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Kronecker products

• Let χλ : Sn −→ Z denote the irreducible character of the
symmetric group corresponding to the partition λ.
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Kronecker products

• Let χλ : Sn −→ Z denote the irreducible character of the
symmetric group corresponding to the partition λ.

• Given two partitions λ, µ of n, let χλ ⊗ χµ denote the
Kronecker product of χλ and χµ.
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Kronecker coefficients

• The Kronecker coefficient k(λ, µ, ν) is the multiplicity of χν in
the product χλ ⊗ χµ. That is

χλ ⊗ χµ =
∑

ν⊢n

k(λ, µ, ν)χν .
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Kronecker coefficients

• The Kronecker coefficient k(λ, µ, ν) is the multiplicity of χν in
the product χλ ⊗ χµ. That is

χλ ⊗ χµ =
∑

ν⊢n

k(λ, µ, ν)χν .

• Orthogonality relations imply

k(λ, µ, ν) = 〈χλ ⊗ χµ, χν〉 = 〈χλ ⊗ χµ ⊗ χν , χ(n)〉 .
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Kronecker coefficients

• The Kronecker coefficient k(λ, µ, ν) is the multiplicity of χν in
the product χλ ⊗ χµ. That is

χλ ⊗ χµ =
∑

ν⊢n

k(λ, µ, ν)χν .

• Orthogonality relations imply

k(λ, µ, ν) = 〈χλ ⊗ χµ, χν〉 = 〈χλ ⊗ χµ ⊗ χν , χ(n)〉 .

Open problem

Find a combinatorial or geometric description of k(λ, µ, ν) as it is
done with Kostka numbers or with Littlewood-Richardson
coefficients.
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Permutation characters

• Let λ = (λ1, . . . , λp) be a composition of n and let

Sλ := Sλ1
× · · · × Sλp

be the Young subgroup of Sn corresponding to λ.
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Permutation characters

• Let λ = (λ1, . . . , λp) be a composition of n and let

Sλ := Sλ1
× · · · × Sλp

be the Young subgroup of Sn corresponding to λ.

• Then φλ := IndSn

Sλ
(1λ) is called a permutation character and

the set
{φλ}λ⊢n

is another basis for the character ring of Sn.
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Kostka numbers

• The basis {χλ} and {φλ} are related by Young’s rule:

φ ν =
∑

γ⊢n

Kγνχ
γ .
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Kostka numbers

• The basis {χλ} and {φλ} are related by Young’s rule:

φ ν =
∑

γ⊢n

Kγνχ
γ .

• The numbers Kγν are called Kostka numbers and count the
number of semistandard tableaux of shape γ and content ν.

Ernesto Vallejo RSK correspondence and Kronecker products



Kostka numbers

• The basis {χλ} and {φλ} are related by Young’s rule:

φ ν =
∑

γ⊢n

Kγνχ
γ .

• The numbers Kγν are called Kostka numbers and count the
number of semistandard tableaux of shape γ and content ν.

• They have the following property:

Kγν > 0 ⇐⇒ γ < ν ,

where < denotes the dominance order of partitions.
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Matrices and characters I

• Given a matrix A = (aij) of size p × q we define

◮ row(A) := (r1, . . . , rp), where ri =
∑

j aij and

◮ col(M) := (c1, . . . , cq), where cj =
∑

i aij .
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Matrices and characters I

• Given a matrix A = (aij) of size p × q we define

◮ row(A) := (r1, . . . , rp), where ri =
∑

j aij and

◮ col(M) := (c1, . . . , cq), where cj =
∑

i aij .

• The compositions row(A) and col(A) are called the row sum
vector and column sum vector of A, respectively.
They are also called the 1-marginals of A.
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Matrices and characters II

• Given λ, µ compositions of n, we denote

◮ by M(λ, µ) the set of all matrices A = (aij) with nonnegative
integer entries and 1-marginals λ, µ, and

◮ by m(λ, µ) := |M(λ, µ)| its cardinality.
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Matrices and characters II

• Given λ, µ compositions of n, we denote

◮ by M(λ, µ) the set of all matrices A = (aij) with nonnegative
integer entries and 1-marginals λ, µ, and

◮ by m(λ, µ) := |M(λ, µ)| its cardinality.

• We also denote

◮ by M∗(λ, µ) the set of all binary matrices A = (aij) with
1-marginals λ, µ, and

◮ by m∗(λ, µ) := |M∗(λ, µ)| its cardinality.
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Characters, matrices and the RSK correspondence I

• There is a well known formula

m(λ, µ) = 〈φλ ⊗ φµ, χ(n)〉 .
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Characters, matrices and the RSK correspondence I

• There is a well known formula

m(λ, µ) = 〈φλ ⊗ φµ, χ(n)〉 .

• Expanding, by Young’s rule, we get a formula for which the RSK
correspondence is a combinatorial realization.

m(λ, µ) =
∑

α, β⊢n

KαλKβµ〈χ
α ⊗ χβ, χ(n)〉 =

∑

σ⊢n

KσλKσµ .
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Characters, matrices and the RSK correspondence II

• Similarly, one has

m∗(λ, µ) = 〈φλ ⊗ φµ, χ(1n)〉 .
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Characters, matrices and the RSK correspondence II

• Similarly, one has

m∗(λ, µ) = 〈φλ ⊗ φµ, χ(1n)〉 .

• Again, expanding, by Young’s rule, we get a formula for which
the dual RSK correspondence is a combinatorial realization.

m∗(λ, µ) =
∑

α, β⊢n

KαλKβµ〈χ
α ⊗ χβ, χ(1n)〉 =

∑

σ⊢n

KσλKσ′µ .
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3-dimensional matrices I

Definition
The 1-marginals of a 3-dimensional matrix A = (aijk) of size
p × q × r are the vectors λ = (λ1, . . . , λp), µ = (µ1, . . . , µq),
ν = (ν1, . . . , νr ) defined by:

∑

j ,k

aijk = λi ,
∑

i ,k

aijk = µj ,
∑

i ,j

aijk = νk .
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3-dimensional matrices I

Definition
The 1-marginals of a 3-dimensional matrix A = (aijk) of size
p × q × r are the vectors λ = (λ1, . . . , λp), µ = (µ1, . . . , µq),
ν = (ν1, . . . , νr ) defined by:

∑

j ,k

aijk = λi ,
∑

i ,k

aijk = µj ,
∑

i ,j

aijk = νk .

Example





1 1 1
1 1 1
1 0 0









1 1 0
1 0 0
1 0 0









1 1 0
0 0 0
0 0 0









1 1 0
0 0 0
0 0 0





has 1-marginals λ = (9, 4, 2), µ = (8, 5, 2) and ν = (7, 4, 2, 2).
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3-dimensional matrices II

• Given compositions λ, µ, ν of n we denote

◮ by M(λ, µ, ν) is the set of all matrices A = (aijk) with
nonnegative integer entries and 1-marginals λ, µ and ν, and

◮ by m(λ, µ, ν) := |M(λ, µ, ν)| its cardinality.
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3-dimensional matrices II

• Given compositions λ, µ, ν of n we denote

◮ by M(λ, µ, ν) is the set of all matrices A = (aijk) with
nonnegative integer entries and 1-marginals λ, µ and ν, and

◮ by m(λ, µ, ν) := |M(λ, µ, ν)| its cardinality.

• We also denote

◮ by M∗(λ, µ, ν) the set of all binary matrices A = (aijk) with
1-marginals λ, µ, ν, and

◮ by m∗(λ, µ, ν) := |M∗(λ, µ, ν)| its cardinality.
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Snapper’s theorem

• For 3-dimensional matrices there are formulas similar to those for
2-dimensional matrices.

Theorem (E. Snapper (1971))

Let λ, µ, ν be compositions of n. Then

m(λ, µ, ν) = 〈φλ ⊗ φµ ⊗ φ ν , χ(n)〉

and
m∗(λ, µ, ν) = 〈φλ ⊗ φµ ⊗ φ ν , χ(1n)〉 .
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Snapper’s theorem

• For 3-dimensional matrices there are formulas similar to those for
2-dimensional matrices.

Theorem (E. Snapper (1971))

Let λ, µ, ν be compositions of n. Then

m(λ, µ, ν) = 〈φλ ⊗ φµ ⊗ φ ν , χ(n)〉

and
m∗(λ, µ, ν) = 〈φλ ⊗ φµ ⊗ φ ν , χ(1n)〉 .

• Now we apply Young’s rule to each of the permutation
characters.
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Matrices and Kronecker coefficients

• Triple application of Young’s formula yields

m(λ, µ, ν) =
∑

α, β, γ⊢n

KαλKβµKγν k(α, β, γ) .

and
m∗(λ, µ, ν) =

∑

α, β, γ⊢n

KαλKβµKγν k(α, β, γ′) .
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Matrices and Kronecker coefficients

• Triple application of Young’s formula yields

m(λ, µ, ν) =
∑

α, β, γ⊢n

KαλKβµKγν k(α, β, γ) .

and
m∗(λ, µ, ν) =

∑

α, β, γ⊢n

KαλKβµKγν k(α, β, γ′) .

• These formulas indicate how extensions of the RSK
correspondence and its dual should be.
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Matrices and Kronecker coefficients

• Triple application of Young’s formula yields

m(λ, µ, ν) =
∑

α, β, γ⊢n

KαλKβµKγν k(α, β, γ) .

and
m∗(λ, µ, ν) =

∑

α, β, γ⊢n

KαλKβµKγν k(α, β, γ′) .

• These formulas indicate how extensions of the RSK
correspondence and its dual should be.

• In particular these extensions would contain combinatorial
descriptions of Kronecker coefficients.

Ernesto Vallejo RSK correspondence and Kronecker products



Matrices and Kronecker coefficients

• Triple application of Young’s formula yields

m(λ, µ, ν) =
∑

α, β, γ⊢n

KαλKβµKγν k(α, β, γ) .

and
m∗(λ, µ, ν) =

∑

α, β, γ⊢n

KαλKβµKγν k(α, β, γ′) .

• These formulas indicate how extensions of the RSK
correspondence and its dual should be.

• In particular these extensions would contain combinatorial
descriptions of Kronecker coefficients.
• A similar observation was done by F. Caselli (2009).
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Matrices and Littlewood-Richardson multitableaux

• We follow a more modest, but more realistic approach:
We apply Young’s rule only two times. Thus, we get:

m(λ, µ, ν) =
∑

α, β⊢n

KαλKβµ 〈χ
α ⊗ χβ ⊗ φ ν , χ(n)〉

and

m∗(λ, µ, ν) =
∑

α, β⊢n

KαλKβµ 〈χ
α ⊗ χβ ⊗ φ ν , χ(1n)〉 .
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Matrices and Littlewood-Richardson multitableaux

• We follow a more modest, but more realistic approach:
We apply Young’s rule only two times. Thus, we get:

m(λ, µ, ν) =
∑

α, β⊢n

KαλKβµ 〈χ
α ⊗ χβ ⊗ φ ν , χ(n)〉

and

m∗(λ, µ, ν) =
∑

α, β⊢n

KαλKβµ 〈χ
α ⊗ χβ ⊗ φ ν , χ(1n)〉 .

• The point is that the inner products on the right hand side have
combinatorial descriptions in terms of Littlewood-Richardson
coefficients.
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Littlewood-Richardson multitableaux I. Definition

Definition
Let α ⊢ n and ν = (ν1, . . . , νr ) be a composition of n, then a
sequence T = (T1, . . . ,Tr ) of tableaux is called a
Littlewood-Richardson multitableau of shape α and type ν if
there exists a sequence of partitions

∅ = α(0) ⊆ α(1) ⊆ · · · ⊆ α(r) = α

such that Ti is a Littlewood-Richardson tableau of shape
α(i)/α(i − 1) and size νi for all i ∈ [ r ].
If each Ti has content ρ(i), then we say that T has content
(ρ(1), . . . , ρ(r)).
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Littlewood-Richardson multitableaux II. Example

Example

The LR multitableau

1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

3 3 2 2 3

3 3

has:
shape (10, 8, 5, 2),
content ((4, 4, 2), (3, 3, 2), (3, 3, 1)) and
type (10, 8, 7).
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Littlewood-Richardson multitableaux III. Notation

Definition
Given partitions α, β of n and ν a composition of n, we denote

◮ by LR(α, β; ν) the set of all pairs (T ,S) of
Littlewood-Richardson multitableaux of shape (α, β) and type
ν such that S and T have the same content and

◮ by lr(α, β; ν) := |LR(α, β; ν)| its cardinality.
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Littlewood-Richardson multitableaux III. Notation

Definition
Given partitions α, β of n and ν a composition of n, we denote

◮ by LR(α, β; ν) the set of all pairs (T ,S) of
Littlewood-Richardson multitableaux of shape (α, β) and type
ν such that S and T have the same content and

◮ by lr(α, β; ν) := |LR(α, β; ν)| its cardinality.

Similarly, we denote

◮ by LR∗(α, β; ν) the set of all pairs (T ,S) of
Littlewood-Richardson multitableaux of shape (α, β), type ν
and conjugate content, that is, if T has content
(ρ(1), . . . , ρ(r)), then S has content (ρ(1)′, . . . , ρ(r)′) and

◮ by lr∗(α, β; ν) := |LR∗(α, β; ν)| its cardinality.

Ernesto Vallejo RSK correspondence and Kronecker products



Littlewood-Richardson multitableaux IV. Example

Let T =

1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

3 3 2 2 3

3 3

and S =

1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2

3 3 3 2 3

4 4 3

3

.

Then (T ,S) is a pair of Littlewood-Richardson multitableaux in
LR∗((10, 8, 5, 2), (9, 7, 5, 3, 1); (10, 8, 7)).
T has content ((4, 4, 2), (3, 3, 2), (3, 3, 1)) and S has content
((3, 3, 2, 2), (3, 3, 2), (3, 2, 2)).
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Littlewood-Richardson multitableaux V

Lemma
Let α, β be partitions of n and let ν be a composition of n. Then
(1) lr(α, β; ν) = 〈χα ⊗ χβ ⊗ φ ν , χ(n)〉.
(2) lr∗(α, β; ν) = 〈χα ⊗ χβ ⊗ φ ν , χ(1n)〉.
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Littlewood-Richardson multitableaux V

Lemma
Let α, β be partitions of n and let ν be a composition of n. Then
(1) lr(α, β; ν) = 〈χα ⊗ χβ ⊗ φ ν , χ(n)〉.
(2) lr∗(α, β; ν) = 〈χα ⊗ χβ ⊗ φ ν , χ(1n)〉.

• Therefore we have

m(λ, µ, ν) =
∑

α, β⊢n

KαλKβµ lr(α, β; ν)

and
m∗(λ, µ, ν) =

∑

α, β⊢n

KαλKβµ lr∗(α, β; ν) .
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Littlewood-Richardson multitableaux V

Lemma
Let α, β be partitions of n and let ν be a composition of n. Then
(1) lr(α, β; ν) = 〈χα ⊗ χβ ⊗ φ ν , χ(n)〉.
(2) lr∗(α, β; ν) = 〈χα ⊗ χβ ⊗ φ ν , χ(1n)〉.

• Therefore we have

m(λ, µ, ν) =
∑

α, β⊢n

KαλKβµ lr(α, β; ν)

and
m∗(λ, µ, ν) =

∑

α, β⊢n

KαλKβµ lr∗(α, β; ν) .

• We will give one-to-one correspondences that realize these
identities.
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Littlewood-Richardson multitableaux VI

• Another application of Young’s rule yields

lr(α, β; ν) =
∑

γ⊢n

Kγν k(α, β, γ)

and
lr∗(α, β; ν ′) =

∑

γ⊢n

Kγ′ν ′ k(α, β, γ)
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Littlewood-Richardson multitableaux VI

• Another application of Young’s rule yields

lr(α, β; ν) =
∑

γ⊢n

Kγν k(α, β, γ)

and
lr∗(α, β; ν ′) =

∑

γ⊢n

Kγ′ν ′ k(α, β, γ)

• Therefore we can think of lr(α, β; ν) and of lr∗(α, β; ν ′) as
combinatorial approximations of Kronecker coefficients.
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Littlewood-Richardson multitableaux VI

• Another application of Young’s rule yields

lr(α, β; ν) =
∑

γ⊢n

Kγν k(α, β, γ)

and
lr∗(α, β; ν ′) =

∑

γ⊢n

Kγ′ν ′ k(α, β, γ)

• Therefore we can think of lr(α, β; ν) and of lr∗(α, β; ν ′) as
combinatorial approximations of Kronecker coefficients.

• In fact, we will next see that in some cases these numbers
coincide.
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Extremal components

Definition
A component χν of χα ⊗ χβ is called

◮ maximal if for all γ ≻ ν one has k(α, β, γ) = 0,

◮ minimal if for all γ ≺ ν one has k(α, β, γ) = 0.

Lemma
Let χν be a component of χα ⊗ χβ. Then
(1) χν is a maximal component of χα ⊗ χβ if and only if
k(α, β, ν) = lr(α, β; ν).
(2) χν is a minimal component of χα ⊗ χβ if and only if
k(α, β, ν) = lr∗(α, β; ν ′).
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Main theorems

• Let λ, µ, ν be compositions of n.
• For any partition α of n, let Kαλ denote the set of all
semistandard tableaux of shape α and content λ.
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Main theorems

• Let λ, µ, ν be compositions of n.
• For any partition α of n, let Kαλ denote the set of all
semistandard tableaux of shape α and content λ.

Theorem
There is a one-to-one correspondence between the set M(λ, µ, ν)
of 3-dimensional matrices with nonnegative integer coefficients
that have 1-marginals λ, µ, ν and the set of triples
∐

α, β⊢n Kαλ × Kβµ × LR(α, β; ν).
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Main theorems

• Let λ, µ, ν be compositions of n.
• For any partition α of n, let Kαλ denote the set of all
semistandard tableaux of shape α and content λ.

Theorem
There is a one-to-one correspondence between the set M(λ, µ, ν)
of 3-dimensional matrices with nonnegative integer coefficients
that have 1-marginals λ, µ, ν and the set of triples
∐

α, β⊢n Kαλ × Kβµ × LR(α, β; ν).

Theorem
There is a one-to-one correspondence between the set M∗(λ, µ, ν)
of 3-dimensional binary matrices that have 1-marginals λ, µ, ν and
the set of triples

∐

α, β⊢n Kαλ × Kβµ × LR∗(α, β; ν).
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Sketch of proof I

First bijection (tautological)

Let λ, µ, ν be compositions of size p, q, r , respectively. There is a
one-to-one correspondence

A = (aijk) ∈ M(λ, µ, ν) ↔ (A(1) = (a
(1)
ij ), . . . ,A(r) = (a

(r)
ij )) ,

where each A(k) has size p × q and

r
∑

k=1

row(Ak) = λ,
r

∑

k=1

col(Ak) = µ,

sum of the entries of Ak = νk , k ∈ [ r ].
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Sketch of proof I

First bijection (tautological)

Let λ, µ, ν be compositions of size p, q, r , respectively. There is a
one-to-one correspondence

A = (aijk) ∈ M(λ, µ, ν) ↔ (A(1) = (a
(1)
ij ), . . . ,A(r) = (a

(r)
ij )) ,

where each A(k) has size p × q and

r
∑

k=1

row(Ak) = λ,
r

∑

k=1

col(Ak) = µ,

sum of the entries of Ak = νk , k ∈ [ r ].

• The correspondence is a
(k)
ij = aijk .
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Sketch of proof II

Second bijection

There is a one-to-one correspondence

(A1, . . . ,Ar ) ↔ ((P1, . . . ,Pr ), (Q1, . . . ,Qr )) ,

where each matrix Ak satisfies the conditions from previous slide
and on the right hand side we have r -tuples of semistandard
tableaux such that

r
∑

k=1

cont(Qk) = λ,

r
∑

k=1

cont(Pk) = µ,

sh(Pk) = sh(Qk) and |sh(Pk)| = νk , k ∈ [ r ].
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Sketch of proof II

Second bijection

There is a one-to-one correspondence

(A1, . . . ,Ar ) ↔ ((P1, . . . ,Pr ), (Q1, . . . ,Qr )) ,

where each matrix Ak satisfies the conditions from previous slide
and on the right hand side we have r -tuples of semistandard
tableaux such that

r
∑

k=1

cont(Qk) = λ,

r
∑

k=1

cont(Pk) = µ,

sh(Pk) = sh(Qk) and |sh(Pk)| = νk , k ∈ [ r ].

• The correspondence follows applying the RSK correspondence on
each level matrix.
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Sketch of proof III

Third bijection

There is a one-to-one correspondence

((P1, . . . ,Pr ), (Q1, . . . ,Qr )) ↔
∐

α, β⊢n

Kαλ × Kβµ × LR(α, β; ν) ,

where the pair of r -tuples of semistandard tableaux satisify the
conditions of the previous slide.
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Sketch of proof III

Third bijection

There is a one-to-one correspondence

((P1, . . . ,Pr ), (Q1, . . . ,Qr )) ↔
∐

α, β⊢n

Kαλ × Kβµ × LR(α, β; ν) ,

where the pair of r -tuples of semistandard tableaux satisify the
conditions of the previous slide.

• It is a consequence of the next theorem:
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Sketch of proof IV

Theorem (G.P. Thomas (1974))

There is a one-to-one correspondence between the set of all
r -tuples (P1, . . . ,Pr ) of semistandard tableaux and the set of pairs
(P ,S) such that P is a semistandard tableau and S is a
Littlewood-Richardson multitableau of shape sh(P). Moreover,
under this correspondence

cont(P) =

r
∑

k=1

cont(Pk) and cont(S) = (sh(P1), . . . , sh(Pr )) .

Remark
P = Pr · · ·P1 is a product of tableaux, and S = (S1, . . . ,Sr ) is a
list of recording tableaux, one for each for each factor.
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Discrete Tomography I. Motivation

• In the 2-dimensional case there are well known conditions for
existence and uniqueness. The first one is due to D. Gale and
H. Ryser (1957). The second is folklore.

m∗(λ, µ) > 0 ⇐⇒ λ′
< µ ,

m∗(λ, µ) = 1 ⇐⇒ λ′ = µ .
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Discrete Tomography I. Motivation

• In the 2-dimensional case there are well known conditions for
existence and uniqueness. The first one is due to D. Gale and
H. Ryser (1957). The second is folklore.

m∗(λ, µ) > 0 ⇐⇒ λ′
< µ ,

m∗(λ, µ) = 1 ⇐⇒ λ′ = µ .

• We are interested in a similar condition for m∗(λ, µ, ν) = 1.
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Discrete Tomography I. Motivation

• In the 2-dimensional case there are well known conditions for
existence and uniqueness. The first one is due to D. Gale and
H. Ryser (1957). The second is folklore.

m∗(λ, µ) > 0 ⇐⇒ λ′
< µ ,

m∗(λ, µ) = 1 ⇐⇒ λ′ = µ .

• We are interested in a similar condition for m∗(λ, µ, ν) = 1.

• In the next slides we show a condition that involves
2-dimensional matrices with nonnegative integer entries.
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Discrete Tomography II. Definitions

Let A ∈ M(λ, µ).

◮ The π-sequence of A, denoted by π(A), is the decreasing
sequence of its entries.
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Discrete Tomography II. Definitions

Let A ∈ M(λ, µ).

◮ The π-sequence of A, denoted by π(A), is the decreasing
sequence of its entries.

◮ A is called π-unique if there is no other matrix in M(λ, µ)
with the same π-sequence.
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Discrete Tomography II. Definitions

Let A ∈ M(λ, µ).

◮ The π-sequence of A, denoted by π(A), is the decreasing
sequence of its entries.

◮ A is called π-unique if there is no other matrix in M(λ, µ)
with the same π-sequence.

◮ A is called minimal if there is no other matrix B ∈ M(λ, µ)
with π(B) ≺ π(A).
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Discrete Tomography III. Example

Example

Let λ = µ = (3, 3) and let

A =

[

0 3
3 0

]

, B =

[

1 2
2 1

]

, C =

[

2 1
1 2

]

, D =

[

3 0
0 3

]

.

Then
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Discrete Tomography III. Example

Example

Let λ = µ = (3, 3) and let

A =

[

0 3
3 0

]

, B =

[

1 2
2 1

]

, C =

[

2 1
1 2

]

, D =

[

3 0
0 3

]

.

Then

◮ M(λ, µ) = {A,B ,C ,D}.
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Discrete Tomography III. Example

Example

Let λ = µ = (3, 3) and let

A =

[

0 3
3 0

]

, B =

[

1 2
2 1

]

, C =

[

2 1
1 2

]

, D =

[

3 0
0 3

]

.

Then

◮ M(λ, µ) = {A,B ,C ,D}.

◮ π(B) = π(C ) = (22, 12) and π(A) = π(D) = (32).
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Discrete Tomography III. Example

Example

Let λ = µ = (3, 3) and let

A =

[

0 3
3 0

]

, B =

[

1 2
2 1

]

, C =

[

2 1
1 2

]

, D =

[

3 0
0 3

]

.

Then

◮ M(λ, µ) = {A,B ,C ,D}.

◮ π(B) = π(C ) = (22, 12) and π(A) = π(D) = (32).

◮ B and C are minimal, while A and D are not.
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Discrete Tomography III. Example

Example

Let λ = µ = (3, 3) and let

A =

[

0 3
3 0

]

, B =

[

1 2
2 1

]

, C =

[

2 1
1 2

]

, D =

[

3 0
0 3

]

.

Then

◮ M(λ, µ) = {A,B ,C ,D}.

◮ π(B) = π(C ) = (22, 12) and π(A) = π(D) = (32).

◮ B and C are minimal, while A and D are not.

◮ Neither of them is π-unique.
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Discrete Tomography IV. Another example

Example

Let

A =





4 4 1
2 1 1
2 0 0



 and B =





4 3 2
3 1 0
1 1 0



 .

Ernesto Vallejo RSK correspondence and Kronecker products



Discrete Tomography IV. Another example

Example

Let

A =





4 4 1
2 1 1
2 0 0



 and B =





4 3 2
3 1 0
1 1 0



 .

◮ Then both matrices have 1-marginals (9, 4, 2) and (8, 5, 2).
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Discrete Tomography IV. Another example

Example

Let

A =





4 4 1
2 1 1
2 0 0



 and B =





4 3 2
3 1 0
1 1 0



 .

◮ Then both matrices have 1-marginals (9, 4, 2) and (8, 5, 2).

◮ Moreover π(B) ≺ π(A). This means that B is flatter than A.
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Discrete Tomography IV. Another example

Example

Let

A =





4 4 1
2 1 1
2 0 0



 and B =





4 3 2
3 1 0
1 1 0



 .

◮ Then both matrices have 1-marginals (9, 4, 2) and (8, 5, 2).

◮ Moreover π(B) ≺ π(A). This means that B is flatter than A.

◮ A matrix is minimal when it cannot be made flatter without
changing the 1-marginals.
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Discrete Tomography V. The graph of a matrix

• We denote

◮ by Mν(λ, µ) the set of matrices in M(λ, µ) with π-sequence ν,

◮ by mν(λ, µ) := |Mν(λ, µ)| its cardinality.
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Discrete Tomography V. The graph of a matrix

• We denote

◮ by Mν(λ, µ) the set of matrices in M(λ, µ) with π-sequence ν,

◮ by mν(λ, µ) := |Mν(λ, µ)| its cardinality.

• To each matrix A = (aij) in Mν(λ, µ) we associate a
3-dimensional matrix G(A) = (aijk) by

aijk =

{

1 if aij ≤ k,

0 otherwise.
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Discrete Tomography V. The graph of a matrix

• We denote

◮ by Mν(λ, µ) the set of matrices in M(λ, µ) with π-sequence ν,

◮ by mν(λ, µ) := |Mν(λ, µ)| its cardinality.

• To each matrix A = (aij) in Mν(λ, µ) we associate a
3-dimensional matrix G(A) = (aijk) by

aijk =

{

1 if aij ≤ k,

0 otherwise.

• The correspondence A 7→ G(A) defines an injective map

Gλ,µ,ν : Mν(λ, µ) −→ M∗(λ, µ, ν ′).
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Discrete Tomography VI. Example

Example

Let

A =













5 5 5 4 4
5 5 5 3 3
3 3 1 1 0
2 1 1 1 0
2 1 0 0 0













.

Then the graph of A is:
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Discrete Tomography VII. Minimality

Note that if there is a minimal matrix in Mν(λ, µ), then all
matrices in Mν(λ, µ) are minimal.
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Discrete Tomography VII. Minimality

Note that if there is a minimal matrix in Mν(λ, µ), then all
matrices in Mν(λ, µ) are minimal.

Definition
We say that ν is minimal for (λ, µ) if there is a minimal matrix in
Mν(λ, µ).
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Discrete Tomography VII. Minimality

Note that if there is a minimal matrix in Mν(λ, µ), then all
matrices in Mν(λ, µ) are minimal.

Definition
We say that ν is minimal for (λ, µ) if there is a minimal matrix in
Mν(λ, µ).

Proposition (E.V. (2000, 2007))

Let λ, µ, ν be partitions of n. Then ν is minimal for (λ, µ) if and
only if Gλ,µ,ν is bijective.
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Discrete Tomography VIII. Uniqueness

Theorem (A. Torres, E.V (1998))

Let λ, µ, ν be partitions of n. Then

◮ m∗(λ, µ, ν) = 1 ⇐⇒ there is a matrix A ∈ Mν ′(λ, µ) that is
minimal and π-unique.

◮ If m∗(λ, µ, ν) = 1, the unique matrix A ∈ Mν ′(λ, µ) is a plane
partition.
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Discrete Tomography VIII. Uniqueness

Theorem (A. Torres, E.V (1998))

Let λ, µ, ν be partitions of n. Then

◮ m∗(λ, µ, ν) = 1 ⇐⇒ there is a matrix A ∈ Mν ′(λ, µ) that is
minimal and π-unique.

◮ If m∗(λ, µ, ν) = 1, the unique matrix A ∈ Mν ′(λ, µ) is a plane
partition.

• Due to the formula

m∗(λ, µ, ν) =
∑

α<λ, β<µ, γ<ν

KαλKβµKγν k(α, β, γ′) ,

uniqueness implies the vanishing of several Kronecker coefficients.
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Discrete Tomography VIII. Uniqueness

Theorem (A. Torres, E.V (1998))

Let λ, µ, ν be partitions of n. Then

◮ m∗(λ, µ, ν) = 1 ⇐⇒ there is a matrix A ∈ Mν ′(λ, µ) that is
minimal and π-unique.

◮ If m∗(λ, µ, ν) = 1, the unique matrix A ∈ Mν ′(λ, µ) is a plane
partition.

• Due to the formula

m∗(λ, µ, ν) =
∑

α<λ, β<µ, γ<ν

KαλKβµKγν k(α, β, γ′) ,

uniqueness implies the vanishing of several Kronecker coefficients.
• In fact minimality by itself will yield useful information on
Kronecker coefficients.
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Minimal matrices and Kronecker coefficients I

Proposition (E.V. (2000))

If ν is minimal for (λ, µ). Then
(1) k(α, β, γ) = 0 for all α < λ, β < µ, γ ≺ ν.
(2) k(α, β, ν) = lr∗(α, β; ν ′) for all α < λ, β < µ.
In particular, for any pair of partitions (α, β) such that α < λ and
β < µ we have that χν is a minimal component of χα ⊗ χβ if and
only if lr∗(α, β; ν ′) is positive.
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Minimal matrices and Kronecker coefficients I

Proposition (E.V. (2000))

If ν is minimal for (λ, µ). Then
(1) k(α, β, γ) = 0 for all α < λ, β < µ, γ ≺ ν.
(2) k(α, β, ν) = lr∗(α, β; ν ′) for all α < λ, β < µ.
In particular, for any pair of partitions (α, β) such that α < λ and
β < µ we have that χν is a minimal component of χα ⊗ χβ if and
only if lr∗(α, β; ν ′) is positive.

Proposition (E.V. (2000))

If ν is minimal for (λ, µ). Then

mν(λ, µ) =
∑

α, β⊢n

KαλKβµ lr∗(α, β; ν ′) =
∑

α, β⊢n

KαλKβµ k(α, β, ν) .
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Minimal matrices and Kronecker coefficients II

• Let

Φ∗ : M∗(λ, µ, ν ′) −→
∐

α, β⊢n

Kαλ × Kβµ × LR∗(α, β; ν ′) .

denote the bijection that we get from the main theorem, when we
apply in each level the dual RSK-correspondence.
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Minimal matrices and Kronecker coefficients II

• Let

Φ∗ : M∗(λ, µ, ν ′) −→
∐

α, β⊢n

Kαλ × Kβµ × LR∗(α, β; ν ′) .

denote the bijection that we get from the main theorem, when we
apply in each level the dual RSK-correspondence.
• Then the composition

Φ∗ ◦ Gλ,µ,ν : Mν(λ, µ) −→
∐

α, β⊢n

Kαλ × Kβµ × LR∗(α, β; ν ′) .

is injective.
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Minimal matrices and Kronecker coefficients II

• Let

Φ∗ : M∗(λ, µ, ν ′) −→
∐

α, β⊢n

Kαλ × Kβµ × LR∗(α, β; ν ′) .

denote the bijection that we get from the main theorem, when we
apply in each level the dual RSK-correspondence.
• Then the composition

Φ∗ ◦ Gλ,µ,ν : Mν(λ, µ) −→
∐

α, β⊢n

Kαλ × Kβµ × LR∗(α, β; ν ′) .

is injective.
• If ν is minimal for (λ, µ), then Φ∗ ◦ Gλ,µ,ν is bijective. So, this
map is a combinatorial realization of the identity that relates the
number of minimal matrices to sums of Kronecker coefficients.
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Minimal matrices and Kronecker coefficients III

Let f , g , h denote the components of Φ∗ ◦ Gλ,µ,ν , that is, for any
A ∈ Mν(λ, µ) we have Φ∗ ◦ Gλ,µ,ν(A) = (f (A), g(A), h(A)).

Theorem
Suppose ν is minimal for (λ, µ). Let P be a semistandard tableau
of shape α and content λ, and Q be a semistandard tableau of
shape β and content µ. Then

k(α, β, ν) = #{A ∈ Mν(λ, µ) | f (A) = P and g(A) = Q} .

Moreover, if k(α, β, ν) > 0, then χν is a minimal component of
χα ⊗ χβ.

Ernesto Vallejo RSK correspondence and Kronecker products



Minimal matrices and Kronecker coefficients IV

Example

Let λ = (6, 6), µ = (3, 3, 3, 3). Then, there are six minimal
matrices in M(λ, µ), namely

A =

[

2 2 1 1
1 1 2 2

]

, B =

[

1 2 2 1
2 1 1 2

]

, C =

[

2 1 2 1
1 2 1 2

]

,

D =

[

2 1 1 2
1 2 2 1

]

, E =

[

1 2 1 2
2 1 2 1

]

, F =

[

1 1 2 2
2 2 1 1

]

.
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Minimal matrices and Kronecker coefficients V

Example

Let ν = (24, 14) be the common π-sequence of the six matrices.
After computing Φ∗ ◦ Gλ,µ,ν for each matrix we get

f (A) =
1 1 1 1 1 1 2 2

2 2 2 2
and g(A) =

1 1 1

2 2 2

3 3 3

4 4 4

.

f (B) =
1 1 1 1 1 1 2

2 2 2 2 2
and g(B) =

1 1 1 2

2 2 3

3 3 4

4 4

.
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Minimal matrices and Kronecker coefficients VI

Example

f (C ) =
1 1 1 1 1 1 2

2 2 2 2 2
and g(C ) =

1 1 1 3

2 2 2

3 3 4

4 4

.

f (D) =
1 1 1 1 1 1 2

2 2 2 2 2
and g(D) =

1 1 1 4

2 2 2

3 3 3

4 4

.
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Minimal matrices and Kronecker coefficients VII

Example

f (E ) =
1 1 1 1 1 1

2 2 2 2 2 2
and g(E ) =

1 1 1 2

2 2 3 4

3 3

4 4

.

f (F ) =
1 1 1 1 1 1

2 2 2 2 2 2
and g(F ) =

1 1 1 3

2 2 2 4

3 3

4 4

.
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Minimal matrices and Kronecker coefficients VIII

Example

◮ Recall, λ = (6, 6), µ = (3, 3, 3, 3) and ν = (24, 14).
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Minimal matrices and Kronecker coefficients VIII

Example

◮ Recall, λ = (6, 6), µ = (3, 3, 3, 3) and ν = (24, 14).

◮ Let α = sh(f (D)) = (7, 5) and γ = sh(f (A)) = (8, 4).

◮ β = sh(g(B)) = (4, 3, 3, 2) and δ = sh(g(E )) = (4, 4, 2, 2).
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Minimal matrices and Kronecker coefficients VIII

Example

◮ Recall, λ = (6, 6), µ = (3, 3, 3, 3) and ν = (24, 14).

◮ Let α = sh(f (D)) = (7, 5) and γ = sh(f (A)) = (8, 4).

◮ β = sh(g(B)) = (4, 3, 3, 2) and δ = sh(g(E )) = (4, 4, 2, 2).

◮ Thus, we obtain that

◮ k(γ, µ, ν) = 1,

◮ k(α, β, ν) = 1,

◮ k(λ, δ, ν) = 1.

Ernesto Vallejo RSK correspondence and Kronecker products



Minimal matrices and Kronecker coefficients VIII

Example

◮ Recall, λ = (6, 6), µ = (3, 3, 3, 3) and ν = (24, 14).

◮ Let α = sh(f (D)) = (7, 5) and γ = sh(f (A)) = (8, 4).

◮ β = sh(g(B)) = (4, 3, 3, 2) and δ = sh(g(E )) = (4, 4, 2, 2).

◮ Thus, we obtain that

◮ k(γ, µ, ν) = 1,

◮ k(α, β, ν) = 1,

◮ k(λ, δ, ν) = 1.

◮ Many other Kronecker coefficients are zero.

mν(λ, µ) =
∑

α<λ, β<µ

KαλKβµ lr∗(α, β; ν ′) =
∑

α<λ, β<µ

KαλKβµ k(α, β, ν) .
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Additive and minimal matrices

Definition
A matrix A = (aij) of size p × q with nonnegative integer entries is
called additive if there exists real numbers x1, . . . , xp and
y1, . . . , yq such that the condition

aij > akl =⇒ xi + yj > xk + yl

holds for all i , j , k, l .
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Additive and minimal matrices

Definition
A matrix A = (aij) of size p × q with nonnegative integer entries is
called additive if there exists real numbers x1, . . . , xp and
y1, . . . , yq such that the condition

aij > akl =⇒ xi + yj > xk + yl

holds for all i , j , k, l .

Theorem (E.V. (2002, 2005))

Any additive matrix is minimal and π-unique.
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Additive and minimal matrices

Definition
A matrix A = (aij) of size p × q with nonnegative integer entries is
called additive if there exists real numbers x1, . . . , xp and
y1, . . . , yq such that the condition

aij > akl =⇒ xi + yj > xk + yl

holds for all i , j , k, l .

Theorem (E.V. (2002, 2005))

Any additive matrix is minimal and π-unique.

Corollary

Let A ∈ Mν(λ, µ). If A is additive, then k(λ, µ, ν) = 1.
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Quadratic optimization and minimal matrices

Theorem (S. Onn, E.V. (2006))

Let A∗ be an optimal solution to the problem

min
∑

i , j xij
2

subject to (xij) ∈ M(λ, µ).

Then A∗ is minimal.
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Quadratic optimization and minimal matrices

Theorem (S. Onn, E.V. (2006))

Let A∗ be an optimal solution to the problem

min
∑

i , j xij
2

subject to (xij) ∈ M(λ, µ).

Then A∗ is minimal.

Proposition (S. Onn, E.V. (2006))

Let A∗ be the optimal solution to the problem

min
∑

i , j xij
2

subject to (xij ) ∈ T(λ, µ).

Then A∗ is additive.
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¡Gracias!
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