Kronecker coefficients, convexity, and generating functions

Robert Zeier

Department Chemie, Technische Universität München

November 27, 2009

・ロト ・母 ト ・ ヨト

1 Prolog

- 2 Applications
- **3** Rational convexity
- **4** Generating functions

Definitions of Kronecker coefficients

partitions $\lambda = [\lambda_1, \lambda_2, ...]$ where $\lambda_i \in \mathbb{N} \cup \{0\}$ and $\lambda_i \ge \lambda_{i+1}$ length $\ell(\lambda) = \max\{i | \lambda_i \neq 0\}$ and degree $|\lambda| = \sum_i \lambda_i$

irreducible representations

- general linear group $\operatorname{GL}(m, \mathbb{C})$: irred. polynomial repr. U_{λ} indexed by partitions λ of length $\ell(\lambda) \leq m$
- symmetric group S_k: irred. repr. V_λ indexed by partitions λ of degree |λ| = k

Kronecker coefficient $k_{\mu,\nu}^{\lambda}$ for partitions λ , μ , and ν

- definition w.r.t. $\operatorname{GL}(m \cdot n, \mathbb{C}) \supset \operatorname{GL}(m, \mathbb{C}) \otimes \operatorname{GL}(n, \mathbb{C})$: $U_{\lambda} = \bigoplus_{\mu,\nu} k_{\mu,\nu}^{\lambda} U_{\mu} \otimes U_{\nu}$ (outer tensor product)
- definition w.r.t. S_k : $V_\mu \otimes V_\nu = \bigoplus_\lambda k_{\mu,\nu}^\lambda V_\lambda$

(inner tensor product)

Kronecker coefficients: symmetric group

$\begin{array}{c} \mbox{SCHUR} & (\mbox{http://schur.sourceforge.net/}) \\ \mbox{i 75, 66} \\ \{111\} + \{101^2\} + \{93\} + \{921\} + \{831\} + \{821^2\} + \{75\} + \{741\} + \\ \{732\} + \{72^21\} + \{651\} + \{641^2\} + \{63^2\} + \{6321\} + \{5^22\} + \{543\} + \\ \{5421\} + \{532^2\} + \{4^231\} + \{43^22\} \end{array}$

irred. representations V_{λ} of the symmetric group S_{12}

$$\begin{split} & V_{[7,5]} \otimes V_{[6,6]} = & (\text{inner tensor product}) \\ & V_{[11,1]} + V_{[10,1,1]} + V_{[9,3]} + V_{[9,2,1]} + V_{[8,3,1]} + V_{[8,2,1,1]} + V_{[7,5]} + V_{[7,4,1]} + \\ & V_{[7,3,2]} + V_{[7,2,2,1]} + V_{[6,5,1]} + V_{[6,4,1,1]} + V_{[6,3,3]} + V_{[6,3,2,1]} + V_{[5,5,2]} + \\ & V_{[5,4,3]} + V_{[5,4,2,1]} + V_{[5,3,2,2]} + V_{[4,4,3,1]} + V_{[4,3,2]} \end{split}$$

Kronecker coefficients: special unitary group (1/2)

general linear group $GL(m, \mathbb{C})$

irred. polynomial repr. U_λ indexed by partitions λ of length $\ell(\lambda) \leq m$

special unitary group SU(m) [and special linear group SL(m, \mathbb{C})] • irred. polynomial repr. U_{μ} indexed by partitions $\mu = [\lambda_1 - \lambda_m, \dots, \lambda_{m-1} - \lambda_m]$ of length $\ell(\mu) \le m - 1$ • irred. polynomial repr. U_t indexed by highest weights $t = (t_1, \dots, t_{m-1}) = [\lambda_1 - \lambda_2, \dots, \lambda_{m-1} - \lambda_m] = [\mu_1 - \mu_2, \dots, \mu_{m-2} - \mu_{m-1}, \mu_{m-1}]$

example

$$\lambda = [6 + x, 4 + x, 2 + x, x] \Leftrightarrow \mu = [6, 4, 2] \Leftrightarrow t = (2, 2, 2)$$

Kronecker coefficients: special unitary group (2/2)

LiE (http://wwwmathlabo.univ-poitiers.fr/~maavl/LiE/) m = [[1, 1], [2, 0], [1, 1]] v = [2, 2, 2]branch(v, A1A1, m, A3) 1X[0, 0] + 2X[0, 4] + 1X[0, 6] + 1X[0, 8] + 3X[2, 2] + 3X[2, 4] + 3X[2, 6] + 1X[2, 8] + 2X[4, 0] + 3X[4, 2] + 4X[4, 4] + 2X[4, 6] + 1X[4, 8] + 1X[6, 0] +3X[6, 2] + 2X[6, 4] + 1X[6, 6] + 1X[8, 0] + 1X[8, 2] + 1X[8, 4]

$\mathrm{SU}(m \cdot n, \mathbb{C}) \supset \mathrm{SU}(m, \mathbb{C}) \otimes \mathrm{SU}(n, \mathbb{C})$

$$\begin{array}{l} U_{(2,2,2)} = \\ U_{(0)} \otimes U_{(0)} + 2U_{(0)} \otimes U_{(4)} + U_{(0)} \otimes U_{(6)} + U_{(0)} \otimes U_{(8)} + 3U_{(2)} \otimes U_{(2)} + \\ 3U_{(2)} \otimes U_{(4)} + 3U_{(2)} \otimes U_{(6)} + U_{(2)} \otimes U_{(8)} + 2U_{(4)} \otimes U_{(0)} + 3U_{(4)} \otimes U_{(2)} + \\ 4U_{(4)} \otimes U_{(4)} + 2U_{(4)} \otimes U_{(6)} + U_{(4)} \otimes U_{(8)} + U_{(6)} \otimes U_{(0)} + 3U_{(6)} \otimes U_{(2)} + \\ 2U_{(6)} \otimes U_{(4)} + U_{(6)} \otimes U_{(6)} + U_{(8)} \otimes U_{(0)} + U_{(8)} \otimes U_{(2)} + U_{(8)} \otimes U_{(4)} \end{array}$$

▲□▶▲@▶▲厘)

Outline

1 Prolog

2 Applications

- 8 Rational convexity
- Generating functions

Algebraic complexity theory (1/2)

the permanent and the determinant

- permanent perm(A) = $\sum_{\pi \in S_n} \prod_{i=1}^n A_{i,\pi(i)}$ of a $n \times n$ -dimensional matrix A
- determinant det(B) = $\sum_{\pi \in S_m} \operatorname{sgn}(\pi) \prod_{i=1}^m B_{i,\pi(i)}$ of a $m \times m$ -dimensional matrix B

simple substitution *p*

•
$$A_{i,j} = x_{i,j}$$
, where $x_{i,j}$ are variables from $\mathbb{F}[x_{1,1}, x_{1,2}, \dots, x_{n,n}]$

• $B_{i,j} = y_{i,j}$, where $y_{i,j}$ are variables from $\mathbb{F}[y_{1,1}, y_{1,2}, \dots, y_{m,m}]$

•
$$p: \{y_{1,1}, y_{1,2}, \ldots, y_{m,m}\} \mapsto \{x_{1,1}, x_{1,2}, \ldots, x_{n,n}\} \cup \mathbb{F}$$

algebraic version of the P vs. NP question(Valiant 1979)For each n, is there a m = poly(n) and a p s.t. perm(A) = p[det(B)]?

• □ > < 同 > < 三</p>

 $(\mathbb{F} = field)$

Algebraic complexity theory (2/2)

quasi–polynomials $\tilde{k}^{\lambda}_{\mu,\nu}(N)$ for Kronecker coefficients $k^{\lambda}_{\mu,\nu}$

- $\tilde{k}^{\lambda}_{\mu,\nu}: N \in \mathbb{N} \setminus \{0\} \mapsto k^{N\lambda}_{N\mu,N\nu}$, where $N\lambda = [N\lambda_1, N\lambda_2, \ldots]$
- $\tilde{k}^{\lambda}_{\mu,\nu}(N)$ is a quasi-polynomial, i.e., $\tilde{k}^{\lambda}_{\mu,\nu}(N) = f_i(N)$ if $N \equiv i \mod M$ for polynomials f_1, \ldots, f_M and a period M > 0

Mulmuley's saturation conjecture

(Mulmuley 2009)

- $\tilde{k}^{\lambda}_{\mu,\nu}(N)$ is strictly saturated if $f_i(M) = 0$ (for some M) $\Rightarrow f_i \equiv 0$
- saturation index $s(\tilde{k}_{\mu,\nu}^{\lambda}) = \text{smallest } M \in \mathbb{N} \cup \{0\}$ s.t. $\tilde{k}_{\mu,\nu}^{\lambda}(M+N)$ is strictly saturated
- conjecture: $s(\tilde{k}_{\mu,\nu}^{\lambda}) = poly(max\{|\lambda|, |\mu|, |\nu|\})$ (bit lengths)
- comments:
 - more conjectures; connections to permanent-determinant problem
 - Briand/Orellana/Rosas (2009): sometimes $s(\tilde{k}^{\lambda}_{\mu,\nu}) \neq 0$

Reduced density matrices (1/3)

mixed quantum systems: the density matrix ho

- $\rho = \text{complex matrix which is hermitian } (\rho = \rho^{\dagger}),$ positive-semidefinite $(x^{\dagger}\rho x \ge 0 \text{ for all vectors } x)$, and of trace one
- ρ can be written as $\frac{1}{m} \mathrm{Id}_m + H$ where $-iH \in \mathfrak{su}(m)$ [Tr(H) = 0]

partial trace and reduced density matrices

- partial trace $\operatorname{Tr}_V : \operatorname{L}(V \otimes W) \to \operatorname{L}(W)$, $C \mapsto \operatorname{Tr}_V(C) = \operatorname{Tr}_V(\sum_i A_i \otimes B_i) = \sum_i \operatorname{Tr}(A_i)B_i$
- reduced density matrix $\rho^W = \operatorname{Tr}_V(\rho)$

compatibility relations for ρ , ρ^V , and ρ^W

What combinations of spec (ρ), spec (ρ^V), and spec (ρ^W) are possible?

 $[\rho \in L(V \otimes W)]$

Reduced density matrices (2/3)

two qubits

- partitions $[\lambda_1,\lambda_2,\lambda_3,\lambda_4]$, $[\mu_1,\mu_2]$, and $[\nu_1,\nu_2]$
- spec (ρ) = [$\lambda_1, \lambda_2, \lambda_3, \lambda_4$]/($\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4$)
- spec $(\rho^V) = [\mu_1, \mu_2]/(\mu_1 + \mu_2)$ and spec $(\rho^W) = [\nu_1, \nu_2]/(\nu_1 + \nu_2)$

$$\begin{pmatrix} 1 & -1 \\ 0 & 0 \\ 1 & -1 \\ 1 & -1 \\ 1 & -1 \\ -1 & 1 \\ -1 & 1 \\ -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 1 & -1 \\ 1 & -1 \\ -1 & 1 \\ 1 & -1 \\ 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix} \leq \begin{pmatrix} 1 & 1 & -1 & -1 \\ 1 & 1 & -1 & -1 \\ 2 & 0 & 0 & -2 \\ 0 & 2 & 0 & -2 \\ 2 & 0 & -2 & 0 \\ 0 & 2 & 0 & -2 \\ 2 & 0 & -2 & 0 \end{pmatrix} \cdot \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \\ \lambda_4 \end{pmatrix}$$

[Bravyi (2004)]

Reduced density matrices (3/3)

variant for highest weights

•
$$t = (\lambda_1 - \lambda_2, \lambda_2 - \lambda_3, \lambda_3 - \lambda_4)$$

•
$$u = (\mu_1 - \mu_2)$$
 and $v = (\nu_1 - \nu_2)$

$$\begin{pmatrix} 1\\0\\1\\1\\1\\-1\\-1\\-1 \end{pmatrix} \cdot u + \begin{pmatrix} 0\\1\\1\\-1\\-1\\1\\1 \end{pmatrix} \cdot v \leq \begin{pmatrix} 1&2&1\\1&2&1\\2&2&2\\0&2&2\\2&2&0\\0&2&2\\2&2&0\\0&2&2\\2&2&0 \end{pmatrix} \cdot \begin{pmatrix} t_1\\t_2\\t_3 \end{pmatrix}$$

Control algorithms (1/2)

efficient control algorithm for $U \in SU(2^n)$ with evolution time t

- <u>instantaneous</u> operations $K_{\ell} \in \mathfrak{K} = \mathrm{SU}(2)^{\otimes n} = \mathrm{SU}(2) \otimes \cdots \otimes \mathrm{SU}(2)$
- time-evolution w.r.t. a coupling Hamilton operator $H(-iH \in \mathfrak{su}(2^n))$
- $U = \left[\prod_{\ell=1}^m \left(\mathsf{K}_{\ell} \exp(-i\mathsf{H} t_{\ell})\mathsf{K}_{\ell}^{-1} \right) \right] \mathsf{K}_0$ and $t = \sum_{\ell=1}^m t_{\ell}$ $(t_{\ell} \ge 0)$

two qubits: $\mathfrak{su}(4) = \mathsf{local} \oplus \mathsf{nonlocal} = \mathfrak{k} \oplus \mathfrak{p}$

$$\mathfrak{k} = [\mathfrak{su}(2) \otimes \mathrm{Id}] \oplus [\mathrm{Id} \otimes \mathfrak{su}(2)] \text{ and } \mathfrak{p} = \mathfrak{su}(2) \otimes \mathfrak{su}(2)$$

Kostant's convexity theorem (1973)

- condition: $[\mathfrak{k}, \mathfrak{k}] \subset \mathfrak{k}$ and $[\mathfrak{k}, \mathfrak{p}] \subset \mathfrak{p}$, $[\mathfrak{p}, \mathfrak{p}] \subset \mathfrak{k}$ (true for two qubits)
- $\mathfrak{a} = \max$. commutative subalgebra in $\mathfrak{p} = \bigcup_{K \in \mathfrak{K}} \operatorname{Ad}(K)(\mathfrak{a})$
- Kostant: What is with {KHK⁻¹: K ∈ 𝔅} for H ∈ 𝔅? orthogonal projection to 𝔅 = convex closure of the intersection with 𝔅
- ightarrow time-optimal controls for two qubits [Khaneja et al. (2001)]

(n = 2)

Control algorithms (2/2)

three qubits: $\mathfrak{su}(8) = \mathfrak{k} \oplus \mathfrak{m} = \mathfrak{k} \oplus \mathfrak{m}_1 \oplus \mathfrak{m}_2 \oplus \mathfrak{m}_3 \oplus \mathfrak{m}_4$

- $\mathfrak{k} = [\mathfrak{su}(2) \otimes \mathrm{Id} \otimes \mathrm{Id}] \oplus [\mathrm{Id} \otimes \mathfrak{su}(2) \otimes \mathrm{Id}] \oplus [\mathrm{Id} \otimes \mathrm{Id} \otimes \mathfrak{su}(2)]$
- $\mathfrak{m}_1 = \mathfrak{su}(2) \otimes \mathfrak{su}(2) \otimes \mathrm{Id}, \ \mathfrak{m}_2 = \mathfrak{su}(2) \otimes \mathrm{Id} \otimes \mathfrak{su}(2),$
 - $\mathfrak{m}_3 = \mathrm{Id} \otimes \mathfrak{su}(2) \otimes \mathfrak{su}(2), \text{ and } \mathfrak{m}_4 = \mathfrak{su}(2) \otimes \mathfrak{su}(2) \otimes \mathfrak{su}(2)$
- $[\mathfrak{k},\mathfrak{k}] \subset \mathfrak{k}$ and $[\mathfrak{k},\mathfrak{m}] \subset \mathfrak{m}$, but NOT $[\mathfrak{m},\mathfrak{m}] \subset \mathfrak{k}$

Kronecker coefficients vs. control algorithms

- Kronecker coefficients: restrict repr. from $SU(2^n)$ to $SU(2)^{\otimes n}$
- control algorithms: seek a generalization of Kostant's convexity theorem which describes the adjoint action of SU(2)^{⊗n} on m = t[⊥] (→ difficult sub-riemannian geodesics)
- entanglement: want to characterize $SU(2^n)/SU(2)^{\otimes n}$ (is a symmetric space for n = 2)

Outline

Prolog

2 Applications

3 Rational convexity

Generating functions

・ロト ・ 御 ト ・ ヨト

Convexity theorems (1/2)

Heckman (1980/1982): restrict the group $\mathfrak G$ to the subgroup $\mathfrak K$

- projection $p: \mathfrak{g} \to \mathfrak{k}$
- max. commutative subalgebras $\mathfrak{t}_g, \, \mathfrak{t}_{\mathfrak{k}}$
- notation: $t \in \mathfrak{t} \Rightarrow Nt = (Nt_1, \dots, Nt_{m-1})$
- following problems are equivalent:
 - **1** find all restricted adjoint orbits: find all $(t, t') \in (\mathfrak{t}_{\mathfrak{g}}, \mathfrak{t}_{\mathfrak{k}})$ s.t. $t' \subset p(t)$
 - 2 find all asymptotic decompositions of representations: find all rational (t, t') ∈ (t_g, t_t) s.t.
 - $\exists N \in \mathbb{N}$ s.t. Nt' and Nt are integral (i.e. weights)
 - $Nt' \subset p(Nt)$

example: $\mathfrak{G} = \mathrm{SU}(4)$ and $\mathfrak{K} = \mathrm{SU}(2) \otimes \mathrm{SU}(2)$

• $t = (\lambda_1 - \lambda_2, \lambda_2 - \lambda_3, \lambda_3 - \lambda_4)$ and $t' = (u, v) = (\mu_1 - \mu_2, \nu_1 - \nu_2)$

 \rightarrow asymptotic Kronecker coefficients $k_{Nu,Nv}^{Nt}$

 $[p(\mathfrak{t}_{\mathfrak{q}}) \subset \mathfrak{t}_{\mathfrak{k}}]$

Convexity theorems (2/2)

Guillemin/Sternberg (1982/1984), Kirwan (1984), ...

2 find all asymptotic decompositions of representations: find all rational $(t, t') \in (\mathfrak{t}_{\mathfrak{g}}, \mathfrak{t}_{\mathfrak{k}})$ s.t.

• $\exists N \in \mathbb{N}$ s.t. Nt' and Nt are integral (i.e. weights)

 \Rightarrow solution for $t \ge 0$, $t' \ge 0$ is a rational convex polytope

Berenstein/Sjamaar (2000) [here $SU(m) \supset SU(m_1) \otimes SU(m_2)$]

3
$$t' \in \tilde{\omega}_{p}(\omega^{-1}t - vC_{\mathfrak{su}(m)})$$
 for all
 $(\tilde{\omega}, \omega, v) \in (S_{m_{1}} \times S_{m_{2}}, S_{m}, \mathcal{W}_{\mathsf{rel}})$ s.t. $Y_{\tilde{\omega}} \subset \phi^{*}(vX_{\omega v})$

- $C_{\mathfrak{su}(m)} = \text{cone spanned by } (2, -1, 0, \dots, 0), (-1, 2, -1, 0, \dots, 0), \cdots, (0, \dots, 0, -1, 2, -1), (0, \dots, 0, -1, 2) \text{ and } \mathcal{W}_{\mathsf{rel}} \subset S_m$
- Schubert condition Y_{ω̃} ⊂ φ^{*}(vX_{ων}), where φ^{*} is a projection on cohomology rings (basis = {X_w : w ∈ S_m}) induced by p

 \rightarrow refinements by Ressayre (2009)

Example computations (1/2)

- given $0 \le t \in \mathfrak{t}_{\mathfrak{g}}$ all rational $0 \le t' \in \mathfrak{t}_{\mathfrak{k}}$ s.t. $k_{Nt'}^{Nt} \ne 0$ for some $N \in \mathbb{N}$
- •'s denote positive Kronecker coefficients $k_{t'}^t$

Example computations (2/2)

- given $0 \le t \in \mathfrak{t}_{\mathfrak{g}}$ all rational $0 \le t' \in \mathfrak{t}_{\mathfrak{k}}$ s.t. $k_{Nt'}^{Nt} \ne 0$ for some $N \in \mathbb{N}$
- •'s denote positive Kronecker coefficients $k_{t'}^t$

Outline

1 Prolog

- 2 Applications
- 8 Rational convexity
- **4** Generating functions

Kostant's multiplicity formula (1/3)

roots = highest weights of the adjoint representation

• pos. roots $\Delta_{\mathfrak{G}}^+$ = simple roots and sums of them; $\Delta_{\mathfrak{G}} = \Delta_{\mathfrak{G}}^+ \cup \{-\Delta_{\mathfrak{G}}^+\}$ [for SU(*m*), simple roots = {(2, -1, 0, ..., 0), (-1, 2, -1, 0, ..., 0), ..., (0, ..., 0, -1, 2, -1), (0, ..., 0, -1, 2)}]

• half sum
$$\rho_{\mathfrak{G}} = \frac{1}{2} \sum_{\alpha \in \Delta_{\mathfrak{G}}^+} \alpha$$

• example SU(3): simple roots $\alpha_1 = (2, -1)$ and $\alpha_2 = (-1, 2)$; positive roots α_1 , α_2 , $\alpha_1 + \alpha_2$; half sum $\rho = \alpha_1 + \alpha_2$

restriction of Lie groups $\mathfrak{G} \supset \mathfrak{K}$ [e.g. $\mathrm{SU}(4) \supset \mathrm{SU}(2) \otimes \mathrm{SU}(2)$]

- projection $p: \mathfrak{g} \to \mathfrak{k}; \Delta = \{ \alpha \in \Delta_{\mathfrak{G}}: p(\alpha) = 0 \}; \Delta^+ = \Delta \cap \Delta_{\mathfrak{G}}^+$
- multiset $A = p(\Delta_{\mathfrak{G}}^+ \setminus \Delta) \setminus \Delta_{\mathfrak{K}}^+$; $m_{\alpha} =$ multiplicity of α in A
- Kostant's partition function: P_A(β) = number of ways of writing β in the lattice L = Σ_{a∈A} c_aa, where c_a ∈ N ∪ {0} ⇒ generating function 1 1 Π_{α∈A}(1-z^α)^{m_α} = Σ_{β∈L} P_A(β)z^β

Kostant's multiplicity formula (2/3)

- projection $p: \mathfrak{g} \to \mathfrak{k}; \Delta = \{ \alpha \in \Delta_{\mathfrak{G}}: p(\alpha) = 0 \}; \Delta^+ = \Delta \cap \Delta_{\mathfrak{G}}^+$
- multiset $A = p(\Delta_{\mathfrak{G}}^+ \setminus \Delta) \setminus \Delta_{\mathfrak{K}}^+$; $m_{\alpha} =$ multiplicity of α in A
- $\frac{1}{\prod_{\alpha \in A} (1-z^{\alpha})^{m_{\alpha}}} = \sum_{\beta \in L} P_A(\beta) z^{\beta}$
- Weyl group $\mathcal{W}_{\mathfrak{G}}$ = symmetry group of roots and weights; e.g. $\mathcal{W}_{\mathrm{SU}(m)} = \mathrm{S}_m$, $\mathcal{W}_{\mathrm{SU}(m_1)\otimes\mathrm{SU}(m_2)} = \mathrm{S}_{m_1} \times \mathrm{S}_{m_2}$
- $\mathcal{W}_{\Delta} \subset \mathcal{W}_{\mathfrak{G}}$ w.r.t. root system Δ ; half sum ρ_{Δ}
- define \mathcal{W} by $\mathcal{W}_{\mathfrak{G}} = \mathcal{W}_{\Delta} \cdot \mathcal{W}$ s.t. the length of $\omega \in \mathcal{W}$ is minimum [length is defined w.r.t. a certain generating set]
- $D(s) = \prod_{\alpha \in \Delta^+} \frac{(s,\alpha)}{(\rho_{\Delta},\alpha)}$, where (,) is a scalar product

multiplicity formula for $k_{t'}^t$

$$\sum_{\omega \in \mathcal{W}} \operatorname{sgn}(\omega) D[\omega(t + \rho_{\mathfrak{G}})] P_{A} \{ p[\omega(t + \rho_{\mathfrak{G}})] - t' - p(\rho_{\mathfrak{G}}) \}$$

Kostant's multiplicity formula (3/3)

multiplicity formula for $k_{t'}^t$

$$\sum_{\omega \in \mathcal{W}} \operatorname{sgn}(\omega) D[\omega(t + \rho_{\mathfrak{G}})] P_{\mathcal{A}} \{ p[\omega(t + \rho_{\mathfrak{G}})] - t' - p(\rho_{\mathfrak{G}}) \}$$

history

- builds on Weyl's character formula
- due to Kostant (early sixties, unpublished)
- for most general form see Vogan (1978) or Heckman (1982)

comments

- the formula is NOT positive, because of the $\mathrm{sgn}(\omega)$
- the sum has $|\mathcal{W}| \leq |\mathcal{W}_\mathfrak{G}|$ elements; $|\mathcal{W}_{\mathrm{SU}(m)}| = m!$

Example $SU(4) \supset SU(2) \otimes SU(2)$ [Patera/Sharp (1980)]

generating function for
$$k_{t'}^t$$
 where $t = (a_1, a_2, a_3), t' = (b_1, b_2)$
magic $(a_1, a_2, a_3, b_1, b_2) = [a_1^3 a_2^2 a_3^3 b_1^4 b_2^4 + a_1^3 a_2 a_3^2 b_1^3 b_2^3 + a_1^2 a_2 a_3^3 b_1^3 b_2^3 + a_1^2 a_2 a_3^2 b_1^4 b_2^2 + a_1^2 a_2 a_3^2 b_1^2 b_2^2 - 2a_1^2 a_2 a_3^2 b_1^2 b_2^2 - a_1^2 a_2 a_3 b_1^3 b_2 - a_1^2 a_2 a_3 b_1 b_2^3 - a_1^2 a_3^2 b_1^2 b_2^2 - a_1 a_2 a_3^2 b_1^3 b_2 - a_1 a_2 a_3^2 b_1 b_2^3 - 2a_1 a_2 a_3 b_1^2 b_2^2 + a_1 a_2 a_3 b_1^2 + a_1 a_2 a_3 b_2^2 + a_1 a_2 b_1 b_2 + a_2 a_3 b_1 b_2 + 1]/[(1 - a_1^2)(1 - a_2^2)(1 - a_3^2)(1 - a_2 b_1^2)(1 - a_3 b_1 b_2)(1 - a_1 a_3 b_2^2)(1 - a_1 a_3 b_1^2)]$

Interlude: rational convex geometry (1/3)

Lawrence-Varchenko theorem

$$\frac{1}{(1-x)(1-y)} - \frac{y^3}{(1-x)(1-y)} + \frac{x^6y^3}{(1-x)(1-xy)} - \frac{x^3}{(1-xy)(1-x)} = y^2 + xy^2 + x^2y^2 + x^3y^2 + x^4y^2 + y^2 + x^2y + x^3y + 1 + x + x^2$$

25 / 29

Interlude: rational convex geometry (2/3)

Barvinok (1994), Barvinok/Pommersheim (1999) polynomial time algorithm (fixed dimension *d*): input: polyhedron *P* (without lines) output: $f_P(\mathbf{x}) = \sum_{i \in I} \epsilon_i \frac{\mathbf{x}^{v_i}}{\prod_{1 \le j \le d} (1 - \mathbf{x}^{u_{ij}})}$, where $f_P(\mathbf{x}) = \sum_{m \in P \cap \mathbb{Z}^d} \mathbf{x}^m$, $\epsilon_i \in \{-1, 1\}, v_i, u_{ij} \in \mathbb{Z}^d, u_{ij} \ne 0.$

Barvinok/Woods (2003)

polynomial time algorithm (fixed q):

input:
$$f_{\ell}(\mathbf{x}) = \sum_{i \in I} \epsilon_{\ell,i} \frac{\mathbf{x}^{v_{\ell,i}}}{\prod_{1 \le j \le q} (1 - \mathbf{x}^{u_{\ell,ij}})} = \sum_{m \in \mathbb{Z}^d} \beta_{\ell,m} \mathbf{x}^m$$
,
where $\epsilon_{\ell,i} \in \{-1, 1\}$, $v_{\ell,i}, u_{\ell,ij} \in \mathbb{Z}^d$, $u_{\ell,ij} \ne 0$, $\ell \in \{1, 2\}$
butput: Hadamard product $g(\mathbf{x}) = \sum_{i \in I} \gamma_i \frac{\mathbf{x}^{v_i}}{\prod_{1 \le j \le r} (1 - \mathbf{x}^{u_{ij}})} = f_1(\mathbf{x}) \odot f_2(\mathbf{x}) = \sum_{m \in \mathbb{Z}^d} \beta_{1,m} \beta_{2,m} \mathbf{x}^m$,
where $\gamma_i \in \mathbb{Q}$, $v_i, u_{ij} \in \mathbb{Z}^d$, $u_{ij} \ne 0$, $r \le 2q$

Interlude: rational convex geometry (3/3)

Barvinok (1994), Barvinok/Woods (2003) polynomial time algorithm (fixed q): input 1: $f(\mathbf{x}) = \sum_{i \in I} \gamma_i \frac{\mathbf{x}^{v_i}}{\prod_{1 \le i \le n} (1 - \mathbf{x}^{u_{ij}})}$ where $\gamma_i \in \mathbb{Q}, v_i, \overline{u_{ii}} \in \mathbb{Z}^n, u_{ii} \neq 0$ input 2: monomial map $\phi: \mathbb{C}^n \to \mathbb{C}^d$, $(z_1, \ldots, z_n) \mapsto (x_1, \ldots, x_d)$ where $x_i = \mathbf{z}^{l_i}$. $l_i \in \mathbb{Z}^n$ assumption: image of ϕ lies not entirely in the set of poles of $f(\mathbf{x})$ output: $g(\mathbf{z}) = \sum_{i \in I} \gamma'_i \frac{\mathbf{z}^{f_i}}{\prod_{1 < i < r} (1 - \mathbf{z}^{e_{ij}})} = f[\phi(\mathbf{x})],$ where $\gamma'_i \in \mathbb{Q}$, $f_i, e_{ij} \in \mathbb{Z}^d$, $e_{ij} \neq 0$, $r \leq q$

implementations

barvinok

LattE

(http://www.kotnet.org/~skimo/barvinok/)
 (http://www.math.ucdavis.edu/~latte/)

Continue example for $SU(4) \supset SU(2) \otimes SU(2)$

generating function for $k_{t'}^t$ where $t = (a_1, a_2, a_3), t' = (b_1, b_2)$ magic $(a_1, a_2, a_3, b_1, b_2) = [a_1^3 a_2^2 a_3^3 b_1^4 b_2^4 + a_1^3 a_2 a_3^2 b_1^3 b_2^3 + a_1^2 a_2 a_3^3 b_1^3 b_2^3 + a_1^2 a_2 a_3^2 b_1^2 b_2^2 + a_1^2 a_2 a_3^2 b_1^2 b_2^2 - a_1^2 a_2^2 a_3^2 b_1^2 b_2^2 - a_1 a_2 a_3^2 b_1^2 b_2^2 - a_1 a_2 a_3^2 b_1^2 b_2^2 - a_1 a_2 a_3^2 b_1 b_2^3 - 2a_1 a_2 a_3 b_1^2 b_2^2 + a_1 a_2 a_3 b_1^2 + a_1 a_2 a_3 b_2^2 + a_1 a_2 b_1 b_2 + a_2 a_3 b_1 b_2 + 1]/[(1 - a_1^2)(1 - a_2^2)(1 - a_3^2)(1 - a_1 b_1 b_2)(1 - a_3 b_1 b_2)(1 - a_1 a_3 b_2^2)(1 - a_1 a_3 b_1^2)]$

compute $f: N \mapsto k_{Nt'}^{Nt}$ for t = (2, 2, 2) and t' = (0, 2)

- compute Hadamard product (using barvinok): $\operatorname{magic}(a_1, a_2, a_3, b_1, b_2) \odot \frac{a_1^2 a_2^2 a_3^2 b_2^2}{1 - a_1^2 a_2^2 a_3^2 b_2^2} = \frac{-a_1^6 a_2^6 a_3^6 b_2^6 + 2a_1^4 a_2^4 a_3^4 b_2^4}{(1 - a_1^2 a_2^2 a_3^2 b_2^2)(1 - a_1^4 a_2^4 a_3^4 b_2^4)}$
- $\Rightarrow \text{ generating function for } f: \\ \frac{-N^3 + 2N^2}{(1-N)(1-N^2)} = 2N^2 + N^3 + 3N^4 + 2N^5 + 4N^6 + 3N^7 + 5N^8 + \dots$

http://www.org.chemie.tu-muenchen.de/people/zeier/

Thank you for your attention!

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶