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Our purpose:

Explain how to compute the Hilbert series of the algebras of covariants for (pure) 
qubits systems.

Why these algebras are relevant?

The (pure) qubit systems are regarded as multilinear forms on which acts a 
product of linear groups (SLOCC: Stochastic Local Operations and the Classical 
Communication).

 The knowledge of the covariants allows:

- (In principle) to describe the structure of the orbits.
- Construct entanglement monotones and measure of entanglement.



From symmetric functions to 
qubits 

Our plan:

Lecture I: Introduction to symmetric functions (Jean-Gabriel Luque)

We will present the main tool: the symmetric functions. 

Lecture II: Symmetric functions and characters of the symmetric groups.(JGL)

We will explain why the symmetric functions  encodes the characters of the symmetric 
groups.  

Lecture III:  Vertex operator and Kronecker coefficients  (Jean-Yves Thibon)

We will explain the links between the Kronecker coefficients and the symmetric functions.

Lecture IV: Hilbert series of the algebras of invariants for a k-qubits (pure) system. (JYT)

We will explain how to use these tools to compute the Hilbert series.



From symmetric functions to 
qubits

Lecture I
Introduction to symmetric functions

Jean-Gabriel Luque



Symmetric functions

Definition:

Polynomials in several variables (alphabet X={x
1
,...,x

n
,...}) which are invariant under 

permutations of the variables.

Sym(X) : algebra of symmetric polynomials for the alphabet X

Example

The monomial functions:



Symmetric functions

Definition:

Polynomials in several variables (alphabet X={x
1
,...,x

n
,...} which are invariant under 

permutations of the variables.

Sym(X) : algebra of symmetric polynomials for the alphabet X

Example

The complete function h
n
 is the sum of all the monomials of degree n



Symmetric functions

Definition:

Polynomials in several variables (alphabet X={x
1
,...,x

n
,...} which are invariant under 

permutations of the variables.

Sym(X) : algebra of symmetric polynomials for the alphabet X

Example

The elementary functions  



Symmetric functions

Definition:

Polynomials in several variables (alphabet X={x
1
,...,x

n
,...} which are invariants under 

permutation if the variables.

Sym(X) : algebra of symmetric polynomials for the alphabet X

Example

The power sums   



Bases

Suppose that  X={x
1
,...,x

n
,...} is an infinite alphabet.

 Multiplicative bases:

Non multiplicative bases:

Complete functions

Power sums

Elementary functions

Monomial functions Schur functions



Generating functions

Elementary functions

Equivalently



Generating functions

Complete functions (Cauchy function)

Equivalently



Generating functions

Power sums 

Hence,

But



h to e

Write a complete function as a sum of elementary functions



h to p

Write a complete function as a sum of power sums



Sum of alphabets

Example:

An alphabet: the formal sum of its letters.



Differences of alphabets



Product of alphabets

A power sum of a product of alphabets is the product of the power sums.

Hence,



Scalar product and reproducing 
Kernel (1)

Consider a scalar product: 

With a pair of bases in duality

The reproducing kernel associated to { , } is a multivariate series on two alphabets defined by

Why this series is called a reproducing kernel?



Scalar product and reproducing 
Kernel (2)

As a consequence, if                                        one has 

For any pair of bases in duality: 



Usual scalar product and inner 
product (1)

We set

Since, 

This is the reproducing kernel of the usual scalar product defined by

Or equivalently, 

The usual inner product is defined by



Usual scalar product and inner 
product (2)

Write

Since 

The coefficient of in is

More generaly



Orthogonalisation of complete 
functions

One apply the Gramm-Schmidt orthogonalisation process to the complete functions  for
the inverse order of dominance

Example for the degree 4:

.....

By definition the        are orthogonal. This basis is called the Schur basis.



An orthonormal basis (1):
Semi-standard tableaux

Semi-standard (Young) tableaux of shape 

We fill up the nodes of the shape with non-negative integers such that the entries are 
strictly increasing along each column and just non-degreasing along each row.

no no ok



An orthonormal basis (2):
Schensted algorithm

Schensted algorithm: construct a semi-standard tableau from a sequence of integers  

Iteration of the insertion: 

Insertion of an integer n  into a tableau t

1) First try to insert on the first line.

......

......

...........m  n
If m< n the result is obtain by glueing n at the end of the line
2) otherwise, let p the smallest integer of the line strictly greater that n

...........

...........

.......p........m n
Replace the first occurrence of p by n and try to add p into the next line

...........

........... p

.......n........m 



An orthonormal basis (3):
Schensted algorithm, example

Consider the sequence 42214163311

4
 
       4
42   2

4
22

                    4
4       42       2
221   12       12

4
2
124

4          4
2          2 2
1241    1 1 4

4
22
1146

4           4
22         224
11463   1136

4            4
224        2246
11363    1133

4         4            44
2246   22463    2236
11331 1113       1113

44        44          446
2236    22363    2233
11131  1111       1111



An orthonormal basis (4):
Robinson-Schensted-Knuth 

correspondence
RSK: There is a bijection between the sets of biletters and the pairs of semi-standard 
tableaux with same shape. The correspondance is explicit and use the Schensted 
algorithm.

First one sorts the set following the order

And one applies Schensted for the sequence of the bottom numbers. One obtains the 
first tableau.

Hence, one repeats almost the same computation but following the order

And for the top integers. One obtains a second tableau (with the same shape than the 
first)



An orthonormal basis (5):
Robinson-Schensted-Knuth 

Example
Consider the sequence

First tableau

Second tableau

Schensted

Schensted



An orthonormal basis (6):
constructing an orthonormal 

basis

RSK

T1           T2

Where is orthonormal



An orthonormal basis (7):
An example

RSK



An orthonormal basis (8):
The functions b are symmetric
Suppose that the tableau                           appears in the sum                        

3                                                       3                                              3
22                                                     22                                            23
1123                                                 1133                                        1112

3

The monomial m
322

 appears in the sum.

is symmetric



Schur functions are 
orthonormal

Example:                            33
                                           22
                                           1111                               

But by definition, the Schur basis is the unique orthogonal basis verifying

Hence,



Schur to m

Hence

where

are the Kostka numbers

Example:



h to Schur
               Since                   are in duality

The Schur basis being orthonormal, one has

implies



Conclusion
+ We have shown how to use generating function for 

+ Computing changes of bases.

+ Defining the scalar standard scalar product and the standard inner product.

+ We have defined Schur function by orthogonalizing the complete functions.

+ We have proved that the Schur functions are orthonormal for the standard scalar 
product.
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