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Resumen

We analyze the well-posedness of the initial value problem for a Convection Pro-
blem. Mild solutions are obtained in the weak-Lp(Rn) spaces and the existence of
self-similar solutions is showed, while the only small self-similar solution in the Lebes-
gue space Lp(Rn) is the null solution. The asymptotic stability of solutions is analyzed
and, as a consequence, a criterium of self-similarity persistence at large times is ob-
tained.

1. Introduction

We consider a viscous incompressible fluid filling the whole space Rn, n ≥ 2. Due to
the Boussinesq approximation (Chandrasekhar [3]), density variations are neglected except
in the gravitational term (buoyancy term) and they are assumed to be proportional to
temperature variations. The relationship among the velocity field u(x, t) ∈ Rn, the pressure
p(x, t) ∈ R and the temperature θ(x, t) ∈ R, can be described by the following initial value
problem

∂u

∂t
+ u∇u− ν∆u +

1
ρ
∇p = βθf + f1, x ∈ Rn, t > 0, (1)

∇ · u = 0, x ∈ Rn, t > 0, (2)
∂θ

∂t
+ u∇θ − χ∆θ = h, x ∈ Rn, t > 0, (3)

θ(x, 0) = θ0(x), u(x, 0) = u0(x), x ∈ Rn, (4)

where f represents a gravitational vector field at x, h the reference temperature and f1

an external force. ρ, ν, β, χ are positive physical constants which represent, respectively,
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the density, the kinematic viscosity, the coefficient of volume expansion and the thermal
conductance. Without loss of generality, we will assume the constants ρ, ν, β, χ to be one
and the reference temperature h and the external force f1 to be zero. The initial data u0

satisfies the condition ∇ · u0 = 0 in the distributional sense.

New aspects to studies on the Convection Problem (1)-(4) are considered in this work,
in fact, we will study the system (1)-(4) in the whole space Rn in the framework of
weak−Lp spaces. Firstly we present results of well-posedness in these spaces and make
some considerations around the well-posedness in the Lebesgue Spaces Lp (see [2]). On
the other hand, we show some results about the existence, uniqueness, the asymptotic
stability and the self-similarity persistence of solutions for the Problem (1)-(4) in weak−Lp

spaces. Moreover, as a consequence of results of asymptotic stability, we will show that
the only self-similar solutions in Lebesgue spaces Lp is the null solution, reinforcing the
need of more singular initial data to allow the existence of self-similar solutions. These
self-similar solutions correspond, for instance, to homogeneous initial functions of degree
−1. Finally, from a physical standpoint, our analysis can be applied for several classes of
external forces f. In fact, we can take f as the gravitational field

f = f(x) = −G∇xφ = G
x

|x|3 ∈ L(n
2

,∞)(Rn),

where G is the gravitational constant, in order to show the existence of global solutions
(u, θ) which are constructed in different functional spaces (see Theorem 3.5, Theorem 3.3
and Remark 4.5). This case can be regarded as an interesting physical case of the Bénard
Problem. More details about the physical and mathematical analysis of system (1)-(4) see
[2] and the references therein.

2. Function Spaces and Definitions

In this section, we introduce the functional spaces relevant to our study of solutions
regarding the Cauchy problem for system (1)-(4). For each Lebesgue mensurable function
f defined on Rn, the rearrangement f∗ is defined by

f∗(t) = ı́nf{s > 0 : m({x ∈ Rn : |f(x)| > s}) ≤ t}, t > 0.

The Lorentz space L(p,q) ≡ L(p,q)(Rn) is the set of all f such that

‖f‖(p,q) =





(
p
q

∫∞
0 [t

1
p f∗∗(t)]qdt/t

) 1
q , if 1 < p < ∞,1 ≤ q < ∞,

supt>0 t
1
p f∗∗(t) , if 1 < p ≤ ∞, q = ∞.

is finite, where f∗∗(t) = 1
t

∫ t
0 f∗(s)ds, for t > 0. We observe that Lp = L(p,p). L(p,∞) are

called the Marcinkiewicz spaces or weak-Lp spaces. Moreover, L(p,q1) ⊂ Lp ⊂ L(p,q2) ⊂
L(p,∞) for 0 < q1 ≤ p ≤ q2 ≤ ∞. See [4].

Proposition 2.1 [4] (Generalized Holder’s inequality). Let 1 < p1, p2, r < ∞. Let f ∈
L(p1,q1) and g ∈ L(p2,q2) where 1

p1
+ 1

p2
< 1, then the product h = fg belongs to L(r,s) where

1
r = 1

p1
+ 1

p2
, and s ≥ 1 is any number such that 1

q1
+ 1

q2
≥ 1

s . Moreover,

‖h‖(r,s) ≤ r′‖f‖(p1,q1)‖g‖(p2,q2),
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being r′ the conjugate index of r.

Let us recall the Helmholtz decomposition Lr(Ω) = Lr
σ(Ω)⊕Gr(Ω), 1 < r < ∞, where

Gr(Ω) = {∇p ∈ Lr(Ω) : p ∈ Lr
loc(Ω)} . Pr (or simply P ) denotes the projection operator

from Lr onto Lr
σ. The Stokes operator is denoted by Ar (or simply A or −P∆) and the

Laplace operator is denoted by Br (or simply B or −∆). We know that −Ar,−Br generate
uniformly bounded holomorphic semigroups {e−tAr}t≥0, {e−tBr}t≥0 of class C0 in Lr

σ and
Lr, respectively. Borchers and Miyakawa [1] established the following Helmholtz decom-
position of the Lorentz spaces. We can extend Pr to a bounded operator on L(r,d)(Ω),
which we denote by Pr,d. Set L

(r,d)
σ (Ω) = Range(Pr,d) and G(r,d)(Ω) = Kernel(Pr,d).

Then, L(r,d)(Ω) = L
(r,d)
σ (Ω) ⊕ G(r,d)(Ω). Based on [1], −A,−B generate uniformly boun-

ded analytic semigroups on L
(r,d)
σ (Ω) and L(r,d)(Ω), respectively. However, notice that these

semigroups are not strongly continuous at t = 0 if d = ∞, since in this case Dr,∞(A) and
Dr,∞(B) are not dense in L

(r,∞)
σ and L(r,∞), respectively. We recall that in our case Ω = Rn,

{e−tB}t≥0 is the heat semigroup given as the convolution with the Gauss-Weierstrass ker-
nel: G(x, t) = (4πt)−n/2exp(−|x|2/(4t)).

Finally, let 1 < p < ∞, 1 < q < ∞ and 1 ≤ d ≤ ∞. The following notation is adopted
for the norm of product in Lorentz spaces L

(p,d)
σ (Rn)× L(q,d)(Rn) :

∥∥∥
[ u

θ

]∥∥∥
(p,q),d

= ‖u‖(p,d) + ‖θ‖(q,d).

If p = q and d = ∞, we simply denote this norm as
∥∥∥
[ u

θ

]∥∥∥
(p,∞)

= ‖u‖(p,∞) + ‖θ‖(p,∞).

3. Results of well-posedness

We define the operator M : L
(p,∞)
σ × L(q,∞) → L

(p,∞)
σ × L(q,∞) by

M
[ u

θ

]
=

[ −P∆u
−∆θ

]
.

With the use of the semigroup {e−tM}t≥0, the Cauchy problem (1)-(4) is converted to the
integral equation

[ u(t)
θ(t)

]
= e−tM

[ u0

θ0

]
−

∫ t

0
e−(t−s)M

([ (u · ∇u)
(u · ∇θ)

]
−

[ (θf)
0

])
ds, t > 0, (5)

in L
(p,∞)
σ (Rn)× L(q,∞)(Rn). The term in (5)

−
∫ t

0
e−(t−s)M

[ (u · ∇u)(s)
(u · ∇θ)(s)

]
ds

will be called the bilinear vector, and the term in (5)
∫ t

0
e−(t−s)P∆(θf)ds,
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we will called of coupling term.
Let us remember the following L(p,d) − L(r,d) estimates of the semigroup {e−tM}t≥0

and give the proof by completeness.

Lemma 3.1 [2] Let 1 ≤ d ≤ ∞. For all (ϕ, φ) ∈ L
(p,d)
σ (Rn) × L(q,d)(Rn), and all t > 0,

there exists a constant C(p, r, s, q) such that

∥∥∥∇je−tM
[ ϕ

φ

]∥∥∥
(r,s),d

≤ Ct
−n
2

(γ+ j
n

)
∥∥∥
[ ϕ

φ

]∥∥∥
(p,q),d

,

where γ = 1/p− 1/r = 1/q − 1/s, with 1 < p ≤ r < ∞ and 1 < q ≤ s < ∞.

Next, let us introduce suitable time dependent functional spaces in which we will need
to study the initial value problem (1)-(4).

Definition 3.2 Let n < q < ∞ and α = 1− n/q. We define the spaces

E ≡ {(u, θ) : (u, θ) ∈ BC((0,∞), L(n,∞)
σ × L(n,∞))},

Eq ≡ {(u, θ) ∈ E : tα/2(u, θ) ∈ BC((0,∞), L(q,∞)
σ × L(q,∞))},

Fq ≡ {(u, θ) : u ∈ BC((0,∞);L(n,∞)
σ ), tα/2θ ∈ BC((0,∞);L(q,∞))},

which are Banach spaces with the norms in E, Eq, Fq defined, respectively, as

∥∥∥
[ u

θ

]∥∥∥
E

= sup
t>0

∥∥∥
[ u

θ

]∥∥∥
(n,∞)

,
∥∥∥
[ u

θ

]∥∥∥
Eq

=
∥∥∥
[ u

θ

]∥∥∥
E

+ sup
t>0

tα/2
∥∥∥
[ u

θ

]∥∥∥
(q,∞)

,

∥∥∥
[ u

θ

]∥∥∥
Fq

= sup
t>0

‖u‖(n,∞) + sup
t>0

tα/2‖θ‖(q,∞).

Theorem 3.3 (i) Let n > 2 a positive integer number, (u0, θ0) be any pair in L
(n,∞)
σ ×

L(n,∞) and f small enough with respect the following norm

‖f‖b = sup
t>0

t
β
2 ‖f(t)‖(b,∞) < ∞, β = 2− n

b
, b >

n

2
.

Then, there are constants 0 < τ = τ(f) < 1, δ > 0 and ε = ε(δ) > 0 (ε → 0 when δ → 0)

such that if
∥∥∥
[ u0

θ0

]∥∥∥
(n,∞)

< δ, the initial value problem (1)-(4) has a global solution

(u(t, x), θ(t, x)) ∈ E satisfying (5), with

ĺım
t→0

(u(t), φ) = (u0, φ), ĺım
t→0

(θ(t), ϕ) = (θ0, ϕ),

for all φ ∈ L
(n′,1)
σ (Rn), ϕ ∈ L

(n′,1)
σ (Rn). Moreover, if

∥∥∥
[ u

θ

]∥∥∥
E

< 2ε
1−τ , then the solution is

unique.
(ii) If we assume that (u0, θ0) ∈ (L(n,∞)

σ × L
(p,∞)
σ ) ∩ (L(n,∞) × L(p,∞)) with 1 < p′ < n,

there are 0 < δp ≤ δ and 0 < τp = τp(f) ≤ τ such that if
∥∥∥
[ u0

θ0

]∥∥∥
(p,∞)

< δp, then previous

solution (u, θ) verifies that (u, θ) ∈ BC((0,∞), L(p,∞)
σ × L(p,∞)).

4



Well-posedness and asymptotic behaviour for the Boussinesq system

Theorem 3.4 (Regularization) Under the assumptions of Theorem 3.3, let n < q < ∞,
such that 1

b + 1
q > 1

n . If ‖f(t)‖b = supt>0 t
β
2 ‖f(t)‖(b,∞) is small enough, there are constants

0 < τq(f) < 1 and 0 < δq ≤ δ such that if
∥∥∥
[ u0

θ0

]∥∥∥
(n,∞)

< δq, then the solution (u, θ) of

Theorem 3.3 belongs to Eq.

In the case n > 2, the assumption ‖f‖b < ∞ can be changed by the following one:
supt>0 ‖f(t)‖(n

2
,∞) < ∞. Indeed we will prove the following theorem:

Theorem 3.5 Let (u0, θ0) ∈ L
(n,∞)
σ × L(n,∞) where n > 2 and assume that f belongs to

BC((0,∞), L(n
2

,∞)). If n < q < ∞ and supt>0 ‖f‖(n
2

,∞) is sufficiently small, then there
are constants 0 < τ = τ(f) < 1, δ > 0 and ε = ε(δ) > 0 (ε → 0 when δ → 0) such

that if
∥∥∥
[ u0

θ0

]∥∥∥
(n,∞)

< δ, then the initial value problem for (1)-(4) has a global solution

(u(t, x), θ(x, t)) ∈ Fq satisfying (5) together with

ĺım
t→0

(u(t), φ) = (u0, φ), ĺım
t→0

(θ(t), ϕ) = (θ0, ϕ),

for all φ ∈ L
(n′,1)
σ (Rn), ϕ ∈ L

(n′,1)
σ (Rn). Moreover, if

∥∥∥
[ u

θ

]∥∥∥
Fq

≤ 2ε
1−τ , then the solution

is unique in the space Fq.
Furthermore, if we assume that (u0, θ0) ∈ (L(n,∞)

σ ∩ L(p,∞)) × (L(n,∞)
σ ∩ L(p,∞)), with

q′ < p′ < n
2 , there are 0 < δp ≤ δ and 0 < τp = τp(f) ≤ τ such that if

∥∥∥
[ u0

θ0

]∥∥∥
(n,∞)

< δp,

then previous solution (u, θ) satisfies (u, θ) ∈ BC((0,∞), L(p,∞)
σ × L(p,∞)).

3.1. Sketch of Proofs of the well-posedness Theorems

The proofs of the well-possedness Theorems follows basically from the next lemma in
a generic Banach space and lemmas 3.7, 3.8, 3.9 ( see [2]).

Lemma 3.6 Let X be a Banach space with norm ‖ · ‖X , T : X → X a linear continuous
map with norm τ < 1 and B : X ×X → X a continuous bilinear map, that is, there
exists a constant K > 0 such that for all x1 and x2 in X ‖B(x1, x2)‖X ≤ K‖x1‖X‖x2‖X .

Then, for 0 < ε < (1−τ)2

4K and for any vector y ∈ X, y 6= 0, such that ‖y‖X < ε, there
exists a solution x ∈ X for the equation x = y + B(x, x) + T (x) such that ‖x‖X ≤ 2ε

1−τ .
The solution x is unique in the closed ball B 2ε

1−τ
:= B(0, 2ε

1−τ ) ⊂ X. Moreover, the solution
depends continuously on y in the following sense: If ‖ỹ‖X ≤ ε, x̃ = ỹ + B(x̃, x̃) + T (x̃),
and ‖x̃‖X ≤ 2ε

1−τ , then ‖x− x̃‖X ≤ 1−τ
(1−τ)2−4Kε

‖y − ỹ‖X .

Lemma 3.7 If (u0, θ0) ∈ L
(n,∞)
σ ×L(n,∞). Then e−tM

[ u0

θ0

]
∈ E, with

∥∥∥e−tM
[ u0

θ0

]∥∥∥
E
≤

C
∥∥∥
[ u0

θ0

]∥∥∥
(n,∞)

and e−tM
[ u0

θ0

]
⇀

[ u0

θ0

]
when t → 0+, where the limit is taken in the
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weak-star topology of the L
(n,∞)
σ ×L(n,∞). Moreover

∥∥∥e−tM
[ u0

θ0

]∥∥∥
Eq

≤ C
∥∥∥
[ u0

θ0

]∥∥∥
(n,∞)

, and

if (u0, θ0) ∈ (L(p,∞)
σ × L(p,∞)) then

∥∥∥e−tM
[ u0

θ0

]∥∥∥
(p,∞)

≤ C
∥∥∥
[ u0

θ0

]∥∥∥
(p,∞)

.

Lemma 3.8 Let n, b be as in the Theorem 3.3 and T (θ) =
∫ t
0 e(t−s)P∆(θf)(s) ds. Then

‖T (θ)‖(n,∞) ≤ C‖f‖b sup
t>0

‖θ‖(n,∞), ‖T (θ)‖(p,∞) ≤ C‖f‖b sup
t>0

‖θ‖(p,∞).

Moreover, if n, b satisfy the assumptions of Theorem 3.4, then

‖T (θ)‖Eq ≤ C‖f‖b sup
t>0

t
α
2 ‖θ‖(q,∞).

Lemma 3.9 If 1 < p < q < ∞ then for all φ ∈ L(p,1)(Rn) hold:

s
1
2
(n

p
−n

q
+1)‖∇e−sMφ‖(q,1) ≤ C‖φ‖(p,1), s

1
2
(n

p
−n

q
)‖e−sMφ‖(q,1) ≤ C‖φ‖(p,1),∫ ∞

0
s

1
2
(n

p
−n

q
)− 1

2 ‖∇e−sMφ‖(q,1)ds ≤ C‖φ‖(p,1),

∫ ∞

0
s

1
2
(n

p
−n

q
)−1‖e−sMφ‖(q,1)ds ≤ C‖φ‖(p,1).

4. Self-Similarity

Assuming that f(t, x) = λ2f(λ2t, λx) is smooth and that (u(t, x), θ(t, x)) is a smooth
solution of the convection problem (1)-(4), it is straightforward to check that (u, θ)λ(t, x) =
λ(u(λ2t, λx), θ(λ2t, λx)) is also a solution of the System (1)-(4). In fact, we can look for
particular solutions of the System (1)-(4) satisfying

(u(t, x), θ(t, x)) = (u(t, x), θ(t, x))λ(t, x), (6)

for any t > 0, x ∈ Rn and λ > 0. These solutions are called self-similar solutions of the
system and it is clear that taking t → 0+, formally in (6), (u(0, x), θ(0, x)) should be a
homogeneous function of degree−1. This remark gives the hint that a suitable space to find
self-similar solutions should be one containing homogeneous functions with that exponent.
The space L(n,∞) is the only weak-Lp space such that |x|−1 ∈ L(p,∞). Moreover, in case
that such a self-similar solution exists, its norm is invariant by the scaling transformation,

(u(t, x), θ(t, x)) → (u(t, x), θ(t, x))λ = λ(u(λ2t, λx), θ(λ2t, λx)).

Moreover, homogenous functions of any order do not belong to any strong Lp space. All
of these facts reinforce the idea that weak-Lp spaces with the right homogeneity are the
most relevant spaces for finding global non-trivial self-similar solutions to the Convection
Problem.

4.1. Decay Estimates in weak − Lp and Lp

Theorem 4.1 Let (u0, θ0) as in the Theorem 3.4 and r ≥ p is finite and satisfies 1
p + 1

q −
1
r < 1

n and 1
b + 1

p − 1
r < 2

n . Then the solution of the Theorem 3.4 satisfies

t
( n
2p
− n

2r
)
u ∈ BC((0,∞);L(r,∞)

σ )n, t
( n
2p
− n

2r
)
θ ∈ BC((0,∞);L(r,∞)).

Moreover, this theorem is true by relaxing the assumptions to n ≥ 2, and even substituting
weak-Lp spaces by their stronger counterparts.
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4.1.1. Proof of Theorem 4.1.

Let (u0, θ0) ∈ L
(p,∞)
σ × L(p,∞). As a direct consequence of Lemma 3.1 we have that

supt>0 t
r−p
2γ

∥∥∥e−tM
[ u0

θ0

]∥∥∥
(r,∞)

≤ C
∥∥∥
[ u0

θ0

]∥∥∥
(p,∞)

. Now, by the second part of Theorem

3.3, we already know that if the initial data (u0, θ0) ∈ (L(p,∞)
σ ∩L

(n,∞)
σ )×(L(p,∞)∩L(n,∞)),

then the solution (u(t), θ(t)) satisfies supt>0(‖u(t)‖(p,∞)+‖θ(t)‖(p,∞)) < ∞. Thus, in order
to conclude the proof of the Theorem 4.1, we need a lemma where we estimate the norm

supt>0 t
r−p
2γ ‖ · ‖r,∞ of bilinear vector term and the linear operator term T (θ), using the

norm ‖ · ‖Eq + supt>0 ‖ · ‖p,∞ of the solution. For this, we prove the following lemmas.

Lemma 4.2 Let p and b as in the Theorem 4.1 and r ≥ p, then

sup
t>0

t
( n
2p
− n

2r
)‖T (θ)(t)‖(r,∞) ≤ C‖f‖b sup

t>0
‖θ‖(p,∞).

Lemma 4.3 Let p as in the Theorem 4.1 and r ≥ p, then

sup
t>0

tρ
∥∥∥
∫ t

0
e−(t−s)M

[ (u1 · ∇u2)
(u2 · ∇θ1)

]∥∥∥
(r,∞)

≤ C sup
t>0

∥∥∥
[ u1

θ1

]∥∥∥
(p,∞)

sup
t>0

t
α
2 ‖u2‖(q,∞),

where ρ = ( n
2p − n

2r ).

4.2. Self-Similar Solution in the spaces L(n,∞).

The aim of this subsection is to describe the principal results relative to the existence
and the uniqueness of self-similarity solutions in the L(n,∞)-spaces.

Theorem 4.4 Let (u0, θ0) ∈ L
(n,∞)
σ × L(n,∞). Assume that u0, θ0 are homogeneous func-

tions of degree −1, that is, u0(λx) = λ−1u0(x), θ0(λx) = λ−1θ0(x) for all x ∈ Rn, x 6= 0
and all λ > 0 and f as in Theorem 3.3 and Theorem 3.5, satisfies the scale relation

f(t, x) = λ2f(λ2t, λx). Then, if
∥∥∥
[ u0

θ0

]∥∥∥
(n,∞)

< ε the solution (u, θ) given by Theorem

3.3 and Theorem 3.5 is self-similar, i.e., u(t, x) = λu(λ2t, λx), θ(t, x) = λθ(λ2t, λx),
for all x ∈ Rn, x 6= 0 and all λ > 0. Moreover, in case of Theorem 3.3, if the

initial data is smaller
∥∥∥
[ u0

θ0

]∥∥∥
(n,∞)

< εq, the previous unique self-similar solution becomes

regularized.

Remark 4.5 [Bénard Problem] Note that, in the case of Theorem 3.5, we can take f
as the gravitational field f = f(x) = −G∇x( 1

|x|) = G x
|x|3 ∈ L(n

2
,∞)(Rn), where G is

the gravitational constant. This case can be regarded as the Bénard problem (see [3])
which corresponds to the interesting physical case. This consideration is also true for
the modified Theorem 3.3, where we assume f ∈ BC([0,∞);L(n

2
,∞)(Rn)), instead of

supt>0 t
β
2 ‖f(t)‖(b,∞) < ∞ , and we search solution in the space Eq.

7
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5. Stability in L(n,∞).

We analyze the large time behavior of solutions of Section 3. In short, we will show
that perturbations of the initial data are negligible for large times.

Theorem 5.1 Assume that (u, θ) and (v, φ) are solutions of (1)-(4) as in the Theorem 3.3
corresponding to the initial conditions (u0, θ0) and (v0, φ0) ∈ L

(n,∞)
σ ×L(n,∞), respectively.

Suppose that

ĺım
t→∞

∥∥et∆(θ0 − φ0)
∥∥

(n,∞)
= ĺım

t→∞
∥∥etP∆(u0 − v0)

∥∥
(n,∞)

= 0,

then
ĺım
t→∞ ‖u(t)− v(t)‖(n,∞) = 0, ĺım

t→∞ ‖θ(t)− φ(t)‖(n,∞) = 0.

Moreover, assume (u, θ) and (v, φ) are solutions of (1)-(4) given by Theorem 3.4 corres-
ponding to initial conditions (u0, θ0) and (v0, φ0) ∈ L

(n,∞)
σ × L(n,∞) satisfying that

ĺım
t→∞ t

α
2

∥∥et∆(θ0 − φ0)
∥∥

(q,∞)
= ĺım

t→∞
∥∥etP∆(u0 − v0)

∥∥
(q,∞)

= 0,

then
ĺım
t→∞ t

α
2 ‖u(t)− v(t)‖(q,∞) = 0, ĺım

t→∞ t
α
2 ‖θ(t)− φ(t)‖(q,∞) = 0.

Theorem 5.2 Assume that (u, θ) and (v, φ) are solutions of (1)-(4) as in the Theorem 3.5
corresponding to the initial conditions (u0, θ0) and (v0, φ0) ∈ L

(n,∞)
σ ×L(n,∞), respectively.

Suppose that ĺımt→∞ t
α
2

∥∥et∆(θ0 − φ0)
∥∥

(q,∞)
= 0 and that ĺımt→∞

∥∥etP∆(u0 − v0)
∥∥

(n,∞)
=

0, then
ĺım
t→∞ ‖u(t)− v(t)‖(n,∞) = 0, ĺım

t→∞ t
α
2 ‖θ(t)− φ(t)‖(q,∞) = 0.

Corollary 5.3 Let (u0, θ0) ∈ Ln
σ × Ln (Lebesgue space) be as in the Theorem 3.4. Then

the corresponding solution satisfies ĺımt→∞ ‖u(t)‖Ln = 0, ĺımt→∞ ‖θ(t)‖Ln = 0. As a
consequence, the unique self-similar solution in Ln(Rn)× Ln(Rn) is the null solution.
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