e1, e4] = e6, [e1, e6] = e7, [e2, e3] = e5, [e3, e5] = e7.

g7,2.34 [e1, e2] = e4, [e1, e3] = e5, [e1, e4] = e7, [e2, e4] = e6, [e3, e5] = e7.

g7,2.35 [e1, e2] = e4, [e1, e3] = e5, [e1, e5] = e6, [e2, e4] = e6, [e2, e5] = e7, [e3, e4] = e7.

g7,2.36 [e1, e3] = e5, [e1, e4] = e7, [e2, e3] = e6, [e2, e4] = −e5, [e3, e6] = −e7.

g7,2.37
[e1, e2] = e4, [e1, e3] = e5, [e1, e4] = e5, [e1, e6] = e7,

[e2, e4] = e6, [e2, e5] = e7, [e3, e4] = e7.

g7,2.38 [e1, e2] = e3, [e1, e3] = e6, [e1, e5] = e7, [e2, e3] = e7, [e2, e4] = e6.

g7,2.39 [e1, e2] = e4, [e1, e3] = e5, [e1, e4] = e6, [e1, e5] = e7, [e2, e3] = e6.

g7,2.40 [e1, e2] = e3, [e1, e3] = e5, [e1, e4] = e7, [e2, e3] = e6, [e2, e4] = e5.

g7,2.41 [e1, e2] = e3, [e1, e3] = e5, [e1, e4] = e6, [e1, e6] = e7, [e2, e3] = e6, [e2, e5] = e7.

g7,2.42 [e1, e2] = e4, [e1, e3] = e5, [e1, e5] = e6, [e2, e3] = e6, [e2, e4] = e7.

g7,2.43 [e1, e2] = e4, [e1, e3] = e5, [e1, e4] = e7, [e1, e5] = e6, [e3, e5] = e7.

g7,2.44 [e1, e2] = e4, [e1, e3] = e5, [e1, e5] = e7, [e2, e3] = e6, [e2, e4] = e7.

g7,2.45 [e1, e2] = e5, [e1, e4] = e7, [e1, e5] = e6, [e2, e3] = e7, [e2, e4] = e6.

g7,3.1(iλ)
[e1, e2] = e4, [e1, e3] = e5, [e1, e6] = e7,

[e2, e3] = e6, [e2, e5] = λe7, [e3, e4] = e7(λ− 1).

g7,3.1(iii) [e1, e2] = e4, [e1, e3] = e5, [e1, e6] = e7, [e2, e5] = e7, [e3, e4] = e7.

g7,3.2 [e1, e2] = e4, [e1, e3] = e5, [e1, e4] = e6, [e1, e6] = e7.

g7,3.3 [e1, e2] = e4, [e1, e4] = e6, [e1, e6] = e7, [e2, e3] = e5.

g7,3.4 [e1, e2] = e4, [e1, e3] = e5, [e2, e4] = e6, [e3, e5] = e7

g7,3.5 [e1, e2] = e4, [e1, e3] = e5, [e2, e4] = e6, [e2, e5] = e7, [e3, e4] = e7.

g7,3.6 [e1, e2] = e4, [e1, e3] = e5, [e1, e5] = e7, [e2, e3] = e6.

g7,3.7 [e1, e2] = e5, [e1, e5] = e6, [e2, e4] = e6, [e3, e4] = −e7.

g7,3.8 [e1, e2] = e5, [e1, e3] = e6, [e1, e5] = e7, [e2, e4] = e7.

g7,3.9 [e1, e2] = e5, [e1, e5] = −e7, [e2, e3] = e6, [e2, e4] = e7.

g7,3.10 [e1, e2] = e5, [e1, e3] = e6, [e2, e4] = e6, [e2, e6] = e7, [e3, e5] = e7.

g7,3.11 [e1, e2] = e5, [e1, e3] = e6, [e1, e5] = e7, [e2, e4] = e6.

g7,3.12 [e1, e2] = e5, [e1, e3] = e6, [e2, e4] = e6, [e3, e4] = e7.

g7,3.13 [e1, e2] = e5, [e1, e5] = e6, [e2, e5] = e7, [e3, e4] = e7.

g7,3.14 [e1, e2] = e5, [e1, e3] = e6, [e1, e6] = e7, [e2, e4] = e7.

g7,3.15 [e1, e2] = e5, [e1, e3] = e6, [e2, e5] = e7, [e3, e4] = e7.

g7,3.16 [e1, e2] = e5, [e1, e5] = e7, [e3, e4] = e6, [e3, e6] = e7.

g7,3.17 [e1, e2] = e5, [e1, e5] = e6, [e1, e6] = e7, [e3, e4] = e7.

g7,3.18 [e1, e2] = e6, [e1, e6] = e7, [e2, e5] = e7, [e3, e4] = e7.

g7,3.19 [e1, e2] = e6, [e1, e3] = e7, [e3, e4] = e6, [e4, e5] = e7.

g7,3.20 [e1, e2] = e4, [e1, e3] = e5, [e1, e4] = e6, [e1, e5] = e7.

g7,3.21 [e1, e2] = e4, [e1, e3] = e5, [e1, e4] = e6, [e3, e5] = e7.

g7,3.22 [e1, e2] = e4, [e1, e3] = e5, [e1, e5] = e7, [e2, e5] = e6, [e3, e4] = e6.

g7,3.23 [e1, e2] = e3, [e1, e3] = e5, [e1, e4] = e7, [e2, e3] = e6.

g7,3.24 [e1, e2] = e5, [e2, e3] = e6, [e2, e4] = e7, [e3, e4] = e5.

g7,4.1 [e1, e2] = e5, [e1, e3] = e6, [e3, e4] = e7.

g7,4.2 [e1, e2] = e5, [e1, e3] = e6, [e1, e4] = e7.

g7,4.3 [e1, e2] = e6, [e3, e5] = e6, [e4, e5] = e7.

g7,4.4 [e1, e4] = e7, [e2, e5] = e7, [e3, e6] = e7.
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4.3 Matrix representation of �liform Lie algebras

In this section we obtain a minimal faithful unitriangular matrix representation
for each model �liform Lie algebra. Additionally, we also introduce a method for
obtaining such representations for non-model �liform Lie algebras, debugging and
improving the one given in [7]. In order to compute those representations, we have
used the Lie algebras gn of n× n strictly upper-triangular matrices. Therefore, we
have taken advantage of the previous calculations done in Chapter 3 to compare the
abelian subalgebras and ideals in Lie algebras gn and the unique abelian ideal of
maximal dimension for each �liform Lie algebra, as it was proved in Proposition 3.2.
This can be seen in Example 4.3 and in Tables 4.22-4.24 where we have computed
the minimal faithful unitriangular matrix representations of �liform Lie algebras
with dimension less than 9.

Given a Lie algebra g, a representation of g in Cn is a homomorphism of Lie alge-
bras ϕ : g → gl(Cn) = gl(C, n). The natural integer n is called the dimension of this
representation. Ado's theorem states that every �nite-dimensional Lie algebra over
a �eld of characteristic zero (as in the case of C) has a linear injective representation
on a �nite-dimensional vector space, that is, a faithful representation.

Usually, representations are de�ned by using an arbitrary n-dimensional vec-
tor space V (like in [43]) and homomorphisms of Lie algebras from g to gl(V ) of
endomorphisms of V ; that is, by using g-modules.

With respect to minimal representations of Lie algebras, Burde [15] introduced
the following invariant value for an arbitrary Lie algebra g

µ(g) = min{dim(M) | M is a faithful g-module}.

The invariant µ(g) plays an important role in the theory of a�ne �at manifolds
and a�ne crystallographic groups, see [17]. Moreover, there exist several relations
between this invariant and α invariant of Lie algebras. For example, if g is a Lie
algebra with dim(D(g)) = 1, then µ(g) > dim(g)−α(g)+ 1. In this section, matrix
representations of �liform Lie algebras are studied. Moreover, we are interested in
minimal matrix representations of these algebras with a particular restriction: the
representations have to be contained in gn. In this way, given a �liform Lie algebra
g, we want to compute the minimal value n such that gn contains a subalgebra
isomorphic to g. This value is also an invariant of g and its expression is given by

µ̄(g) = min{n ∈ N | ∃ subalgebra of gn isomorphic to g}.

Let us note that the invariants µ(g) and µ̄(g) can be di�erent from each other.
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Proposition 4.7. Let g be an n-dimensional �liform Lie algebra. Then µ̄(g)≥ n.

Proof. For a given n-dimensional �liform Lie algebra g, we have to prove that it is
not possible to �nd a subalgebra of gn−1 isomorphic to g.

First, we write the vectors of an adapted basis {ei}ni=1 of g as linear combinations
of the vectors in the basis Bn−1 of gn−1

ek =
∑

1≤i<j≤n−1

λk
i,jXi,j , for 1 ≤ k ≤ n.

We will prove that all the coe�cients λ2
i,j of e2 ∈ Z(g) have to be zero.

From the equation [e1, eh] = eh−1, for 3 ≤ h ≤ n, the following relations are
obtained

λh−1
β,β+1 = 0,

λh−1
β,αβ

=
∑

β<p<αβ
(λ1

β,pλ
h
p,αβ

− λ1
p,αβ

λh
β,p),

}
for

{
1 ≤ β ≤ n− 2;

αβ ≥ β + 2.
(4.1)

From the equality [e1, e3] = e2, we can conclude that λ2
β,β+1 = 0, for 1 ≤ β ≤

n − 2. Now, we have to prove that λ2
l,αl

= 0, for 1 ≤ l ≤ n − 3. To do so, we are
going to prove that λ3

p,αβ
= λ3

β,p = 0 in each case.

From the equality [e1, ek] = ek−1, for 3 ≤ k ≤ n−1, we can a�rm that λk−1
β,β+1 = 0,

for 1 ≤ β ≤ n− 2. This implies that λ3
p,q = 0, when q − p < n− 4.

If we consider the bracket [e1, en] = en−1, we conclude that λn−1
β,β+1 = 0, and,

therefore, λ3
p,q = 0, where q − p = n− 3. Consequently, all the coe�cients of e2 are

null and this is a contradiction.

4.3.1 Model �liform Lie algebras

The law of a �xed n-dimensional model �liform Lie algebra g with an adapted basis
{ei}ni=1 is the following

[e1, eh] = eh−1, for 3 ≤ h ≤ n. (4.2)

Now, we will construct the n-dimensional subalgebra f′n of gn and its law is
exactly the same of the model �liform Lie algebra g. Just de�ne a basis {ei}ni=1

of this subalgebra as linear combinations of the vectors in the basis Bn of the Lie
algebra gn

e1 =

n−2∑
i=1

Xi,i+1, e2 = X1,n, e3 = X2,n, . . . , en = Xn−1,n (4.3)
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Consequently, we have de�ned the subalgebra f′n whose elements have the follo-
wing form

f ′
n(xk) =



0 x1 0 · · · 0 x2

0 0 x1 · · · 0 x3
...

...
...

. . .
...

...

0 0 0 · · · x1 xn−1

0 0 0 · · · 0 xn

0 0 0 · · · 0 0


(xk ∈ C, for k = 1, . . . , n).

With respect to this faithful matrix representation, the adapted basis {ei}ni=1

of f′n is given as follows

eh = f ′
n(xk), with xk =

{
1, if k = h;

0, if k ̸= h.

According to the reasoning just given above and Proposition 2, we can a�rm
the following result

Proposition 4.8. Every n-dimensional model �liform Lie algebra has an n-dimen-
sional minimal faithful unitriangular matrix representation. Moreover, a represen-
tative is given by the Lie algebra f′n given in (4.3). �

4.3.2 Non-model �liform Lie algebras

If the �liform Lie algebra g is non-model, then the invariants z1 and z2 exist. Hence,
there exist some additional non-zero brackets to [e1, eh] = eh−1, for 3 ≤ h ≤ n. Con-
sequently, non-model �liform Lie algebras cannot be represented by Lie algebras f′n.

Now, we show an algorithmic method to compute minimal faithful unitriangular
matrix representations for non-model �liform Lie algebras. These representations
are minimal in the following sense: �nding a faithful matrix representation of a given
Lie algebra g in gn, but no representations of g can be obtained in gn−1.

To do so, we give a step-by-step explanation of the method used to determine
these minimal representations for a given �liform Lie algebra g of dimension n > 4.

Let us note that this algorithmic method debugs and improves the one introduced
previously in [7] to be applied for any �liform Lie algebra, not necessarily model.
When imposing the condition of being non-model, remarkable improvements have
been achieved in its implementation with respect to computing time and memory
usage.
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1. According to Proposition 1.1, we have to compute the �rst natural integer l
such that the lower central series of gl is compatible with the one associated
with g. By bearing in mind Proposition 4.7, we can start considering l = n, for
n-dimensional �liform Lie algebras. Hence, we have ruled out the Lie algebra
gl with l < n.

2. Now, we search a subalgebra of gl isomorphic to g, where l ≥ n and l is as
small as posible. To do so, an adapted basis {ei}ni=1 of g is considered and its
vectors are expressed as linear combinations of the basis Bl

eh =
∑

1≤i<j≤l

λh
i,jXi,j , for 1 ≤ h ≤ n.

3. The next step is to impose the brackets given in (4.2), obtaining again the
equations shown in (4.1), but with respect to the algebra gl considered by the
method.

4. After solving the system of equations resulting from the previous step, we solve
a new system obtained by imposing the rest of the brackets in the law of g.
In particular, we will compare the abelian subalgebras of maximal dimension
of g and gl.

Obviously, the solutions of this system depend on the particular Lie algebra
studied in each moment. Hence, we have generalized some cases by using invariants
z1 and z2 in Section 4.3.4. The solutions of the system given in Step 4 have been
computed by using the command solve of the symbolic computation package Maple
12. This command works e�ciently with polynomial equations, receives as inputs
the list of equations and the list of variables, and returns as output the algebraic
expression of the solutions.

After checking the existence of representations in the Lie algebra gl, we search
a natural representative in the sense of considering the following conditions: e2 ∈
⟨X1,l⟩ and there exist the greatest possible number of null-parameters. The �rst
condition is due to the fact that Z(gl) = ⟨X1,l⟩ and is also in concordance with
Proposition 2.

Another point to consider is the number of solutions for the system. This number
can be studied by de�ning the set F of polynomial expressions and by using the
command is finite, which determines if the number of solutions is or not �nite
for the system de�ned by the input set F . Likewise, the Noether normalization
lemma is also very useful to describe the elements in an algebraic variety.
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Furthermore, in order to compute a particular solution of the previous system, we
have searched one such that the number of null coe�cients is as greater as possible.
In this way, the coe�cients could be assumed equal to zero when they do not appear
in the relations obtained. This will be a natural representative of the Lie algebra g.

4.3.3 Examples of application

Next, we give two examples of computing minimal faithful matrix representations
for �liform Lie algebras. The �rst is referred to a model �liform Lie algebra and,
afterwards, we apply our algorithmic method (given in the previous section) to
compute this type of representation for a non-model �liform Lie algebra.

Example 4.1. Consider model �liform Lie algebra f14 generated by {ei}4i=1 with law
[e1, e3] = e2, [e1, e4] = e3.

We can compute its minimal faithful unitriangular matrix representation as was
shown in Subsection 4.3.1 by using the Lie algebra f′4. However, although we can
obtain directly a representative of such representation, we might be interested in
determining how many representations the algebra f14 has: a �nite or in�nite amount.
To do so, it is necessary to apply the algorithm given for non-model �liform Lie
algebras in Subsection 4.3.2, but directly over its dimension, 4, and only using
Steps 3 and 4. In this way, we determine if there is a �nite or in�nite number of
solution of the system obtained. First, we de�ne the vectors

e1 = λ1
1,2X1,2 + λ1

1,3X1,3 + . . .+ λ1
3,4X3,4,

e2 = λ2
1,2X1,2 + λ2

1,3X1,3 + . . .+ λ2
3,4X3,4,

e3 = λ3
1,2X1,2 + λ3

1,3X1,3 + . . .+ λ3
3,4X3,4,

e4 = λ4
1,2X1,2 + λ4

1,3X1,3 + . . .+ λ4
3,4X3,4.

Now, we introduce the following commands in MAPLE, taking into account that
λk
i,j is denoted by cijk
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> ec1:=c121*c233-c231*c123-c132: [e1, e3] = e2
> ec2:=c121*c243+c131*c343-c241*c123-c341*c133-c142: [e1, e3] = e2
> ec3:=c231*c343-c341*c233-c242: [e1, e3] = e2
> ec4:=c122: [e1, e3] = e2
> ec5:=c232: [e1, e3] = e2
> ec6:=c342: [e1, e3] = e2
> ec7:=c121*c234-c231*c124-c133: [e1, e4] = e3
> ec8:=c121*c244+c131*c344-c241*c124-c341*c134-c143: [e1, e4] = e3
> ec9:=c231*c344-c341*c234-c243: [e1, e4] = e3
> ec10:=c123: [e1, e4] = e3
> ec11:=c233: [e1, e4] = e3
> ec12:=c343: [e1, e4] = e3
> ec13:=c121*c232-c231*c122: [e1, e2] = 0

> ec14:=c121*c242+c131*c342-c241*c122-c341*c132: [e1, e2] = 0

> ec15:=c231*c342-c341*c232: [e1, e2] = 0

> ec16:=c122*c233-c232*c123: [e2, e3] = 0

> ec17:=c122*c243+c132*c343-c242*c123-c342*c133: [e2, e3] = 0

> ec18:=c232*c343-c342*c233: [e2, e3] = 0

> ec19:=c122*c234-c232*c124: [e2, e4] = 0

> ec20:=c122*c244+c132*c344-c242*c124-c342*c134: [e2, e4] = 0

> ec21:=c232*c344-c342*c234: [e2, e4] = 0

> ec22:=c123*c234-c233*c124: [e3, e4] = 0

> ec23:=c123*c244+c133*c344-c243*c124-c343*c134: [e3, e4] = 0

> ec24:=c233*c344-c343*c234: [e3, e4] = 0

Note that the previous commands correspond to the six bracket products giving
the law of the Lie algebra f14 (including the non-zero ones), showing the correspon-
ding bracket beside the commands. All these previous polynomial expressions form
the system of equations to be solved to obtain the coe�cients λk

i,j determining the
subalgebra in g4 isomorphic to f14; i.e. the minimal faithful representation. The
system is the following

> F:=[ec1,ec2,ec3,ec4,ec5,ec6,ec7,ec8,ec9,ec10,ec11,ec12,

ec13,ec14,ec15,ec16,ec17,ec18,ec19,ec20,ec21,ec22,ec23,ec24];

>is_finite(F);

false

Consequently, there exist in�nite solutions of this system and, hence, of possible
minimal faithful representations. However, after applying Noether's normalization
lemma and intersecting the previous set with the algebraic variety de�ned by the
equations λi

1,2 = 0, for i = 1, 2, 3, 4, we obtain a �nite number of solutions. E�ec-
tively
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eq1:=c121: eq2:=c122: eq3:=c123: eq4:=c124:

H:=[ec1,ec2,ec3,ec4,ec5,ec6,ec7,ec8,ec9,ec10,ec11,ec12,ec13,

ec14,ec15,ec16,ec17,ec18,ec19,ec20,ec21,ec22,ec23,ec24,eq1,eq2,

eq3,eq4]:

> is_finite(H);

true

However, both the original system and the one after applying Noether's normali-
zation lemma do not impose the condition of �being linearly independent� necessary
so that {ei}4i=1 can be a basis of f14. Hence, we must also consider the condition
saved in eq corresponding to de�ne a matrix given by the coordinates of ei in the
ith row and then to impose the maximal rank for the matrix.

> with(LinearAlgebra):

> M:=Matrix([[c[1,2,1],c[1,3,1],c[1,4,1],c[2,3,1],c[2,4,1],

c[3,4,1]],[c[1,2,2],c[1,3,2],c[1,4,2],c[2,3,2],c[2,4,2],c[3,4,2]],

[c[1,2,3],c[1,3,3],c[1,4,3],c[2,3,3],c[2,4,3],c[3,4,3]],

[c[1,2,4],c[1,3,4],c[1,4,4],c[2,3,4],c[2,4,4],c[3,4,4]]]):

> eq:=Rank(M)=4:

Note that this reasoning can be done for every model �liform Lie algebra.

Example 4.2. Consider Lie algebra f25 generated by {ei}5i=1 and with non-zero
brackets: [e1, eh] = eh−1, for 3 ≤ h ≤ n; and [e4, e5] = e2.

The lower central series of g5 and f25 are compatible

C2(f25) = ⟨e2, e3, e4⟩ ⊆ C2(g5) = ⟨X1,3, X1,4, X1,5, X2,4, X2,5, X3,5⟩

C3(f25) = ⟨e2, e3⟩ ⊆ C3(g5) = ⟨X1,4, X1,5, X2,5⟩

C4(f25) = ⟨e2⟩ ⊆ C4(g5) = ⟨X1,5⟩

After applying Steps 2 and 3, the following basis vectors are obtained

e1 = λ1
1,2X1,2 + λ1

1,3X1,3 + . . .+ λ1
3,5X3,5 + λ1

4,5X4,5,

e2 = λ2
1,5X1,5, e3 = λ3

1,4X1,4 + λ3
1,5X1,5 + λ3

2,5X2,5,

e4 = λ4
1,3X1,3 + λ4

1,4X1,4 + λ4
1,5X1,5 + λ4

2,4X2,4 + λ4
2,5X2,5 + λ4

3,5X3,5,

e5 = λ5
1,2X1,2 + λ5

1,3X1,3 + . . .+ λ5
3,5X3,5 + λ5

4,5X4,5,
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restricted under the following constraints

λ4
3,5 = λ1

3,4λ
5
4,5 − λ1

4,5λ
5
3,4,

λ3
2,5 = λ1

2,3λ
1
3,4λ

5
4,5 − 2λ1

4,5λ
1
2,3λ

5
3,4 + λ1

4,5λ
1
3,4λ

5
2,3,

λ4
1,5 = λ1

1,2λ
5
2,5 + λ1

1,3λ
5
3,5 + λ1

1,4λ
5
4,5 − λ1

4,5λ
5
1,4 − λ1

3,5λ
5
1,3 − λ1

2,5λ
5
1,2,

λ3
1,4 = λ1

1,2λ
1
2,3λ

5
3,4 − 2λ1

1,2λ
1
3,4λ

5
2,3 + λ1

3,4λ
1
2,3λ

5
1,2,

λ2
1,5 = λ1

1,2λ
1
2,3λ

1
3,4λ

5
4,5 − 3λ1

4,5λ
1
1,2λ

1
2,3λ

5
3,4 + 3λ1

4,5λ
1
1,2λ

1
3,4λ

5
2,3 − λ1

4,5λ
1
3,4λ

1
2,3λ

5
1,2,

λ3
1,5 = λ1

1,2λ
1
2,3λ

5
3,5 + λ1

1,2λ
1
2,4λ

5
4,5 − 2λ1

4,5λ
1
1,2λ

5
2,4 − λ1

1,2λ
1
3,4λ

5
2,3 + λ1

1,3λ
1
3,4λ

5
4,5

−2λ1
1,3λ

1
4,5λ

5
3,4 + λ1

4,5λ
1
2,4λ

5
1,2 + λ1

4,5λ
1
3,4λ

5
1,3 − λ1

3,5λ
1
1,2λ

5
2,3 + λ1

3,5λ
1
2,3λ

5
1,2,

λ4
1,3 = λ1

1,2λ
5
2,3 − λ1

2,3λ
5
1,2,

λ4
1,4 = λ1

1,2λ
5
2,4 + λ1

1,3λ
5
3,4 − λ1

2,4λ
5
1,2 − λ1

3,4λ
5
1,3,

λ4
2,5 = λ1

2,3λ
5
3,5 + λ1

2,4λ
5
4,5 − λ1

4,5λ
5
2,4 − λ1

3,4λ
5
2,3, λ4

2,4 = λ1
2,3λ

5
3,4 − λ1

3,4λ
5
2,3.

Note that the previous system is of degree four, being well-known the existence
of e�cient methods in Algebraic Geometry to solve this type of systems. For a
�liform Lie algebra of higher dimension, the degree of the corresponding system is
always one unit less than the dimension of the algebra.

Now, by imposing the bracket [e4, e5] = e2, the following vectors are obtained

e1 = λ1
1,2X1,2 + λ1

1,3X1,3 + . . .+ λ1
3,5X3,5 + λ1

4,5X4,5,

e2 = λ2
1,5X1,5, e3 = λ3

1,4X1,4 + λ3
1,5X1,5 + λ3

2,5X2,5,

e4 = λ4
1,3X1,3 + λ4

1,4X1,4 + λ4
1,5X1,5 + λ4

2,5X2,5 + λ4
3,5X3,5,

e5 = λ5
1,2X1,2 + λ5

1,3X1,3 + . . .+ λ5
1,5X1,5 + λ5

2,4X2,4 + . . .+ λ5
4,5X4,5,

under these constraints

3λ1
4,5λ

4
1,4 = 3λ1

1,2λ
5
2,4λ

1
4,5 − λ5

1,3λ
5
3,5, 3λ1

4,5λ
3
1,4 = −2λ1

1,2λ
5
3,5λ

5
2,3,

3λ1
4,5λ

4
2,5 = 3λ1

4,5λ
1
2,3λ

5
3,5 − 3(λ1

4,5)
2λ5

2,4 − λ5
3,5λ

5
2,3, 3λ3

2,5 = λ5
3,5,

λ4
1,5 = λ1

1,2λ
5
2,5 + λ1

1,3λ
5
3,5 − λ1

4,5λ
5
1,4 − λ1

3,5λ
5
1,3,

3λ1
4,5λ

1
3,4 = λ5

3,5, λ1,34 = λ1
1,2λ

5
2,3, λ2

1,5 = λ5
3,5λ

1
1,2λ

5
2,3,

3λ1
4,5λ

4
2,4 = −λ5

3,5λ
5
2,3, 3λ1

4,5λ
3
1,5 = 3λ1

1,2λ
1
4,5λ

1
2,3λ

5
3,5−

6λ1
1,2λ

5
2,4(λ

1
4,5)

2 − λ5
3,5λ

1
1,2λ

5
2,3 + λ1

4,5λ
5
1,3λ

5
3,5 − 3λ1

3,5λ
1
1,2λ

5
2,3λ

1
4,5.

Next, we show a particular solution to obtain a representative for Lie algebra f25

e1 = X1,2 +X2,3 +X3,4, e2 = X1,5, e3 = X2,5,

e4 = X1,4 +X3,5, e5 = X2,4 +X4,5.
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Example 4.3. We consider the Lie algebra f46 generated by {ei}6i=1 and with non-zero

brackets: [e1, eh] = eh−1, for 3 ≤ h ≤ 6; and [e4, e5] = e2, [e4, e6] = e3, [e5, e6] = e4.

The lower central series of g6 and f46 are compatible

C2(f46) = ⟨e2, e3, e4, e5⟩ ⊆ C2(g6) = ⟨X1,3, X1,4, X1,5, X1,6, X2,4, X2,5, X2,6, X3,5, X3,6, X4,6⟩

C3(f46) = ⟨e2, e3, e4⟩ ⊆ C3(g6) = ⟨X1,4, X1,5, X1,6, X2,5, X2,6, X3,6⟩

C4(f46) = ⟨e2, e3⟩ ⊆ C4(g6) = ⟨X1,5, X1,6, X2,6⟩

C5(f46) = ⟨e2⟩ ⊆ C5(g6) = ⟨X1,6⟩

After that, we apply Steps 2 and 3, obtaining these vectors

e1 = λ1
1,2X1,2 + λ1

1,3X1,3 + λ1
1,4X1,4 + . . .+ λ1

4,5X4,5 + λ1
4,6X4,6 + λ1

5,6X5,6,

e2 = λ2
1,6X1,6, e3 = λ3

1,5X1,5 + λ3
1,6X1,6 + λ3

2,6X2,6,

e4 = λ4
1,4X1,4 + λ4

1,5X1,5 + λ4
1,6X1,6 + λ4

2,5X2,5 + λ4
2,6X2,6 + λ4

3,6X3,6,

e5 = λ5
1,3X1,3 + . . .+ λ5

1,6X1,6 + λ5
2,4X2,4 + . . .+ λ5

2,6X2,6 + λ5
3,5X3,5 + λ5

3,6X3,6 + λ5
4,6X4,6,

e6 = λ6
1,2X1,2 + λ6

1,3X1,3 + λ6
1,4X1,4 + . . .+ λ6

4,5X4,5 + λ6
4,6X4,6 + λ6

5,6X5,6.

Now, we impose the brackets [e4, e5] = e2, [e4, e6] = e3, [e5, e6] = e4 and the

fact that ⟨e2, e3, e4⟩ and ⟨X1,4, X1,5, X1,6, X2,4, X2,5, X2,6, X3,4, X3,5, X3,6⟩ are abelian

ideals of maximal dimension in f46 and g6, respectively. Under those conditions, we

can obtain the following representative

e1 = X1,2 +X2,3 +X3,4 +X4,5, e2 = X1,6, e3 = −1

2
X1,5 +X2,6,

e4 =
1

2
X1,4 +

1

3
X1,5 +X3,6, e5 = −1

2
X1,3 +

1

3
X2,5 +X4,6,

e6 = −1

2
X1,2 +

1

3
X1,3 −X2,3 +

1

3
X2,4 −X3,4 −

1

3
X3,5 −X4,5 +X5,6.

4.3.4 Filiform Lie algebras of dimension less than 9

It is well-known that µ(g) = dim(g) when g is a �liform Lie algebra of dimension less
than 10 (see [15]). Our main goal is to show explicit representatives for the minimal
faithful unitriangular matrix representation of �liform Lie algebras with dimension
less than 9 and the generalization for two families of n-dimensional �liform Lie
algebras where D(g) is abelian. In Tables 4.22�4.24, we write those representatives
by using the classi�cation given in [13]. Let us note that, for these algebras, we
have only written down the non-zero brackets not given by �liformity; i.e. we are
assuming implicitly Equation (4.2). In this way, we can state the following results
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Proposition 4.9. If g is a �liform Lie algebra of dimension n < 9, then µ̄(g) = n

(i.e. the minimal faithful matrix representation of g is a subalgebra of gn). Moreover,
such representations can be obtained with a natural representative.

Proposition 4.10. Let f be an n-dimensional �liform Lie algebra verifying z1 =

z2 = n − 1. Then, µ̄(f) = n and a natural representative of f is determined by the

following vectors

e1 =
n−2∑
i=1

Xi,i+1; ek = Xk−1,n, ∀ 2 ≤ k ≤ n− 2;

en−1 = X1,n−1 +Xn−2,n; en = X2,n−1 +Xn−1,n.

Proof. It su�ces to apply our algorithmic procedure taking into consideration that
non-zero brackets for the case z1 = z2 = n− 1 are the following

[e1, eh] = eh−1, ∀ 3 ≤ h ≤ n; [en−1, en] = e2. �

Proposition 4.11. Let f be an n-dimensional �liform Lie algebra verifying z1 =

n−2 and z2 = n−1. Then, µ̄(f) = n and a natural representative of f is determined

by the following vectors

e1 =
n−2∑
i=1

Xi,i+1; ek = Xk−1,n, ∀ 2 ≤ k ≤ n− 2; en−2 = X1,n−1 +Xn−3,n;

en−1 = X2,n−1 +Xn−2,n; en = X3,n−1 +Xn−1,n.

Proof. Analogous to the previous proof, but with the following non-zero brackets

[e1, eh] = eh−1, ∀ 3 ≤ h ≤ n; [en−2, en] = e2; [en−1, en] = e3. �
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Table 4.22: Minimal faithful matrix representations for dimension ≤ 7

Law Representation

f13 e1 = X1,2, e2 = X1,3, e3 = X2,3.

f14 e1 = X1,2 +X2,3, e2 = X1,4, e3 = X2,4, e4 = X3,4.

f15
e1 = X1,2 +X2,3 +X3,4, e2 = X1,5,

e3 = X2,5, e4 = X3,5, e5 = X4,5.

f25 [e4, e5] = e2.
e1 = X1,2 +X2,3 +X3,4, e2 = X1,5, e3 = X2,5,

e4 = X1,4 +X3,5, e5 = X2,4 +X4,5.

f16
e1 = X1,2 +X2,3 +X3,4 +X4,5, e2 = X1,6, e3 = X2,6,

e4 = X3,6, e5 = X4,6, e6 = X5,6.

f26 [e5, e6] = e2.
e1 =

∑4
i=1 Xi,i+1, e2 = X1,6, e3 = X2,6,

e4 = X3,6, e5 = X1,5 +X4,6, e6 = X2,5 +X4,6.

f36
[e4, e6] = e2,

[e5, e6] = e3.

e1 =
∑4

i=1 Xi,i+1, e2 = X1,6, e3 = X2,6,

e4 = X3,6 +X1,5, e5 = X2,5 +X4,6, e6 = X3,5 +X5,6.

f46

[e4, e5] = e2
[e4, e6] = e3,

[e5, e6] = e4.

e1 = X1,2 +X2,3 +X3,4 +X4,5, e2 = X1,6,

e3 = −1
2
X1,5 +X2,6, e4 = 1

2
X1,4 + 1

3
X1,5 +X3,6,

e5 = −1
2
X1,3 + 1

3
X2,5 +X4,6, e6 = −1

2
X1,2+

1
3
X1,3 −X2,3 + 1

3
X2,4 −X3,4 − 1

3
X3,5 −X4,5 +X5,6

f56

[e4, e5] = e2
[e4, e6] = e3 + e2,

[e5, e6] = e4 + e3.

e1 = X1,2 +X2,3 +X3,4 +X4,5, e2 = X1,6, e3 = −1
2
X1,5

+X2,6, e4 = 1
2
X1,4 +X3,6, e5 = − 1

2
X1,3 +X2,5 +X4,6,

e6 = − 1
2
X1,2 −X1,3 −X2,3 −X3,4 −X4,5 +X5,6.

f17
e1 =

∑5
i=1 Xi,i+1, e2 = X1,7, e3 = X2,7,

e4 = X3,7, e5 = X4,7, e6 = X5,7, e7 = X6,7.

f27 [e6, e7] = e2
e1 =

∑5
i=1 Xi,i+1, e2 = X1,7, e3 = X2,7, e4 = X3,7,

e5 = X4,7, e6 = X1,6 +X5,7, e7 = X2,6 +X6,7.

f37
[e5, e7] = e2,

[e6, e7] = e3

e1 =
∑5

i=1 Xi,i+1, e2 = X1,7, e3 = X2,7, e4 = X3,7,

e5 = X4,7, e6 = X5,7, e7 = −X1,4 −X2,5 −X3,6 +X6,7.

f47
[e5, e7] = e2,

[e6, e7] = e2 + e3

e1=
∑5

i=1 Xi,i+1, e2=−4X1,7, e3=X1,6−18X1,7−3X2,7,

e4=9X1,6−66X1,7+X2,6−9X2,7−2X3,7, e5=−3X1,5+

44X1,6+6X2,6−22X2,7+X3,6−3X3,7−X4,7,

e6=−22X1,5−3X2,5+22X2,6+3X3,6+X4,6,

e7=−X1,4−22X2,5−3X3,5+X5,7.

f57

[e4, e7] = [e5, e7] = e2
[e5, e6] = −e2,

[e6, e7] = e3

e1=
∑5

i=1 Xi,i+1, e2=−5X1,7, e3=X1,6−4X2,7, e4=−X2,6

−3X3,7, e5= − 5
3
X1,5+X3,6− 2X4,7, e6=

5
3
X1,4− 19

6
X1,5+X4,6−

X4,7−X5,7, e7=− 5
3
X1,3− 5

2
X1,4+

5
2
X1,5−4X2,5+X4,6+X5,6.

f67

[e4, e7] = e2,

[e5, e7] = e3
[e6, e7] = e2 + e4

e1=
∑5

i=1 Xi,i+1, e2= 2X1,7, e3= − 1
2
X1,6+

3
2
X2,7,

e4=X1,5−2X1,7−! 1
2
X2,6+X3,7, e5=X1,6+X2,5− 1

2
X3,6

−X4,7, e6=X3,5+X4,6, e7=−X1,3+
1
2
X2,4+2X2,5−

2X4,5+X5,7 +X2,6−X3,5−X4,6−X5,6+X6,7.

f77

[e5, e7] = e3,

[e4, e7] = e2
[e6, e7] = e4

e1= X1,2 +X2,3 − 1
2
X3,4 +X6,7, e2=2X1,7, e3= − 1

2
X1,6

+3
2
X2,7, e4=X1,5− 1

2
X2,6+X3,7, e5=X2,5− 1

2
X3,6−X4,7,

e6=X3,5+X4,6, e7=−X1,3+
1
2
X2,4− 2X4,5+X5,7

f87

[e4, e7] = αe2,

[e5, e6] = e2
[e5, e7] = (1 + α)e3,

[e6, e7] = (1 + α)e4

e1=X1,3+X2,3−X2,4+X3,4+βiX3,6+X4,5+iX5,6+X6,7,

e2=−iX1,7, e3= iX1,6−iX1,7, e4=−X1,5+iX1,6+

( 1
2
iβ−1− 1

2
i)X1,7+

1
2
i(β+1+2α)X2,7, e5=X1,4−X1,5

+X1,6−(1+α)iX2,6+
1
2
i(β+3+2α)X2,7+

1
2
i(β−1)X3,7,

e6=−X1,3+X1,4+iX1,5+(α−β+1)X2,5−i(1+α)X2,6+

(β+ 4
3
αi+2+i+α+ 1

3
iα2)X2,7−iβX3,6− 1

2
i(β+1)X4,7,

e7=(β−i)X1,4+X1,2+(2β−1−α)X2,4+(1+α)X2,5−
(β+ 4

3
iα−2−i−α− 1

3
iα2)X2,6+βX3,5− 1

2
i(β+1)X5,7,

β is a root of 3Z2−2α2−5α− 3−3αZ.
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Table 4.23: Minimal faithful matrix representations for dimension 8 (I)

Law Representation

f18
e1=

∑6
i=1 Xi,i+1, e2=X1,8, e3=X2,8, e4=X3,8,

e5=X4,8, e6=X5,8, e7=X6,8, e8=X7,8.

f28 [e7, e8] = e2
e1=

∑6
i=1 Xi,i+1, e2=X1,8, e3=X2,8, e4=X3,8, e5=X4,8,

e6=X5,8, e7=X1,7+X6,8, e8=X2,7+X7,8.

f38
[e6, e8] = e2,

[e7, e8] = e3

e1=
∑6

i=1 Xi,i+1, e2=X1,8, e3=X2,8, e4=X3,8, e5=X4,8,

e6=X5,8, e7=X6,8, e8=−X1,5−X2,6−X3,7+X7,8.

f48
[e6, e8] = e2,

[e7, e8]= e2+e3

e1=
∑6

i=1 Xi,i+1, e2=X1,8, e3=X2,8, e4=X3,8, e5=X4,8,

e6=X5,8, e7=X6,8,

e8=−X1,5−X1,6−X2,6−X2,7−X3,7+X7,8.

f58

[e5, e8] = e2,

[e6, e8] = e3
[e7, e8]= e2+e4

e1=
∑6

i=1 Xi,i+1, e2=X1,8, e3=X2,8, e4=X3,8, e5=X4,8,

e6=X5,8, e7=X6,8,

e8=−X1,4−X1,6−X2,5−X2,7−X3,6−X4,7+X7,8

f68

[e5, e8] = e2,

[e6, e8]= e2+e3
[e7, e8]= αe2+e3+e4

e1=
∑6

i=1 Xi,i+1, e2=X1,8, e3=X2,8, e4=X3,8, e5=X4,8,

e6=X5,8, e7=X6,8, e8=−X1,4−X1,5−αX1,6+X1,8−
X2,5−X2,6−αX2,7−X3,6−X3,7−X4,7+X7,8

f78

[e5, e8] = αe2,

[e6, e7] = e2
[e6, e8]= (1+α)e3
[e7, e8]= (1+α)e4

e1=
∑6

i=1 Xi,i+1, e2=X1,8, e3=X2,8, e4=X3,8,

e5=−X1,7+X4,8, e6=X1,6+X5,8,

e7=X2,6+X3,7+X6,8, e8=−(1+α)X1,4+X1,8

−(1+α)X2,5−αX3,6+(1−α)X4,7+X7,8

f88

[e5, e8] = αe2,

[e6, e7] = e2
[e6, e8]=(1+α)e3+e2
[e7, e8]=(1+α)e4+e3

e1=
∑6

i=1 Xi,i+1, e2=X1,8, e3=X2,8, e4=X3,8,

e5=−X1,7+X4,8, e6=X1,6+X5,8, e7=X2,6+X3,7+X6,8,

e8=−(1+α)X1,4−X1,5+X1,8−(1+α)X2,5−X2,6

−αX3,6−X3,7+(1−α)X4,7+X7,8.

f98

[e4, e8] = e2,

[e5, e8] = e3
[e6, e8] = e4,

[e7, e8] = e5

e1=
∑6

i=1 Xi,i+1, e2=X1,8, e3= X2,8, e4=X1,7+X3,8,

e5=X2,7+X4,8, e6=−1
2
X1,5− 1

2
X2,6+

1
2
X3,7+X5,8,

e7=−1
2
X2,5−X3,6− 1

2
X4,7+X6,8,

e8=−1
2
X3,5− 3

2
X4,6−2X5,7+X7,8.

f108

[e4, e8] = e2,

[e5, e8] = e3
[e6, e8] = e4,

[e7, e8]= e2+e5

e1=
∑6

i=1 Xi,i+1, e2=X1,8, e3=X2,8, e4=X1,7+X3,8,

e5=X2,7+X4,8, e6=−1
2
X1,5− 1

2
X2,6+

1
2
X3,7+X5,8,

e7=−1
2
X2,5−X3,6− 1

2
X4,7+X6,8,

e8=−X1,6−X2,7− 1
2
X3,5− 3

2
X4,6−2X5,7+X7,8.

f118

[e4, e8] = e2,

[e5, e8] = e3
[e6, e8]= e2+e4,

[e7, e8]= αe2+e3+e5

e1=
∑6

i=1 Xi,i+1, e2=X1,8, e3=X2,8, e4=X1,7+X3,8,

e5=X2,7+X4,8, e6=−1
2
X1,5− 1

2
X2,6+

1
2
X3,7+X5,8,

e7=−1
2
X2,5−X3,6− 1

2
X4,7+X6,8, e8=−X1,5−αX1,6

−X2,6−αX2,7− 1
2
X3,5−X3,7− 3

2
X4,6−2X5,7+X7,8.

f128

[e4, e8] = e2,

[e5, e8] = e3,

[e6, e7] = e2,

[e6, e8]= αe2+e3+e4
[e7, e8]= αe3+e4+e5

e1=
∑6

i=1 Xi,i+1, e2=X1,8, e3=X2,8, e4=X1,7+X3,8,

e5=−2X1,7+X2,7+X4,8, e6=−1
2
X1,5+X1,6− 1

2
X2,6

−X2,7+
1
2
X3,7+X5,8, e7=−1

2
X2,5+X2,6−X3,6−

1
2
X4,7+X6,8, e8=−2X1,4−αX1,5−2X2,5−αX2,6

−1
2
X3,5−X3,6−αX3,7− 3

2
X4,6−X4,7−2X5,7+X7,8.

f138

[e4, e8] = −e2,

[e6, e8] = e3 + e4,

[e6, e7] = e2 + e3,

[e5, e7] = e2,

[e7, e8] = e4 + e5

e1=
∑6

i=1 Xi,i+1, e2=X1,8, e3=X2,8, e4=X3,8,

e5=X1,6+X2,7+X4,8,

e6=−X1,5+
1
2
X1,6+

1
2
X2,7+X3,7+X5,8,

e7=−1
2
X1,5−X2,5−X3,6+

1
2
X3,7+X6,8,

e8=X1,3+X2,4− 1
2
X2,5− 1

2
X3,6−X4,6−X5,7+X7,8.

f148

[e4, e8] = αe2,

[e5, e7] = e2
[e5, e8] = −e3,

[e6, e7] = e3

e1=
∑6

i=1 Xi,i+1, e2=X1,8, e3=X2,8,

e4=−2X1,7+X3,8, e5=X1,6−X2,7+X4,8,

e6=X2,6+X5,8, e7=X3,6+X4,7+X6,8,

e8=X4,6+2X5,7+X7,8.
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Table 4.24: Minimal faithful matrix representations for dimension 8 (II)

Law Representation

f158

[e4, e8]=−2e2,

[e5, e7]=e2
[e5, e8]=−e3+e2,

[e6, e7]=e3
[e6, e8]=e3,

[e7, e8]=e4

e1=
∑6

i=1 Xi,i+1, e2=X1,8, e3=X2,8,

e4=−2X1,7 +X3,8, e5=X1,6 +3X1,7−
X2,7 +X4,8, e6=X2,6 +3X2,7 +X5,8,

e7=X3,6 +X3,7 +X4,7 +X6,8,

e8=2X1,4 +2X2,5 +2X3,6+

X4,6 + 5X4,7 +2X5,7 +X7,8.

f168

[e4, e7] = e2,

[e5, e6] = −e2
[e4, e8] = e3
[e5, e8] = e4,

[e6, e8] = e5,

[e7, e8] = e6.

e1=
∑6

i=1 Xi,i+1, e2=X1,8, e3= − 1
2
X1,7+

X2,8, e4=
1
2
X1,6 +X3,8, e5= − 1

2
X1,5+

X4,8, e6=
1
2
X1,4 +X5,8, e7= − 1

2
X1,3

+X6,8, e8=− 1
2
X1,2−X2,3−X3,4−X4,5

−X5,6−X6,7 +X7,8.

f178

[e4, e7] = e2,

[e4, e8] = e3
[e5, e6] = −e2,

[e5, e8] = e4,

[e6, e7] = e2,

[e6, e8] = e3 + e5
[e7, e8] = e4 + e6.

e1 =
∑6

i=1 Xi,i+1, e2 = X1,8, e3 = − 1
2
X1,7

+X2,8, e4 = 1
2
X1,6 +X3,8, e5 = − 1

2
X1,5−

3X1,7 +X4,8, e6 = 1
2
X1,4 +X1,6

−2X2,7 +X5,8, e7 = − 1
2
X1,3 +X2,6 −X3,7

+X6,8, e8 = −3X1,4 − 1
2
X1,2 −X2,3−

3X2,5 −X3,4 − 2X3,6 −X4,5−
3X4,7 −X5,6 −X6,7 +X7,8.

f188

[e4, e7] = e2,

[e4, e8] = e3
[e5, e6] = −e2,

[e5, e8] = e4,

[e6, e8] = e2 + e5
[e7, e8] = e3 + e6.

e1 =
∑6

i=1 Xi,i+1 + 3
40

X7,8, e2 = X1,8,

e3 = − 10
3
X1,7 + 3

4
X2,8, e4 = 4

3
X1,6 − 2X2,7

+ 3
5
X3,8, e5 = − 4

3
X1,5 − 2X3,7 + 9

20
X4,8,

e6 = 4
3
X1,4 − 2X4,7 + 3

10
X5,8, e7 = − 4

3
X1,3

−2X5,7 + 3
20

X6,8, e8 = 1
3
X1,2

−5X1,5 −X2,3 − 5X2,6 −X3,4 − 5X3,7

−X4,5 − 3
8
X4,8 −X5,6 − 3X6,7 − 3

40
X7,8.

f198

[e4, e7]=e2, [e4, e8]=e3
[e5, e6]=−e2, [e5, e8]=e4,

[e6, e7] = e2,

[e6, e8] = e2 + e3 + e5
[e7, e8] = e3 + e4 + e6.

e1 = X1,2 +X1,3 −X2,3 + 164X2,5 −X3,4−
164X3,6 + 164

3
X3,7 − 164X4,5 + 164X4,7

−X5,6 −X6,7 − 1
328

X7,8, e2 = X1,8, e3 =

164X1,7 + 1
2
X2,8, e4 = 164X1,6 + 164X1,7−

1
2
X3,8, e5 = 164X1,5 + 164X1,6 −X1,8+

1
2
X4,8, e6 = X1,4 + 164X1,5 + 164X1,6−
164
3

X1,7 − 1
3
X2,8 − 1

2
X3,8 − 1

328
X5,8,

e7 = X1,3 +X1,4 + 820
3

X1,6 − 328
3

X2,7

+ 1
328

X6,8, e8 = X2,3 − 164
3

X2,6+

X3,4 + 328X3,6 + 164X4,5 +X5,6 +X6,7.

f208

[e4, e7]=e2, [e4, e8]=e2+e3
[e5, e6]=−e2, [e5, e7]=−2

5
e2,

[e5, e8] = e4 + 3
5
e3,

[e6, e7] = − 2
5
e3,

[e6, e8] = e5 + 1
5
e4,

[e7, e8] = e6 + 1
5
e5.

e1 = X1,2 +X1,3 −X2,3 + 3
5
X2,4 − 37

25
X2,5

−X3,4 + 2
5
X3,5 − 2

5
X3,6 + 1

25
X3,7

− 3
250

X3,8 −X4,5 − 2
5
X4,6 − 2

25
X4,7

−X5,6 − 3
5
X5,7 −X6,7 − 1

2
X7,8,

e2 = X1,8, e3 = X1,7 −X1,8 + 1
2
X2,8,

e4 = X1,6 + 3
5
X1,8 − 1

2
X2,8 − 1

2
X3,8,

e5 = X1,5 + 3
5
X1,6 + 1

5
X1,7 − 3

25
X1,8

− 6
25

X2,7 + 3
10

X2,8 + 1
5
X3,8 + 1

2
X4,8,

e6 = X1,4 + 4
5
X1,5 + 1

5
X1,6 + 6

25
X1,7+

3
125

X1,8 − 3
5
X2,6 − 29

25
X2,7 − 1

25
X2,8+

3
5
X3,7 − 1

5
X3,8 − 1

10
X4,8 − 1

2
X5,8,

e7 = X1,3 +X1,4 + 7
25

X1,6 + 1
5
X2,5−

7
5
X2,6 − 2

25
X2,7 + 3

250
X2,8 + 4

5
X3,6+

1
5
X4,7 + 1

2
X6,8, e8 = X2,3 − 1

25
X2,6

+X3,4 + 8
25

X3,6 +X4,5 +X5,6 +X6,7.





Conclusions

In this dissertation, we have dealt with abelian subalgebras and ideals of maximal
dimension for arbitrary Lie algebras and, as a particular case, for solvable Lie al-
gebras. We have also analyzed several special families of solvable Lie algebras in
relation to this notion. We have studied this from both a theoretical view-point
and an algorithmic approach. In this way, Chapter 2 constitutes a theoretical study
of abelian subalgebras and ideals contained in Lie algebras. We have given several
general properties and bounds for α and β invariants in cases of supersolvable, sol-
vable and nilpotent Lie algebras. Then, we have focused on the cases of Lie algebras
containing abelian subalgebras of codimension 1 and 2, and the case of codimension
3 for nilpotent Lie algebras.

In Chapter 3, we have shown algorithmic methods to compute abelian subalge-
bras and ideals of maximal dimension for the most important families of solvable
Lie algebras: Lie algebra gn, Lie algebra hn and Heisenberg algebra Hk. In order
to conclude the chapter, we have studied �liform Lie algebras, proving that there
exists a unique abelian ideal of maximal dimension for these algebras. In fact,we do
not only have analyzed α and β invariants with respect to the dimension of a given
Lie algebra, but we have also obtained a relation allowing us to determine the law
of a general �liform Lie algebra. At this respect, we have given a characterization
of the law of a general �liform Lie algebra and we have proved several result about
the coe�cients in those laws.

In Chapter 4, we have shown an algorithmic method to compute abelian subal-
gebras and ideals of any �nite-dimensional Lie algebra, starting from the non-zero
brackets in its law. Moreover, we included in this chapter two di�erent applications
of the previous results. The �rst was related to the computation of α and β inva-
riants for low dimensional Lie algebras. The second application was the computation
of minimal faithful unitriangular matrix representations of �liform Lie algebras and
the use of these invariants to retrieve these representations.

In our opinion, the results obtained in this dissertation can be considered a new
step forward in the study of Lie algebras in general. More concretely, we believe
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112 Conclusions

that our main contribution is related to the study of abelian subalgebras and ideals
of maximal dimension in Lie algebras and more concretely on solvable ones. We
have also determined laws for �liform Lie algebras starting from the value of the
maximal dimension of their abelian ideals. Therefore, we think that this can be
considered another step towards the problem of classifying �liform Lie algebras in
general, which seems to be a very di�cult task. Moreover, we have also given several
algorithmic methods that we believe that can be very useful to compute abelian
subalgebras and ideals in Lie algebras, as well as making easier the computation
of matrix representations of �liform Lie algebras. In fact, besides explaining and
implementing algorithms to compute the value of α and β invariants for any given
Lie algebra, we have also applied them to several types of Lie algebras; namely:
general, solvable and nilpotent for dimension less than 5, 7 and 8, respectively.
Finally, we have also determined a representative for the matrix representation of
general model �liform Lie algebras and, applying our general algorithmic method,
for all �liform Lie algebras up to dimension 8.

However, there exist several open problems that we want to study in the near
future. Regarding the second chapter, we have the following questions

1. Does Theorem 2.2 hold for supersolvable Lie algebras?

2. Let g be a supersolvable/nilpotent Lie algebra with α(g) = n−k containing an
abelian subalgebra a of maximal dimension, and let I be a maximal subalgebra
containing a that is an ideal of g.

(i) Is it true that dimZ(I) ≥ n− 2k + 1?

(ii) Is it true that dim C2(I) ≤ k − 1?

(iii) If they are true, do 1 and 2 imply that β(g) = n− k?

In reference to Chapter 3, we would like to study the isomorphism classes of �liform
Lie algebras starting from some relation over the coe�cients αi and αj−1

j that were
de�ned at the end of this chapter. Another open problem that we want to deal
with is to compute the matrix representation of �liform Lie algebras of dimension
greater than or equal to 9. We will also keep studying new methods to improve
our representations and to obtain new ones for other types of Lie algebras such as
solvable ones, for instance. Finally, we will try to look for some applications of
all the results obtained in this dissertation to other �elds or sciences like Applied
Mathematics, Physics, etc.

We hope to continue this research in the future in order to solve all these open
problems.
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