Tensor algebras, words, and invariants of polynomials in non-commutative variables

Mike Zabrocki
(Joint work with A. Bergeron-Brlek and C. Hohlweg)

November 24, 2009

Commutative starting point

Let V be a k-vector space with basis $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. Then the symmetric algebra $S(V)$ on V over k

$$
\begin{aligned}
S(V) & =k \oplus V \oplus S^{2}(V) \oplus S^{3}(V) \oplus \cdots \\
& \simeq k\left[x_{1}, x_{2}, \ldots, x_{n}\right]
\end{aligned}
$$

Commutative starting point

Let V be a k-vector space with basis $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. Then the symmetric algebra $S(V)$ on V over k

$$
\begin{aligned}
S(V) & =k \oplus V \oplus S^{2}(V) \oplus S^{3}(V) \oplus \cdots \\
& \simeq k\left[x_{1}, x_{2}, \ldots, x_{n}\right]
\end{aligned}
$$

Let G be a finite subgroup of $G L(V)$. The invariant algebra of G is

$$
\begin{aligned}
S(V)^{G} & =k \oplus V^{G} \oplus S^{2}(V)^{G} \oplus S^{3}(V)^{G} \oplus \cdots \\
& \simeq k\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{G}
\end{aligned}
$$

and its Hilbert-Poincaré series is

$$
P\left(S(V)^{G}\right)=\sum_{d \geq 0} \operatorname{dim}\left(S^{d}(V)^{G}\right) q^{d}
$$

Commutative starting point

Theorem (Molien, Noether, Sheppard-Todd-Chevalley)

V finite dimensional k-vector space
G finite subroup of $G L(V)$
i) If char $k=0$, then $P\left(S(V)^{G}\right)=\frac{1}{|G|} \sum_{g \in G} \frac{1}{\operatorname{det}(I-g q)}$.
ii) As a k-algebra, $S(V)^{G}$ is finitely generated.
iii) If char $k=0$, then $S(V)^{G}$ is a free commutative k-algebra (with a homogeneous free generating set) if and only if G is generated by pseudo-reflections.

Direction: Non-Commutative world

The tensor algebra $T(V)$ on V over k

$$
\begin{aligned}
T(V) & =k \oplus V \oplus V^{\otimes 2} \oplus V^{\otimes 3} \oplus \cdots \\
& \simeq k\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle
\end{aligned}
$$

where

$$
T^{d}(V)=V^{\otimes d}=V \otimes V \otimes \cdots \otimes V \simeq k\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle_{d} .
$$

Direction: Non-Commutative world

The tensor algebra $T(V)$ on V over k

$$
\begin{aligned}
T(V) & =k \oplus V \oplus V^{\otimes 2} \oplus V^{\otimes 3} \oplus \cdots \\
& \simeq k\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle
\end{aligned}
$$

where

$$
T^{d}(V)=V^{\otimes d}=V \otimes V \otimes \cdots \otimes V \simeq k\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle_{d}
$$

The invariant algebra of G is

$$
\begin{aligned}
T(V)^{G} & =k \oplus V^{G} \oplus\left(V^{\otimes 2}\right)^{G} \oplus\left(V^{\otimes 3}\right)^{G} \oplus \cdots \\
& \simeq k\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle^{G}
\end{aligned}
$$

and its Hilbert-Poincaré series is

$$
P\left(T(V)^{G}\right)=\sum_{d \geq 0} \operatorname{dim}\left(\left(V^{\otimes d}\right)^{G}\right) q^{d}
$$

Direction: Non-Commutative world

Theorem (Dick-Formaneck, Kharchenko, Lane)

V finite dimensional k-vector space
G finite subroup of $G L(V)$
i) If char $k=0$, then $P\left(T(V)^{G}\right)=\frac{1}{|G|} \sum_{g \in G} \frac{1}{1-\operatorname{Tr}(g) q}$.
ii) As a k-algebra, $T(V)^{G}$ finitely generated $\Longleftrightarrow G$ is scalar.
iii) $T(V)^{G}$ is a free associative k-algebra (with a homogeneous free generating set).

Direction: Non-Commutative world

Theorem (Dick-Formaneck, Kharchenko, Lane)

V finite dimensional k-vector space
G finite subroup of $G L(V)$
i) If char $k=0$, then $P\left(T(V)^{G}\right)=\frac{1}{|G|} \sum_{g \in G} \frac{1}{1-\operatorname{Tr}(g) q}$.
ii) As a k-algebra, $T(V)^{G}$ finitely generated $\Longleftrightarrow G$ is scalar.
iii) $T(V)^{G}$ is a free associative k-algebra (with a homogeneous free generating set).

- Is there a finite description of the dimensions and generators of $T(V)^{G}$ when G is not scalar?

Some Examples

Let $V=\mathcal{L}\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \simeq V^{(n-1,1)} \oplus V^{(n)}$ with the permutation action on the variables.
Then $T(V) \simeq k\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$
and $T(V)^{S_{n}}=$ symmetric functions in non-commutative variables.

Some Examples

Let $V=\mathcal{L}\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \simeq V^{(n-1,1)} \oplus V^{(n)}$ with the permutation action on the variables.
Then $T(V) \simeq k\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$
and $T(V)^{S_{n}}=$ symmetric functions in non-commutative variables.

Let $V=\mathcal{L}\left\{y_{1}, y_{2}, \ldots, y_{n-1}\right\} \simeq V^{(n-1,1)}$ where $y_{k}=x_{k}-x_{k+1}$
Then $T(V) \simeq k\left\langle y_{1}, y_{2}, \ldots, y_{n-1}\right\rangle$
Poincarè series counted by oscillating tableaux (see talk by Goupil)

Some Examples

Let $V=\mathcal{L}\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \simeq V^{(n-1,1)} \oplus V^{(n)}$ with the permutation action on the variables.
Then $T(V) \simeq k\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$
and $T(V)^{S_{n}}=$ symmetric functions in non-commutative variables.

Let $V=\mathcal{L}\left\{y_{1}, y_{2}, \ldots, y_{n-1}\right\} \simeq V^{(n-1,1)}$ where $y_{k}=x_{k}-x_{k+1}$
Then $T(V) \simeq k\left\langle y_{1}, y_{2}, \ldots, y_{n-1}\right\rangle$
Poincarè series counted by oscillating tableaux (see talk by Goupil)

Let $V=\mathcal{L}\left\{x_{1}, x_{2}\right\}$ acting on the Dihedral group generated by elements
$r^{n}=s^{2}=1=r s r_{s}$ acts on the two elements x_{1}, x_{2}.
$T(V)=k\left\langle x_{1}, x_{2}\right\rangle$
Poincarè series counted by ???
$T(V)$ is the repeated internal tensor product of of the representations corresponding to V.

The spaces of invariants $T(V)^{G}$ are the trivial representations inside of these repeated internal tensor products.

Calculating the dimensions of $T^{d}(V)^{G}$ is the same as determining the multiplicity of the trivial character in $d^{\text {th }}$ Kronecker power of the character corresponding to V.

Cayley graph of G

Let G be a finite group with generating set S and e the identity in G.
A Cayley graph $\Gamma=\Gamma(G, S)$ is a colored directed graph where

- vertices are identified with G
- to each generator $s \in S$ is assigned a color
- for any $g, h \in G$ and $s \in S$,

$$
g \bullet \longrightarrow \quad \text { if } h=g s
$$

Cayley graph of G

Let G be a finite group with generating set S and e the identity in G.
A Cayley graph $\Gamma=\Gamma(G, S)$ is a colored directed graph where

- vertices are identified with G
- to each generator $s \in S$ is assigned a color
- for any $g, h \in G$ and $s \in S$,

$$
g \bullet \longrightarrow h \quad \text { if } h=g s
$$

A word which reduces to g is a path along the edges of Γ from e to g. A word does not cross e if it has no proper prefix which reduces to e.

Cayley graph of S_{3}

$\Gamma\left(S_{3},\{(12),(132)\}\right):$

Cayley graph of S_{3}

$\Gamma\left(S_{3},\{(12),(132)\}\right):$

Path: $e=(1) \longrightarrow(132) \longrightarrow(123) \longrightarrow(1) \longrightarrow(12) \longrightarrow(1) \longrightarrow(132) \longrightarrow(23)$

Cayley graph of S_{3}

$\Gamma\left(S_{3},\{(12),(132)\}\right):$

Path: $e=(1) \longrightarrow(132) \longrightarrow(123) \longrightarrow(1) \longrightarrow(12) \longrightarrow(1) \longrightarrow(132) \longrightarrow(23)$ Word: bbbaaba does cross the identity

Cayley graph of S_{3}

$\Gamma\left(S_{3},\{(12),(132)\}\right):$

Path: $e=(1) \longrightarrow(132) \longrightarrow(123) \longrightarrow(1) \longrightarrow(12) \longrightarrow(1) \longrightarrow(132) \longrightarrow(23)$ Word: bbbaaba does cross the identity

Path: $e=(1) \longrightarrow(132) \longrightarrow(23) \longrightarrow(12) \longrightarrow(13) \longrightarrow(123)$

Cayley graph of S_{3}

$\Gamma\left(S_{3},\{(12),(132)\}\right):$

Path: $e=(1) \longrightarrow(132) \longrightarrow(123) \longrightarrow(1) \longrightarrow(12) \longrightarrow(1) \longrightarrow(132) \longrightarrow(23)$ Word: bbbaaba does cross the identity

Path: $e=(1) \longrightarrow(132) \longrightarrow(23) \longrightarrow(12) \longrightarrow(13) \longrightarrow(123)$
Word: babba does not cross the identity

Partitions and Tableaux

A partition λ of a positive integer n is $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{\ell}>0$ such that $n=|\lambda|=\lambda_{1}+\lambda_{2}+\ldots+\lambda_{\ell}$. The partitions of 3 are

$(1,1,1)$

$(2,1)$

(3)

Partitions and Tableaux

A partition λ of a positive integer n is $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{\ell}>0$ such that $n=|\lambda|=\lambda_{1}+\lambda_{2}+\ldots+\lambda_{\ell}$. The partitions of 3 are

$(1,1,1)$

$(2,1)$

(3)

A tableau of shape $\lambda \vdash n$, is a filling of λ with values in $\{1,2, \ldots, n\}$. A tableau is standard if its entries form an increasing sequence along each line and each column. $S T a b_{n}$ is the set of standard tableau with n boxes.

$$
S T a b_{3}=\left\{\begin{array}{cccc}
\begin{array}{|c}
3 \\
2 \\
\hline 1 \\
\hline
\end{array}, & \begin{array}{l}
2 \\
1 \\
1
\end{array}, & \boxed{3}, \\
\hline 12 & \boxed{1|2| 3} \\
\hline
\end{array}\right\}
$$

Partitions and Tableaux

A partition λ of a positive integer n is $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{\ell}>0$ such that $n=|\lambda|=\lambda_{1}+\lambda_{2}+\ldots+\lambda_{\ell}$. The partitions of 3 are

(1, 1, 1)

$(2,1)$

(3)

A tableau of shape $\lambda \vdash n$, is a filling of λ with values in $\{1,2, \ldots, n\}$. A tableau is standard if its entries form an increasing sequence along each line and each column. $S T a b_{n}$ is the set of standard tableau with n boxes.

$$
\text { STab }_{3}=\left\{\begin{array}{llll}
\begin{array}{|l}
3 \\
2 \\
1 \\
\hline
\end{array}, & \begin{array}{l}
2 \\
1
\end{array}, & \left\lvert\, \begin{array}{ll}
3 & \\
122
\end{array}\right. & 1|2| 3 \\
\hline
\end{array}\right\}
$$

Robinson-Schensted correspondence $\sigma \longleftrightarrow(P(\sigma), Q(\sigma))$
$P(\sigma)$ insertion tableau and $Q(\sigma)$ recording tableau.

General Theorem for S_{n}

$\left\{V^{\lambda}\right\}_{\lambda \vdash n}$ forms a complete system of irreducible S_{n}-modules.

Theorem

The dimension of $T^{d}\left(V^{(n-1,1)}\right)^{S_{n}}$ is equal to the number of words of length d which reduce to e in the Cayley graph $\Gamma\left(S_{n},\{(12),(132), \ldots,(1 n \cdots 432)\}\right)$.
$\operatorname{dim}\left(T^{4}\left(V^{(2,1)}\right)^{S_{3}}\right)=$ number of words of length 4 which reduce to e in

$=\mid\{$ aaaa, abab, baba\}|

Free generators for $T\left(V^{(n-1,1)}\right)^{S_{n}}$

Proposition

The number of free generators of $T\left(V^{(n-1,1)}\right)^{S_{n}}$ as an algebra are counted by the words in $\Gamma\left(S_{n},\{(12),(132), \ldots,(1 n \cdots 432)\}\right)$ which reduce to the identity without crossing it .

Free generators for $T\left(V^{(n-1,1)}\right)^{S_{n}}$

Proposition

The number of free generators of $T\left(V^{(n-1,1)}\right)^{S_{n}}$ as an algebra are counted by the words in $\Gamma\left(S_{n},\{(12),(132), \ldots,(1 n \cdots 432)\}\right)$ which reduce to the identity without crossing it .

The free generators of $T\left(V^{(2,1)}\right)^{S_{3}}$ are counted by

Free generators for $T\left(V^{(n-1,1)}\right)^{S_{n}}$

Proposition

The number of free generators of $T\left(V^{(n-1,1)}\right)^{S_{n}}$ as an algebra are counted by the words in $\Gamma\left(S_{n},\{(12),(132), \ldots,(1 n \cdots 432)\}\right)$ which reduce to the identity without crossing it .

The free generators of $T\left(V^{(2,1)}\right)^{S_{3}}$ are counted by

$a a$	$b b b$	$a b a b$ $b a b a$	$a b b b a$ $b a a b b$ $b b a a b$	$a b a a a b$ $a b b a b b$ $b a a b a b a$ $b a b b a b$	\ldots
1	1	2	3	5	\ldots

the Fibonacci numbers.

Proof uses Solomon's descent algebra of S_{n}

Let $I=\{1,2, \ldots, n-1\}$ and $\operatorname{Des}(\sigma)=\{i \in I \mid \sigma(i)>\sigma(i+1)\}$ be the descent set of $\sigma \in S_{n}$. For $K \subseteq I$, set

$$
d_{K}=\sum_{\substack{\sigma \in S_{n} \\ \operatorname{Des}(\sigma)=K}} \sigma .
$$

For example,

$$
d_{\{1\}}=(12)+(132)+(1432)+\cdots+(1 n \cdots 432) .
$$

The Solomon's descent algebra $\Sigma\left(S_{n}\right)$ of S_{n} is a subalgebra of $\mathbb{Z} S_{n}$ with basis $\left\{d_{K} \mid K \subseteq I\right\}$. (Solomon) There is an algebra morphism

$$
\theta: \Sigma\left(S_{n}\right) \rightarrow \mathbb{Z} \operatorname{lrr}\left(S_{n}\right)
$$

Proof uses Solomon's descent algebra of S_{n}

For standard tableau t of shape $\lambda \vdash n$ define

$$
z_{t}=\sum_{\substack{\sigma \in S_{n} \\ Q(\sigma)=t}} \sigma,
$$

where $Q(\sigma)$ is the recording tableau of σ in the Robinson-Schensted corr. For example,

$$
z_{2}=(12)+(132)+(1432)+\cdots+(1 n \cdots 432)=d_{\{1\}} .
$$

(Poirier-Reutenaueur) Let $\mathcal{Q}_{n}=\mathcal{L}\left\{z_{t} \mid t \in S T a b_{n}\right\}$. There is a linear map

$$
\begin{array}{rll}
\tilde{\theta}: \mathcal{Q}_{n} & \longrightarrow & \mathbb{Z} \operatorname{lrr}\left(S_{n}\right) \\
z_{t} & \mapsto & \chi^{\operatorname{shape}(t)}
\end{array}
$$

and $\left.\tilde{\theta}\right|_{\Sigma\left(S_{n}\right)}=\theta$. In particular, $\tilde{\theta}\left(z_{\frac{1}{13 \mid 4] \cdot m}}\right)=\theta\left(d_{\{1\}}\right)=\chi^{(n-1,1)}$.

Idea of the Proof

Proposition

The dimension of $T^{d}\left(V^{(n-1,1)}\right)^{S_{n}}$ is equal to the coefficient of e in $d_{\{1\}}{ }^{d}$.

Idea of the Proof

Proposition

The dimension of $T^{d}\left(V^{(n-1,1)}\right)^{S_{n}}$ is equal to the coefficient of e in $d_{\{1\}}{ }^{d}$.
Note that $\operatorname{dim}\left(T^{4}\left(V^{(3-1,1)}\right)^{S_{3}}\right)=$ Multiplicity of the trivial in $T^{4}\left(V^{(3-1,1)}\right)$.

$$
\begin{aligned}
d_{\{1\}}^{4} & =3 e+3 d_{\{2\}}+2 d_{\{1\}}+3 d_{\{1,2\}} \\
& =3 z_{[1213]}+3 z_{\frac{312]}{}}+2 z_{\frac{12]}{13}}+3 z_{\frac{3}{2}}
\end{aligned}
$$

Idea of the Proof

Proposition

The dimension of $T^{d}\left(V^{(n-1,1)}\right)^{S_{n}}$ is equal to the coefficient of e in $d_{\{1\}}{ }^{d}$.
Note that $\operatorname{dim}\left(T^{4}\left(V^{(3-1,1)}\right)^{S_{3}}\right)=$ Multiplicity of the trivial in $T^{4}\left(V^{(3-1,1)}\right)$.

$$
\begin{aligned}
& d_{\{1\}}^{4}=3 e+3 d_{\{2\}}+2 d_{\{1\}}+3 d_{\{1,2\}} \\
& =3 z_{[1213]}+3 z_{[3]}^{[12]}+2 z_{\left[\frac{2}{13]}\right.}+3 z_{\left[\frac{3}{2}\right]} \\
& \downarrow \tilde{\theta} \\
& \left(\chi^{(2,1)}\right)^{4}=3 \chi^{(3)}+3 \chi^{(2,1)}+2 \chi^{(2,1)}+3 \chi^{(1,1,1)}
\end{aligned}
$$

Key Lemma

Lemma

The coefficient of e in $d_{\{1\}}{ }^{d}=((12)+(132)+\ldots+(1 n \cdots 432))^{d}$ is equal to the number of words of length d which reduce to e in $\Gamma\left(S_{n},\{(12),(132), \ldots,(1 n \cdots 432)\}\right)$.

Key Lemma

Lemma

The coefficient of e in $d_{\{1\}}{ }^{d}=((12)+(132)+\ldots+(1 n \cdots 432))^{d}$ is equal to the number of words of length d which reduce to e in $\Gamma\left(S_{n},\{(12),(132), \ldots,(1 n \cdots 432)\}\right)$.

Consider $\Gamma\left(S_{3},\{(12),(132)\}\right)$ and let $a=(12)$ and $b=(132)$. Then

$$
d_{\{1\}}^{4}=(a+b)^{4}=3 e+2(12)+3(23)+3(123)+2(132)+3(13)
$$

More generally: Multiplicity of V^{λ} in $\left(V^{(n-1,1)}\right)^{\otimes d}$

Theorem

Let $\lambda \vdash n$. The multiplicity of V^{λ} in $\left(V^{(n-1,1)}\right)^{\otimes d}$ is

$$
\sum_{\substack{t \in S T a b_{n} \\ \text { sh }(t)=\lambda}}\left|w\left(\sigma_{t}, d ; \Gamma\right)\right|,
$$

where $w\left(\sigma_{t}, d ; \Gamma\right)$ is the set of words of length d which reduce to σ_{t} in $\Gamma=\Gamma\left(S_{n},\{(12),(132), \ldots,(1 n \cdots 432)\}\right)$ and $\sigma_{t} \in S_{n}$ is such that $Q\left(\sigma_{t}\right)=t$. In particular, the multiplicity of the trivial is $|w(e, d ; \Gamma)|$.

Decomposition of the S_{3}-module $\left(V^{(2,1)}\right)^{\otimes 4}$

Consider $\Gamma=\Gamma\left(S_{3},\{(12),(132)\}\right)$ and set $a=(12)$ and $b=(132)$.

Decomposition of the S_{3}-module $\left(V^{(2,1)}\right)^{\otimes 4}$

Consider $\Gamma=\Gamma\left(S_{3},\{(12),(132)\}\right)$ and set $a=(12)$ and $b=(132)$.

$V^{(3)}: \quad\left|w\left(\sigma_{[1213}, 4 ; \Gamma\right)\right|$

$=|\{a a a a, a b a b, b a b a\}|=3$

Decomposition of the S_{3}-module $\left(V^{(2,1)}\right)^{\otimes 4}$

Consider $\Gamma=\Gamma\left(S_{3},\{(12),(132)\}\right)$ and set $a=(12)$ and $b=(132)$.

$$
\begin{array}{ll}
V^{(3)}: & \left|w\left(\sigma_{[1213}, 4 ; \Gamma\right)\right| \\
V^{(2,1)}: & \left|w\left(\sigma_{\left[\frac{3}{12]}\right.}, 4 ; \Gamma\right)\right|+\left|w\left(\sigma_{\left[\frac{1}{13}\right]}, 4 ; \Gamma\right)\right| \\
& =|\{a a b a, b a b a b, b a b a\}|=3 \\
& \\
& +|\{a b b b, b b b a\}|=5
\end{array}
$$

Decomposition of the S_{3}-module $\left(V^{(2,1)}\right)^{\otimes 4}$

Consider $\Gamma=\Gamma\left(S_{3},\{(12),(132)\}\right)$ and set $a=(12)$ and $b=(132)$.

$$
\begin{array}{lll}
V^{(3)}: & \left|w\left(\sigma_{\text {(1213 }}, 4 ; \Gamma\right)\right| & =\mid\{\text { aaaa, abab, baba }\} \mid=3 \\
V^{(2,1)}: & \left|w\left(\sigma_{\left[\frac{3}{12}\right]}, 4 ; \Gamma\right)\right|+\left|w\left(\sigma_{\text {[13 }}, 4 ; \Gamma\right)\right| & =\mid\{\text { aaba, baaa, } b b a b\} \mid \\
& & +|\{a b b b, b b b a\}|=5 \\
V^{(1,1,1)}: & \left|w\left(\sigma_{\frac{3}{2}}, 4 ; \Gamma\right)\right| & =|\{a a a b, a b a a, b a b b\}|=3
\end{array}
$$

Decomposition of the S_{3}-module $\left(V^{(2,1)}\right)^{\otimes 4}$

Consider $\Gamma=\Gamma\left(S_{3},\{(12),(132)\}\right)$ and set $a=(12)$ and $b=(132)$.

$$
\begin{array}{lll}
V^{(3)}: & \left|w\left(\sigma_{[1213}, 4 ; \Gamma\right)\right| & =\mid\{\text { aaaa, abab, baba }\} \mid=3 \\
V^{(2,1)}: & \left|w\left(\sigma_{\left[\frac{3}{12}\right.}, 4 ; \Gamma\right)\right|+\left|w\left(\sigma_{\text {[13 }}, 4 ; \Gamma\right)\right| & =\mid\{\text { aaba, baaa, } b b a b\} \mid \\
& & +|\{a b b b, b b b a\}|=5 \\
V^{(1,1,1)}: & \left|w\left(\sigma_{\frac{3}{2}}, 4 ; \Gamma\right)\right| & =|\{a a a b, a b a a, b a b b\}|=3
\end{array}
$$

$$
\left(V^{(2,1)}\right)^{\otimes 4}=3 V^{(3)} \oplus 5 V^{(2,1)} \oplus 3 V^{(1,1,1)}
$$

Kronecker coefficients in general

This idea can be used much more generally than I am considering here. All we need is an embedding of the algebra of representations inside of a group algebra with non-negative integer coefficients and we get for free a combinatorial interpretation of Kronecker coefficients.

Kronecker coefficients in general

This idea can be used much more generally than I am considering here. All we need is an embedding of the algebra of representations inside of a group algebra with non-negative integer coefficients and we get for free a combinatorial interpretation of Kronecker coefficients.

We already have the descent algebra where the representation ring indexed by ribbon shapes lie (and in particular hooks).

Kronecker coefficients in general

This idea can be used much more generally than I am considering here. All we need is an embedding of the algebra of representations inside of a group algebra with non-negative integer coefficients and we get for free a combinatorial interpretation of Kronecker coefficients.

We already have the descent algebra where the representation ring indexed by ribbon shapes lie (and in particular hooks).

Example: Combinatorial interpretation for Kronecker products with hook shapes.

$$
s_{\left(n-k, 1^{k}\right)} * s_{\left(n-\ell, 1^{\ell}\right)}=\sum_{(\sigma, \tau)} s_{\lambda(Q(\sigma \tau))}
$$

where the sum is over (σ, τ) such that $\operatorname{Des}(\sigma)=\{1,2, \ldots, k\}$ and $\operatorname{Des}(\tau)=\{1,2, \ldots, \ell\}$ and $\sigma \tau$ is an involution.

Kronecker coefficients in general

Postitives: Embeddings of the representation ring of the symmetric group exist.

Kronecker coefficients in general

Postitives: Embeddings of the representation ring of the symmetric group exist.

The descent algebra is such an embedding, and by consequence Kronecker products of representations indexed by ribbons come 'for free' from this idea.

Kronecker coefficients in general

Postitives: Embeddings of the representation ring of the symmetric group exist.

The descent algebra is such an embedding, and by consequence Kronecker products of representations indexed by ribbons come 'for free' from this idea.

Negatives: Nothing more comes without work. If you want more Kronecker coefficients you need to go out and find better embeddings of algebras of characters into better group rings.

Kronecker coefficients in general

Postitives: Embeddings of the representation ring of the symmetric group exist.

The descent algebra is such an embedding, and by consequence Kronecker products of representations indexed by ribbons come 'for free' from this idea.

Negatives: Nothing more comes without work. If you want more Kronecker coefficients you need to go out and find better embeddings of algebras of characters into better group rings.

The combinatorial interpretation is perhaps not useful it is in terms of paths in a graph or alternatively in terms of compositions of group elements.

Applications

Let $[n]=\{1,2, \ldots n\}$. A set partition of $[n]$, denoted by $A \vdash[n]$, is a family $A_{1}, A_{2}, \ldots, A_{k} \subseteq[n]$ such that $A_{1} \cup A_{2} \cup \ldots \cup A_{k}=[n]$.

A set partition A is splitable if $A=B \circ C$, where B and C are non empty and

$$
B \circ C= \begin{cases}\left\{B_{1} \cup\left(C_{1}+n\right), \ldots, B_{k} \cup\left(C_{k}+n\right),\left(C_{k+1}+n\right), \ldots,\left(C_{\ell}+n\right)\right\} & \text { if } k \leq \ell \\ \left\{B_{1} \cup\left(C_{1}+n\right), \ldots, B_{\ell} \cup\left(C_{\ell}+n\right), B_{\ell+1}, \ldots, B_{k}\right\} & \text { if } k>\ell .\end{cases}
$$

Applications

Let $[n]=\{1,2, \ldots n\}$. A set partition of $[n]$, denoted by $A \vdash[n]$, is a family $A_{1}, A_{2}, \ldots, A_{k} \subseteq[n]$ such that $A_{1} \cup A_{2} \cup \ldots \cup A_{k}=[n]$.

A set partition A is splitable if $A=B \circ C$, where B and C are non empty and

$$
B \circ C= \begin{cases}\left\{B_{1} \cup\left(C_{1}+n\right), \ldots, B_{k} \cup\left(C_{k}+n\right),\left(C_{k+1}+n\right), \ldots,\left(C_{\ell}+n\right)\right\} & \text { if } k \leq \ell \\ \left\{B_{1} \cup\left(C_{1}+n\right), \ldots, B_{\ell} \cup\left(C_{\ell}+n\right), B_{\ell+1}, \ldots, B_{k}\right\} & \text { if } k>\ell .\end{cases}
$$

The set partitions of [3] are

$$
\begin{aligned}
& \{\{1\},\{2\},\{3\}\} \quad \text { nonsplitable } \\
& \{\{1\},\{2,3\}\} \quad \text { nonsplitable } \\
& \{\{1,2\},\{3\}\}=\{\{1\}\} \circ\{\{1\},\{2\}\} \\
& \{\{1,3\},\{2\}\}=\{\{1\},\{2\}\} \circ\{\{1\}\} \\
& \{\{1,2,3\}\}=\{\{1\}\} \circ\{\{1\}\} \circ\{\{1\}\}
\end{aligned}
$$

Invariant algebra $T\left(V^{(n)} \oplus V^{(n-1,1)}\right)^{S_{n}} \simeq \mathbb{Q}\left\langle X_{n}\right\rangle^{S_{n}}$

$T\left(V^{(n)} \oplus V^{(n-1,1)}\right)^{S_{n}} \simeq \mathbb{Q}\left\langle X_{n}\right\rangle^{S_{n}}$ is the algebra of Symmetric polynomials in non-commutative variables (Wolf, Rosas and Sagan)

- $\mathbb{Q}\left\langle X_{n}\right\rangle^{S_{n}}=\mathcal{L}\left\{\mathbf{m}_{A}\left(X_{n}\right) \mid A\right.$ set partition with at most n parts $\}$
- $\mathbb{Q}\left\langle X_{n}\right\rangle^{S_{n}}$ freely generated by $\left\{\mathbf{m}_{A}\left(X_{n}\right) \mid A\right.$ non-splitable set partition with at most n parts $\}$ (Wolf)

Invariant algebra $T\left(V^{(n)} \oplus V^{(n-1,1)}\right)^{S_{n}} \simeq \mathbb{Q}\left\langle X_{n}\right\rangle^{S_{n}}$

Corollary

The dimension of $\left(\left(V^{(n)} \oplus V^{(n-1,1)}\right)^{\otimes d}\right)^{S_{n}} \simeq \mathbb{Q}\left\langle X_{n}\right\rangle_{d}^{S_{n}}$ is equal to the number of words of length d which reduce to the identity in $\Gamma\left(S_{n},\{e,(12),(132), \ldots,(1 n \cdots 432)\}\right)$.

Invariant algebra $T\left(V^{(n)} \oplus V^{(n-1,1)}\right)^{S_{n}} \simeq \mathbb{Q}\left\langle X_{n}\right\rangle^{S_{n}}$

Corollary

The dimension of $\left(\left(V^{(n)} \oplus V^{(n-1,1)}\right)^{\otimes d}\right)^{S_{n}} \simeq \mathbb{Q}\left\langle X_{n}\right\rangle_{d}^{S_{n}}$ is equal to the number of words of length d which reduce to the identity in $\Gamma\left(S_{n},\{e,(12),(132), \ldots,(1 n \cdots 432)\}\right)$.

Basis for $\mathbb{Q}\left\langle x_{1}, x_{2}, x_{3}\right\rangle_{3}^{S_{3}}$:

- $\boldsymbol{m}_{\{\{1\},\{2\},\{3\}\}}=x_{1} x_{2} x_{3}+x_{2} x_{1} x_{3}+x_{1} x_{3} x_{2}+x_{2} x_{3} x_{1}+x_{3} x_{1} x_{2}+x_{3} x_{2} x_{1}$,
- $\mathbf{m}_{\{\{1,2\},\{3\}\}}=x_{1} x_{1} x_{2}+x_{1} x_{1} x_{3}+x_{2} x_{2} x_{1}+x_{2} x_{2} x_{3}+x_{3} x_{3} x_{1}+x_{3} x_{3} x_{2}$,
- $\boldsymbol{m}_{\{\{1,3\},\{2\}\}}=x_{1} x_{2} x_{1}+x_{1} x_{3} x_{1}+x_{2} x_{1} x_{2}+x_{2} x_{3} x_{2}+x_{3} x_{1} x_{3}+x_{3} x_{2} x_{3}$,
- $\mathbf{m}_{\{\{1\},\{2,3\}\}}=x_{1} x_{2} x_{2}+x_{1} x_{3} x_{3}+x_{2} x_{1} x_{1}+x_{2} x_{3} x_{3}+x_{3} x_{1} x_{1}+x_{3} x_{2} x_{2}$,
- $\boldsymbol{m}_{\{\{1,2,3\}\}}=x_{1} x_{1} x_{1}+x_{2} x_{2} x_{2}+x_{3} x_{3} x_{3}$.

Invariant algebra $T\left(V^{(n)} \oplus V^{(n-1,1)}\right)^{S_{n}} \simeq \mathbb{Q}\left\langle X_{n}\right\rangle^{S_{n}}$

Corollary

The dimension of $\left(\left(V^{(n)} \oplus V^{(n-1,1)}\right)^{\otimes d}\right)^{S_{n}} \simeq \mathbb{Q}\left\langle X_{n}\right\rangle_{d}^{S_{n}}$ is equal to the number of words of length d which reduce to the identity in
$\Gamma\left(S_{n},\{e,(12),(132), \ldots,(1 n \cdots 432)\}\right)$.
Basis for $\mathbb{Q}\left\langle x_{1}, x_{2}, x_{3}\right\rangle_{3}^{\boldsymbol{S}_{3}}$:

- $\boldsymbol{m}_{\{\{1\},\{2\},\{3\}\}}=x_{1} x_{2} x_{3}+x_{2} x_{1} x_{3}+x_{1} x_{3} x_{2}+x_{2} x_{3} x_{1}+x_{3} x_{1} x_{2}+x_{3} x_{2} x_{1}$,
- $\mathbf{m}_{\{\{1,2\},\{3\}\}}=x_{1} x_{1} x_{2}+x_{1} x_{1} x_{3}+x_{2} x_{2} x_{1}+x_{2} x_{2} x_{3}+x_{3} x_{3} x_{1}+x_{3} x_{3} x_{2}$,
- $\boldsymbol{m}_{\{\{1,3\},\{2\}\}}=x_{1} x_{2} x_{1}+x_{1} x_{3} x_{1}+x_{2} x_{1} x_{2}+x_{2} x_{3} x_{2}+x_{3} x_{1} x_{3}+x_{3} x_{2} x_{3}$,
- $\mathbf{m}_{\{\{1\},\{2,3\}\}}=x_{1} x_{2} x_{2}+x_{1} x_{3} x_{3}+x_{2} x_{1} x_{1}+x_{2} x_{3} x_{3}+x_{3} x_{1} x_{1}+x_{3} x_{2} x_{2}$,
- $\boldsymbol{m}_{\{\{1,2,3\}\}}=x_{1} x_{1} x_{1}+x_{2} x_{2} x_{2}+x_{3} x_{3} x_{3}$.

Words of length 3 which reduce to the identity in $\Gamma\left(S_{3},\{e,(12),(132)\}\right)$:
$\{b b b$, aae, aea, eaa, eee $\}$.

Free generators for $T\left(V^{(n)} \oplus V^{(n-1,1)}\right)^{S_{n}}$

Proposition

The number of free generators of $T\left(V^{(n)} \oplus V^{(n-1,1)}\right)^{S_{n}}$ as an algebra are counted by the words which reduce to the identity without crossing it in $\Gamma\left(S_{n},\{e,(12),(132), \ldots,(1 n \cdots 432)\}\right)$.

Free generators for $T\left(V^{(n)} \oplus V^{(n-1,1)}\right)^{S_{n}}$

Proposition

The number of free generators of $T\left(V^{(n)} \oplus V^{(n-1,1)}\right)^{S_{n}}$ as an algebra are counted by the words which reduce to the identity without crossing it in $\Gamma\left(S_{n},\{e,(12),(132), \ldots,(1 n \cdots 432)\}\right)$.

The free generators of $T\left(V^{(3)} \oplus V^{(2,1)}\right)^{S_{3}}$ are counted by
e

bbb	abab	abbba beaba
baba		
bebb		
bbeb		
aeea	bbabb baeba	
		aebab beab bebb abaeb bebeb bleeb aeeea

Free generators for $T\left(V^{(n)} \oplus V^{(n-1,1)}\right)^{S_{n}}$

Proposition

The number of free generators of $T\left(V^{(n)} \oplus V^{(n-1,1)}\right)^{S_{n}}$ as an algebra are counted by the words which reduce to the identity without crossing it in $\Gamma\left(S_{n},\{e,(12),(132), \ldots,(1 n \cdots 432)\}\right)$.

The free generators of $T\left(V^{(3)} \oplus V^{(2,1)}\right)^{S_{3}}$ are counted by

the odd indexed Fibonacci numbers.

Link between set partitions and words in Cayley graph

Corollary

The number of set partitions of [d] into at most n parts equals the number of words of length d which reduce to the identity in
$\Gamma\left(S_{n},\{e,(12),(132), \ldots,(1 n \cdots 432)\}\right)$.

Link between set partitions and words in Cayley graph

Corollary

The number of set partitions of [d] into at most n parts equals the number of words of length d which reduce to the identity in
$\Gamma\left(S_{n},\{e,(12),(132), \ldots,(1 n \cdots 432)\}\right)$.

Corollary

The number of nonsplitable set partitions of [d] into at most n parts equals the number of words of length d which reduce to the identity without crossing it in $\Gamma\left(S_{n},\{e,(12),(132), \ldots,(1 n \cdots 432)\}\right)$.

Invariant algebra $\left(V^{1^{\otimes d}}\right)^{D_{m}} \simeq \mathbb{R}\left\langle x_{1}, x_{2}\right\rangle_{d}^{D_{m}}$

Corollary

Let V^{1} be the geometric irreducible D_{m}-module. The dimension of $T^{d}\left(V^{1}\right)^{D_{m}}$ is equal to the number of words of length d which reduce to the identity in $\Gamma\left(D_{m},\{r, s\}\right)$.

Invariant algebra $\left(V^{1^{\otimes d}}\right)^{D_{m}} \simeq \mathbb{R}\left\langle x_{1}, x_{2}\right\rangle_{d}^{D_{m}}$

Corollary

Let V^{1} be the geometric irreducible D_{m}-module. The dimension of $T^{d}\left(V^{1}\right)^{D_{m}}$ is equal to the number of words of length d which reduce to the identity in $\Gamma\left(D_{m},\{r, s\}\right)$.

Consider $\Gamma\left(D_{4},\{s, r\}\right)$:

Words of length 4 which reduce to the identity

$$
\{r r r r, s r s r, r s r s, s s s s\}
$$

Invariant algebra $\left(V^{\otimes d}\right)^{D_{m}} \simeq \mathbb{R}\left\langle x_{1}, x_{2}\right\rangle_{d}^{D_{m}}$

Consider the dihedral group D_{4} acting on $\mathbb{R}\left\langle x_{1}, x_{2}\right\rangle$ as

$$
\begin{array}{ll}
s \cdot x_{1}=-x_{1} & r \cdot x_{1}=x_{1}+\sqrt{2} x_{2} \\
s \cdot x_{2}=\sqrt{2} x_{1}+x_{2} & r \cdot x_{2}=-\sqrt{2} x_{1}-x_{2}
\end{array}
$$

Basis for $\mathbb{R}\left\langle x_{1}, x_{2}\right\rangle_{4}^{D_{4}}$:

- $x_{1} x_{2}^{2} x_{1}+\frac{\sqrt{2}}{2} x_{1} x_{2}^{3}+x_{2} x_{1}^{2} x_{1}+\frac{\sqrt{2}}{2} x_{2} x_{1} x_{2}^{2}+\frac{\sqrt{2}}{2} x_{2}^{2} x_{1} x_{2}+\frac{\sqrt{2}}{2} x_{2}^{3} x_{1}+x_{2}^{4}$,
- $x_{1}^{4}+\frac{\sqrt{2}}{2} x_{1}^{3} x_{2}+\frac{\sqrt{2}}{2} x_{1}^{2} x_{2} x_{1}+\frac{\sqrt{2}}{2} x_{1} x_{2} x_{1}^{2}-\frac{\sqrt{2}}{2} x_{1} x_{2}^{3}+\frac{\sqrt{2}}{2} x_{2} x_{1}^{3}-\frac{\sqrt{2}}{2} x_{2} x_{1} x_{2}^{2}-$ $\frac{\sqrt{2}}{2} x_{2}^{2} x_{1} x_{2}-\frac{\sqrt{2}}{2} x_{2}^{3} x_{1}-x_{2}^{4}$,
- $x_{1}^{2} x_{2}^{2}+\frac{\sqrt{2}}{2} x_{1} x_{2}^{3}+\frac{\sqrt{2}}{2} x_{2} x_{1} x_{2}^{2}+x_{2}^{2} x_{1}^{2}+\frac{\sqrt{2}}{2} x_{2}^{2} x_{1} x_{2}+\frac{\sqrt{2}}{2} x_{2}^{3} x_{1}+x_{2}^{4}$,
- $x_{1} x_{2} x_{1} x_{2}+\frac{\sqrt{2}}{2} x_{1} x_{2}^{3}+x_{2} x_{1} x_{2} x_{1}+\frac{\sqrt{2}}{2} x_{2} x_{1} x_{2}^{2}+\frac{\sqrt{2}}{2} x_{2}^{2} x_{1} x_{2}+\frac{\sqrt{2}}{2} x_{2}^{3} x_{1}+x_{2}^{4}$.

Free generators for $T\left(V^{1}\right)^{D_{m}}$

Proposition

The number of free generators of $T\left(V^{1}\right)^{D_{m}}$ as an algebra are counted by the words in the Cayley graph $\Gamma\left(D_{m},\{r, s\}\right)$ which reduce to the identity without crossing the identity.

Hilbert-Poincaré series of $T\left(V^{1}\right)^{D_{m}}$

$\Gamma\left(D_{3},\{r, s\}\right)$
$\Gamma\left(D_{4},\{r, s\}\right)$
$\Gamma\left(D_{m},\{r, s\}\right)$

Proposition

$P\left(T\left(V^{1}\right)^{D_{m}}\right)=1+\frac{1}{2}\left(\frac{(2 q)^{m}+\sum_{j=0}^{\lfloor m / 2\rfloor}\left(\binom{m+1}{2 j+1}-2\binom{m}{2 j}\right)\left(1-4 q^{2}\right)^{j}}{\sum_{j=0}^{m / 2\rfloor}\binom{m}{2 j}\left(1-4 q^{2}\right)^{j}-(2 q)^{m}}\right)$.

Irreducible characters of the dihedral group D_{m}

$D_{m}=\left\langle s, r \mid s^{2}=r^{m}=s r s r=e\right\rangle$.
For $m=2 k$ even, the irreducible D_{m}-modules are

$$
\left\{V^{i d}, V^{\gamma}, V^{\epsilon}, V^{\gamma \epsilon}, V^{1}, V^{2}, \ldots, V^{k-1}\right\}
$$

with irreducible characters $\left\{i d, \gamma, \epsilon, \gamma \epsilon, \chi_{1}, \chi_{2}, \ldots, \chi_{k-1}\right\}$.
For $m=2 k+1$ odd, the irreducible D_{m}-modules are

$$
\left\{V^{i d}, V^{\epsilon}, V^{1}, V^{2}, \ldots, V^{k}\right\}
$$

with irreducible characters $\left\{i d, \epsilon, \chi_{1}, \chi_{2}, \ldots, \chi_{k}\right\}$.

Surjective algebra morphism from $\mathcal{Q} \subset \mathbb{Z} D_{m}$ to $\mathbb{Z} \operatorname{Irr}\left(D_{m}\right)$

$$
D_{m}=\left\{e, r, r^{2}, \ldots, r^{m-1}, s, r s, r^{2} s, \ldots, r^{m-1} s\right\}
$$

For $m=2 k$ even,

$$
\mathcal{Q}=\mathcal{L}\left\{e, r^{k}, r s, r^{k+1} s, r^{1-i} s+r^{i}, r^{-i}+r^{i+1} s\right\}_{1 \leq i \leq k-1} .
$$

Proposition

\mathcal{Q} is a subalgebra of $\mathbb{Z} D_{m}$ and there is a surjective algebra morphism

$$
\theta: \mathcal{Q} \longrightarrow \mathbb{Z} \operatorname{Irr}\left(D_{m}\right)
$$

$$
\begin{aligned}
& \theta(e)=i d \\
& \theta(r s)=\epsilon \\
& \theta\left(r^{k}\right)=\gamma \\
& \theta\left(r^{k+1} s\right)=\gamma \epsilon
\end{aligned} \quad \theta\left(r^{1-i} s+r^{i}\right)=\theta\left(r^{-i}+r^{i+1} s\right)=\chi_{i}
$$

