# Discrete tomography, RSK correspondence and Kronecker products 

Ernesto Vallejo<br>Instituto de Matemáticas, Unidad Morelia Universidad Nacional Autónoma de México

Joint work with Diana Avella-Alaminos

Mathematical Foundations of Quantum Information University of Sevilla

November 23, 2009

## Kronecker products

- Let $\chi^{\lambda}: \mathrm{S}_{n} \longrightarrow \mathbb{Z}$ denote the irreducible character of the symmetric group corresponding to the partition $\lambda$.


## Kronecker products

- Let $\chi^{\lambda}: \mathrm{S}_{n} \longrightarrow \mathbb{Z}$ denote the irreducible character of the symmetric group corresponding to the partition $\lambda$.
- Given two partitions $\lambda, \mu$ of $n$, let $\chi^{\lambda} \otimes \chi^{\mu}$ denote the Kronecker product of $\chi^{\lambda}$ and $\chi^{\mu}$.


## Kronecker coefficients

- The Kronecker coefficient $\mathrm{k}(\lambda, \mu, \nu)$ is the multiplicity of $\chi^{\nu}$ in the product $\chi^{\lambda} \otimes \chi^{\mu}$. That is

$$
\chi^{\lambda} \otimes \chi^{\mu}=\sum_{\nu \vdash n} k(\lambda, \mu, \nu) \chi^{\nu}
$$

## Kronecker coefficients

- The Kronecker coefficient $\mathrm{k}(\lambda, \mu, \nu)$ is the multiplicity of $\chi^{\nu}$ in the product $\chi^{\lambda} \otimes \chi^{\mu}$. That is

$$
\chi^{\lambda} \otimes \chi^{\mu}=\sum_{\nu \vdash n} k(\lambda, \mu, \nu) \chi^{\nu}
$$

- Orthogonality relations imply

$$
\mathrm{k}(\lambda, \mu, \nu)=\left\langle\chi^{\lambda} \otimes \chi^{\mu}, \chi^{\nu}\right\rangle=\left\langle\chi^{\lambda} \otimes \chi^{\mu} \otimes \chi^{\nu}, \chi^{(n)}\right\rangle
$$

## Kronecker coefficients

- The Kronecker coefficient $\mathrm{k}(\lambda, \mu, \nu)$ is the multiplicity of $\chi^{\nu}$ in the product $\chi^{\lambda} \otimes \chi^{\mu}$. That is

$$
\chi^{\lambda} \otimes \chi^{\mu}=\sum_{\nu \vdash n} \mathrm{k}(\lambda, \mu, \nu) \chi^{\nu}
$$

- Orthogonality relations imply

$$
\mathrm{k}(\lambda, \mu, \nu)=\left\langle\chi^{\lambda} \otimes \chi^{\mu}, \chi^{\nu}\right\rangle=\left\langle\chi^{\lambda} \otimes \chi^{\mu} \otimes \chi^{\nu}, \chi^{(n)}\right\rangle
$$

## Open problem

Find a combinatorial or geometric description of $\mathrm{k}(\lambda, \mu, \nu)$ as it is done with Kostka numbers or with Littlewood-Richardson coefficients.

## Permutation characters

- Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{p}\right)$ be a composition of $n$ and let

$$
\mathrm{S}_{\lambda}:=\mathrm{S}_{\lambda_{1}} \times \cdots \times \mathrm{S}_{\lambda_{p}}
$$

be the Young subgroup of $S_{n}$ corresponding to $\lambda$.

## Permutation characters

- Let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{p}\right)$ be a composition of $n$ and let

$$
\mathrm{S}_{\lambda}:=\mathrm{S}_{\lambda_{1}} \times \cdots \times \mathrm{S}_{\lambda_{\rho}}
$$

be the Young subgroup of $S_{n}$ corresponding to $\lambda$.

- Then $\phi^{\lambda}:=\operatorname{Ind}_{S_{\lambda}}^{S_{n}}\left(1_{\lambda}\right)$ is called a permutation character and the set

$$
\left\{\phi^{\lambda}\right\}_{\lambda \vdash n}
$$

is another basis for the character ring of $S_{n}$.

## Kostka numbers

- The basis $\left\{\chi^{\lambda}\right\}$ and $\left\{\phi^{\lambda}\right\}$ are related by Young's rule:

$$
\phi^{\nu}=\sum_{\gamma \vdash n} K_{\gamma \nu} \chi^{\gamma} .
$$

## Kostka numbers

- The basis $\left\{\chi^{\lambda}\right\}$ and $\left\{\phi^{\lambda}\right\}$ are related by Young's rule:

$$
\phi^{\nu}=\sum_{\gamma \vdash n} K_{\gamma \nu} \chi^{\gamma} .
$$

- The numbers $K_{\gamma \nu}$ are called Kostka numbers and count the number of semistandard tableaux of shape $\gamma$ and content $\nu$.


## Kostka numbers

- The basis $\left\{\chi^{\lambda}\right\}$ and $\left\{\phi^{\lambda}\right\}$ are related by Young's rule:

$$
\phi^{\nu}=\sum_{\gamma \vdash n} K_{\gamma \nu} \chi^{\gamma} .
$$

- The numbers $K_{\gamma \nu}$ are called Kostka numbers and count the number of semistandard tableaux of shape $\gamma$ and content $\nu$.
- They have the following property:

$$
K_{\gamma \nu}>0 \Longleftrightarrow \gamma \succcurlyeq \nu
$$

where $\succcurlyeq$ denotes the dominance order of partitions.

## Matrices and characters I

- Given a matrix $A=\left(a_{i j}\right)$ of size $p \times q$ we define
- $\operatorname{row}(A):=\left(r_{1}, \ldots, r_{p}\right)$, where $r_{i}=\sum_{j} a_{i j}$ and
- $\operatorname{col}(M):=\left(c_{1}, \ldots, c_{q}\right)$, where $c_{j}=\sum_{i} a_{i j}$.


## Matrices and characters I

- Given a matrix $A=\left(a_{i j}\right)$ of size $p \times q$ we define
- $\operatorname{row}(A):=\left(r_{1}, \ldots, r_{p}\right)$, where $r_{i}=\sum_{j} a_{i j}$ and
- $\operatorname{col}(M):=\left(c_{1}, \ldots, c_{q}\right)$, where $c_{j}=\sum_{i} a_{i j}$.
- The compositions row $(A)$ and $\operatorname{col}(A)$ are called the row sum vector and column sum vector of $A$, respectively. They are also called the 1-marginals of $A$.


## Matrices and characters II

- Given $\lambda, \mu$ compositions of $n$, we denote
- by $\mathrm{M}(\lambda, \mu)$ the set of all matrices $A=\left(a_{i j}\right)$ with nonnegative integer entries and 1-marginals $\lambda, \mu$, and
- by $\mathrm{m}(\lambda, \mu):=|\mathrm{M}(\lambda, \mu)|$ its cardinality.


## Matrices and characters II

- Given $\lambda, \mu$ compositions of $n$, we denote
- by $\mathrm{M}(\lambda, \mu)$ the set of all matrices $A=\left(a_{i j}\right)$ with nonnegative integer entries and 1-marginals $\lambda, \mu$, and
- by $\mathrm{m}(\lambda, \mu):=|\mathrm{M}(\lambda, \mu)|$ its cardinality.
- We also denote
- by $\mathrm{M}^{*}(\lambda, \mu)$ the set of all binary matrices $A=\left(a_{i j}\right)$ with 1-marginals $\lambda, \mu$, and
- by $\mathrm{m}^{*}(\lambda, \mu):=\left|\mathrm{M}^{*}(\lambda, \mu)\right|$ its cardinality.


## Characters, matrices and the RSK correspondence I

- There is a well known formula

$$
\mathrm{m}(\lambda, \mu)=\left\langle\phi^{\lambda} \otimes \phi^{\mu}, \chi^{(n)}\right\rangle .
$$

## Characters, matrices and the RSK correspondence I

- There is a well known formula

$$
\mathrm{m}(\lambda, \mu)=\left\langle\phi^{\lambda} \otimes \phi^{\mu}, \chi^{(n)}\right\rangle
$$

- Expanding, by Young's rule, we get a formula for which the RSK correspondence is a combinatorial realization.

$$
\mathrm{m}(\lambda, \mu)=\sum_{\alpha, \beta \vdash n} K_{\alpha \lambda} K_{\beta \mu}\left\langle\chi^{\alpha} \otimes \chi^{\beta}, \chi^{(n)}\right\rangle=\sum_{\sigma \vdash n} K_{\sigma \lambda} K_{\sigma \mu}
$$

## Characters, matrices and the RSK correspondence II

- Similarly, one has

$$
\mathrm{m}^{*}(\lambda, \mu)=\left\langle\phi^{\lambda} \otimes \phi^{\mu}, \chi^{\left(1^{n}\right)}\right\rangle
$$

## Characters, matrices and the RSK correspondence II

- Similarly, one has

$$
\mathrm{m}^{*}(\lambda, \mu)=\left\langle\phi^{\lambda} \otimes \phi^{\mu}, \chi^{\left(1^{n}\right)}\right\rangle
$$

- Again, expanding, by Young's rule, we get a formula for which the dual RSK correspondence is a combinatorial realization.

$$
\mathrm{m}^{*}(\lambda, \mu)=\sum_{\alpha, \beta \vdash n} K_{\alpha \lambda} K_{\beta \mu}\left\langle\chi^{\alpha} \otimes \chi^{\beta}, \chi^{\left(1^{n}\right)}\right\rangle=\sum_{\sigma \vdash n} K_{\sigma \lambda} K_{\sigma^{\prime} \mu}
$$

## 3-dimensional matrices I

## Definition

The 1-marginals of a 3-dimensional matrix $A=\left(a_{i j k}\right)$ of size $p \times q \times r$ are the vectors $\lambda=\left(\lambda_{1}, \ldots, \lambda_{p}\right), \mu=\left(\mu_{1}, \ldots, \mu_{q}\right)$, $\nu=\left(\nu_{1}, \ldots, \nu_{r}\right)$ defined by:

$$
\sum_{j, k} a_{i j k}=\lambda_{i}, \quad \sum_{i, k} a_{i j k}=\mu_{j}, \quad \sum_{i, j} a_{i j k}=\nu_{k} .
$$

## 3-dimensional matrices I

## Definition

The 1-marginals of a 3-dimensional matrix $A=\left(a_{i j k}\right)$ of size $p \times q \times r$ are the vectors $\lambda=\left(\lambda_{1}, \ldots, \lambda_{p}\right), \mu=\left(\mu_{1}, \ldots, \mu_{q}\right)$, $\nu=\left(\nu_{1}, \ldots, \nu_{r}\right)$ defined by:

$$
\sum_{j, k} a_{i j k}=\lambda_{i}, \quad \sum_{i, k} a_{i j k}=\mu_{j}, \quad \sum_{i, j} a_{i j k}=\nu_{k} .
$$

Example

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

has 1-marginals $\lambda=(9,4,2), \mu=(8,5,2)$ and $\nu=(7,4,2,2)$.

## 3-dimensional matrices II

- Given compositions $\lambda, \mu, \nu$ of $n$ we denote
- by $\mathrm{M}(\lambda, \mu, \nu)$ is the set of all matrices $A=\left(a_{i j k}\right)$ with nonnegative integer entries and 1-marginals $\lambda, \mu$ and $\nu$, and
- by $\mathrm{m}(\lambda, \mu, \nu):=|\mathrm{M}(\lambda, \mu, \nu)|$ its cardinality.


## 3-dimensional matrices II

- Given compositions $\lambda, \mu, \nu$ of $n$ we denote
- by $\mathrm{M}(\lambda, \mu, \nu)$ is the set of all matrices $A=\left(a_{i j k}\right)$ with nonnegative integer entries and 1-marginals $\lambda, \mu$ and $\nu$, and
- by $\mathrm{m}(\lambda, \mu, \nu):=|\mathrm{M}(\lambda, \mu, \nu)|$ its cardinality.
- We also denote
- by $\mathrm{M}^{*}(\lambda, \mu, \nu)$ the set of all binary matrices $A=\left(a_{i j k}\right)$ with 1-marginals $\lambda, \mu, \nu$, and
- by $\mathrm{m}^{*}(\lambda, \mu, \nu):=\left|\mathrm{M}^{*}(\lambda, \mu, \nu)\right|$ its cardinality.


## Snapper's theorem

- For 3-dimensional matrices there are formulas similar to those for 2-dimensional matrices.


## Theorem (E. Snapper (1971))

Let $\lambda, \mu, \nu$ be compositions of $n$. Then

$$
\mathrm{m}(\lambda, \mu, \nu)=\left\langle\phi^{\lambda} \otimes \phi^{\mu} \otimes \phi^{\nu}, \chi^{(n)}\right\rangle
$$

and

$$
\mathrm{m}^{*}(\lambda, \mu, \nu)=\left\langle\phi^{\lambda} \otimes \phi^{\mu} \otimes \phi^{\nu}, \chi^{\left(1^{n}\right)}\right\rangle
$$

## Snapper's theorem

- For 3-dimensional matrices there are formulas similar to those for 2-dimensional matrices.


## Theorem (E. Snapper (1971))

Let $\lambda, \mu, \nu$ be compositions of $n$. Then

$$
\mathrm{m}(\lambda, \mu, \nu)=\left\langle\phi^{\lambda} \otimes \phi^{\mu} \otimes \phi^{\nu}, \chi^{(n)}\right\rangle
$$

and

$$
\mathrm{m}^{*}(\lambda, \mu, \nu)=\left\langle\phi^{\lambda} \otimes \phi^{\mu} \otimes \phi^{\nu}, \chi^{\left(1^{n}\right)}\right\rangle
$$

- Now we apply Young's rule to each of the permutation characters.


## Matrices and Kronecker coefficients

- Triple application of Young's formula yields

$$
\mathrm{m}(\lambda, \mu, \nu)=\sum_{\alpha, \beta, \gamma \vdash n} K_{\alpha \lambda} K_{\beta \mu} K_{\gamma \nu} \mathrm{k}(\alpha, \beta, \gamma) .
$$

and

$$
\mathrm{m}^{*}(\lambda, \mu, \nu)=\sum_{\alpha, \beta, \gamma \vdash n} K_{\alpha \lambda} K_{\beta \mu} K_{\gamma \nu} \mathrm{k}\left(\alpha, \beta, \gamma^{\prime}\right) .
$$

## Matrices and Kronecker coefficients

- Triple application of Young's formula yields

$$
\mathrm{m}(\lambda, \mu, \nu)=\sum_{\alpha, \beta, \gamma \vdash n} K_{\alpha \lambda} K_{\beta \mu} K_{\gamma \nu} \mathrm{k}(\alpha, \beta, \gamma) .
$$

and

$$
\mathrm{m}^{*}(\lambda, \mu, \nu)=\sum_{\alpha, \beta, \gamma \vdash n} K_{\alpha \lambda} K_{\beta \mu} K_{\gamma \nu} \mathrm{k}\left(\alpha, \beta, \gamma^{\prime}\right) .
$$

- These formulas indicate how extensions of the RSK correspondence and its dual should be.


## Matrices and Kronecker coefficients

- Triple application of Young's formula yields

$$
\mathrm{m}(\lambda, \mu, \nu)=\sum_{\alpha, \beta, \gamma \vdash n} K_{\alpha \lambda} K_{\beta \mu} K_{\gamma \nu} \mathrm{k}(\alpha, \beta, \gamma) .
$$

and

$$
\mathrm{m}^{*}(\lambda, \mu, \nu)=\sum_{\alpha, \beta, \gamma \vdash n} K_{\alpha \lambda} K_{\beta \mu} K_{\gamma \nu} \mathrm{k}\left(\alpha, \beta, \gamma^{\prime}\right) .
$$

- These formulas indicate how extensions of the RSK correspondence and its dual should be.
- In particular these extensions would contain combinatorial descriptions of Kronecker coefficients.


## Matrices and Kronecker coefficients

- Triple application of Young's formula yields

$$
\mathrm{m}(\lambda, \mu, \nu)=\sum_{\alpha, \beta, \gamma \vdash n} K_{\alpha \lambda} K_{\beta \mu} K_{\gamma \nu} \mathrm{k}(\alpha, \beta, \gamma)
$$

and

$$
\mathrm{m}^{*}(\lambda, \mu, \nu)=\sum_{\alpha, \beta, \gamma \vdash n} K_{\alpha \lambda} K_{\beta \mu} K_{\gamma \nu} \mathrm{k}\left(\alpha, \beta, \gamma^{\prime}\right) .
$$

- These formulas indicate how extensions of the RSK correspondence and its dual should be.
- In particular these extensions would contain combinatorial descriptions of Kronecker coefficients.
- A similar observation was done by F. Caselli (2009).


## Matrices and Littlewood-Richardson multitableaux

- We follow a more modest, but more realistic approach: We apply Young's rule only two times. Thus, we get:

$$
\mathrm{m}(\lambda, \mu, \nu)=\sum_{\alpha, \beta \vdash n} K_{\alpha \lambda} K_{\beta \mu}\left\langle\chi^{\alpha} \otimes \chi^{\beta} \otimes \phi^{\nu}, \chi^{(n)}\right\rangle
$$

and

$$
\mathrm{m}^{*}(\lambda, \mu, \nu)=\sum_{\alpha, \beta \vdash n} K_{\alpha \lambda} K_{\beta \mu}\left\langle\chi^{\alpha} \otimes \chi^{\beta} \otimes \phi^{\nu}, \chi^{\left(1^{n}\right)}\right\rangle
$$

## Matrices and Littlewood-Richardson multitableaux

- We follow a more modest, but more realistic approach: We apply Young's rule only two times. Thus, we get:

$$
\mathrm{m}(\lambda, \mu, \nu)=\sum_{\alpha, \beta \vdash n} K_{\alpha \lambda} K_{\beta \mu}\left\langle\chi^{\alpha} \otimes \chi^{\beta} \otimes \phi^{\nu}, \chi^{(n)}\right\rangle
$$

and

$$
\mathrm{m}^{*}(\lambda, \mu, \nu)=\sum_{\alpha, \beta \vdash n} K_{\alpha \lambda} K_{\beta \mu}\left\langle\chi^{\alpha} \otimes \chi^{\beta} \otimes \phi^{\nu}, \chi^{\left(1^{n}\right)}\right\rangle
$$

- The point is that the inner products on the right hand side have combinatorial descriptions in terms of Littlewood-Richardson coefficients.


## Littlewood-Richardson multitableaux I. Definition

## Definition

Let $\alpha \vdash n$ and $\nu=\left(\nu_{1}, \ldots, \nu_{r}\right)$ be a composition of $n$, then a sequence $T=\left(T_{1}, \ldots, T_{r}\right)$ of tableaux is called a
Littlewood-Richardson multitableau of shape $\alpha$ and type $\nu$ if there exists a sequence of partitions

$$
\emptyset=\alpha(0) \subseteq \alpha(1) \subseteq \cdots \subseteq \alpha(r)=\alpha
$$

such that $T_{i}$ is a Littlewood-Richardson tableau of shape $\alpha(i) / \alpha(i-1)$ and size $\nu_{i}$ for all $i \in[r]$.
If each $T_{i}$ has content $\rho(i)$, then we say that $T$ has content $(\rho(1), \ldots, \rho(r))$.

## Littlewood-Richardson multitableaux II. Example

## Example

The LR multitableau

| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |  |  |
| 3 | 3 | 2 | 2 | 3 |  |  |  |  |  |
| 3 | 3 |  |  |  |  |  |  |  |  |

has:
shape $(10,8,5,2)$,
content $((4,4,2),(3,3,2),(3,3,1))$ and type $(10,8,7)$.

## Littlewood-Richardson multitableaux III. Notation

## Definition

Given partitions $\alpha, \beta$ of $n$ and $\nu$ a composition of $n$, we denote

- by $\operatorname{LR}(\alpha, \beta ; \nu)$ the set of all pairs $(T, S)$ of Littlewood-Richardson multitableaux of shape ( $\alpha, \beta$ ) and type $\nu$ such that $S$ and $T$ have the same content and
- by $\operatorname{lr}(\alpha, \beta ; \nu):=|\operatorname{LR}(\alpha, \beta ; \nu)|$ its cardinality.


## Littlewood-Richardson multitableaux III. Notation

## Definition

Given partitions $\alpha, \beta$ of $n$ and $\nu$ a composition of $n$, we denote

- by $\operatorname{LR}(\alpha, \beta ; \nu)$ the set of all pairs $(T, S)$ of Littlewood-Richardson multitableaux of shape ( $\alpha, \beta$ ) and type $\nu$ such that $S$ and $T$ have the same content and
- by $\operatorname{lr}(\alpha, \beta ; \nu):=|\operatorname{LR}(\alpha, \beta ; \nu)|$ its cardinality.

Similarly, we denote

- by $\mathrm{LR}^{*}(\alpha, \beta ; \nu)$ the set of all pairs $(T, S)$ of Littlewood-Richardson multitableaux of shape ( $\alpha, \beta$ ), type $\nu$ and conjugate content, that is, if $T$ has content $(\rho(1), \ldots, \rho(r))$, then $S$ has content $\left(\rho(1)^{\prime}, \ldots, \rho(r)^{\prime}\right)$ and
- by $\operatorname{Ir}^{*}(\alpha, \beta ; \nu):=\left|\operatorname{LR}^{*}(\alpha, \beta ; \nu)\right|$ its cardinality.


## Littlewood-Richardson multitableaux IV. Example



and $S=$| $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{1}$ | 1 | 1 | 1 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{2}$ | $\mathbf{2}$ | $\mathbf{2}$ | 2 | 2 | 2 | 2 |  |  |
| $\mathbf{3}$ | $\mathbf{3}$ | 3 | 2 | 3 |  |  |  |  |
| $\mathbf{4}$ | $\mathbf{4}$ | 3 |  |  |  |  |  |  |
| 3 |  |  |  |  |  |  |  |  |

Then $(T, S)$ is a pair of Littlewood-Richardson multitableaux in $\operatorname{LR}^{*}((10,8,5,2),(9,7,5,3,1) ;(10,8,7))$.
$T$ has content $((4,4,2),(3,3,2),(3,3,1))$ and $S$ has content $((3,3,2,2),(3,3,2),(3,2,2))$.

## Littlewood-Richardson multitableaux V

## Lemma

Let $\alpha, \beta$ be partitions of $n$ and let $\nu$ be a composition of $n$. Then (1) $\operatorname{Ir}(\alpha, \beta ; \nu)=\left\langle\chi^{\alpha} \otimes \chi^{\beta} \otimes \phi^{\nu}, \chi^{(n)}\right\rangle$.
(2) $\operatorname{Ir}^{*}(\alpha, \beta ; \nu)=\left\langle\chi^{\alpha} \otimes \chi^{\beta} \otimes \phi^{\nu}, \chi^{\left(1^{n}\right)}\right\rangle$.

## Littlewood-Richardson multitableaux V

## Lemma

Let $\alpha, \beta$ be partitions of $n$ and let $\nu$ be a composition of $n$. Then (1) $\operatorname{Ir}(\alpha, \beta ; \nu)=\left\langle\chi^{\alpha} \otimes \chi^{\beta} \otimes \phi^{\nu}, \chi^{(n)}\right\rangle$.
(2) $\operatorname{lr}^{*}(\alpha, \beta ; \nu)=\left\langle\chi^{\alpha} \otimes \chi^{\beta} \otimes \phi^{\nu}, \chi^{\left(1^{n}\right)}\right\rangle$.

- Therefore we have

$$
\mathrm{m}(\lambda, \mu, \nu)=\sum_{\alpha, \beta \vdash n} K_{\alpha \lambda} K_{\beta \mu} \operatorname{Ir}(\alpha, \beta ; \nu)
$$

and

$$
\mathrm{m}^{*}(\lambda, \mu, \nu)=\sum_{\alpha, \beta \vdash n} K_{\alpha \lambda} K_{\beta \mu} \operatorname{Ir}^{*}(\alpha, \beta ; \nu) .
$$

## Littlewood-Richardson multitableaux V

## Lemma

Let $\alpha, \beta$ be partitions of $n$ and let $\nu$ be a composition of $n$. Then (1) $\operatorname{Ir}(\alpha, \beta ; \nu)=\left\langle\chi^{\alpha} \otimes \chi^{\beta} \otimes \phi^{\nu}, \chi^{(n)}\right\rangle$.
(2) $\operatorname{lr}^{*}(\alpha, \beta ; \nu)=\left\langle\chi^{\alpha} \otimes \chi^{\beta} \otimes \phi^{\nu}, \chi^{\left(1^{n}\right)}\right\rangle$.

- Therefore we have

$$
\mathrm{m}(\lambda, \mu, \nu)=\sum_{\alpha, \beta \vdash n} K_{\alpha \lambda} K_{\beta \mu} \operatorname{Ir}(\alpha, \beta ; \nu)
$$

and

$$
\mathrm{m}^{*}(\lambda, \mu, \nu)=\sum_{\alpha, \beta \vdash n} K_{\alpha \lambda} K_{\beta \mu} \operatorname{Ir}^{*}(\alpha, \beta ; \nu) .
$$

- We will give one-to-one correspondences that realize these identities.


## Littlewood-Richardson multitableaux VI

- Another application of Young's rule yields

$$
\operatorname{lr}(\alpha, \beta ; \nu)=\sum_{\gamma \vdash n} K_{\gamma \nu} \mathrm{k}(\alpha, \beta, \gamma)
$$

and

$$
\operatorname{Ir}^{*}\left(\alpha, \beta ; \nu^{\prime}\right)=\sum_{\gamma \vdash n} K_{\gamma^{\prime} \nu^{\prime}} \mathrm{k}(\alpha, \beta, \gamma)
$$

## Littlewood-Richardson multitableaux VI

- Another application of Young's rule yields

$$
\operatorname{Ir}(\alpha, \beta ; \nu)=\sum_{\gamma \vdash n} K_{\gamma \nu} \mathrm{k}(\alpha, \beta, \gamma)
$$

and

$$
\operatorname{Ir}^{*}\left(\alpha, \beta ; \nu^{\prime}\right)=\sum_{\gamma \vdash n} K_{\gamma^{\prime} \nu^{\prime}} \mathrm{k}(\alpha, \beta, \gamma)
$$

- Therefore we can think of $\operatorname{Ir}(\alpha, \beta ; \nu)$ and of $\operatorname{Ir}^{*}\left(\alpha, \beta ; \nu^{\prime}\right)$ as combinatorial approximations of Kronecker coefficients.


## Littlewood-Richardson multitableaux VI

- Another application of Young's rule yields

$$
\operatorname{Ir}(\alpha, \beta ; \nu)=\sum_{\gamma \vdash n} K_{\gamma \nu} \mathrm{k}(\alpha, \beta, \gamma)
$$

and

$$
\operatorname{Ir}^{*}\left(\alpha, \beta ; \nu^{\prime}\right)=\sum_{\gamma \vdash n} K_{\gamma^{\prime} \nu^{\prime}} \mathrm{k}(\alpha, \beta, \gamma)
$$

- Therefore we can think of $\operatorname{Ir}(\alpha, \beta ; \nu)$ and of $\operatorname{Ir}^{*}\left(\alpha, \beta ; \nu^{\prime}\right)$ as combinatorial approximations of Kronecker coefficients.
- In fact, we will next see that in some cases these numbers coincide.


## Extremal components

## Definition

A component $\chi^{\nu}$ of $\chi^{\alpha} \otimes \chi^{\beta}$ is called

- maximal if for all $\gamma \succ \nu$ one has $\mathrm{k}(\alpha, \beta, \gamma)=0$,
- minimal if for all $\gamma \prec \nu$ one has $\mathrm{k}(\alpha, \beta, \gamma)=0$.


## Lemma

Let $\chi^{\nu}$ be a component of $\chi^{\alpha} \otimes \chi^{\beta}$. Then
(1) $\chi^{\nu}$ is a maximal component of $\chi^{\alpha} \otimes \chi^{\beta}$ if and only if $\mathrm{k}(\alpha, \beta, \nu)=\operatorname{lr}(\alpha, \beta ; \nu)$.
(2) $\chi^{\nu}$ is a minimal component of $\chi^{\alpha} \otimes \chi^{\beta}$ if and only if $\mathrm{k}(\alpha, \beta, \nu)=\operatorname{lr}^{*}\left(\alpha, \beta ; \nu^{\prime}\right)$.

## Main theorems

- Let $\lambda, \mu, \nu$ be compositions of $n$.
- For any partition $\alpha$ of $n$, let $\mathrm{K}_{\alpha \lambda}$ denote the set of all semistandard tableaux of shape $\alpha$ and content $\lambda$.


## Main theorems

- Let $\lambda, \mu, \nu$ be compositions of $n$.
- For any partition $\alpha$ of $n$, let $\mathrm{K}_{\alpha \lambda}$ denote the set of all semistandard tableaux of shape $\alpha$ and content $\lambda$.

Theorem
There is a one-to-one correspondence between the set $\mathrm{M}(\lambda, \mu, \nu)$ of 3-dimensional matrices with nonnegative integer coefficients that have 1-marginals $\lambda, \mu, \nu$ and the set of triples $\coprod_{\alpha, \beta \vdash n} \mathrm{~K}_{\alpha \lambda} \times \mathrm{K}_{\beta \mu} \times \operatorname{LR}(\alpha, \beta ; \nu)$.

## Main theorems

- Let $\lambda, \mu, \nu$ be compositions of $n$.
- For any partition $\alpha$ of $n$, let $\mathrm{K}_{\alpha \lambda}$ denote the set of all semistandard tableaux of shape $\alpha$ and content $\lambda$.


## Theorem

There is a one-to-one correspondence between the set $\mathrm{M}(\lambda, \mu, \nu)$ of 3-dimensional matrices with nonnegative integer coefficients that have 1-marginals $\lambda, \mu, \nu$ and the set of triples
$\coprod_{\alpha, \beta \vdash n} \mathrm{~K}_{\alpha \lambda} \times \mathrm{K}_{\beta \mu} \times \operatorname{LR}(\alpha, \beta ; \nu)$.

## Theorem

There is a one-to-one correspondence between the set $\mathrm{M}^{*}(\lambda, \mu, \nu)$ of 3-dimensional binary matrices that have 1-marginals $\lambda, \mu, \nu$ and the set of triples $\coprod_{\alpha, \beta \vdash n} \mathrm{~K}_{\alpha \lambda} \times \mathrm{K}_{\beta \mu} \times \mathrm{LR}^{*}(\alpha, \beta ; \nu)$.

## Sketch of proof I

## First bijection (tautological)

Let $\lambda, \mu, \nu$ be compositions of size $p, q, r$, respectively. There is a one-to-one correspondence

$$
A=\left(a_{i j k}\right) \in \mathrm{M}(\lambda, \mu, \nu) \leftrightarrow\left(A^{(1)}=\left(a_{i j}^{(1)}\right), \ldots, A^{(r)}=\left(a_{i j}^{(r)}\right)\right),
$$

where each $A^{(k)}$ has size $p \times q$ and

$$
\begin{aligned}
& \sum_{k=1}^{r} \operatorname{row}\left(A_{k}\right)=\lambda, \quad \sum_{k=1}^{r} \operatorname{col}\left(A_{k}\right)=\mu, \\
& \text { sum of the entries of } A_{k}=\nu_{k}, k \in[r] .
\end{aligned}
$$

## Sketch of proof I

## First bijection (tautological)

Let $\lambda, \mu, \nu$ be compositions of size $p, q, r$, respectively. There is a one-to-one correspondence

$$
A=\left(a_{i j k}\right) \in \mathrm{M}(\lambda, \mu, \nu) \leftrightarrow\left(A^{(1)}=\left(a_{i j}^{(1)}\right), \ldots, A^{(r)}=\left(a_{i j}^{(r)}\right)\right),
$$

where each $A^{(k)}$ has size $p \times q$ and

$$
\begin{aligned}
& \sum_{k=1}^{r} \operatorname{row}\left(A_{k}\right)=\lambda, \quad \sum_{k=1}^{r} \operatorname{col}\left(A_{k}\right)=\mu, \\
& \text { sum of the entries of } A_{k}=\nu_{k}, k \in[r] .
\end{aligned}
$$

- The correspondence is $a_{i j}^{(k)}=a_{i j k}$.


## Sketch of proof II

## Second bijection

There is a one-to-one correspondence

$$
\left(A_{1}, \ldots, A_{r}\right) \leftrightarrow\left(\left(P_{1}, \ldots, P_{r}\right),\left(Q_{1}, \ldots, Q_{r}\right)\right),
$$

where each matrix $A_{k}$ satisfies the conditions from previous slide and on the right hand side we have $r$-tuples of semistandard tableaux such that

$$
\begin{gathered}
\sum_{k=1}^{r} \operatorname{cont}\left(Q_{k}\right)=\lambda, \quad \sum_{k=1}^{r} \operatorname{cont}\left(P_{k}\right)=\mu, \\
\operatorname{sh}\left(P_{k}\right)=\operatorname{sh}\left(Q_{k}\right) \text { and }\left|\operatorname{sh}\left(P_{k}\right)\right|=\nu_{k}, k \in[r] .
\end{gathered}
$$

## Sketch of proof II

## Second bijection

There is a one-to-one correspondence

$$
\left(A_{1}, \ldots, A_{r}\right) \leftrightarrow\left(\left(P_{1}, \ldots, P_{r}\right),\left(Q_{1}, \ldots, Q_{r}\right)\right)
$$

where each matrix $A_{k}$ satisfies the conditions from previous slide and on the right hand side we have $r$-tuples of semistandard tableaux such that

$$
\begin{gathered}
\sum_{k=1}^{r} \operatorname{cont}\left(Q_{k}\right)=\lambda, \quad \sum_{k=1}^{r} \operatorname{cont}\left(P_{k}\right)=\mu, \\
\operatorname{sh}\left(P_{k}\right)=\operatorname{sh}\left(Q_{k}\right) \text { and }\left|\operatorname{sh}\left(P_{k}\right)\right|=\nu_{k}, k \in[r] .
\end{gathered}
$$

- The correspondence follows applying the RSK correspondence on each level matrix.


## Sketch of proof III

Third bijection
There is a one-to-one correspondence

$$
\left(\left(P_{1}, \ldots, P_{r}\right),\left(Q_{1}, \ldots, Q_{r}\right)\right) \leftrightarrow \coprod_{\alpha, \beta \vdash n} \mathrm{~K}_{\alpha \lambda} \times \mathrm{K}_{\beta \mu} \times \operatorname{LR}(\alpha, \beta ; \nu),
$$

where the pair of $r$-tuples of semistandard tableaux satisify the conditions of the previous slide.

## Sketch of proof III

Third bijection
There is a one-to-one correspondence

$$
\left(\left(P_{1}, \ldots, P_{r}\right),\left(Q_{1}, \ldots, Q_{r}\right)\right) \leftrightarrow \coprod_{\alpha, \beta \vdash n} \mathrm{~K}_{\alpha \lambda} \times \mathrm{K}_{\beta \mu} \times \operatorname{LR}(\alpha, \beta ; \nu),
$$

where the pair of $r$-tuples of semistandard tableaux satisify the conditions of the previous slide.

- It is a consequence of the next theorem:


## Sketch of proof IV

## Theorem (G.P. Thomas (1974))

There is a one-to-one correspondence between the set of all $r$-tuples $\left(P_{1}, \ldots, P_{r}\right)$ of semistandard tableaux and the set of pairs
$(P, S)$ such that $P$ is a semistandard tableau and $S$ is a Littlewood-Richardson multitableau of shape sh(P). Moreover, under this correspondence

$$
\operatorname{cont}(P)=\sum_{k=1}^{r} \operatorname{cont}\left(P_{k}\right) \quad \text { and } \quad \operatorname{cont}(S)=\left(\operatorname{sh}\left(P_{1}\right), \ldots, \operatorname{sh}\left(P_{r}\right)\right)
$$

## Remark

$P=P_{r} \ldots P_{1}$ is a product of tableaux, and $S=\left(S_{1}, \ldots, S_{r}\right)$ is a list of recording tableaux, one for each for each factor.

## Discrete Tomography I. Motivation

- In the 2-dimensional case there are well known conditions for existence and uniqueness. The first one is due to D. Gale and H. Ryser (1957). The second is folklore.

$$
\begin{aligned}
& \mathrm{m}^{*}(\lambda, \mu)>0 \Longleftrightarrow \lambda^{\prime} \succcurlyeq \mu \\
& \mathrm{m}^{*}(\lambda, \mu)=1 \Longleftrightarrow \lambda^{\prime}=\mu
\end{aligned}
$$

## Discrete Tomography I. Motivation

- In the 2-dimensional case there are well known conditions for existence and uniqueness. The first one is due to D. Gale and H. Ryser (1957). The second is folklore.

$$
\begin{aligned}
& \mathrm{m}^{*}(\lambda, \mu)>0 \Longleftrightarrow \lambda^{\prime} \succcurlyeq \mu, \\
& \mathrm{m}^{*}(\lambda, \mu)=1 \Longleftrightarrow \lambda^{\prime}=\mu .
\end{aligned}
$$

- We are interested in a similar condition for $\mathrm{m}^{*}(\lambda, \mu, \nu)=1$.


## Discrete Tomography I. Motivation

- In the 2-dimensional case there are well known conditions for existence and uniqueness. The first one is due to D. Gale and H. Ryser (1957). The second is folklore.

$$
\begin{aligned}
& \mathrm{m}^{*}(\lambda, \mu)>0 \Longleftrightarrow \lambda^{\prime} \succcurlyeq \mu, \\
& \mathrm{m}^{*}(\lambda, \mu)=1 \Longleftrightarrow \lambda^{\prime}=\mu .
\end{aligned}
$$

- We are interested in a similar condition for $\mathrm{m}^{*}(\lambda, \mu, \nu)=1$.
- In the next slides we show a condition that involves 2-dimensional matrices with nonnegative integer entries.


## Discrete Tomography II. Definitions

Let $A \in \mathrm{M}(\lambda, \mu)$.

- The $\pi$-sequence of $A$, denoted by $\pi(A)$, is the decreasing sequence of its entries.


## Discrete Tomography II. Definitions

Let $A \in \mathrm{M}(\lambda, \mu)$.

- The $\pi$-sequence of $A$, denoted by $\pi(A)$, is the decreasing sequence of its entries.
- $\boldsymbol{A}$ is called $\boldsymbol{\pi}$-unique if there is no other matrix in $\mathrm{M}(\lambda, \mu)$ with the same $\pi$-sequence.


## Discrete Tomography II. Definitions

Let $A \in \mathrm{M}(\lambda, \mu)$.

- The $\boldsymbol{\pi}$-sequence of $A$, denoted by $\pi(A)$, is the decreasing sequence of its entries.
- $\boldsymbol{A}$ is called $\boldsymbol{\pi}$-unique if there is no other matrix in $\mathrm{M}(\lambda, \mu)$ with the same $\pi$-sequence.
- $A$ is called minimal if there is no other matrix $B \in \mathrm{M}(\lambda, \mu)$ with $\pi(B) \prec \pi(A)$.


## Discrete Tomography III. Example

Example
Let $\lambda=\mu=(3,3)$ and let

$$
A=\left[\begin{array}{ll}
0 & 3 \\
3 & 0
\end{array}\right], \quad B=\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right], \quad C=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right], \quad D=\left[\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right] .
$$

Then

## Discrete Tomography III. Example

Example
Let $\lambda=\mu=(3,3)$ and let

$$
A=\left[\begin{array}{ll}
0 & 3 \\
3 & 0
\end{array}\right], \quad B=\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right], \quad C=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right], \quad D=\left[\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right] .
$$

Then

- $\mathrm{M}(\lambda, \mu)=\{A, B, C, D\}$.


## Discrete Tomography III. Example

Example
Let $\lambda=\mu=(3,3)$ and let

$$
A=\left[\begin{array}{ll}
0 & 3 \\
3 & 0
\end{array}\right], \quad B=\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right], \quad C=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right], \quad D=\left[\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right]
$$

Then

- $\mathrm{M}(\lambda, \mu)=\{A, B, C, D\}$.
- $\pi(B)=\pi(C)=\left(2^{2}, 1^{2}\right)$ and $\pi(A)=\pi(D)=\left(3^{2}\right)$.


## Discrete Tomography III. Example

Example
Let $\lambda=\mu=(3,3)$ and let

$$
A=\left[\begin{array}{ll}
0 & 3 \\
3 & 0
\end{array}\right], \quad B=\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right], \quad C=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right], \quad D=\left[\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right]
$$

Then

- $\mathrm{M}(\lambda, \mu)=\{A, B, C, D\}$.
- $\pi(B)=\pi(C)=\left(2^{2}, 1^{2}\right)$ and $\pi(A)=\pi(D)=\left(3^{2}\right)$.
- $B$ and $C$ are minimal, while $A$ and $D$ are not.


## Discrete Tomography III. Example

Example
Let $\lambda=\mu=(3,3)$ and let

$$
A=\left[\begin{array}{ll}
0 & 3 \\
3 & 0
\end{array}\right], \quad B=\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right], \quad C=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right], \quad D=\left[\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right]
$$

Then

- $\mathrm{M}(\lambda, \mu)=\{A, B, C, D\}$.
- $\pi(B)=\pi(C)=\left(2^{2}, 1^{2}\right)$ and $\pi(A)=\pi(D)=\left(3^{2}\right)$.
- $B$ and $C$ are minimal, while $A$ and $D$ are not.
- Neither of them is $\pi$-unique.


## Discrete Tomography IV. Another example

## Example

Let

$$
A=\left[\begin{array}{lll}
4 & 4 & 1 \\
2 & 1 & 1 \\
2 & 0 & 0
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{lll}
4 & 3 & 2 \\
3 & 1 & 0 \\
1 & 1 & 0
\end{array}\right]
$$

## Discrete Tomography IV. Another example

## Example

Let

$$
A=\left[\begin{array}{lll}
4 & 4 & 1 \\
2 & 1 & 1 \\
2 & 0 & 0
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{lll}
4 & 3 & 2 \\
3 & 1 & 0 \\
1 & 1 & 0
\end{array}\right]
$$

- Then both matrices have 1 -marginals $(9,4,2)$ and $(8,5,2)$.


## Discrete Tomography IV. Another example

## Example

Let

$$
A=\left[\begin{array}{lll}
4 & 4 & 1 \\
2 & 1 & 1 \\
2 & 0 & 0
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{lll}
4 & 3 & 2 \\
3 & 1 & 0 \\
1 & 1 & 0
\end{array}\right]
$$

- Then both matrices have 1-marginals $(9,4,2)$ and $(8,5,2)$.
- Moreover $\pi(B) \prec \pi(A)$. This means that $B$ is flatter than $A$.


## Discrete Tomography IV. Another example

## Example

Let

$$
A=\left[\begin{array}{lll}
4 & 4 & 1 \\
2 & 1 & 1 \\
2 & 0 & 0
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{lll}
4 & 3 & 2 \\
3 & 1 & 0 \\
1 & 1 & 0
\end{array}\right] .
$$

- Then both matrices have 1 -marginals $(9,4,2)$ and $(8,5,2)$.
- Moreover $\pi(B) \prec \pi(A)$. This means that $B$ is flatter than $A$.
- A matrix is minimal when it cannot be made flatter without changing the 1 -marginals.


## Discrete Tomography V. The graph of a matrix

- We denote
- by $\mathrm{M}_{\nu}(\lambda, \mu)$ the set of matrices in $\mathrm{M}(\lambda, \mu)$ with $\pi$-sequence $\nu$,
- by $\mathrm{m}_{\nu}(\lambda, \mu):=\left|\mathrm{M}_{\nu}(\lambda, \mu)\right|$ its cardinality.


## Discrete Tomography V. The graph of a matrix

- We denote
- by $\mathrm{M}_{\nu}(\lambda, \mu)$ the set of matrices in $\mathrm{M}(\lambda, \mu)$ with $\pi$-sequence $\nu$,
- by $\mathrm{m}_{\nu}(\lambda, \mu):=\left|\mathrm{M}_{\nu}(\lambda, \mu)\right|$ its cardinality.
- To each matrix $A=\left(a_{i j}\right)$ in $\mathrm{M}_{\nu}(\lambda, \mu)$ we associate a 3-dimensional matrix $\mathrm{G}(A)=\left(a_{i j k}\right)$ by

$$
a_{i j k}= \begin{cases}1 & \text { if } a_{i j} \leq k \\ 0 & \text { otherwise }\end{cases}
$$

## Discrete Tomography V. The graph of a matrix

- We denote
- by $\mathrm{M}_{\nu}(\lambda, \mu)$ the set of matrices in $\mathrm{M}(\lambda, \mu)$ with $\pi$-sequence $\nu$,
- by $\mathrm{m}_{\nu}(\lambda, \mu):=\left|\mathrm{M}_{\nu}(\lambda, \mu)\right|$ its cardinality.
- To each matrix $A=\left(a_{i j}\right)$ in $\mathrm{M}_{\nu}(\lambda, \mu)$ we associate a 3-dimensional matrix $\mathrm{G}(A)=\left(a_{i j k}\right)$ by

$$
a_{i j k}= \begin{cases}1 & \text { if } a_{i j} \leq k \\ 0 & \text { otherwise }\end{cases}
$$

- The correspondence $A \mapsto \mathrm{G}(A)$ defines an injective map

$$
G_{\lambda, \mu, \nu}: \mathrm{M}_{\nu}(\lambda, \mu) \longrightarrow \mathrm{M}^{*}\left(\lambda, \mu, \nu^{\prime}\right)
$$

## Discrete Tomography VI. Example

## Example

Let

$$
A=\left[\begin{array}{lllll}
5 & 5 & 5 & 4 & 4 \\
5 & 5 & 5 & 3 & 3 \\
3 & 3 & 1 & 1 & 0 \\
2 & 1 & 1 & 1 & 0 \\
2 & 1 & 0 & 0 & 0
\end{array}\right]
$$

Then the graph of $A$ is:

## Discrete Tomography VII. Minimality

Note that if there is a minimal matrix in $\mathrm{M}_{\nu}(\lambda, \mu)$, then all matrices in $\mathrm{M}_{\nu}(\lambda, \mu)$ are minimal.

## Discrete Tomography VII. Minimality

Note that if there is a minimal matrix in $\mathrm{M}_{\nu}(\lambda, \mu)$, then all matrices in $\mathrm{M}_{\nu}(\lambda, \mu)$ are minimal.

Definition
We say that $\nu$ is minimal for $(\boldsymbol{\lambda}, \boldsymbol{\mu})$ if there is a minimal matrix in $\mathrm{M}_{\nu}(\lambda, \mu)$.

## Discrete Tomography VII. Minimality

Note that if there is a minimal matrix in $\mathrm{M}_{\nu}(\lambda, \mu)$, then all matrices in $\mathrm{M}_{\nu}(\lambda, \mu)$ are minimal.

Definition
We say that $\nu$ is minimal for $(\boldsymbol{\lambda}, \boldsymbol{\mu})$ if there is a minimal matrix in $\mathrm{M}_{\nu}(\lambda, \mu)$.

Proposition (E.V. (2000, 2007))
Let $\lambda, \mu, \nu$ be partitions of $n$. Then $\nu$ is minimal for $(\lambda, \mu)$ if and only if $G_{\lambda, \mu, \nu}$ is bijective.

## Discrete Tomography VIII. Uniqueness

Theorem (A. Torres, E.V (1998))
Let $\lambda, \mu, \nu$ be partitions of $n$. Then

- $\mathrm{m}^{*}(\lambda, \mu, \nu)=1 \Longleftrightarrow$ there is a matrix $A \in \mathrm{M}_{\nu^{\prime}}(\lambda, \mu)$ that is minimal and $\pi$-unique.
- If $\mathrm{m}^{*}(\lambda, \mu, \nu)=1$, the unique matrix $A \in \mathrm{M}_{\nu^{\prime}}(\lambda, \mu)$ is a plane partition.


## Discrete Tomography VIII. Uniqueness

## Theorem (A. Torres, E.V (1998))

Let $\lambda, \mu, \nu$ be partitions of $n$. Then

- $\mathrm{m}^{*}(\lambda, \mu, \nu)=1 \Longleftrightarrow$ there is a matrix $A \in \mathrm{M}_{\nu^{\prime}}(\lambda, \mu)$ that is minimal and $\pi$-unique.
- If $\mathrm{m}^{*}(\lambda, \mu, \nu)=1$, the unique matrix $A \in \mathrm{M}_{\nu^{\prime}}(\lambda, \mu)$ is a plane partition.
- Due to the formula

$$
\mathrm{m}^{*}(\lambda, \mu, \nu)=\sum_{\alpha \succcurlyeq \lambda, \beta \succcurlyeq \mu, \gamma \succcurlyeq \nu} K_{\alpha \lambda} K_{\beta \mu} K_{\gamma \nu} \mathrm{k}\left(\alpha, \beta, \gamma^{\prime}\right),
$$

uniqueness implies the vanishing of several Kronecker coefficients.

## Discrete Tomography VIII. Uniqueness

## Theorem (A. Torres, E.V (1998))

Let $\lambda, \mu, \nu$ be partitions of $n$. Then

- $\mathrm{m}^{*}(\lambda, \mu, \nu)=1 \Longleftrightarrow$ there is a matrix $A \in \mathrm{M}_{\nu^{\prime}}(\lambda, \mu)$ that is minimal and $\pi$-unique.
- If $\mathrm{m}^{*}(\lambda, \mu, \nu)=1$, the unique matrix $A \in \mathrm{M}_{\nu^{\prime}}(\lambda, \mu)$ is a plane partition.
- Due to the formula

$$
\mathrm{m}^{*}(\lambda, \mu, \nu)=\sum_{\alpha \succcurlyeq \lambda, \beta \succcurlyeq \mu, \gamma \succcurlyeq \nu} K_{\alpha \lambda} K_{\beta \mu} K_{\gamma \nu} \mathrm{k}\left(\alpha, \beta, \gamma^{\prime}\right),
$$

uniqueness implies the vanishing of several Kronecker coefficients.

- In fact minimality by itself will yield useful information on Kronecker coefficients.


## Minimal matrices and Kronecker coefficients I

## Proposition (E.V. (2000))

If $\nu$ is minimal for $(\lambda, \mu)$. Then
(1) $\mathrm{k}(\alpha, \beta, \gamma)=0$ for all $\alpha \succcurlyeq \lambda, \beta \succcurlyeq \mu, \gamma \prec \nu$.
(2) $\mathrm{k}(\alpha, \beta, \nu)=\operatorname{lr}^{*}\left(\alpha, \beta ; \nu^{\prime}\right)$ for all $\alpha \succcurlyeq \lambda, \beta \succcurlyeq \mu$.

In particular, for any pair of partitions $(\alpha, \beta)$ such that $\alpha \succcurlyeq \lambda$ and $\beta \succcurlyeq \mu$ we have that $\chi^{\nu}$ is a minimal component of $\chi^{\alpha} \otimes \chi^{\beta}$ if and only if $\operatorname{Ir}^{*}\left(\alpha, \beta ; \nu^{\prime}\right)$ is positive.

## Minimal matrices and Kronecker coefficients I

## Proposition (E.V. (2000))

If $\nu$ is minimal for $(\lambda, \mu)$. Then
(1) $\mathrm{k}(\alpha, \beta, \gamma)=0$ for all $\alpha \succcurlyeq \lambda, \beta \succcurlyeq \mu, \gamma \prec \nu$.
(2) $\mathrm{k}(\alpha, \beta, \nu)=\operatorname{lr}^{*}\left(\alpha, \beta ; \nu^{\prime}\right)$ for all $\alpha \succcurlyeq \lambda, \beta \succcurlyeq \mu$.

In particular, for any pair of partitions $(\alpha, \beta)$ such that $\alpha \succcurlyeq \lambda$ and $\beta \succcurlyeq \mu$ we have that $\chi^{\nu}$ is a minimal component of $\chi^{\alpha} \otimes \chi^{\beta}$ if and only if $\operatorname{lr}^{*}\left(\alpha, \beta ; \nu^{\prime}\right)$ is positive.

Proposition (E.V. (2000))
If $\nu$ is minimal for $(\lambda, \mu)$. Then

$$
\mathrm{m}_{\nu}(\lambda, \mu)=\sum_{\alpha, \beta \vdash n} K_{\alpha \lambda} K_{\beta \mu} \operatorname{Ir}^{*}\left(\alpha, \beta ; \nu^{\prime}\right)=\sum_{\alpha, \beta \vdash n} K_{\alpha \lambda} K_{\beta \mu} \mathrm{k}(\alpha, \beta, \nu) .
$$

## Minimal matrices and Kronecker coefficients II

- Let

$$
\Phi^{*}: \mathrm{M}^{*}\left(\lambda, \mu, \nu^{\prime}\right) \longrightarrow \coprod_{\alpha, \beta \vdash n} \mathrm{~K}_{\alpha \lambda} \times \mathrm{K}_{\beta \mu} \times \mathrm{LR}^{*}\left(\alpha, \beta ; \nu^{\prime}\right)
$$

denote the bijection that we get from the main theorem, when we apply in each level the dual RSK-correspondence.

## Minimal matrices and Kronecker coefficients II

- Let

$$
\Phi^{*}: \mathrm{M}^{*}\left(\lambda, \mu, \nu^{\prime}\right) \longrightarrow \coprod_{\alpha, \beta \vdash n} \mathrm{~K}_{\alpha \lambda} \times \mathrm{K}_{\beta \mu} \times \operatorname{LR}^{*}\left(\alpha, \beta ; \nu^{\prime}\right)
$$

denote the bijection that we get from the main theorem, when we apply in each level the dual RSK-correspondence.

- Then the composition

$$
\Phi^{*} \circ G_{\lambda, \mu, \nu}: \mathrm{M}_{\nu}(\lambda, \mu) \longrightarrow \coprod_{\alpha, \beta \vdash n} \mathrm{~K}_{\alpha \lambda} \times \mathrm{K}_{\beta \mu} \times \mathrm{LR}^{*}\left(\alpha, \beta ; \nu^{\prime}\right) .
$$

is injective.

## Minimal matrices and Kronecker coefficients II

- Let

$$
\Phi^{*}: \mathrm{M}^{*}\left(\lambda, \mu, \nu^{\prime}\right) \longrightarrow \coprod_{\alpha, \beta \vdash n} \mathrm{~K}_{\alpha \lambda} \times \mathrm{K}_{\beta \mu} \times \mathrm{LR}^{*}\left(\alpha, \beta ; \nu^{\prime}\right)
$$

denote the bijection that we get from the main theorem, when we apply in each level the dual RSK-correspondence.

- Then the composition

$$
\Phi^{*} \circ G_{\lambda, \mu, \nu}: \mathrm{M}_{\nu}(\lambda, \mu) \longrightarrow \coprod_{\alpha, \beta \vdash n} \mathrm{~K}_{\alpha \lambda} \times \mathrm{K}_{\beta \mu} \times \mathrm{LR}^{*}\left(\alpha, \beta ; \nu^{\prime}\right)
$$

is injective.

- If $\nu$ is minimal for $(\lambda, \mu)$, then $\Phi^{*} \circ G_{\lambda, \mu, \nu}$ is bijective. So, this map is a combinatorial realization of the identity that relates the number of minimal matrices to sums of Kronecker coefficients.


## Minimal matrices and Kronecker coefficients III

Let $f, g, h$ denote the components of $\Phi^{*} \circ G_{\lambda, \mu, \nu}$, that is, for any $A \in \mathrm{M}_{\nu}(\lambda, \mu)$ we have $\Phi^{*} \circ G_{\lambda, \mu, \nu}(A)=(f(A), g(A), h(A))$.

## Theorem

Suppose $\nu$ is minimal for $(\lambda, \mu)$. Let $P$ be a semistandard tableau of shape $\alpha$ and content $\lambda$, and $Q$ be a semistandard tableau of shape $\beta$ and content $\mu$. Then

$$
\mathrm{k}(\alpha, \beta, \nu)=\#\left\{A \in \mathrm{M}_{\nu}(\lambda, \mu) \mid f(A)=P \text { and } g(A)=Q\right\}
$$

Moreover, if $\mathrm{k}(\alpha, \beta, \nu)>0$, then $\chi^{\nu}$ is a minimal component of $\chi^{\alpha} \otimes \chi^{\beta}$.

## Minimal matrices and Kronecker coefficients IV

## Example

Let $\lambda=(6,6), \mu=(3,3,3,3)$. Then, there are six minimal matrices in $\mathrm{M}(\lambda, \mu)$, namely

$$
A=\left[\begin{array}{llll}
2 & 2 & 1 & 1 \\
1 & 1 & 2 & 2
\end{array}\right], \quad B=\left[\begin{array}{llll}
1 & 2 & 2 & 1 \\
2 & 1 & 1 & 2
\end{array}\right], \quad C=\left[\begin{array}{llll}
2 & 1 & 2 & 1 \\
1 & 2 & 1 & 2
\end{array}\right],
$$

$$
D=\left[\begin{array}{llll}
2 & 1 & 1 & 2 \\
1 & 2 & 2 & 1
\end{array}\right], \quad E=\left[\begin{array}{llll}
1 & 2 & 1 & 2 \\
2 & 1 & 2 & 1
\end{array}\right], \quad F=\left[\begin{array}{llll}
1 & 1 & 2 & 2 \\
2 & 2 & 1 & 1
\end{array}\right] .
$$

## Minimal matrices and Kronecker coefficients $\vee$

## Example

Let $\nu=\left(2^{4}, 1^{4}\right)$ be the common $\pi$-sequence of the six matrices.
After computing $\Phi^{*} \circ G_{\lambda, \mu, \nu}$ for each matrix we get

$$
f(A)=\begin{array}{|l|l|l|l|l|l|l|l|}
\hline 1 & 1 & 1 & 1 & 1 & 1 & 2 & 2 \\
\hline 2 & 2 & 2 & 2 & & & & \\
\hline
\end{array}
$$

$g(A)=$| 1 | 1 | 1 |
| :--- | :--- | :--- |
| 2 | 2 | 2 |
| 3 | 3 | 3 |
| 4 | 4 | 4 |.

$$
f(B)=\begin{array}{|l|l|l|l|l|l|l|}
\hline 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 2 & 2 & 2 & 2 & 2 & & \\
\cline { 1 - 6 } & & & & &
\end{array}
$$

$g(B)=$| 1 | 1 | 1 | 2 |
| :--- | :--- | :--- | :--- |
| 2 | 2 | 3 |  |
| 3 | 3 | 4 |  |
| 4 | 4 |  |  |.

## Minimal matrices and Kronecker coefficients VI

## Example

$$
f(C)=\begin{array}{|l|l|l|l|l|l|l}
\hline 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 2 & 2 & 2 & 2 & 2 & &
\end{array} \quad \text { and }
$$

$g(C)=$| 1 | 1 | 1 | 3 |
| :--- | :--- | :--- | :--- |
| 2 | 2 | 2 |  |
| 3 | 3 | 4 |  |
| 4 | 4 |  |  |
|  |  |  |  |.

$$
f(D)=\begin{array}{|l|l|l|l|l|l|l|}
\hline 1 & 1 & 1 & 1 & 1 & 1 & 2 \\
\hline 2 & 2 & 2 & 2 & 2 & &
\end{array} \quad \text { and }
$$

$g(D)=$| 1 | 1 | 1 | 4 |
| :--- | :--- | :--- | :--- |
| 2 | 2 | 2 |  |
| 3 | 3 | 3 |  |
| 4 | 4 |  |  |.

## Minimal matrices and Kronecker coefficients VII

Example

$$
\begin{aligned}
& f(E)=\begin{array}{|l|l|l|l|l|l}
\hline 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 2 & 2 & 2 & 2 & 2 & 2 \\
\hline
\end{array} \quad \text { and } \\
& g(E)= \\
& f(F)=\begin{array}{|l|l|l|l|l|l|}
\hline 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 2 & 2 & 2 & 2 & 2 & 2 \\
\hline
\end{array} \quad \text { and } \\
& g(F)=
\end{aligned}
$$

## Minimal matrices and Kronecker coefficients VIII

Example

- Recall, $\lambda=(6,6), \mu=(3,3,3,3)$ and $\nu=\left(2^{4}, 1^{4}\right)$.


## Minimal matrices and Kronecker coefficients VIII

## Example

- Recall, $\lambda=(6,6), \mu=(3,3,3,3)$ and $\nu=\left(2^{4}, 1^{4}\right)$.
- Let $\alpha=\operatorname{sh}(f(D))=(7,5)$ and $\gamma=\operatorname{sh}(f(A))=(8,4)$.
- $\beta=\operatorname{sh}(g(B))=(4,3,3,2)$ and $\delta=\operatorname{sh}(g(E))=(4,4,2,2)$.


## Minimal matrices and Kronecker coefficients VIII

## Example

- Recall, $\lambda=(6,6), \mu=(3,3,3,3)$ and $\nu=\left(2^{4}, 1^{4}\right)$.
- Let $\alpha=\operatorname{sh}(f(D))=(7,5)$ and $\gamma=\operatorname{sh}(f(A))=(8,4)$.
- $\beta=\operatorname{sh}(g(B))=(4,3,3,2)$ and $\delta=\operatorname{sh}(g(E))=(4,4,2,2)$.
- Thus, we obtain that
- $\mathrm{k}(\gamma, \mu, \nu)=1$,
- $\mathrm{k}(\alpha, \beta, \nu)=1$,
- $\mathrm{k}(\lambda, \delta, \nu)=1$.


## Minimal matrices and Kronecker coefficients VIII

## Example

- Recall, $\lambda=(6,6), \mu=(3,3,3,3)$ and $\nu=\left(2^{4}, 1^{4}\right)$.
- Let $\alpha=\operatorname{sh}(f(D))=(7,5)$ and $\gamma=\operatorname{sh}(f(A))=(8,4)$.
- $\beta=\operatorname{sh}(g(B))=(4,3,3,2)$ and $\delta=\operatorname{sh}(g(E))=(4,4,2,2)$.
- Thus, we obtain that
- $\mathrm{k}(\gamma, \mu, \nu)=1$,
- $\mathrm{k}(\alpha, \beta, \nu)=1$,
- $\mathrm{k}(\lambda, \delta, \nu)=1$.
- Many other Kronecker coefficients are zero.

$$
\mathrm{m}_{\nu}(\lambda, \mu)=\sum_{\alpha \succcurlyeq \lambda, \beta \succcurlyeq \mu} K_{\alpha \lambda} K_{\beta \mu} \operatorname{lr}^{*}\left(\alpha, \beta ; \nu^{\prime}\right)=\sum_{\alpha \succcurlyeq \lambda, \beta \succcurlyeq \mu} K_{\alpha \lambda} K_{\beta \mu} \mathrm{k}(\alpha, \beta, \nu) .
$$

## Additive and minimal matrices

## Definition

A matrix $A=\left(a_{i j}\right)$ of size $p \times q$ with nonnegative integer entries is called additive if there exists real numbers $x_{1}, \ldots, x_{p}$ and $y_{1}, \ldots, y_{q}$ such that the condition

$$
a_{i j}>a_{k l} \Longrightarrow x_{i}+y_{j}>x_{k}+y_{l}
$$

holds for all $i, j, k, l$.

## Additive and minimal matrices

## Definition

A matrix $A=\left(a_{i j}\right)$ of size $p \times q$ with nonnegative integer entries is called additive if there exists real numbers $x_{1}, \ldots, x_{p}$ and $y_{1}, \ldots, y_{q}$ such that the condition

$$
a_{i j}>a_{k l} \Longrightarrow x_{i}+y_{j}>x_{k}+y_{l}
$$

holds for all $i, j, k, l$.
Theorem (E.V. $(2002,2005)$ )
Any additive matrix is minimal and $\pi$-unique.

## Additive and minimal matrices

## Definition

A matrix $A=\left(a_{i j}\right)$ of size $p \times q$ with nonnegative integer entries is called additive if there exists real numbers $x_{1}, \ldots, x_{p}$ and $y_{1}, \ldots, y_{q}$ such that the condition

$$
a_{i j}>a_{k l} \Longrightarrow x_{i}+y_{j}>x_{k}+y_{l}
$$

holds for all $i, j, k, l$.
Theorem (E.V. $(2002,2005)$ )
Any additive matrix is minimal and $\pi$-unique.
Corollary
Let $A \in \mathrm{M}_{\nu}(\lambda, \mu)$. If $A$ is additive, then $\mathrm{k}(\lambda, \mu, \nu)=1$.

## Quadratic optimization and minimal matrices

Theorem (S. Onn, E.V. (2006))
Let $A^{*}$ be an optimal solution to the problem

$$
\begin{array}{ll}
\min & \sum_{i, j} x_{i j}{ }^{2} \\
\text { subject to } & \left(x_{i j}\right) \in \mathrm{M}(\lambda, \mu) .
\end{array}
$$

Then $A^{*}$ is minimal.

## Quadratic optimization and minimal matrices

Theorem (S. Onn, E.V. (2006))
Let $A^{*}$ be an optimal solution to the problem

$$
\begin{array}{ll}
\min & \sum_{i, j} x_{i j}^{2} \\
\text { subject to } & \left(x_{i j}\right) \in \mathrm{M}(\lambda, \mu) .
\end{array}
$$

Then $A^{*}$ is minimal.
Proposition (S. Onn, E.V. (2006))
Let $A^{*}$ be the optimal solution to the problem

$$
\begin{array}{ll}
\min & \sum_{i, j} x_{i j}^{2} \\
\text { subject to } & \left(x_{i j}\right) \in T(\lambda, \mu) .
\end{array}
$$

Then $A^{*}$ is additive.
¡Gracias!

