
A Tissue P System

and a DNA Microfluidic Device for Solving
the Shortest Common Superstring Problem

Lucas LEDESMA, Daniel MANRIQUE
Alfonso RODRÍGUEZ-PATÓN, Andrés SILVA

Universidad Politécnica de Madrid
Facultad de Informática

Campus de Montegancedo s/n
Boadilla del Monte – 28660 Madrid, Spain

E-mail: arpaton@fi.upm.es

Abstract. This paper describes a tissue P system for solving the Shortest
Common Superstring Problem in linear time. This tissue P system is well
suited for parallel and distributed implementation using a microfluidic device
working with DNA strands. The tP system is not based on the usual brute
force generate/test technique applied in DNA computing, but builds the space
solution gradually. The possible solutions/superstrings are build step by step
through the parallel distributed combination of strings using the overlapping
concatenation operation. Moreover, the DNA microfluidic device solves the
problem autonomously, without the need of external control or manipulation.

1 Introduction

A microfluidic device, microflow reactor or, alternatively, “lab-on-a-chip” (LOC) are dif-
ferent names of micro devices composed basically of microchannels and microchambers.
These are passive fluidic elements, formed in the planar layer of a chip substrate, which
serve only to confine liquids to small cavities. Interconnection of channels allows the for-
mation of networks along which liquids can be transported from one location of the device
to another, where controlled biochemical reactions take place in a shorter time and more
accurately than in conventional laboratories. There are also 3D microfluidic systems with
a limited number of layers. See [18, 16] for an in-depth study of microflow devices.

The process of miniaturization and automation in analytical chemistry was an issue
first addressed in the early 1980s, but the design (year 1992) of the device called “Capillary
electrophoresis on a chip” [10] was the first important miniaturized chemical analysis
system. Though still in its infancy, the interest in this technology has grown explosively
over the last few years.

Microelectromechanical (MEMS) technologies are now being widely applied to mi-
croflow devices to fabricate microchannels in different substrate materials, integrate elec-
trical function into microfluidic devices, and develop valves, pumps, and sensors. A thor-
ough review of many different microfluidic devices for nucleic acid analysis (for example,
chemical amplification, hybridization, separation, and detection) is presented in [16].

281

These microfluidic devices can implement a dataflow-like architecture for processing
DNA (see [6] and [12]) and could be a good support for the distributed biomolecular
computing model called tissue P systems (or tP systems for short) [11]. The underlying
computational structure of tP systems are graphs or networks of connected processors
that could easily be translated to microchambers (cells or processors) connected with
microchannels.

There are several previous works on DNA computing using microfluidic systems
[6, 12, 4, 8, 9]. One [8] describes the design of a linear time DNA algorithm for the
Hamiltonian Path Problem (HPP) suited for parallel implementation using a microflu-
idic system (this bioalgorithm shares some features with the algorithm for the Shortest
Common Superstring Problem presented in this paper). This algorithm [8] builds the
space solution gradually. The possible solutions/paths are built step by step by exploring
the graph according to a breadth-first search so that only the paths that represent per-
mutations of the set of vertices, and which, therefore, do not have repeated vertices (a
vertex is only added to a path if this vertex is not already present) are extended. This
simple distributed DNA algorithm has only two operations: concatenation (append) and
sequence separation (filter). The HPP is resolved autonomously by the system, without
the need for external control or manipulation. In another paper, Gehani and Reif [6] study
the potential of biomolecular microflow computation, describe methods to efficiently route
strands between chambers, and determine theoretical lower bounds on the quantities of
DNA and the time needed to solve a problem in the microflow biomolecular model. Two
other works [12, 4] solve the Maximum Clique Problem with microfluidic devices. This
is an NP-complete problem. McCaskill [12] takes a brute-force approach codifying every
possible subgraph in a DNA strand. The algorithm uses the so-called Selection Transfer
Modules (STM) to retain all possible cliques of the graph. The second step of McCaskill’s
algorithm is a sorting procedure to determine the maximum clique. By contrast, Chiu et
al. [4] describes a novel approach that uses neither DNA strands nor selection procedures.
Subgraphs and edges of the graph are hard codified with wells and reservoirs, respectively,
connected by channels and containing fluorescent beads. The readout is a measure of
the fluorescence intensities associated with each subgraph. The weakness of this latter
approach is an exponential increase in the hardware needed with the number of vertices of
the graph. Finally, Livstone and Landweber [9] propose the application of microreactors
to implement Boolean functions AND and OR (connecting microreactors in series and in
parallel) but without finding a possible implementation for the NOT function.

1.1 The Problem

The problem chosen for our work is the Shortest Common Superstring Problem
(SCSP). The input for this problem is a finite set of n strings xi and an integer K. The
output of the problem is “yes”, if there exists a superstring of length at most K and “no”
otherwise. A superstring over the given set is a string that contains all the strings in the
set as substrings (a formal definition of the problem is given later in section 2).

There are several reasons for the choice of the SCSP. First, the problem is NP-complete
[5]. This means that large instances of the SCSP cannot be solved efficiently by electronic
computers because running time escalates exponentially as problem size grows. Second,
being strong related to DNA sequencing methods like SBH (sequencing by hybridization),
this problem is of biological interest. The aim of the SBH technique is to reconstruct the
sequence of a long DNA strand from the knowledge of the sequence of its short overlapping

282

substrings or fragments. Microarray chips technology was first developed [3] for this
purpose. The computational problem often used to model this process of DNA fragment
assembly is SCSP. A more detailed information about the relation of SBH to SCSP is
given in [1], and a novel and promising application of SBH to resequencing is described in
[15]. Third, SCSP is also applied in data compression schemes.

2 The Shortest Common Superstring Problem

In this section we give a formal definition of the problem.

Input: Alphabet Σ, finite set S = {x1, x2, . . . , xn}, n ≥ 1, of strings from Σ∗, and a
positive integer K.

Question: Is there a string w ∈ Σ∗ with length |w| ≤ K such that each string xi ∈ S,
1 ≤ i ≤ n, is a substring of w, i.e., for all i, 1 ≤ i ≤ n, w = uixivi, where ui, vi ∈ Σ∗?

The problem remains NP-complete even if the cardinality of Σ is 2.

3 Previous Work

The only previous solution to the Shortest Common Superstring Problem in the DNA
computing field is [7]. This DNA algorithm follows a brute-force approach:

Step 1. Encode all the strings {xi, x2, . . . , xn} of the set S in DNA strands.

Step 2. Generate all possible DNA strands w of length k between max{|xi|, 1 ≤ i ≤ n}
and K using T, G, A residues only.

Step 3. Let x1 be a string of S. For the string population generated in Step 2, select
only those strands that contain x1 as a substring. From the newly obtained string
population, select only those strings that contain x2 ∈ S as substring, etc. Repeat
this step for each xi ∈ S, 1 ≤ i ≤ n.

Step 4. If, after step 3, there is any strand w remaining (which means that w contains
all xi ∈ S, 1 ≤ i ≤ n, as substrings), say “yes”, otherwise say “no”.

This algorithm builds
∑k=K

k=max{|xi|} 3k different DNA strands encoding candidate solu-
tions and then retains only those strings that contain all the xi as substrings. For example,
for a set S = {x1, x2, . . . , xn} where max{|xi|} = 4 and for K = 25 we would need to
generate 34 +35 + . . .+325 = 1.27×1012 DNA strands. And for the same set, if we choose
K = 37, we would need to generate 34 + 35 + . . . + 337 = 6.75× 1017 DNA strands. This
exponential increase in molecular resources places an obvious in practice upper limit on
this approach. Remember that around 1018 DNA strands can be handled in a test tube.

4 A Tissue P system for the SCSP

4.1 Overlapping Concatenation

Before presenting the tP system, we explain the notation used in this paper. Given two
strings x and y in Σ∗, the overlapping concatenation between them, denoted by x¯y, will
be described as follows:

283

x¯ y =





x, if x = x′1yx′2, where x′1 and x′2 ∈ Σ∗,
y, if y = y′1xy′2, where y′1 and y′2 ∈ Σ∗,
x′uy′, where x = x′u, y = uy′ and |u| is the longest overlap.

From the above definition it follows that: for every x, x ¯ x = x and for every x, y,
|x¯ y| = |x|+ |y| − |u| = |x · y| − |u|. If u = λ, then the overlapping concatenation is the
usual concatenation: x¯ y = x · y.

• Example 1: Given Σ1 = {a, b, c, d, r}, and the strings x = abraca, y = cadabra ∈ Σ∗1,
x¯ y = x′uy′ = abracadabra, where x′ = abra, y′ = dabra andu = ca.

• Example 2: Given Σ1 = {a, b, c, d, r}, and the strings x = abracadabra, y = acada ∈
Σ∗1, x¯ y = x′1yx′2 = abracadabra, where x′1 = abr, x′2 = bra.

The operation ¯ is extended naturally to the languages L1 and L2:

L1 ¯ L2 = {x¯ y |x ∈ L1 ∧ y ∈ L2}.

The overlapping concatenation operation described above models the parallel DNA
overlapping assembly operation. This operation has been used previously in DNA com-
puting (see [13]) to generate DNA data pools and in combinatorial chemistry (see [17]).
Here it will be used to implement the proposed tP system using DNA microfluidic devices.

4.2 Tissue P Systems

We briefly and informally review the bioinspired computational model called tP system.
A detailed description is given in [11] and in [14].

A tP system is a network of finite automata-like processors, dealing with multisets of
symbols, according to local states (available in a finite number for each “cell”), commu-
nicating through these symbols, along channels (“axons”) specified in advance. Each cell
has a state from a given finite set and can process multisets of objects, represented by
symbols of a given alphabet. The standard evolution rules are in the form sM → s′M ′,
where s, s′ are states and M,M ′ are multisets of symbols. We can apply such a rule to only
one occurrence of M (that is, in a sequential minimal way), or to all possible occurrences
of M (a parallel way), or, moreover, we can apply a maximal package of rules of the form
sMi → s′M ′

i , 1 ≤ i ≤ k, that is, involving the same states s, s′, which can be applied to
the current multiset (the maximal mode). Some of the elements of M ′ may be marked
with the indication “go”, and this means that they have to immediately leave the cell and
pass to the cells to which there are direct links through synapses. This communication
(transfer of symbol-objects) can be done in a replicative manner (the same symbol is sent
to all adjacent cells), or in a non-replicative manner; in the second case, we can send all
the symbols to just one adjacent cell, or we can distribute them non-deterministically.

One way to use such a computing device is to start from a given initial configuration
and to let the system proceed until it reaches a halting configuration and to associate a
result with this configuration. A halting computation is a computation that ends in a
configuration where no rule in any cell can be used. In these generative tP systems the
output will be defined by sending symbols out of the system. To this end, one cell will be
designated as the output cell.

284

Within this model, we present here a tP system (working in a maximal mode and using
the replicative communication mode) to solve the Shortest Common Superstring Problem.
As we already mentioned, this problem involves determining whether or not, for a given
set of strings S = {x1, x2, . . . , xn} from Σ∗ and a positive integer K, there is a string w of
length |w| ≤ K containing all the strings in S as substrings. Our tP system differs from
the general version of a tP system as to two features: (1) our tP system deals with strings
(not symbols) that evolve through the ¯ operation, and (2) our tP system does not have
a single output cell (strings can be sent out from every cell of our tP system). Not only
does the tP system presented solves the SCSP but it can also be used to find the minimum
value of K for which the problem has an “yes” solution.

This tP system has one cell σi associated with each string xi of S and the cells are
fully connected. Starting from each xi, overlapping concatenations of the strings in S grow
simultaneously in all cells, and in parallel. Strings z ¯ xi are produced in each cell σi and
are communicated to the other cells. Strings z are the inputs of the cells and xi are the
string associated with each cell σi. It is easy to see that, after n−1 steps, the strings built
by the system contain as substrings the xi, for all 1 ≤ i ≤ n. Moreover, after n− 1 steps,
the system has built n! superstrings z where:

1. Each xi, 1 ≤ n ≤ n, appears only once in each z,

2. the n! superstrings z correspond to the n! parallel combinations of xi ∈ S using the
overlapping concatenation ¯,

3. each superstring z is sent out of the system only if its length is |z| ≤ K.

Formally, the tP system proposed to solve the Shortest Common Superstring Problem
for a set S of n strings xi ∈ Σ∗ and a value K is

Π = (O, σ1, . . . , σn, syn),

where:

1. O = {[z; l] | z ∈ Σ∗, 1 ≤ l ≤ n}
2. syn = {(i, j) ∈ {1, 2, . . . , n}×{1, 2, . . . , n} | i 6= j} is the set of channels among cells;

each cell is connected to every other cells.

3. σ1, σ2, . . . , σn are cells of form

σi = ({s}, s, [xi;1], Pi) for each i = 1, 2, . . . , n

Pi : s[z; l] → s[z ¯ xi; l + 1]go such that z ∈ Σ∗, |z|xi = 0, 1 ≤ l ≤ n− 2,
s[z, n− 1] → s[z ¯ xi; n]out, if |z ¯ xi| ≤ K.

The candidate superstrings z grow simultaneously in all cells of Π, because of the max
mode of using the rules (each cell has only one state, hence all rules can be used at the
same time). Moreover, the rule s[z, n− 1] → s[z ¯ xi; n]out, if |z¯ xi| ≤ K, can only work
after n− 2 steps and only the superstrings of length less or equal to K are sent out of the
system at step n− 1. It then suffices to look at the tP system after step n− 1, where, if
any string is sent out of the system, then the answer to the problem will be “yes”; “no”
otherwise. The shortest common superstrings will be the strings sent out of the system.
Furthermore, the system can be executed for different values of K between max{|xi|} and∑ |xi|, 1 ≤ i ≤ n, to find the minimum K for which there exists a superstring over S.

285

5 A DNA Algorithm Using a Microfluidic Device

The tP system described above can be easily translated to a parallel and distributed DNA
algorithm to be implemented in a microfluidic system. Remember that we have a set of
strings S = {x1, x2, . . . , xn} from Σ∗ and an integer K, and we want to determine whether
or not there is a superstring w with length |w| ≤ K. Here we assume without loss of
generality that no string xi ∈ S is a substring of any other xj ∈ S. Our algorithm finds
the solution to the SCSP in linear time. First, we describe the overall operation of the
algorithm.

The proposed algorithm constructs the n! superstrings of S corresponding to the n!
combinations of xi ∈ S using the overlapping concatenation. For this purpose, the hard-
ware of the microfluidic system consists of n nodes ni. In each node ni, in each time unit,
the overlapping concatenation of the string xi associated with the node ni and the input
string z is obtained, z¯xi, and then communicated to the others nodes of the microsystem.

Each node ni consists of three chambers Ei, Ci, and Fi. Chamber Ei is used to extend
the input strings z when there is overlapping between z and the xi associated to the
node ni. Chamber Ci is used to append the string xi to the input string z when no
overlapping is present. And the last chamber Fi is used: (1) to eliminate the input strings
z that have already substring xi and (2) to route the input strings z to the corresponding
concatenation Ci or extension Ei chamber.

Thus, in each node, in each step, the string associated with that node is combined
with the input string using the overlapping concatenation and then communicated to the
other nodes. In step n− 1, the system has assembled n! superstrings corresponding to the
n! possible combinations of xi described above.

We now present the algorithm:

• Coding: Each string xi is encoded with a different short single DNA strand. Each
of these single strands must be carefully selected to avoid mismatch hybridizations
throughout the bioalgorithm run (see [2] for DNA strands design criteria).

• In parallel, in (n − 1) steps, starting from each string in S the algorithm grows n!
superstrings. The xi ∈ S are combined using the overlapping concatenation ¯ in all
possible ways (that is, the n! ways corresponding to the n! permutations of n).

• Time t = n. Read the outputs of the system. At time t = n, the n! strings assembled
by the algorithm will be superstrings. Then it merely remains to choose the shortest
strings and determine whether its length is less than or equal to K, in which case
the answer to the problem is “yes”, otherwise the answer is “no”.

Now we propose a microfluidic system to implement the DNA algorithm. The hardware
of our system for a set S with n strings is composed of 3n+1 chambers: n filtering chambers
Fi, n append/concatenation chambers Ci, n extension chambers Ei, and one chamber L
to determine the length of the superstrings.

Chamber Fi. Input: DNA strands z from chambers Cj and Ej with 1 ≤ i, j ≤ n
and j 6= i. Function: Separate the input strands into three groups: (1) the first group is
composed of those input strands that do not hybridize to the strand associated with xi

(the strand associated with xi is the complementary strand of the strand associated with
xi); (2) the second group is composed of those input strands that hybridize partially on

286

the left extreme of the strand associated with xi; (3) and the third group is composed of
those input strands that fully hybridize to the strand associated with xi. Only the strands
in the first two groups (1) and (2) will be valid outputs of the chamber. Those outputs
will be called output1 and output2 respectively. The third group of strands is discarded or
removed.

Chambers Ci. Input: DNA strands z from the output1 of Fi. Function: Appends the
substrand associated with xi to the right of each strand z in its input. Output: z¯xi = z·xi

(remember that, in this case, the ¯ operation is the usual concatenation, because there is
no overlapping between z and xi).

Chambers Ei. Input: DNA strands z from the output2 of Fi. Function: Extends every
strand z in its input to produce z ¯ xi, using the parallel overlapping assembly operation
with xi as extension pattern. Output: z ¯ xi.

Chamber L. Inputs: DNA strands z representing superstrings of S sent out of the Ci

and Ei chambers in step n− 1. Function: determine the length of the different z.

Pattern of connectivity (layout). The output1 of each chamber Fi is connected to the
input of the associated Ei. The output2 of each chamber Fi is connected to the input of
the associated Ci. For every 1 ≤ i, j ≤ n and i 6= j, there is a channel from the outputs
of chambers Ci and Ei to the input of every chamber Fj ; and there is a pump that forces
the flow of the liquid from Ci and Ei to Fj .

For simplicity’s sake, we group the chambers by their subindexes in nodes. Thus,
nodei will be composed of chambers Fi, Ci, and Ei. The input of nodei will be the input
of chamber Fi and the output of nodei will be the union of the outputs of Ei and Ci.

Implementation. It is beyond the scope of this paper to give more details of the possible
implementation of these microsystems. We merely indicate that the filtering, append, and
extend operations are widely used in DNA computing and a detailed description of the
microfluidic devices is given in [6, 16].

Working (dynamics) of the system. We assume that the operations of nodei (filter and
extension or append) take one time unit.

• Step 0: (t = 0) (pre-loading).

– Put enough copies of the strand associated with xi into each chamber Fi.

– Put enough copies of the strand associated with xi, and enough copies of the
auxiliary strands and enzymes to allow concatenation into each chamber Ci.

– Put enough copies of the strand associated with xi and enough enzymes and
nucleotides to allow the extension into each chamber Ei.

• Steps 1 to (n− 1): (from t = 1 to t = (n− 1)).

– Computations: For all 1 ≤ i ≤ n, in parallel, a filtering operation in all Fi, an
append operation in all Ci, and an extension operation in all Ei are performed
in each step.

– Movement (pumping) of strands from step t to step t + 1.

Input(Fj(t+1)
) =

⋃

i

(Output(Ci(t)) ∪Output(Ei(t)))

287

for all 1 ≤ i, j ≤ n, and i 6= j. The inlet of chamber Fj in time t + 1 is the
union of the outlets of chambers Ci and Ei in time t for all 1 ≤ i, j ≤ n, and
i 6= j. Remember that we can group the chambers in nodes, thus

Input(nodej(t+1)
) =

⋃

i

Output(nodei(t))

for all 1 ≤ i, j ≤ n, and i 6= j. The inlet of the nodej in time t + 1 is the union
of the outlets of nodes nodei in time t.

• Step t = n (readout): After step (n−1) collects the strands in the output of chambers
Ci and Ei and determines their lengths. The length of the shortest output strands
determines the minimum value of K for which there exists a superstring of S. The
lengths of the strands can be calculated by gel electrophoresis with chamber L.

5.1 Example

We give an example of the execution of the algorithm for a set with four strings S = {x1 =
ABRAC, x2 = ADABR, x3 = DABRA, x4 = RACAD} constructed from the alphabet
Σ = {A,B, R,C, D}. Table 1 shows the outputs of each node in each step. After time
t = 3 = n− 1, the strands in the output of all nodes have to be collected. These strands
codify the 24 superstrings corresponding to the 24 = 4! possible ways of combining through
overlapping concatenation the original xi strings. The numbers that appear in front of each
string are shown to ease the understanding how each string is assembled. These numbers
show the order of combination of the xi; for example, in time t = 2, the output of node1

contains the string 321|DABRADABRAC= x3 ¯ x2 ¯ x1 = DABRA¯ADABR¯ABRAC.
The last chamber of our microfluidic device is used to determine the length of the strands
using gel electrophoresis. The strings in bold are the shortest common superstring, and
their length is the minimum K for which there exists a superstring of S. In this example
K = 9 is the minimum value of K for which the SCSP has a “yes” solution.

The number of DNA strands encoding candidate solutions constructed with our al-
gorithm is n! = 4! = 24. To solve this example using the algorithm proposed in [7]
approximately

k=K=20∑

k=max{|xi|}=5

3k ≈ 5.2× 1010

candidate solutions (K = |ABRAC| + |ADABR| + |DABRA| + |RACAD| = 20) would
need to be generated.

6 Final Remarks

It was shown in [11] that tP systems are a useful computational model for solving complex
graph-related problems. This paper presents a new application of tP systems outside the
graph-related problem domain with interest in the field of genomics and in data compres-
sion. The new tP system and its implementation with a DNA microfluidic system solves
in linear time the Shortest Common Superstring Problem (SCSP).

The algorithm for the SCSP runs autonomously, in linear time, in parallel, and without
manual external intervention. There is only one previous work in the DNA computing
field solving the SCSP problem [7]. Our algorithm does not follow the Adleman’s style of

288

t = 0 t = 1 t = 2 t = 3
node1 1|ABRAC 21|ADABRAC 321|DABRADABRAC 4321|RACADABRAC

31|DABRAC 421|RACADADABRAC 3421|DABRACADABR

41|RACADABRAC 231|ADABRAC 4231|RACADADABRAC

431|RACADABRAC 2431|ADABRACAD

241|ADABRACAD 3241|DABRADABRACAD

341|DABRACAD 2341|ADABRACAD

node2 2|ADABR 12|ABRACADABR 312|DABRACADABR 4312|RACADABRAC

32|DABRADABR 412|RACADABRAC 3412|DABRACADABR

42|RACADADABR 132|ABRACDABRADABR 4132|RACADABRAC

432|RACADABRA 1423|ABRACADABRA

142|ABRACADABR 3142|DABRACADABR

342|DABRACADABR 1342|ABRACDABRACADABR

node3 3|DABRA 13|ABRACDABRA 213|ADABRAC 4213|RACADADABRAC

23|ADABRA 413|RACADABRAC 2413|ADABRACAD

43|RACADABRA 123|ABRACADABRA 4123|RACADABRAC

423|RACADADABRA 1423|ABRACADABRA

143|ABRACADABRA 2143|ADABRACAD

243|ADABRACAD 1243|ABRACADABRA

node4 4|RACAD 14|ABRACAD 214|ADABRACAD 3214|DABRADABRACAD

24|ADABRACAD 314|DABRACAD 2314|ADABRACAD

34|DABRACAD 124|ABRACADABR 3124|DABRACADABR

324|DABRADABRACAD 1324|ABRACDABRADABRACAD

134|ABRACDABRACAD 2134|ADABRACAD

234|ADABRACAD 1234|ABRACADABRA

Table 1: Running of the algorithm. Output of the nodes at each step. The numbers that
appear in front of each string are shown to ease the understanding of how each string is
constructed. These numbers show the order of combination of the xi. The strings in time
t = 3 = n− 1 are the 24 = n! = 4! superstrings generated by the system. Strings in bold
are the shortest common superstrings, and their minimum length (K = 9) is the minimum
value of K for which there exists a superstring of S.

289

DNA computation (generate the entire solution space and sequentially filter the unfeasible
solutions) used in this previous work. The tP system, and the respective implementation
with a DNA bioalgorithm using a microfluidic device proposed in this paper, follows a
constructive problem-solving strategy avoiding the generation of unfeasible solutions. Our
bioalgorithm only generates feasible solutions of the SCSP prunning to a great extent the
number of DNA strands used.

Microfluidic systems looks like an interesting and promising future support for many
distributed DNA computing models (shift from Adleman/Lipton manual wet test tubes
to DNA computing on surfaces to microflow DNA computing), and its full potential (the
underlying computational paths could be a graph with cycles allowing, for example, the
iterative construction and selection of solutions) needs to be thoroughly examined.

Acknowledgements. The work of the first author was supported by a grant of
AECI (Agencia Española de Cooperación Internacional). The third authors was partially
supported by Ministerio de Ciencia y Tecnoloǵıa under project TIC2002-04220-C03-03,
cofinanced by FEDER funds.

References

[1] J. Blażewicz and M. Kasprzak. Complexity of DNA sequencing by hybridization.
Theoretical Computer Science, 290 (2003), 1459–1473.

[2] A. Brenneman and A. Condon. Strand design for bio-molecular computation, (Survey
paper), Theoretical Computer Science, 287 (2002), 39–58.

[3] A. Caviani Pease, D. Solas, E.J. Sullivan, M.T. Cronin, C.P. Holmes, and S.P. Fodor.
Light-generated oligonucleotide arrays for rapid DNA sequence analysis, Proc. Nat.
Acad. Sci. U.S.A., 91 11 (May 24, 1994), 5022–5026.

[4] D.T. Chiu, E. Pezzoli, H. Wu, A.D. Stroock, and G. M. Whitesides. Using three-
dimensional microfluidic networks for solving computationally hard problems. Proc.
Nat. Acad. Sci. U.S.A., 98 6 (March 13, 2001), 2961–2966.

[5] J. Gallant, D. Maier, and J. Storer. On finding minimal length superstrings. Journal
of Computer and Systems Science, 20, 1 (1980), 50–58.

[6] A. Gehani and J.H. Reif. Microflow bio-molecular computation. Biosystems, 52, 1-3
(1999), 197–216.

[7] G. Gloor, L. Kari, M. Gaasenbeek, and S. Yu. Towards a DNA solution to the shortest
common superstring problem. In 4th Int. Meeting on DNA-Based Computing, Balti-
more, Penns., June, 1998. Also, Proceedings of IEEE’98 International Joint Symposia
on Intelligence and Systems, Rockville, MD, (May 1998), 140–145.

[8] L.F. Ledesma, J. Pazos, and A. Rodŕıguez-Patón. A DNA algorithm for the Hamil-
tonian Path problem using microfluidic systems. Aspects of Molecular Computing -
Essays Dedicated to Tom Head on the Occasion of His 70th Birthday. Lecture Notes
in Computer Science 2950, Springer (2004), 289–296.

[9] M.S. Livstone and L.F. Landweber: Mathematical considerations in the design of
microreactor-based DNA computers. In DNA Computing, 9th International Workshop

290

on DNA Based Computers, DNA9, Madison, WI, USA, June 1-3, 2003, revised papers.
Lecture Notes in Computer Science 2943, Springer (2004), 180–189.

[10] A. Manz, D.J. Harrison, E.M.J. Verpoorte, J.C. Fettinger, A. Paulus, H. Ludi, and
H.M. Widmer. Planar chips technology for miniaturization and integration of sepa-
ration techniques into monitoring systems: “Capillary electrophoresis on a chip”. J.
Chromatogr., 593 (1992), 253–258.

[11] C. Mart́ın-Vide, Gh. Păun, J. Pazos, and A. Rodŕıguez-Patón. Tissue P systems.
Theoretical Computer Science, 296, 2 (2003), 295–326.

[12] J.S. McCaskill. Optically programming DNA computing in microflow reactors.
Biosystems, 59, 2 (2001), 125–138.

[13] Q. Ouyang, P. D. Kaplan, S. Liu, and A. Libchaber. DNA solution of the maximal
clique problem. Science, 278 (1997), 446–449.

[14] Gh. Păun. Membrane Computing. An Introduction. Springer, Berlin, 2002.

[15] I. Pe’er, N. Arbili, and R. Shamir. A computational method for resequencing long
DNA targets by universal oligonucleotide arrays. Proc. Nat. Acad. Sci. U.S.A., 99, 24
(November 26, 2002), 15492–15496.

[16] P.R. Selvaganapathy, E.T. Carlen, and C.H. Mastrangelo. Recent Progress in Mi-
crofluidic Devices for Nucleic Acid and Antibody Assays. Proceedings of the IEEE,
91 6 (2003), 954–973.

[17] W.P.C. Stemmer. The Evolution of Molecular Computation. Science, 270 (1995)
1510–1510.

[18] E. Verpoorte and N.F. De Rooij. Microfluidics Meets MEMS. Proceedings of the IEEE,
91 6 (2003), 930–953.

291

