Vertex operators, Kronecker products, and Hilbert series

Jean-Yves Thibon
Université Paris-Est Marne-la-Vallée

Mathematical Foundations of Quantum Information Sevilla, 2009

Summary of yesterday's lecture

(1) Hopf:

- $\Delta f=f(X+Y)$
- $\langle f \cdot g, h\rangle=\langle f \otimes g, \Delta h\rangle$
- $\operatorname{ch}\left(\chi^{\lambda}\right)=s_{\lambda}$
- product $=$ induction, coproduct $=$ restriction
(2) Vertex:

$$
\sum_{n \in \mathbb{Z}} s_{(n, \nu)}=\Gamma_{1} s_{\nu}=\sigma_{1} D_{\lambda_{-1}} s_{\nu}
$$

Summary of today's lecture

(1) Kronecker
(2) Kronecker + Hopf
(3) Reduced notation $=$ Kronecker + Hopf + Vertex
(4) Application to Hilbert series of some invariant algebras

The internal product of Sym

- Can be defined without reference to characters
- Remember Cauchy's identity

$$
\sigma_{1}(X Y)=\sum_{\lambda} s_{\lambda}(X) s_{\lambda}(Y)
$$

- $\delta: f \mapsto f(X Y)$ is a coproduct
- Obviously, $\delta p_{\mu}=p_{\mu} \otimes p_{\mu}$
- The dual product is $p_{\mu} * p_{\nu}=z_{\mu} \delta_{\mu \nu} p_{\mu}$
- It corresponds under ch to the pointwise product of class functions
-

$$
s_{\mu} * s_{\nu}=\sum_{\lambda} g_{\mu \nu}^{\lambda} s_{\lambda}=\operatorname{ch}\left(\chi^{\mu} \chi^{\nu}\right)
$$

The splitting (or Mackey) formula I

- There is a compatibility between $*$, and Δ
- It reflects a general formula in group theory
- Again, it has a direct and elementary proof
- This is

$$
(f g) * h=\mu[(f \otimes g) * \Delta h]
$$

where $\mu(u \otimes v)=u v$ and
$(a \otimes b) *\left(a^{\prime} \otimes b^{\prime}\right)=\left(a * a^{\prime}\right) \otimes\left(b * b^{\prime}\right)$

- Generalization $\left(f_{1} f_{2} \cdots f_{r}\right) * h$

The splitting (or Mackey) formula II

Proof (Hopf style):

$$
\begin{gathered}
\langle(f g) * h, u\rangle=\langle(f g)(X) h(Y), u(X Y)\rangle \\
=\left\langle f\left(X^{\prime}\right) g\left(X^{\prime \prime}\right) h(Y), u\left(X^{\prime} Y+X^{\prime \prime} Y\right)\right\rangle \\
=\sum_{(u)}\left\langle f\left(X^{\prime}\right) g\left(X^{\prime \prime}\right) h(Y), u_{(1)}\left(X^{\prime} Y\right) u_{(2)}\left(X^{\prime \prime} Y\right)\right\rangle
\end{gathered}
$$

(the right part is a Y product that we can dualize)

$$
\begin{aligned}
& =\sum_{(u)}\left\langle f\left(X^{\prime}\right) g\left(X^{\prime \prime}\right) h\left(Y^{\prime}+Y^{\prime \prime}\right), u_{(1)}\left(X^{\prime} Y^{\prime}\right) u_{(2)}\left(X^{\prime \prime} Y^{\prime \prime}\right)\right\rangle \\
& =\sum_{(h)}\left\langle f\left(X^{\prime}\right) g\left(X^{\prime \prime}\right) h_{(1)}\left(Y^{\prime}\right) h_{(2)}\left(Y^{\prime \prime}\right), u\left(X^{\prime} Y^{\prime}+X^{\prime \prime} Y^{\prime \prime}\right)\right\rangle
\end{aligned}
$$

The splitting (or Mackey) formula III

$$
=\sum_{(h)}\left\langle\left(f * h_{(1)}\right)\left(X^{\prime}\right)\left(g * h_{(2)}\right)\left(X^{\prime \prime}\right), u\left(X^{\prime}+X^{\prime \prime}\right)\right\rangle
$$

(now $X^{\prime} Y^{\prime} \rightarrow X^{\prime}$ and $X^{\prime \prime} Y^{\prime \prime} \rightarrow X^{\prime \prime}$)

$$
=\langle\mu[(f \otimes g) * \Delta h, u\rangle
$$

Example:

$$
h_{\mu} * h_{\nu}=\sum_{M \in \mathrm{M}(\mu, \nu)} h_{M}
$$

The reduced notation I

- Murnaghan, Littlewood:

$$
\langle\mu\rangle *\langle\nu\rangle=\sum_{\lambda} \bar{g}_{\mu \nu}^{\lambda}\langle\lambda\rangle
$$

means

$$
s_{\mu[n]} * s_{\nu[n]}=\sum_{\lambda} \bar{g}_{\mu \nu}^{\lambda} s_{\lambda[n]}
$$

- But what is $\langle\lambda\rangle$, precisely?
- Answer: image of s_{λ} by the vertex operator

$$
\langle\lambda\rangle=\Gamma_{1} s_{\lambda}=\sum_{m \in \mathbb{Z}} s_{(m, \lambda)}
$$

That is, a generating series ...

The reduced notation II

- This follows from

$$
\left(\sigma_{1} f\right) *\left(\sigma_{1} g\right)=\sigma_{1} \sum_{\mu, \nu}\left(D_{v_{\mu}} f\right)\left(D_{v_{\nu}} g\right)\left(u_{\mu} * u_{\nu}\right)
$$

where (u, v) is any pair of adjoint bases of Sym
Proof:

$$
\begin{gathered}
\left(\sigma_{1} f\right) *\left(\sigma_{1} g\right)=\mu\left[\left(\sigma_{1} \otimes f\right) * \Delta \sigma_{1} \Delta g\right] \\
=\mu\left[\left(\sigma_{1} \otimes f\right) *\left(\sum_{\gamma} D_{v_{\gamma}} g \otimes u_{\gamma}\right)\left(\sigma_{1} \otimes \sigma_{1}\right)\right] \\
\mu\left[\left(\sigma_{1} \otimes f\right) *\left(\sum_{\gamma} \sigma_{1} D_{v_{\gamma}} g\right) \otimes \sigma_{1} u_{\gamma}\right] \\
=\sum_{\gamma} \mu\left[\left(\sigma_{1} D_{v_{\gamma}} g\right) \otimes\left(f * \sigma_{1} u_{\gamma}\right)\right]
\end{gathered}
$$

The reduced notation III

$$
\begin{gathered}
=\sum_{\gamma}\left(\sigma_{1} D_{v_{\gamma}} g\right) \mu\left[\left(\sigma_{1} \otimes u_{\gamma}\right) * \sum_{\delta} D_{v_{\delta}} f \otimes u_{\delta}\right] \\
=\sum_{\gamma, \delta}\left(\sigma_{1} D_{v_{\gamma}} g\right)\left(D_{v_{\delta}} f\right)\left(u_{\gamma} * u_{\delta}\right)
\end{gathered}
$$

Applying this to $u=v=s$ and $f=s_{\mu}(X-1), g=s_{\nu}(X-1)$, we get Littlewood's formula, which reads now

$$
\Gamma_{1} s_{\mu} * \Gamma_{1} s_{\nu}=\sum_{\lambda} \bar{g}_{\mu \nu}^{\lambda} \Gamma_{1} s_{\lambda}
$$

or, more explicitely

$$
\Gamma_{1} s_{\mu} * \Gamma_{1} s_{\nu}=\Gamma_{1} \sum_{\alpha \beta \gamma}\left(D_{s_{\gamma}} D_{s_{\alpha}} s_{\mu}\right)\left(D_{s_{\gamma}} D_{s_{\beta}} s_{\nu}\right)\left(s_{\alpha} * s_{\beta}\right)
$$

The reduced notation IV

Example: Two-row shapes, $s_{(n-k, k)} * S_{(n-l, l)}$

$$
\Gamma_{1} s_{k} * \Gamma_{1} s_{l}=\Gamma_{1} \sum_{p=0}^{\min (k, l)} \sum_{q=0}^{p} s_{k-p} s_{l-p} s_{p-q}
$$

The triple product of one-part Schur functions is easily evaluated. With $k=2, I=3$, we get

$$
\begin{gathered}
\Gamma_{1}\left(s_{2} s_{3} s_{0}+s_{1} s_{2}\left(s_{1}+s_{0}\right)+s_{0} s_{1}\left(s_{2}+s_{1}+s_{0}\right)\right) \\
=\Gamma_{1}\left(s_{32}+s_{41}+s_{5}+s_{211}+s_{22}+2 s_{31}+s_{4}+2 s_{21}+2 s_{3}+s_{11}+s_{2}+s_{1}\right)
\end{gathered}
$$ so that

$s_{82} * s_{73}=s_{532}+s_{541}+s_{55}+s_{6211}+s_{622}+s_{631}+s_{64}+2 s_{721}+2 s_{73}+s_{811}+s_{82}+s_{91}$

Schur functions and $G L(n, \mathbb{C})$

- I. Schur (1901) The irreducible polynomial representations of $G L(n, \mathbb{C})$ are parametrized by partitions in at most n parts
- if $V=\mathbb{C}^{n}$ the representations of degree k are those occuring in $V^{\otimes k}$

$$
V^{\otimes k}=\bigoplus_{\lambda \vdash k, I(\lambda) \leq n} V_{\lambda}^{\oplus f_{\lambda}}
$$

($f_{\lambda}=\mathrm{nb}$ of standard tableaux of shape λ)

- Character formula:

$$
\operatorname{tr} \rho_{\lambda}(g)=s_{\lambda}(g)
$$

(as a symmetric function of the eigenvalues of g)

- Examples: symmetric tensors $=h_{k}$, alternating tensors $=$ e_{k}, determinant $=e_{n}$
- Proof: Schur-Weyl duality

Schur functions and $S L(n, \mathbb{C})$

- V_{λ} remains irreducible, but now $e_{n}=1$
- So $V_{\lambda+\left(1^{n}\right)} \simeq V_{\lambda}$
- In particular, $V_{\left(m^{n}\right)}$ is the trivial representation
- Invariants of $S L(n)$ come from rectangular shapes

Invariants of multilinear forms I

- Irreducible representations of a product group $G=\prod_{i=1}^{k} G L\left(n_{i}\right)$: the characters are $\prod_{i=1}^{k} s_{\lambda^{(i)}}\left(X_{i}\right)$
- We are interested in the relative invariants of G in $S^{d}\left(V_{1} \otimes \cdots \otimes V_{k}\right)$, where $V_{i}=\mathbb{C}^{n_{i}}$, i.e., homogeneous polynomials F in the coordinates such that

$$
g \cdot F=\left(\operatorname{det} g_{1}\right)^{l_{1}}\left(\operatorname{det} g_{2}\right)^{l_{2}} \cdots\left(\operatorname{det} g_{k}\right)^{l_{k}} F
$$

for any $g=\left(g_{1}, \ldots, g_{k}\right) \in G$

- A covariant of degree $d=\left(d_{0}, d_{1}, \ldots d_{k}\right)$ is a relative invariant of G in the representation space

$$
S^{d_{0}}\left(V_{1} \otimes \cdots \otimes V_{k}\right) \otimes S^{d_{1}}\left(V_{1}^{*}\right) \otimes \cdots \otimes S^{d_{k}}\left(V_{k}^{*}\right)
$$

Invariants of multilinear forms II

If we write $A \in V_{1}^{*} \otimes \cdots \otimes V_{k}^{*}$ as

$$
A\left(\mathbf{x}_{1}, \ldots \mathbf{x}_{k}\right)=A_{i_{1} i_{2} \ldots i_{k}} x_{1}^{i_{1}} x_{2}^{i_{2}} \cdots x_{k}^{i_{k}}
$$

The coordinate functions $x_{i}^{j}, j=1, \ldots, n_{i}$, form a basis of V_{i}^{*} and the components $A_{i_{1} \ldots i_{k}}$ are regarded as a basis of $\left(V_{1}^{*} \otimes \cdots \otimes V_{k}^{*}\right)^{*}=\mathbf{V}$. An invariant F is a homogeneous polynomial in the coefficients of the "groundform" A, such that $F=0$ defines a G-invariant hypersurface of $\mathbb{P}(\mathcal{V})$. Similarly, a covariant is a multi-homogeneous polynomial in the original vector variables \mathbf{x}_{i}, whose coefficients are homogenous polynomials in the $A_{i_{1} \ldots i_{k}}$, of which the simultaneous vanishing defines a G-invariant subvariety of $\mathbb{P}(\mathbf{V})$.

Invariants of multilinear forms III

A covariant is a G-equivariant map from $S^{d_{0}}\left(V_{1} \otimes \cdots \otimes V_{k}\right)$ to the irreducible representation $S^{d_{1}}\left(V_{1}\right) \otimes \cdots \otimes S^{d_{k}}\left(V_{k}\right)$. In general, a concomitant of degree d_{0} and of type $\lambda=\left(\lambda^{(1)}, \ldots, \lambda^{(k)}\right)$, where the $\lambda^{(i)}$ are partitions, is an equivariant map from the same space to the irreducible representation $S_{\lambda^{(1)}}\left(V_{1}\right) \otimes \cdots \otimes S_{\lambda^{(k)}}\left(V_{k}\right)$ of G.

Invariants of multilinear forms IV

Characters of the irreducible polynomial representations of the product group G

$$
S_{\lambda}=s_{\lambda^{(1)}}\left(X_{1}\right) \cdots s_{\lambda^{(k)}}\left(X_{k}\right)
$$

$\lambda^{(i)}$ are partitions, $X_{i}=\left\{x_{i 1}, \ldots, x_{i n_{i}}\right\}$ is a set of n_{i} variables.
The character of the one dimensional representation

$$
\operatorname{det}^{\prime}(g)=\left(\operatorname{det} g_{1}\right)^{1_{1}}\left(\operatorname{det} g_{2}\right)^{I_{2}} \cdots\left(\operatorname{det} g_{k}\right)^{l_{k}}
$$

is the product of rectangular Schur functions

$$
s_{\left(l_{1}^{n_{1}}\right)}\left(X_{1}\right) s_{\left(l_{2}^{n_{2}}\right)}\left(X_{2}\right) \cdots s_{\left(l_{k}^{n_{k}}\right)}\left(X_{k}\right)
$$

The character of G in $S^{d}(\mathbf{V})$ is $h_{d}\left(X_{1} X_{2} \ldots X_{k}\right)$.

Invariants of multilinear forms V

Hence, the dimension of the space of invariants of degree d and weight I, which is also the multiplicity of the one dimensional character $\operatorname{det}^{\prime}$ in $S^{d}(\mathbf{V})$, is
$\operatorname{dimInv}(d, I)=\left\langle h_{d}\left(X_{1} X_{2} \cdots X_{k}\right), s_{\left(l_{1}^{n_{1}}\right)}\left(X_{1}\right) s_{\left(l_{2}^{n_{2}}\right)}\left(X_{2}\right) \cdots s_{\left(l_{k}^{n_{k}}\right)}\left(X_{k}\right)\right\rangle_{G}$
Replace the X_{i} by infinite sets of independent variables, and compute in $S^{\prime} y^{\otimes k}$ is dual to the internal product *

$$
\begin{aligned}
\operatorname{dimInv}(d, I) & \left.=\left\langle\delta^{k}\left(h_{d}\right), s_{\left(l_{1}^{n_{1}}\right)} \otimes \cdots \otimes s_{\left(l_{k}^{n_{k}}\right)}\right)\right\rangle_{\text {Sym }} \otimes k \\
& \left.=\left\langle h_{d}, s_{\left(l_{1}^{n_{1}}\right)} * \cdots * s_{\left(l_{k}^{n_{k}}\right)}\right)\right\rangle_{\text {Sym }} .
\end{aligned}
$$

Invariants of multilinear forms VI

The internal product of two homogenous symmetric functions being zero if these are not of the same degree, we see that $\operatorname{Inv}(d, I)$ can be nonzero only if the conditions

$$
n_{1} l_{1}=n_{2} l_{2}=\cdots=n_{k} l_{k}=d
$$

are satisfied. In particular, if all the n_{i} are equal, the l_{i} must also be all equal.

Invariants of multilinear forms VII

Let $c(d ; l)$ be the dimension of the space of covariants of degree $d=\left(d_{0}, d_{1}, \ldots, d_{k}\right)$ and weight $I=\left(l_{1}, \ldots, l_{k}\right)$.

$$
\begin{gathered}
c(d ; I)=\left\langle h_{d_{0}}\left(X_{1} X_{2} \cdots X_{k}\right),\left(s_{\left(l_{1}^{n_{1}}\right)} h_{d_{1}}\right)\left(X_{1}\right) \cdots\left(s_{\left(l_{k}^{n_{k}}\right)} h_{d_{k}}\right)\left(X_{1}\right)_{G}\right. \\
=\left\langle h_{d_{0}},\left(s_{\left(l_{1}^{n_{1}}\right)} h_{d_{1}}\right) * \cdots *\left(s_{\left(l_{k}^{n_{k}}\right)} h_{d_{k}}\right)\right\rangle_{\text {Sym }} .
\end{gathered}
$$

For $S L(2), s_{(l, l)} h_{d}=s_{(I+d, I)}$, so that the covariants are in bijection with highest weight vectors.

Multilinear binary forms (qubit systems) I

If all $V_{i}=\mathbb{C}^{2}$ we need only two-part partitions
For the size $(2,2,2)$, we have

$$
\operatorname{dimInv}(2 I ; I, I, I)=\left\langle h_{2 I}, s_{\|}^{* 3}\right\rangle=\left\langle s_{\|} * s_{\|}, s_{\|}\right\rangle= \begin{cases}0 & I \text { odd } \\ 1 & I \text { even }\end{cases}
$$

using first the property $\langle f * g, h\rangle=\langle f, g * h\rangle$ and the formula for $s_{\| /} * s_{\| /}$. Hence,

$$
\sum_{d \geq 0} \operatorname{dim} S^{d}(\mathbf{V})^{G} t^{d}=\frac{1}{1-t^{4}}
$$

The algebra of invariants is in this case $\mathbb{C}[\Delta]$, where $\Delta=\operatorname{Det}(A)$ is the hyperdeterminant.

Multilinear binary forms (qubit systems) II

The generating series for the covariants can be written in the form

$$
\begin{array}{r}
C(t ; \mathbf{u} ; \mathbf{v})=\sum_{d, l} c(d, I) t^{d_{0}} u_{1}^{d_{1}} u_{2}^{d_{2}} u_{3}^{d_{3}} v_{1}^{l_{1}} v_{2}^{l_{2}} v_{3}^{l_{3}} \\
=\left\langle\sigma_{1}\left[t u_{1} s_{1}+t^{2} v_{1} s_{11}\right], \sigma_{1}\left[u_{2} s_{1}+v_{2} s_{11}\right] * \sigma_{1}\left[u_{3} s_{1}+v_{3} s_{11}\right]\right\rangle
\end{array}
$$

since with two variables,

$$
\sigma_{1}\left[v s_{11}\right]=\sum_{l \geq 0} v^{\prime} s_{\|}
$$

and

$$
\sigma_{1}\left[u s_{1}+v s_{11}\right]=\sum_{\ell(\lambda) \leq 2} u^{\lambda_{1}-\lambda_{2}} v^{\lambda_{2}} s_{\lambda}(X)
$$

Multilinear binary forms (qubit systems) III

The last sum can be obtained by combining vertex operators and MacMahon's linear operator Ω_{\geq}^{u}, which maps any monomial containing a negative power of u to 0 .

$$
\begin{aligned}
\sum_{\lambda_{1} \in \mathbb{Z}, \lambda_{2} \geq 0} t^{|\lambda|} u^{\lambda_{1}-\lambda_{2}} v^{\lambda_{2}} s_{\lambda}(X) & =\Gamma_{t u} \Gamma_{t v / u(1)} \\
& =\left(1-\frac{v}{u^{2}}\right) \sigma_{t}\left[\left(u+\frac{v}{u}\right) x\right] .
\end{aligned}
$$

Hence, if Ω_{\geq}^{u} denotes the MacMahon operator annihilating any monomial containing a negative power of any of the u_{i},

$$
C(t ; \mathbf{u} ; \mathbf{v})=\Omega_{\geq}^{\mathbf{u}} \prod_{i=1}^{3}\left(1-\frac{v_{i}}{u_{i}^{2}}\right) \sigma_{t}\left[\prod_{i=1}^{3}\left(u_{i}+\frac{v_{i}}{u_{i}}\right)\right] .
$$

Multilinear binary forms (qubit systems) IV

Here, Ω is easily computed with the help of a computer algebra system by decomposing the right-hand side into partial fractions, and throwing away the terms leading to negative powers of the u_{i} in the Laurent expansion.
Setting the v_{i} equal to 1 , one finds

$$
\frac{1-t^{6} u_{1}^{2} u_{2}^{2} u_{3}^{2}}{\left(1-t u_{1} u_{2} u_{3}\right)\left(1-t^{2} u_{1}^{2}\right)\left(1-t^{2} u_{2}^{2}\right)\left(1-t^{2} u_{3}^{2}\right)\left(1-t^{3} u_{1} u_{2} u_{3}\right)\left(1-t^{4}\right)}
$$

The structure of the generating series is the same for k qubits:

$$
C(t ; \mathbf{u} ; \mathbf{v})=\Omega_{\geq}^{\mathbf{u}} \prod_{i=1}^{k}\left(1-\frac{v_{i}}{u_{i}^{2}}\right) \sigma_{t}\left[\prod_{i=1}^{k}\left(u_{i}+\frac{v_{i}}{u_{i}}\right)\right]
$$

Multilinear binary forms (qubit systems) V

For $k=4$, the result is huge, and can be obtained only with more subtle algorithms (e.g., Xin's), but setting $u_{i}=0$ after each $\Omega_{\geq}^{u_{i}}$ gives easily the Hilbert series of invariants.
For $k=5$, this still works for the invariants.
Similar (but harder) calculations would give the Hilbert series of unitary or special unitary invariants.

