Discrete tomography, RSK correspondence and Kronecker products

Ernesto Vallejo Instituto de Matemáticas, Unidad Morelia Universidad Nacional Autónoma de México

Joint work with Diana Avella-Alaminos

Mathematical Foundations of Quantum Information University of Sevilla

November 23, 2009

• Let $\chi^{\lambda} \colon S_n \longrightarrow \mathbb{Z}$ denote the irreducible character of the symmetric group corresponding to the partition λ .

白 マイ キャー・

- Let $\chi^{\lambda} \colon S_n \longrightarrow \mathbb{Z}$ denote the irreducible character of the symmetric group corresponding to the partition λ .
- Given two partitions λ , μ of *n*, let $\chi^{\lambda} \otimes \chi^{\mu}$ denote the **Kronecker product** of χ^{λ} and χ^{μ} .

伺下 イヨト イヨト

• The Kronecker coefficient $k(\lambda, \mu, \nu)$ is the multiplicity of χ^{ν} in the product $\chi^{\lambda} \otimes \chi^{\mu}$. That is

$$\chi^\lambda\otimes\chi^\mu=\sum_{
udash n}\mathsf{k}(\lambda,\mu,
u)\chi^
u\,.$$

伺下 イヨト イヨト

• The Kronecker coefficient $k(\lambda, \mu, \nu)$ is the multiplicity of χ^{ν} in the product $\chi^{\lambda} \otimes \chi^{\mu}$. That is

$$\chi^{\lambda}\otimes\chi^{\mu}=\sum_{
udash n}\mathsf{k}(\lambda,\mu,
u)\chi^{
u}\,.$$

• Orthogonality relations imply

$$\mathsf{k}(\lambda,\mu,\nu) = \langle \chi^{\lambda} \otimes \chi^{\mu}, \chi^{\nu} \rangle = \langle \chi^{\lambda} \otimes \chi^{\mu} \otimes \chi^{\nu}, \chi^{(n)} \rangle$$

伺下 イヨト イヨト

• The Kronecker coefficient $k(\lambda, \mu, \nu)$ is the multiplicity of χ^{ν} in the product $\chi^{\lambda} \otimes \chi^{\mu}$. That is

$$\chi^{\lambda}\otimes\chi^{\mu}=\sum_{\nu\vdash n}\mathsf{k}(\lambda,\mu,
u)\chi^{
u}\,.$$

• Orthogonality relations imply

$$\mathsf{k}(\lambda,\mu,\nu) = \langle \chi^{\lambda} \otimes \chi^{\mu}, \chi^{\nu} \rangle = \langle \chi^{\lambda} \otimes \chi^{\mu} \otimes \chi^{\nu}, \chi^{(n)} \rangle \,.$$

Open problem

Find a combinatorial or geometric description of k(λ, μ, ν) as it is done with Kostka numbers or with Littlewood-Richardson coefficients.

通 と く ヨ と く ヨ と

• Let
$$\lambda = (\lambda_1, \dots, \lambda_p)$$
 be a composition of n and let

$$\mathsf{S}_{\lambda} := \mathsf{S}_{\lambda_1} \times \cdots \times \mathsf{S}_{\lambda_p}$$

be the **Young subgroup** of S_n corresponding to λ .

(B) (B)

æ

• Let
$$\lambda = (\lambda_1, \dots, \lambda_p)$$
 be a composition of n and let

$$\mathsf{S}_{\lambda} := \mathsf{S}_{\lambda_1} \times \cdots \times \mathsf{S}_{\lambda_p}$$

be the **Young subgroup** of S_n corresponding to λ .

• Then $\phi^{\lambda} := \operatorname{Ind}_{\mathsf{S}_{\lambda}}^{\mathsf{S}_n}(1_{\lambda})$ is called a **permutation character** and the set

 $\{\phi^{\lambda}\}_{\lambda\vdash n}$

is another basis for the character ring of S_n .

(B) (B)

• The basis $\{\chi^\lambda\}$ and $\{\phi^\lambda\}$ are related by Young's rule:

$$\phi^{\nu} = \sum_{\gamma \vdash n} K_{\gamma \nu} \chi^{\gamma}.$$

通 とう ほう く ほう

• The basis $\{\chi^{\lambda}\}$ and $\{\phi^{\lambda}\}$ are related by **Young's rule**:

$$\phi^{\nu} = \sum_{\gamma \vdash n} K_{\gamma \nu} \chi^{\gamma}.$$

• The numbers $K_{\gamma\nu}$ are called **Kostka numbers** and count the number of semistandard tableaux of shape γ and content ν .

• The basis $\{\chi^{\lambda}\}$ and $\{\phi^{\lambda}\}$ are related by **Young's rule**:

$$\phi^{\nu} = \sum_{\gamma \vdash n} K_{\gamma \nu} \chi^{\gamma}.$$

- The numbers $K_{\gamma\nu}$ are called **Kostka numbers** and count the number of semistandard tableaux of shape γ and content ν .
- They have the following property:

$$K_{\gamma\nu} > 0 \Longleftrightarrow \gamma \succcurlyeq \nu \,,$$

where \geq denotes the **dominance order** of partitions.

伺下 イヨト イヨト

- Given a matrix $A = (a_{ij})$ of size $p \times q$ we define
 - row(A) := (r_1, \ldots, r_p) , where $r_i = \sum_j a_{ij}$ and
 - col(M) := (c_1, \ldots, c_q), where $c_j = \sum_i a_{ij}$.

A B N A B N

- Given a matrix $A = (a_{ij})$ of size p imes q we define
 - row(A) := (r_1, \ldots, r_p) , where $r_i = \sum_j a_{ij}$ and
 - $\operatorname{col}(M) := (c_1, \ldots, c_q)$, where $c_j = \sum_i a_{ij}$.
- The compositions row(A) and col(A) are called the **row sum** vector and **column sum** vector of A, respectively. They are also called the **1-marginals** of A.

ヨト イヨト イヨト

- \bullet Given $\lambda,\,\mu$ compositions of n, we denote
 - by M(λ, μ) the set of all matrices A = (a_{ij}) with nonnegative integer entries and 1-marginals λ, μ, and
 - by $m(\lambda, \mu) := |M(\lambda, \mu)|$ its cardinality.

白 マイ キャー・

- \bullet Given $\lambda,\,\mu$ compositions of n, we denote
 - by M(λ, μ) the set of all matrices A = (a_{ij}) with nonnegative integer entries and 1-marginals λ, μ, and
 - by $m(\lambda, \mu) := |M(\lambda, \mu)|$ its cardinality.
- We also denote
 - by M^{*}(λ, μ) the set of all binary matrices A = (a_{ij}) with 1-marginals λ, μ, and
 - by $\mathsf{m}^*(\lambda,\mu) := |\mathsf{M}^*(\lambda,\mu)|$ its cardinality.

Characters, matrices and the RSK correspondence I

• There is a well known formula

$$\mathsf{m}(\lambda,\mu) = \langle \phi^{\lambda} \otimes \phi^{\mu}, \chi^{(n)} \rangle \,.$$

A B N A B N

• There is a well known formula

$$\mathsf{m}(\lambda,\mu) = \langle \phi^{\lambda} \otimes \phi^{\mu}, \chi^{(n)} \rangle \,.$$

• Expanding, by Young's rule, we get a formula for which the RSK correspondence is a combinatorial realization.

$$\mathsf{m}(\lambda,\mu) = \sum_{\alpha,\beta\vdash n} \mathsf{K}_{\alpha\lambda} \mathsf{K}_{\beta\mu} \langle \chi^{\alpha} \otimes \chi^{\beta}, \chi^{(n)} \rangle = \sum_{\sigma\vdash n} \mathsf{K}_{\sigma\lambda} \mathsf{K}_{\sigma\mu} \,.$$

A B K A B K

Characters, matrices and the RSK correspondence II

• Similarly, one has

$$\mathsf{m}^*(\lambda,\mu) = \langle \phi^{\lambda} \otimes \phi^{\mu}, \chi^{(1^n)} \rangle \,.$$

3 × 4 3 ×

• Similarly, one has

$$\mathsf{m}^*(\lambda,\mu) = \langle \phi^{\lambda} \otimes \phi^{\mu}, \chi^{(1^n)} \rangle \,.$$

• Again, expanding, by Young's rule, we get a formula for which the dual RSK correspondence is a combinatorial realization.

$$\mathsf{m}^*(\lambda,\mu) = \sum_{\alpha,\beta\vdash n} \mathcal{K}_{\alpha\lambda} \mathcal{K}_{\beta\mu} \langle \chi^{\alpha} \otimes \chi^{\beta}, \chi^{(1^n)} \rangle = \sum_{\sigma\vdash n} \mathcal{K}_{\sigma\lambda} \mathcal{K}_{\sigma'\mu}.$$

(B) (B)

Definition

The **1-marginals** of a 3-dimensional matrix $A = (a_{ijk})$ of size $p \times q \times r$ are the vectors $\lambda = (\lambda_1, \ldots, \lambda_p)$, $\mu = (\mu_1, \ldots, \mu_q)$, $\nu = (\nu_1, \ldots, \nu_r)$ defined by:

$$\sum_{j,k} a_{ijk} = \lambda_i , \quad \sum_{i,k} a_{ijk} = \mu_j , \quad \sum_{i,j} a_{ijk} = \nu_k .$$

通 とう ほう く ほう

Definition

The **1-marginals** of a 3-dimensional matrix $A = (a_{ijk})$ of size $p \times q \times r$ are the vectors $\lambda = (\lambda_1, \ldots, \lambda_p)$, $\mu = (\mu_1, \ldots, \mu_q)$, $\nu = (\nu_1, \ldots, \nu_r)$ defined by:

$$\sum_{j,k} a_{ijk} = \lambda_i \,, \quad \sum_{i,k} a_{ijk} = \mu_j \,, \quad \sum_{i,j} a_{ijk} = \nu_k \,.$$

Example

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

has 1-marginals $\lambda = (9, 4, 2)$, $\mu = (8, 5, 2)$ and $\nu = (7, 4, 2, 2)$.

伺 と く き と く き とう

- Given compositions λ , μ , ν of *n* we denote
 - by M(λ, μ, ν) is the set of all matrices A = (a_{ijk}) with nonnegative integer entries and 1-marginals λ, μ and ν, and
 - by $\mathsf{m}(\lambda, \mu, \nu) := |\mathsf{M}(\lambda, \mu, \nu)|$ its cardinality.

伺い イヨン イヨン

- Given compositions λ , μ , ν of *n* we denote
 - by M(λ, μ, ν) is the set of all matrices A = (a_{ijk}) with nonnegative integer entries and 1-marginals λ, μ and ν, and
 - by $m(\lambda, \mu, \nu) := |M(\lambda, \mu, \nu)|$ its cardinality.
- We also denote
 - by M^{*}(λ, μ, ν) the set of all binary matrices A = (a_{ijk}) with 1-marginals λ, μ, ν, and
 - ▶ by $m^*(\lambda, \mu, \nu) := |M^*(\lambda, \mu, \nu)|$ its cardinality.

(4月) (3日) (3日) 日

• For 3-dimensional matrices there are formulas similar to those for 2-dimensional matrices.

Theorem (E. Snapper (1971))

Let λ , μ , ν be compositions of n. Then

$$\mathsf{m}(\lambda,\mu,\nu) = \langle \phi^{\lambda} \otimes \phi^{\mu} \otimes \phi^{\nu}, \chi^{(n)} \rangle$$

and

$$\mathsf{m}^*(\lambda,\mu,\nu) = \langle \phi^{\lambda} \otimes \phi^{\mu} \otimes \phi^{\nu}, \chi^{(1^n)} \rangle.$$

A B K A B K

• For 3-dimensional matrices there are formulas similar to those for 2-dimensional matrices.

Theorem (E. Snapper (1971))

Let λ , μ , ν be compositions of n. Then

$$\mathsf{m}(\lambda,\mu,
u) = \langle \phi^{\,\lambda} \otimes \phi^{\,\mu} \otimes \phi^{\,
u}, \chi^{(n)}
angle$$

and

$$\mathsf{m}^*(\lambda,\mu,\nu) = \langle \phi^{\lambda} \otimes \phi^{\mu} \otimes \phi^{\nu}, \chi^{(1^n)} \rangle.$$

• Now we apply Young's rule to each of the permutation characters.

Matrices and Kronecker coefficients

• Triple application of Young's formula yields

$$\mathsf{m}(\lambda,\mu,\nu) = \sum_{\alpha,\beta,\gamma\vdash n} K_{\alpha\lambda} K_{\beta\mu} K_{\gamma\nu} \,\mathsf{k}(\alpha,\beta,\gamma) \,.$$

and

$$\mathsf{m}^*(\lambda,\mu,\nu) = \sum_{\alpha,\beta,\gamma\vdash n} K_{\alpha\lambda} K_{\beta\mu} K_{\gamma\nu} \,\mathsf{k}(\alpha,\beta,\gamma') \,.$$

▲ 臣 ▶ | ▲ 臣 ▶

æ

Matrices and Kronecker coefficients

• Triple application of Young's formula yields

$$\mathsf{m}(\lambda,\mu,\nu) = \sum_{\alpha,\beta,\gamma \vdash n} K_{\alpha\lambda} K_{\beta\mu} K_{\gamma\nu} \,\mathsf{k}(\alpha,\beta,\gamma) \,.$$

and

$$\mathsf{m}^*(\lambda,\mu,\nu) = \sum_{\alpha,\beta,\gamma\vdash n} K_{\alpha\lambda} K_{\beta\mu} K_{\gamma\nu} \,\mathsf{k}(\alpha,\beta,\gamma') \,.$$

• These formulas indicate how extensions of the RSK correspondence and its dual should be.

• Triple application of Young's formula yields

$$\mathsf{m}(\lambda,\mu,\nu) = \sum_{\alpha,\beta,\gamma \vdash n} K_{\alpha\lambda} K_{\beta\mu} K_{\gamma\nu} \,\mathsf{k}(\alpha,\beta,\gamma) \,.$$

and

$$\mathsf{m}^*(\lambda,\mu,\nu) = \sum_{\alpha,\beta,\gamma\vdash n} K_{\alpha\lambda} K_{\beta\mu} K_{\gamma\nu} \,\mathsf{k}(\alpha,\beta,\gamma') \,.$$

- These formulas indicate how extensions of the RSK correspondence and its dual should be.
- In particular these extensions would contain combinatorial descriptions of Kronecker coefficients.

A B K A B K

• Triple application of Young's formula yields

$$\mathsf{m}(\lambda,\mu,\nu) = \sum_{\alpha,\beta,\gamma \vdash n} K_{\alpha\lambda} K_{\beta\mu} K_{\gamma\nu} \,\mathsf{k}(\alpha,\beta,\gamma) \,.$$

and

$$\mathsf{m}^*(\lambda,\mu,\nu) = \sum_{\alpha,\beta,\gamma\vdash n} K_{\alpha\lambda} K_{\beta\mu} K_{\gamma\nu} \,\mathsf{k}(\alpha,\beta,\gamma') \,.$$

- These formulas indicate how extensions of the RSK correspondence and its dual should be.
- In particular these extensions would contain combinatorial descriptions of Kronecker coefficients.
- A similar observation was done by F. Caselli (2009).

• We follow a more modest, but more realistic approach: We apply Young's rule *only* two times. Thus, we get:

$$\mathsf{m}(\lambda,\mu,\nu) = \sum_{\alpha,\beta\vdash n} \mathsf{K}_{\alpha\lambda}\mathsf{K}_{\beta\mu} \langle \chi^{\alpha}\otimes\chi^{\beta}\otimes\phi^{\nu},\chi^{(n)}\rangle$$

and

$$\mathsf{m}^*(\lambda,\mu,\nu) = \sum_{\alpha,\beta\vdash n} \mathsf{K}_{\alpha\lambda} \mathsf{K}_{\beta\mu} \langle \chi^\alpha \otimes \chi^\beta \otimes \phi^\nu, \chi^{(1^n)} \rangle \,.$$

• We follow a more modest, but more realistic approach: We apply Young's rule *only* two times. Thus, we get:

$$\mathsf{m}(\lambda,\mu,\nu) = \sum_{\alpha,\beta\vdash n} \mathsf{K}_{\alpha\lambda}\mathsf{K}_{\beta\mu} \langle \chi^{\alpha}\otimes\chi^{\beta}\otimes\phi^{\nu},\chi^{(n)}\rangle$$

and

$$\mathsf{m}^*(\lambda,\mu,\nu) = \sum_{\alpha,\beta\vdash n} \mathsf{K}_{\alpha\lambda} \mathsf{K}_{\beta\mu} \langle \chi^\alpha \otimes \chi^\beta \otimes \phi^\nu, \chi^{(1^n)} \rangle \,.$$

• The point is that the inner products on the right hand side have combinatorial descriptions in terms of Littlewood-Richardson coefficients.

A B K A B K

Definition

Let $\alpha \vdash n$ and $\nu = (\nu_1, \dots, \nu_r)$ be a composition of n, then a sequence $T = (T_1, \dots, T_r)$ of tableaux is called a **Littlewood-Richardson multitableau** of **shape** α and **type** ν if there exists a sequence of partitions

$$\emptyset = \alpha(0) \subseteq \alpha(1) \subseteq \cdots \subseteq \alpha(r) = \alpha$$

such that T_i is a Littlewood-Richardson tableau of shape $\alpha(i)/\alpha(i-1)$ and size ν_i for all $i \in [r]$. If each T_i has content $\rho(i)$, then we say that T has **content** $(\rho(1), \ldots, \rho(r))$.

白 と く ヨ と く ヨ と

Example

The LR multitableau

1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2		
3	3	2	2	3					
3	3				-				

```
has:
shape (10, 8, 5, 2),
content ((4, 4, 2), (3, 3, 2), (3, 3, 1)) and
type (10, 8, 7).
```

Definition

Given partitions α , β of *n* and ν a composition of *n*, we denote

- by LR(α, β; ν) the set of all pairs (T, S) of
 Littlewood-Richardson multitableaux of shape (α, β) and type
 ν such that S and T have the same content and
- by $lr(\alpha, \beta; \nu) := |LR(\alpha, \beta; \nu)|$ its cardinality.

Definition

Given partitions α , β of *n* and ν a composition of *n*, we denote

 by LR(α, β; ν) the set of all pairs (T, S) of Littlewood-Richardson multitableaux of shape (α, β) and type ν such that S and T have the same content and

• by
$$\mathsf{lr}(lpha,eta;
u):=|\mathsf{LR}(lpha,eta;
u)|$$
 its cardinality.

Similarly, we denote

- by LR*(α, β; ν) the set of all pairs (T, S) of Littlewood-Richardson multitableaux of shape (α, β), type ν and conjugate content, that is, if T has content (ρ(1),...,ρ(r)), then S has content (ρ(1)',...,ρ(r)') and
 by L*(α, β; ν) := || P*(α, β; ν)| its cardinality
- by $Ir^*(\alpha, \beta; \nu) := |LR^*(\alpha, \beta; \nu)|$ its cardinality.

・ 同 ト ・ ヨ ト ・ ヨ ト

Littlewood-Richardson multitableaux IV. Example

Then (T, S) is a pair of Littlewood-Richardson multitableaux in LR*((10,8,5,2), (9,7,5,3,1); (10,8,7)). T has content ((4,4,2), (3,3,2), (3,3,1)) and S has content ((3,3,2,2), (3,3,2), (3,2,2)).

Lemma

Let α , β be partitions of n and let ν be a composition of n. Then (1) $\operatorname{lr}(\alpha, \beta; \nu) = \langle \chi^{\alpha} \otimes \chi^{\beta} \otimes \phi^{\nu}, \chi^{(n)} \rangle$. (2) $\operatorname{lr}^{*}(\alpha, \beta; \nu) = \langle \chi^{\alpha} \otimes \chi^{\beta} \otimes \phi^{\nu}, \chi^{(1^{n})} \rangle$.

• E • • E •

Lemma

Let α , β be partitions of n and let ν be a composition of n. Then (1) $\operatorname{lr}(\alpha, \beta; \nu) = \langle \chi^{\alpha} \otimes \chi^{\beta} \otimes \phi^{\nu}, \chi^{(n)} \rangle$. (2) $\operatorname{lr}^{*}(\alpha, \beta; \nu) = \langle \chi^{\alpha} \otimes \chi^{\beta} \otimes \phi^{\nu}, \chi^{(1^{n})} \rangle$.

• Therefore we have

$$\mathsf{m}(\lambda,\mu,\nu) = \sum_{\alpha,\beta\vdash n} K_{\alpha\lambda}K_{\beta\mu}\operatorname{Ir}(\alpha,\beta;\nu)$$

and

$$\mathsf{m}^*(\lambda,\mu,\nu) = \sum_{\alpha,\beta\vdash n} K_{\alpha\lambda} K_{\beta\mu} \operatorname{Ir}^*(\alpha,\beta;\nu).$$

(B) (B)

Lemma

Let α , β be partitions of n and let ν be a composition of n. Then (1) $\operatorname{lr}(\alpha, \beta; \nu) = \langle \chi^{\alpha} \otimes \chi^{\beta} \otimes \phi^{\nu}, \chi^{(n)} \rangle$. (2) $\operatorname{lr}^{*}(\alpha, \beta; \nu) = \langle \chi^{\alpha} \otimes \chi^{\beta} \otimes \phi^{\nu}, \chi^{(1^{n})} \rangle$.

• Therefore we have

$$\mathsf{m}(\lambda,\mu,\nu) = \sum_{\alpha,\beta\vdash n} K_{\alpha\lambda}K_{\beta\mu}\operatorname{Ir}(\alpha,\beta;\nu)$$

and

$$\mathsf{m}^*(\lambda,\mu,\nu) = \sum_{\alpha,\beta\vdash n} K_{\alpha\lambda} K_{\beta\mu} \operatorname{Ir}^*(\alpha,\beta;\nu).$$

• We will give one-to-one correspondences that realize these identities.

A B K A B K

Littlewood-Richardson multitableaux VI

• Another application of Young's rule yields

$$\mathsf{lr}(\alpha,\beta;\nu) = \sum_{\gamma \vdash n} K_{\gamma\nu} \, \mathsf{k}(\alpha,\beta,\gamma)$$

and

$$\mathsf{Ir}^*(\alpha,\beta;\nu') = \sum_{\gamma \vdash n} \mathcal{K}_{\gamma'\nu'} \,\mathsf{k}(\alpha,\beta,\gamma)$$

A B K A B K

Littlewood-Richardson multitableaux VI

• Another application of Young's rule yields

$$\mathsf{lr}(\alpha,\beta;\nu) = \sum_{\gamma \vdash n} K_{\gamma\nu} \,\mathsf{k}(\alpha,\beta,\gamma)$$

and

$$\mathsf{Ir}^*(\alpha,\beta;\nu') = \sum_{\gamma \vdash n} K_{\gamma'\nu'} \,\mathsf{k}(\alpha,\beta,\gamma)$$

• Therefore we can think of $lr(\alpha, \beta; \nu)$ and of $lr^*(\alpha, \beta; \nu')$ as combinatorial approximations of Kronecker coefficients.

(B) (B)

Littlewood-Richardson multitableaux VI

• Another application of Young's rule yields

$$\mathsf{lr}(\alpha,\beta;\nu) = \sum_{\gamma \vdash n} K_{\gamma\nu} \,\mathsf{k}(\alpha,\beta,\gamma)$$

and

$$\mathsf{Ir}^*(\alpha,\beta;\nu') = \sum_{\gamma \vdash n} K_{\gamma'\nu'} \,\mathsf{k}(\alpha,\beta,\gamma)$$

- Therefore we can think of $lr(\alpha, \beta; \nu)$ and of $lr^*(\alpha, \beta; \nu')$ as combinatorial approximations of Kronecker coefficients.
- In fact, we will next see that in some cases these numbers coincide.

(B) (B)

Definition

A component χ^{ν} of $\chi^{\alpha}\otimes\chi^{\beta}$ is called

- maximal if for all $\gamma \succ \nu$ one has $k(\alpha, \beta, \gamma) = 0$,
- minimal if for all $\gamma \prec \nu$ one has $k(\alpha, \beta, \gamma) = 0$.

Lemma

Let χ^{ν} be a component of $\chi^{\alpha} \otimes \chi^{\beta}$. Then (1) χ^{ν} is a maximal component of $\chi^{\alpha} \otimes \chi^{\beta}$ if and only if $k(\alpha, \beta, \nu) = lr(\alpha, \beta; \nu)$. (2) χ^{ν} is a minimal component of $\chi^{\alpha} \otimes \chi^{\beta}$ if and only if $k(\alpha, \beta, \nu) = lr^{*}(\alpha, \beta; \nu')$.

伺下 イヨト イヨト

- Let λ , μ , ν be compositions of n.
- For any partition α of *n*, let $K_{\alpha\lambda}$ denote the set of all semistandard tableaux of shape α and content λ .

A B K A B K

- Let λ , μ , ν be compositions of n.
- For any partition α of *n*, let $K_{\alpha\lambda}$ denote the set of all semistandard tableaux of shape α and content λ .

Theorem

There is a one-to-one correspondence between the set $M(\lambda, \mu, \nu)$ of 3-dimensional matrices with nonnegative integer coefficients that have 1-marginals λ , μ , ν and the set of triples $\prod_{\alpha, \beta \vdash n} K_{\alpha\lambda} \times K_{\beta\mu} \times LR(\alpha, \beta; \nu).$

• • = • • = •

- Let λ , μ , ν be compositions of n.
- For any partition α of *n*, let $K_{\alpha\lambda}$ denote the set of all semistandard tableaux of shape α and content λ .

Theorem

There is a one-to-one correspondence between the set $M(\lambda, \mu, \nu)$ of 3-dimensional matrices with nonnegative integer coefficients that have 1-marginals λ , μ , ν and the set of triples $\prod_{\alpha, \beta \vdash n} K_{\alpha\lambda} \times K_{\beta\mu} \times LR(\alpha, \beta; \nu).$

Theorem

There is a one-to-one correspondence between the set $M^*(\lambda, \mu, \nu)$ of 3-dimensional binary matrices that have 1-marginals λ , μ , ν and the set of triples $\coprod_{\alpha, \beta \vdash n} K_{\alpha\lambda} \times K_{\beta\mu} \times LR^*(\alpha, \beta; \nu)$.

く 同 ト く ヨ ト く ヨ ト

First bijection (tautological)

Let λ , μ , ν be compositions of size p, q, r, respectively. There is a one-to-one correspondence

$$A = (a_{ijk}) \in \mathsf{M}(\lambda, \mu, \nu) \leftrightarrow (A^{(1)} = (a_{ij}^{(1)}), \dots, A^{(r)} = (a_{ij}^{(r)})),$$

where each $A^{(k)}$ has size $p \times q$ and

$$\sum_{k=1}^{r} \operatorname{row}(A_{k}) = \lambda, \qquad \sum_{k=1}^{r} \operatorname{col}(A_{k}) = \mu,$$

sum of the entries of $A_{k} = \nu_{k}, \ k \in [r].$

First bijection (tautological)

Let λ , μ , ν be compositions of size p, q, r, respectively. There is a one-to-one correspondence

$$A = (a_{ijk}) \in \mathsf{M}(\lambda, \mu, \nu) \leftrightarrow (A^{(1)} = (a_{ij}^{(1)}), \dots, A^{(r)} = (a_{ij}^{(r)})),$$

where each $A^{(k)}$ has size $p \times q$ and

$$\sum_{k=1}^{r} \operatorname{row}(A_k) = \lambda, \qquad \sum_{k=1}^{r} \operatorname{col}(A_k) = \mu,$$

sum of the entries of $A_k = \nu_k, \ k \in [r].$

• The correspondence is $a_{ij}^{(k)} = a_{ijk}$.

Second bijection

There is a one-to-one correspondence

$$(A_1,\ldots,A_r) \leftrightarrow ((P_1,\ldots,P_r),(Q_1,\ldots,Q_r)),$$

where each matrix A_k satisfies the conditions from previous slide and on the right hand side we have *r*-tuples of semistandard tableaux such that

$$\sum_{k=1}^{r} \operatorname{cont}(Q_k) = \lambda, \qquad \sum_{k=1}^{r} \operatorname{cont}(P_k) = \mu,$$
$$\operatorname{sh}(P_k) = \operatorname{sh}(Q_k) \text{ and } |\operatorname{sh}(P_k)| = \nu_k, \ k \in [r].$$

A B N A B N

Second bijection

There is a one-to-one correspondence

$$(A_1,\ldots,A_r) \leftrightarrow ((P_1,\ldots,P_r),(Q_1,\ldots,Q_r)),$$

where each matrix A_k satisfies the conditions from previous slide and on the right hand side we have *r*-tuples of semistandard tableaux such that

$$\sum_{k=1}^{r} \operatorname{cont}(Q_k) = \lambda, \qquad \sum_{k=1}^{r} \operatorname{cont}(P_k) = \mu,$$
$$\operatorname{sh}(P_k) = \operatorname{sh}(Q_k) \text{ and } |\operatorname{sh}(P_k)| = \nu_k, \ k \in [r].$$

• The correspondence follows applying the RSK correspondence on each level matrix.

4 B K 4 B K

Third bijection

There is a one-to-one correspondence

$$((P_1,\ldots,P_r),(Q_1,\ldots,Q_r)) \leftrightarrow \coprod_{\alpha,\beta\vdash n} \mathsf{K}_{\alpha\lambda} \times \mathsf{K}_{\beta\mu} \times \mathsf{LR}(\alpha,\beta;\nu),$$

where the pair of r-tuples of semistandard tableaux satisify the conditions of the previous slide.

(B) (B)

Third bijection

There is a one-to-one correspondence

$$((P_1,\ldots,P_r),(Q_1,\ldots,Q_r)) \leftrightarrow \coprod_{\alpha,\beta\vdash n} \mathsf{K}_{\alpha\lambda} \times \mathsf{K}_{\beta\mu} \times \mathsf{LR}(\alpha,\beta;\nu),$$

where the pair of r-tuples of semistandard tableaux satisify the conditions of the previous slide.

• It is a consequence of the next theorem:

• E • • E •

Sketch of proof IV

Theorem (G.P. Thomas (1974))

There is a one-to-one correspondence between the set of all r-tuples (P_1, \ldots, P_r) of semistandard tableaux and the set of pairs (P, S) such that P is a semistandard tableau and S is a Littlewood-Richardson multitableau of shape sh(P). Moreover, under this correspondence

$$\operatorname{cont}(P) = \sum_{k=1}^{r} \operatorname{cont}(P_k) \quad \operatorname{and} \quad \operatorname{cont}(S) = (\operatorname{sh}(P_1), \dots, \operatorname{sh}(P_r)).$$

Remark

 $P = P_r \cdots P_1$ is a product of tableaux, and $S = (S_1, \ldots, S_r)$ is a list of recording tableaux, one for each for each factor.

• In the 2-dimensional case there are well known conditions for existence and uniqueness. The first one is due to D. Gale and H. Ryser (1957). The second is folklore.

$$\begin{split} \mathsf{m}^*(\lambda,\mu) > \mathsf{0} & \Longleftrightarrow \lambda' \succcurlyeq \mu \,, \\ \mathsf{m}^*(\lambda,\mu) = \mathsf{1} & \Longleftrightarrow \lambda' = \mu \,. \end{split}$$

(B) (B)

• In the 2-dimensional case there are well known conditions for existence and uniqueness. The first one is due to D. Gale and H. Ryser (1957). The second is folklore.

$$\begin{split} \mathsf{m}^*(\lambda,\mu) &> \mathsf{0} \Longleftrightarrow \lambda' \succcurlyeq \mu \,, \\ \mathsf{m}^*(\lambda,\mu) &= \mathsf{1} \Longleftrightarrow \lambda' = \mu \,. \end{split}$$

• We are interested in a similar condition for $m^*(\lambda, \mu, \nu) = 1$.

ヨト イヨト イヨト

• In the 2-dimensional case there are well known conditions for existence and uniqueness. The first one is due to D. Gale and H. Ryser (1957). The second is folklore.

$$\begin{split} \mathsf{m}^*(\lambda,\mu) &> \mathsf{0} \Longleftrightarrow \lambda' \succcurlyeq \mu\,,\\ \mathsf{m}^*(\lambda,\mu) &= \mathsf{1} \Longleftrightarrow \lambda' = \mu\,. \end{split}$$

- We are interested in a similar condition for $m^*(\lambda, \mu, \nu) = 1$.
- In the next slides we show a condition that involves 2-dimensional matrices with nonnegative integer entries.

通 とう ほう ううせい

Let $A \in M(\lambda, \mu)$.

The π-sequence of A, denoted by π(A), is the decreasing sequence of its entries.

A B K A B K

Let $A \in M(\lambda, \mu)$.

- The π-sequence of A, denoted by π(A), is the decreasing sequence of its entries.
- A is called π-unique if there is no other matrix in M(λ, μ) with the same π-sequence.

通 とう きょう うちょう

Let $A \in M(\lambda, \mu)$.

- The π-sequence of A, denoted by π(A), is the decreasing sequence of its entries.
- A is called π-unique if there is no other matrix in M(λ, μ) with the same π-sequence.
- ► A is called **minimal** if there is no other matrix $B \in M(\lambda, \mu)$ with $\pi(B) \prec \pi(A)$.

向下 イヨト イヨト

Let $\lambda = \mu = (3,3)$ and let

$$A = \begin{bmatrix} 0 & 3 \\ 3 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}, \quad C = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}, \quad D = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}.$$

Then

回 とうきょう うちょう

э

Let $\lambda = \mu = (3,3)$ and let

$$A = \begin{bmatrix} 0 & 3 \\ 3 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}, \quad C = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}, \quad D = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}.$$

Then

• $\mathsf{M}(\lambda,\mu) = \{A, B, C, D\}.$

- 10

Let $\lambda = \mu = (3,3)$ and let

$$A = \begin{bmatrix} 0 & 3 \\ 3 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}, \quad C = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}, \quad D = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}.$$

Then

•
$$M(\lambda, \mu) = \{A, B, C, D\}.$$

• $\pi(B) = \pi(C) = (2^2, 1^2) \text{ and } \pi(A) = \pi(D) = (3^2).$

回 とうきょう うちょう

э

Let $\lambda = \mu = (3,3)$ and let

$$A = \begin{bmatrix} 0 & 3 \\ 3 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}, \quad C = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}, \quad D = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}.$$

Then

•
$$\mathsf{M}(\lambda,\mu) = \{A, B, C, D\}.$$

- $\pi(B) = \pi(C) = (2^2, 1^2)$ and $\pi(A) = \pi(D) = (3^2)$.
- ▶ *B* and *C* are minimal, while *A* and *D* are not.

向下 イヨト イヨト

Let $\lambda = \mu = (3,3)$ and let

$$A = \begin{bmatrix} 0 & 3 \\ 3 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}, \quad C = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}, \quad D = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}.$$

Then

•
$$\mathsf{M}(\lambda,\mu) = \{A, B, C, D\}.$$

- $\pi(B) = \pi(C) = (2^2, 1^2)$ and $\pi(A) = \pi(D) = (3^2)$.
- ▶ *B* and *C* are minimal, while *A* and *D* are not.
- Neither of them is π -unique.

向下 イヨト イヨト

Let

$$A = \begin{bmatrix} 4 & 4 & 1 \\ 2 & 1 & 1 \\ 2 & 0 & 0 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 4 & 3 & 2 \\ 3 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}.$$

回 と く ヨ と く ヨ と

э

Let

$$A = \begin{bmatrix} 4 & 4 & 1 \\ 2 & 1 & 1 \\ 2 & 0 & 0 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 4 & 3 & 2 \\ 3 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}.$$

▶ Then both matrices have 1-marginals (9,4,2) and (8,5,2).

伺下 イヨト イヨト

Let

$$A = \begin{bmatrix} 4 & 4 & 1 \\ 2 & 1 & 1 \\ 2 & 0 & 0 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 4 & 3 & 2 \\ 3 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}.$$

- ▶ Then both matrices have 1-marginals (9,4,2) and (8,5,2).
- Moreover $\pi(B) \prec \pi(A)$. This means that B is *flatter* than A.

伺下 イヨト イヨト

Let

$$A = \begin{bmatrix} 4 & 4 & 1 \\ 2 & 1 & 1 \\ 2 & 0 & 0 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 4 & 3 & 2 \\ 3 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}.$$

- ▶ Then both matrices have 1-marginals (9,4,2) and (8,5,2).
- Moreover $\pi(B) \prec \pi(A)$. This means that B is *flatter* than A.
- A matrix is minimal when it cannot be made flatter without changing the 1-marginals.

通 と く ヨ と く ヨ と

Discrete Tomography V. The graph of a matrix

- \bullet We denote
 - ▶ by $M_{\nu}(\lambda, \mu)$ the set of matrices in $M(\lambda, \mu)$ with π -sequence ν ,
 - ▶ by m_ν(λ, μ) := |M_ν(λ, μ)| its cardinality.

回 と く ヨ と く ヨ と

Discrete Tomography V. The graph of a matrix

- We denote
 - ▶ by $M_{\nu}(\lambda, \mu)$ the set of matrices in $M(\lambda, \mu)$ with π -sequence ν ,

• To each matrix $A = (a_{ij})$ in $M_{\nu}(\lambda, \mu)$ we associate a 3-dimensional matrix $G(A) = (a_{ijk})$ by

$$a_{ijk} = egin{cases} 1 & ext{if } a_{ij} \leq k, \ 0 & ext{otherwise}. \end{cases}$$

伺下 イヨト イヨト

Discrete Tomography V. The graph of a matrix

- We denote
 - by M_ν(λ, μ) the set of matrices in M(λ, μ) with π-sequence ν,

• To each matrix $A = (a_{ij})$ in $M_{\nu}(\lambda, \mu)$ we associate a 3-dimensional matrix $G(A) = (a_{ijk})$ by

$$a_{ijk} = egin{cases} 1 & ext{if } a_{ij} \leq k, \ 0 & ext{otherwise}. \end{cases}$$

• The correspondence $A \mapsto G(A)$ defines an injective map

$$G_{\lambda,\mu,\nu}: \mathsf{M}_{\nu}(\lambda,\mu) \longrightarrow \mathsf{M}^{*}(\lambda,\mu,\nu').$$

伺下 イヨト イヨト

Then the graph of A is:

3

- - E - F

Note that if there is a minimal matrix in $M_{\nu}(\lambda, \mu)$, then all matrices in $M_{\nu}(\lambda, \mu)$ are minimal.

御 と く ヨ と く ヨ と …

```
Note that if there is a minimal matrix in M_{\nu}(\lambda, \mu), then all matrices in M_{\nu}(\lambda, \mu) are minimal.
```

We say that ν is **minimal for** (λ, μ) if there is a minimal matrix in $M_{\nu}(\lambda, \mu)$.

伺い イヨン イヨン

```
Note that if there is a minimal matrix in M_{\nu}(\lambda, \mu), then all matrices in M_{\nu}(\lambda, \mu) are minimal.
```

We say that ν is **minimal for** (λ, μ) if there is a minimal matrix in $M_{\nu}(\lambda, \mu)$.

Proposition (E.V. (2000, 2007))

Let λ , μ , ν be partitions of n. Then ν is minimal for (λ, μ) if and only if $G_{\lambda,\mu,\nu}$ is bijective.

伺下 イヨト イヨト

Discrete Tomography VIII. Uniqueness

Theorem (A. Torres, E.V (1998))

Let λ , μ , ν be partitions of n. Then

- $m^*(\lambda, \mu, \nu) = 1 \iff$ there is a matrix $A \in M_{\nu'}(\lambda, \mu)$ that is minimal and π -unique.
- If m^{*}(λ, µ, ν) = 1, the unique matrix A ∈ M_{ν'}(λ, µ) is a plane partition.

伺下 イヨト イヨト

Discrete Tomography VIII. Uniqueness

Theorem (A. Torres, E.V (1998))

Let λ , μ , ν be partitions of n. Then

- $m^*(\lambda, \mu, \nu) = 1 \iff$ there is a matrix $A \in M_{\nu'}(\lambda, \mu)$ that is minimal and π -unique.
- If m^{*}(λ, µ, ν) = 1, the unique matrix A ∈ M_{ν'}(λ, µ) is a plane partition.
- Due to the formula

$$\mathsf{m}^*(\lambda,\mu,\nu) = \sum_{\alpha \succcurlyeq \lambda, \beta \succcurlyeq \mu, \gamma \succcurlyeq \nu} \mathsf{K}_{\alpha\lambda} \mathsf{K}_{\beta\mu} \mathsf{K}_{\gamma\nu} \, \mathsf{k}(\alpha,\beta,\gamma') \,,$$

uniqueness implies the vanishing of several Kronecker coefficients.

伺下 イヨト イヨト

Discrete Tomography VIII. Uniqueness

Theorem (A. Torres, E.V (1998))

Let λ , μ , ν be partitions of n. Then

- $m^*(\lambda, \mu, \nu) = 1 \iff$ there is a matrix $A \in M_{\nu'}(\lambda, \mu)$ that is minimal and π -unique.
- If m^{*}(λ, µ, ν) = 1, the unique matrix A ∈ M_{ν'}(λ, µ) is a plane partition.
- Due to the formula

$$\mathsf{m}^*(\lambda,\mu,\nu) = \sum_{\alpha \succcurlyeq \lambda, \beta \succcurlyeq \mu, \gamma \succcurlyeq \nu} \mathcal{K}_{\alpha\lambda} \mathcal{K}_{\beta\mu} \mathcal{K}_{\gamma\nu} \,\mathsf{k}(\alpha,\beta,\gamma')\,,$$

uniqueness implies the vanishing of several Kronecker coefficients.In fact minimality by itself will yield useful information on Kronecker coefficients.

向下 イヨト イヨト

Proposition (E.V. (2000))

If ν is minimal for (λ, μ) . Then (1) $k(\alpha, \beta, \gamma) = 0$ for all $\alpha \geq \lambda$, $\beta \geq \mu$, $\gamma \prec \nu$. (2) $k(\alpha, \beta, \nu) = lr^*(\alpha, \beta; \nu')$ for all $\alpha \geq \lambda$, $\beta \geq \mu$. In particular, for any pair of partitions (α, β) such that $\alpha \geq \lambda$ and $\beta \geq \mu$ we have that χ^{ν} is a minimal component of $\chi^{\alpha} \otimes \chi^{\beta}$ if and only if $lr^*(\alpha, \beta; \nu')$ is positive.

Proposition (E.V. (2000))

If ν is minimal for (λ, μ) . Then (1) $k(\alpha, \beta, \gamma) = 0$ for all $\alpha \geq \lambda$, $\beta \geq \mu$, $\gamma \prec \nu$. (2) $k(\alpha, \beta, \nu) = lr^*(\alpha, \beta; \nu')$ for all $\alpha \geq \lambda$, $\beta \geq \mu$. In particular, for any pair of partitions (α, β) such that $\alpha \geq \lambda$ and $\beta \geq \mu$ we have that χ^{ν} is a minimal component of $\chi^{\alpha} \otimes \chi^{\beta}$ if and only if $lr^*(\alpha, \beta; \nu')$ is positive.

Proposition (E.V. (2000)) If ν is minimal for (λ, μ) . Then

$$\mathsf{m}_{\nu}(\lambda,\mu) = \sum_{\alpha,\beta\vdash n} K_{\alpha\lambda} K_{\beta\mu} \operatorname{Ir}^{*}(\alpha,\beta;\nu') = \sum_{\alpha,\beta\vdash n} K_{\alpha\lambda} K_{\beta\mu} \operatorname{k}(\alpha,\beta,\nu).$$

• Let

$$\Phi^*\colon \mathsf{M}^*(\lambda,\mu,\nu')\longrightarrow \coprod_{\alpha,\beta\vdash n}\mathsf{K}_{\alpha\lambda}\times\mathsf{K}_{\beta\mu}\times\mathsf{LR}^*(\alpha,\beta;\nu').$$

denote the bijection that we get from the main theorem, when we apply in each level the dual RSK-correspondence.

A B K A B K

• Let

$$\Phi^* \colon \mathsf{M}^*(\lambda,\mu,\nu') \longrightarrow \coprod_{\alpha,\beta\vdash n} \mathsf{K}_{\alpha\lambda} \times \mathsf{K}_{\beta\mu} \times \mathsf{LR}^*(\alpha,\beta;\nu').$$

denote the bijection that we get from the main theorem, when we apply in each level the dual RSK-correspondence.

• Then the composition

$$\Phi^* \circ G_{\lambda,\mu,\nu} \colon \mathsf{M}_{\nu}(\lambda,\mu) \longrightarrow \coprod_{\alpha,\beta\vdash n} \mathsf{K}_{\alpha\lambda} \times \mathsf{K}_{\beta\mu} \times \mathsf{LR}^*(\alpha,\beta;\nu') \,.$$

is injective.

A B N A B N

Let

$$\Phi^*\colon \mathsf{M}^*(\lambda,\mu,\nu')\longrightarrow \coprod_{\alpha,\beta\vdash n}\mathsf{K}_{\alpha\lambda}\times\mathsf{K}_{\beta\mu}\times\mathsf{LR}^*(\alpha,\beta;\nu')\,.$$

denote the bijection that we get from the main theorem, when we apply in each level the dual RSK-correspondence.

• Then the composition

$$\Phi^* \circ G_{\lambda,\mu,\nu} \colon \mathsf{M}_{\nu}(\lambda,\mu) \longrightarrow \coprod_{\alpha,\beta\vdash n} \mathsf{K}_{\alpha\lambda} \times \mathsf{K}_{\beta\mu} \times \mathsf{LR}^*(\alpha,\beta;\nu') \,.$$

is injective.

• If ν is minimal for (λ, μ) , then $\Phi^* \circ G_{\lambda,\mu,\nu}$ is bijective. So, this map is a combinatorial realization of the identity that relates the number of minimal matrices to sums of Kronecker coefficients.

Let f, g, h denote the components of $\Phi^* \circ G_{\lambda,\mu,\nu}$, that is, for any $A \in \mathsf{M}_{\nu}(\lambda,\mu)$ we have $\Phi^* \circ G_{\lambda,\mu,\nu}(A) = (f(A),g(A),h(A))$.

Theorem

Suppose ν is minimal for (λ, μ) . Let P be a semistandard tableau of shape α and content λ , and Q be a semistandard tableau of shape β and content μ . Then

$$\mathsf{k}(\alpha,\beta,\nu) = \#\{A \in \mathsf{M}_{\nu}(\lambda,\mu) \mid f(A) = P \text{ and } g(A) = Q\}.$$

Moreover, if $k(\alpha, \beta, \nu) > 0$, then χ^{ν} is a minimal component of $\chi^{\alpha} \otimes \chi^{\beta}$.

向下 イヨト イヨト

Example

Let $\lambda = (6,6)$, $\mu = (3,3,3,3)$. Then, there are six minimal matrices in M(λ, μ), namely

$$A = \begin{bmatrix} 2 & 2 & 1 & 1 \\ 1 & 1 & 2 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 2 & 2 & 1 \\ 2 & 1 & 1 & 2 \end{bmatrix}, \quad C = \begin{bmatrix} 2 & 1 & 2 & 1 \\ 1 & 2 & 1 & 2 \end{bmatrix},$$
$$D = \begin{bmatrix} 2 & 1 & 1 & 2 \\ 1 & 2 & 2 & 1 \end{bmatrix}, \quad E = \begin{bmatrix} 1 & 2 & 1 & 2 \\ 2 & 1 & 2 & 1 \end{bmatrix}, \quad F = \begin{bmatrix} 1 & 1 & 2 & 2 \\ 2 & 2 & 1 & 1 \end{bmatrix}.$$

> < 프 > < 프 >

Example

Let $\nu = (2^4, 1^4)$ be the common π -sequence of the six matrices. After computing $\Phi^* \circ G_{\lambda,\mu,\nu}$ for each matrix we get

Example

and

g(C)

	1	1	1	3
	2	2	2	
	3	3	4	
	4	4		•

◆ 周 → → 周 →

Example

Example

• Recall,
$$\lambda = (6, 6)$$
, $\mu = (3, 3, 3, 3)$ and $\nu = (2^4, 1^4)$.

< 注→ < 注→

Example

• Recall, $\lambda = (6, 6)$, $\mu = (3, 3, 3, 3)$ and $\nu = (2^4, 1^4)$.

• Let
$$\alpha = sh(f(D)) = (7,5)$$
 and $\gamma = sh(f(A)) = (8,4)$.

•
$$\beta = \operatorname{sh}(g(B)) = (4, 3, 3, 2) \text{ and } \delta = \operatorname{sh}(g(E)) = (4, 4, 2, 2).$$

伺下 イヨト イヨト

Example

• Recall, $\lambda = (6,6)$, $\mu = (3,3,3,3)$ and $\nu = (2^4,1^4)$.

• Let
$$\alpha = sh(f(D)) = (7,5)$$
 and $\gamma = sh(f(A)) = (8,4)$.

•
$$\beta = \operatorname{sh}(g(B)) = (4, 3, 3, 2) \text{ and } \delta = \operatorname{sh}(g(E)) = (4, 4, 2, 2).$$

- Thus, we obtain that
- $\mathsf{k}(\gamma, \mu, \nu) = 1$,
- $\mathsf{k}(\alpha,\beta,\nu) = 1$,
- $\mathsf{k}(\lambda, \delta, \nu) = 1.$

A B K A B K

Example

• Recall, $\lambda = (6, 6)$, $\mu = (3, 3, 3, 3)$ and $\nu = (2^4, 1^4)$.

• Let
$$\alpha = \operatorname{sh}(f(D)) = (7,5)$$
 and $\gamma = \operatorname{sh}(f(A)) = (8,4)$.

•
$$\beta = \operatorname{sh}(g(B)) = (4, 3, 3, 2) \text{ and } \delta = \operatorname{sh}(g(E)) = (4, 4, 2, 2).$$

- Thus, we obtain that
- k $(\gamma, \mu, \nu) = 1$,
- $\mathsf{k}(\alpha,\beta,\nu) = 1$,
- $\mathsf{k}(\lambda, \delta, \nu) = 1.$
- Many other Kronecker coefficients are zero.

$$\mathsf{m}_{\nu}(\lambda,\mu) = \sum_{\alpha \succcurlyeq \lambda, \beta \succcurlyeq \mu} K_{\alpha\lambda} K_{\beta\mu} \operatorname{Ir}^{*}(\alpha,\beta;\nu') = \sum_{\alpha \succcurlyeq \lambda, \beta \succcurlyeq \mu} K_{\alpha\lambda} K_{\beta\mu} \operatorname{k}(\alpha,\beta,\nu).$$

A matrix $A = (a_{ij})$ of size $p \times q$ with nonnegative integer entries is called **additive** if there exists real numbers x_1, \ldots, x_p and y_1, \ldots, y_q such that the condition

$$a_{ij} > a_{kl} \Longrightarrow x_i + y_j > x_k + y_l$$

holds for all i, j, k, l.

A matrix $A = (a_{ij})$ of size $p \times q$ with nonnegative integer entries is called **additive** if there exists real numbers x_1, \ldots, x_p and y_1, \ldots, y_q such that the condition

$$a_{ij} > a_{kl} \Longrightarrow x_i + y_j > x_k + y_l$$

holds for all i, j, k, l.

Theorem (E.V. (2002, 2005))

Any additive matrix is minimal and π -unique.

ヨト イヨト イヨト

A matrix $A = (a_{ij})$ of size $p \times q$ with nonnegative integer entries is called **additive** if there exists real numbers x_1, \ldots, x_p and y_1, \ldots, y_q such that the condition

$$a_{ij} > a_{kl} \Longrightarrow x_i + y_j > x_k + y_l$$

holds for all i, j, k, l.

Theorem (E.V. (2002, 2005))

Any additive matrix is minimal and π -unique.

Corollary Let $A \in M_{\nu}(\lambda, \mu)$. If A is additive, then $k(\lambda, \mu, \nu) = 1$.

向下 イヨト イヨト

Quadratic optimization and minimal matrices

Theorem (S. Onn, E.V. (2006)) Let A^{*} be an optimal solution to the problem

$$\begin{array}{ll} \min & \sum_{i,j} x_{ij}^2 \\ \text{subject to} & (x_{ij}) \in \mathsf{M}(\lambda,\mu). \end{array}$$

Then A^{*} is minimal.

(B) (B)

Quadratic optimization and minimal matrices

Theorem (S. Onn, E.V. (2006)) Let A^{*} be an optimal solution to the problem

 $\begin{array}{ll} \min & \sum_{i,j} x_{ij}^2 \\ \text{subject to} & (x_{ij}) \in \mathsf{M}(\lambda,\mu). \end{array}$

Then A^{*} is minimal.

Proposition (S. Onn, E.V. (2006)) Let A* be the optimal solution to the problem

min
$$\sum_{i,j} x_{ij}^2$$

subject to $(x_{ij}) \in T(\lambda, \mu)$

Then A^{*} is additive.

¡Gracias!

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < @