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Summary of yesterday’s lecture

1 Hopf:
∆f = f (X + Y )
〈f · g, h〉 = 〈f ⊗ g,∆h〉
ch(χλ) = sλ

product = induction, coproduct = restriction
2 Vertex: ∑

n∈Z
s(n,ν) = Γ1sν = σ1Dλ−1sν
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Summary of today’s lecture

1 Kronecker
2 Kronecker + Hopf
3 Reduced notation = Kronecker + Hopf + Vertex
4 Application to Hilbert series of some invariant algebras
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The internal product of Sym

Can be defined without reference to characters
Remember Cauchy’s identity

σ1(XY ) =
∑

λ

sλ(X )sλ(Y )

δ : f $→ f (XY ) is a coproduct
Obviously, δpµ = pµ ⊗ pµ

The dual product is pµ ∗ pν = zµδµνpµ

It corresponds under ch to the pointwise product of class
functions

sµ ∗ sν =
∑

λ

gλ
µνsλ = ch(χµχν)
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The splitting (or Mackey) formula I

There is a compatibility between ∗, · and ∆

It reflects a general formula in group theory
Again, it has a direct and elementary proof
This is

(fg) ∗ h = µ[(f ⊗ g) ∗∆h]

where µ(u ⊗ v) = uv and
(a⊗ b) ∗ (a′ ⊗ b′) = (a ∗ a′)⊗ (b ∗ b′)
Generalization (f1f2 · · · fr ) ∗ h
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The splitting (or Mackey) formula II

Proof (Hopf style):

〈(fg) ∗ h, u〉 = 〈(fg)(X )h(Y ), u(XY )〉

= 〈f (X ′)g(X ′′)h(Y ), u(X ′Y + X ′′Y )〉

=
∑

(u)

〈f (X ′)g(X ′′)h(Y ), u(1)(X ′Y )u(2)(X ′′Y )〉

(the right part is a Y product that we can dualize)

=
∑

(u)

〈f (X ′)g(X ′′)h(Y ′ + Y ′′), u(1)(X ′Y ′)u(2)(X ′′Y ′′)〉

=
∑

(h)

〈f (X ′)g(X ′′)h(1)(Y ′)h(2)(Y ′′), u(X ′Y ′ + X ′′Y ′′)〉
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The splitting (or Mackey) formula III

=
∑

(h)

〈(f ∗ h(1))(X ′)(g ∗ h(2))(X ′′), u(X ′ + X ′′)〉

(now X ′Y ′ → X ′ and X ′′Y ′′ → X ′′)

= 〈µ[(f ⊗ g) ∗∆h, u〉 .

Example:
hµ ∗ hν =

∑

M∈M(µ,ν)

hM
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The reduced notation I

Murnaghan, Littlewood:

〈µ〉 ∗ 〈ν〉 =
∑

λ

ḡλ
µν〈λ〉

means
sµ[n] ∗ sν[n] =

∑

λ

ḡλ
µνsλ[n]

But what is 〈λ〉, precisely ?
Answer: image of sλ by the vertex operator

〈λ〉 = Γ1sλ =
∑

m∈Z
s(m,λ)

That is, a generating series ...
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The reduced notation II
This follows from

(σ1f ) ∗ (σ1g) = σ1
∑

µ,ν

(Dvµ f )(Dvν g)(uµ ∗ uν)

where (u, v) is any pair of adjoint bases of Sym

Proof:
(σ1f ) ∗ (σ1g) = µ[(σ1 ⊗ f ) ∗∆σ1∆g]

= µ[(σ1 ⊗ f ) ∗
(

∑

γ

Dvγ g ⊗ uγ

)
(σ1 ⊗ σ1)]

µ[(σ1 ⊗ f ) ∗
(

∑

γ

σ1Dvγ g

)
⊗ σ1uγ ]

=
∑

γ

µ[(σ1Dvγ g)⊗ (f ∗ σ1uγ)]
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The reduced notation III
=

∑

γ

(σ1Dvγ g)µ[(σ1 ⊗ uγ) ∗
∑

δ

Dvδ f ⊗ uδ]

=
∑

γ,δ

(σ1Dvγ g)(Dvδ f )(uγ ∗ uδ).

Applying this to u = v = s and f = sµ(X − 1), g = sν(X − 1),
we get Littlewood’s formula, which reads now

Γ1sµ ∗ Γ1sν =
∑

λ

ḡλ
µνΓ1sλ

or, more explicitely

Γ1sµ ∗ Γ1sν = Γ1
∑

αβγ

(
Dsγ Dsαsµ

) (
Dsγ Dsβ sν

)
(sα ∗ sβ)
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The reduced notation IV

Example: Two-row shapes, s(n−k ,k) ∗ s(n−l,l)

Γ1sk ∗ Γ1sl = Γ1

min(k ,l)∑

p=0

p∑

q=0

sk−psl−psp−q

The triple product of one-part Schur functions is easily
evaluated. With k = 2, l = 3, we get

Γ1(s2s3s0 + s1s2(s1 + s0) + s0s1(s2 + s1 + s0))

= Γ1(s32+s41+s5+s211+s22+2s31+s4+2s21+2s3+s11+s2+s1)

so that

s82∗s73 = s532+s541+s55+s6211+s622+s631+s64+2s721+2s73+s811+s82+s91
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Schur functions and GL(n, C)

I. Schur (1901) The irreducible polynomial representations
of GL(n, C) are parametrized by partitions in at most n
parts
if V = Cn the representations of degree k are those
occuring in V⊗k

V⊗k =
⊕

λ%k ,l(λ)≤n

V⊕fλ
λ

(fλ = nb of standard tableaux of shape λ)
Character formula:

tr ρλ(g) = sλ(g)

(as a symmetric function of the eigenvalues of g)
Examples: symmetric tensors = hk , alternating tensors =
ek , determinant = en
Proof: Schur-Weyl duality
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Schur functions and SL(n, C)

Vλ remains irreducible, but now en = 1
So Vλ+(1n) ( Vλ

In particular, V(mn) is the trivial representation
Invariants of SL(n) come from rectangular shapes
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Invariants of multilinear forms I

Irreducible representations of a product group
G =

∏k
i=1 GL(ni): the characters are

∏k
i=1 sλ(i)(Xi)

We are interested in the relative invariants of G in
Sd(V1 ⊗ · · ·⊗ Vk ), where Vi = Cni , i.e., homogeneous
polynomials F in the coordinates such that

g · F = (det g1)
l1(det g2)

l2 · · · (det gk )lk F

for any g = (g1, . . . , gk ) ∈ G
A covariant of degree d = (d0, d1, . . . dk ) is a relative
invariant of G in the representation space

Sd0(V1 ⊗ · · ·⊗ Vk )⊗ Sd1(V ∗
1 )⊗ · · ·⊗ Sdk (V ∗

k )
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Invariants of multilinear forms II
If we write A ∈ V ∗

1 ⊗ · · ·⊗ V ∗
k as

A(x1, . . . xk ) = Ai1i2...ik x i1
1 xi2

2 · · · xik
k

The coordinate functions xj
i , j = 1, . . . , ni , form a basis of V ∗

i
and the components Ai1...ik are regarded as a basis of
(V ∗

1 ⊗ · · ·⊗ V ∗
k )∗ = V. An invariant F is a homogeneous

polynomial in the coefficients of the “groundform” A, such that
F = 0 defines a G-invariant hypersurface of P(V). Similarly, a
covariant is a multi-homogeneous polynomial in the original
vector variables xi , whose coefficients are homogenous
polynomials in the Ai1...ik , of which the simultaneous vanishing
defines a G-invariant subvariety of P(V).
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Invariants of multilinear forms III
A covariant is a G-equivariant map from Sd0(V1 ⊗ · · ·⊗ Vk ) to
the irreducible representation Sd1(V1)⊗ · · ·⊗ Sdk (Vk ).
In general, a concomitant of degree d0 and of type
λ = (λ(1), . . . ,λ(k)), where the λ(i) are partitions, is an
equivariant map from the same space to the irreducible
representation Sλ(1)(V1)⊗ · · ·⊗ Sλ(k)(Vk ) of G.
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Invariants of multilinear forms IV

Characters of the irreducible polynomial representations of the
product group G

Sλ = sλ(1)(X1) · · · sλ(k)(Xk )

λ(i) are partitions, Xi = {xi1, . . . , xini} is a set of ni variables.
The character of the one dimensional representation

det l(g) = (det g1)
l1(det g2)

l2 · · · (det gk )lk

is the product of rectangular Schur functions

s
(ln1

1 )
(X1)s(ln2

2 )
(X2) · · · s(lnk

k )
(Xk )

The character of G in Sd(V) is hd(X1X2 · · ·Xk ).
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Invariants of multilinear forms V

Hence, the dimension of the space of invariants of degree d
and weight l , which is also the multiplicity of the one
dimensional character detl in Sd(V), is

dimInv(d , l) = 〈hd(X1X2 · · ·Xk ) , s
(ln1

1 )
(X1)s(ln2

2 )
(X2) · · · s(lnk

k )
(Xk )〉G

Replace the Xi by infinite sets of independent variables, and
compute in Sym⊗k is dual to the internal product ∗

dimInv(d , l) = 〈δk (hd), s
(ln1

1 )
⊗ · · ·⊗ s

(lnk
k

)〉Sym⊗k

= 〈hd , s
(ln1

1 )
∗ · · · ∗ s

(lnk
k )

)〉Sym .
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Invariants of multilinear forms VI
The internal product of two homogenous symmetric functions
being zero if these are not of the same degree, we see that
Inv(d , l) can be nonzero only if the conditions

n1l1 = n2l2 = · · · = nk lk = d

are satisfied. In particular, if all the ni are equal, the li must also
be all equal.
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Invariants of multilinear forms VII

Let c(d ; l) be the dimension of the space of covariants of
degree d = (d0, d1, . . . , dk ) and weight l = (l1, . . . , lk ).

c(d ; l) = 〈hd0(X1X2 · · ·Xk ) , (s
(ln1

1 )
hd1)(X1) · · · (s(lnk

k )
hdk )(X1)G

= 〈hd0 , (s
(ln1

1 )
hd1) ∗ · · · ∗ (s

(lnk
k )

hdk )〉Sym .

For SL(2), s(l,l)hd = s(l+d ,l), so that the covariants are in
bijection with highest weight vectors.
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Multilinear binary forms (qubit systems) I

If all Vi = C2 we need only two-part partitions
For the size (2, 2, 2), we have

dimInv(2l ; l , l , l) = 〈h2l , s∗3
ll 〉 = 〈sll ∗ sll , sll〉 =

{
0 l odd
1 l even

using first the property 〈f ∗ g, h〉 = 〈f , g ∗ h〉 and the formula for
sll ∗ sll . Hence,

∑

d≥0

dimSd(V)Gtd =
1

1− t4 .

The algebra of invariants is in this case C[∆], where
∆ = Det(A) is the hyperdeterminant.
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Multilinear binary forms (qubit systems) II

The generating series for the covariants can be written in the
form

C(t ; u; v) =
∑

d ,l

c(d , l)td0ud1
1 ud2

2 ud3
3 v l1

1 v l2
2 v l3

3

= 〈σ1[tu1s1 + t2v1s11] , σ1[u2s1 + v2s11] ∗ σ1[u3s1 + v3s11]〉

since with two variables,

σ1[vs11] =
∑

l≥0

v lsll

and
σ1[us1 + vs11] =

∑

'(λ)≤2

uλ1−λ2vλ2sλ(X ) .
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Multilinear binary forms (qubit systems) III

The last sum can be obtained by combining vertex operators
and MacMahon’s linear operator Ωu

≥, which maps any
monomial containing a negative power of u to 0.

∑

λ1∈Z , λ2≥0

t |λ|uλ1−λ2vλ2sλ(X ) = ΓtuΓtv/u(1)

=
(

1− v
u2

)
σt

[(
u +

v
u

)
X

]
.

Hence, if Ωu
≥ denotes the MacMahon operator annihilating any

monomial containing a negative power of any of the ui ,

C(t ; u; v) = Ωu
≥

3∏

i=1

(
1− vi

u2
i

)
σt

[ 3∏

i=1

(
ui +

vi

ui

)]
.
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Multilinear binary forms (qubit systems) IV

Here, Ω is easily computed with the help of a computer algebra
system by decomposing the right-hand side into partial
fractions, and throwing away the terms leading to negative
powers of the ui in the Laurent expansion.
Setting the vi equal to 1, one finds

1− t6u2
1u2

2u2
3

(1− tu1u2u3)(1− t2u2
1)(1− t2u2

2)(1− t2u2
3)(1− t3u1u2u3)(1− t4)

The structure of the generating series is the same for k qubits:

C(t ; u; v) = Ωu
≥

k∏

i=1

(
1− vi

u2
i

)
σt

[ k∏

i=1

(
ui +

vi

ui

)]
.
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Multilinear binary forms (qubit systems) V

For k = 4, the result is huge, and can be obtained only with
more subtle algorithms (e.g., Xin’s), but setting ui = 0 after
each Ωui

≥ gives easily the Hilbert series of invariants.
For k = 5, this still works for the invariants.
Similar (but harder) calculations would give the Hilbert series of
unitary or special unitary invariants.
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