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Abstract

We consider a porous media entirely enclosed within a uid region, and present
a well posed conforming mixed flnite element method for the corresponding coupled
problem. The interface conditions refer to mass conservation, balance of normal forces,
and the Beavers-Joseph-Safiman law, which yields the introduction of the trace of the
porous media pressure as a suitable Lagrange multiplier. The flnite element subspaces
deflning the discrete formulation employ Bernardi-Raugel and Raviart-Thomas ele-
ments for the velocities, piecewise constants for the pressures, and continuous piece-
wise linear elements for the Lagrange multiplier. We show stability, convergence, and
a priori error estimates for the associated Galerkin scheme. Finally, we provide several
numerical results illustrating the good performance of the method and conflrming the
theoretical rates of convergence.

1 Introduction

The interest in developing e—cient numerical methods for approximating the solution to
the coupling of uid ow (modelled by the Stokes equation) with porous media ow (mod-
elled by the Darcy equation) has been increasing lately (see, e.g. [3], [6], [9], [12], and the
references therein). In particular, the mathematical theory and the associated numerical
analysis of a mixed variational formulation was recently provided in [9]. There, the cou-
pling across the interface is determined by the Beavers-Joseph-Safiman conditions, which
yields the introduction of the trace of the porous media pressure as a suitable Lagrange
multiplier. In addition, well posedness of the corresponding continuous formulation and
a detailed analysis of a nonconforming mixed flnite element method are given in [9]. We
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Figure 1: Geometry of the problem.

remark that the nonconformity of this discrete scheme arises from the fact that the La-
grange multiplier is approximated by piecewise constants functions, which are certainly
not contained in the Sobolev space for the traces on the interface. A similar formulation
to [9] is studied in [6].

In this paper we consider for simplicity a particular case of the model from [9], which
is given by a porous media entirely enclosed within the uid region, and introduce a new
conforming mixed flnite element method. Up to the author’s knowledge, the method
proposed here is the flrst one which is conforming for the original formulation in [9] (see
also (2.1) below). Other conforming methods are proposed in [9], but for an alternative
formulation. Now, in order to describe the geometry we let >, be a bounded and simply
connected domain in R? with polygonal boundary j,, and let >; be the annular region
bounded by j» and another closed polygonal curve j; whose interior contains >, (see
Figure 1). Then, the transmission problem consists of an incompressible viscous uid
occupying >1, which ows back and forth across j» into a porous media living in >, and
saturated with the same uid.

In what follows, ,, > 0 is the viscosity of the uid and K is a symmetric and uniformly
positive deflnite tensor in >, representing the permeability of the porous media divided
by the viscosity. We also assume that there exists C > 0 such that kK(x) zk = C kzk for
almost all x 2 >,, and for all z 2 R2. Then, the constitutive equations are given by the
Stokes and Darcy laws, respectively, that is

1(u;p) = ipal +2,,e(u) in >;; and u; = jKrpy in >;

where (ug;u») and (p1;p2) denote the velocities and pressures in the corresponding do-
mains, | is the identity matrix of R2*2, {(uq;p1) is the stress tensor, and

e(uy) = % <I’U1 + (rul)t>

is the strain tensor. Hereafter, given any normed space U, U2 and U2*? denote, respec-
tively, the space of vectors and square matrices of order 2 with entries in U. Also, the
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superscript ® stands for the transpose matrix. Hence, given f; 2 [L2(>1)]? and f2 2 L?(>2)
such that T, = 0, the coupled problem reads: Find (us;u») and (p1; p2) such that

>2

idiv 1(uyp) = f in > (conservation of momentum) ;
divup; = 0 in > (conservation of mass) ;
uu = 0 on ji (no slip) ;
divu, = * in >» (conservation of mass) ;
upt” = uxt” on j» (conservation of mass) ;
( 2Quyp)” )¢ = ip on j» (balance of normal forces);
i - ( 1(u;p) )it = uptt on j»2 (Beavers-Joseph-Safiman law) ;
i (1.1)

where ” is the unit outward normal to >3, t is the tangential vector on j,, « > 0 is the
friction constant, and the Beavers-Joseph-Safiman law establishes that the slip velocity
along j» is proportional to the shear stress along j» (assuming also, based on experimental
evidences, that u; ¢ t is negligible). We refer to [2], [8], and [13] for further details on this
interface condition.

Throughout the rest of the paper we utilize the standard terminology for Sobolev
spaces, nhorms, and seminorms, employ O to denote a generic null vector, and use C and
¢, with or without subscripts, bars, tildes or hats, to denote generic positive constants
independent of the discretization parameters, which may take difierent values at difierent
places.

2 The continuous formulation

We put > ;= >1 [ i2 [ >2 and deflne the spaces

L5(>) = {q 2 L%(>): /q = o};

HL,GOP = {vi 2 [HG0P: vi=0 on i1};

and
H(div: >,) = {v2 2 (L2 : div vy 2 |_2(>2)} :

In addition, we let
H = [H} GOP £H(iv;>;) and Q = L3(>) £HY(j2)

endowed with the product norms kvkyg = kvikigis,y2 + KVoKpgiv;s,) for all v =
(V1;v2) 2 H, and k(d;»)kq = kakrz(>y + kokpyasz;,y forall (g;») 2 Q. Also, we denote

in

. , and introduce the Lagrange multiplier
P2 N >3

. =p2=i( 1(u;p)”)t” on ja:

3
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Hence, proceeding as in [9], we flnd that the mixed variational formulation of (1.1) reads:
Find (u; (p; ,)) 2 H £ Q such that

a(u;v) + b(v;(p;,)) = / fi1tvq 8v .= (vy;Vv2) 2 H;
>1 2.1)
i

b(u; (g;»)) = f2q 8(q;») 2 Q;

>2

wherea:HEH ¥ Rand b: H£ Q ¥ R are the bilinear forms deflned by
a(u;v) = 2,,/ e(uy) : e(vy) + : / (urtt)(vitt) +/ K lustvy:
>1 i2 >2
b(v;(g;»)) =i / qdivvy i / qdivvy + hvy 67 G Vo 87 »i;,;
>1 >2

with ht;¢i;, being the duality pairing of H=1/2(j;) and HY/?(j2) with respect to the
L2(j2)-inner product.
We employ the classical Babuska-Brezzi theory to prove that (2.1) is well posed.

Theorem 2.1 There exists a unique (U;(p;,)) 2 HE Q solution to (2.1). In addition,
there exists C > 0, depending on fl, fi, and the boundedness constants for a and b, such
that

k(U, (p, =))kH><Q - C { kflk[L2(>1)]2 + kfsz2(>2) } .

3 The Galerkin formulation

Let T; and T, be regular triangulations of »; and »,, respectively, by triangles T of
diameter hr, and assume that the vertices of T; and T, coincide on the interface j,. We
let h := maxfhi; hyg, where h; := maxfhy: T 2 T,g for each i 2 f1;2g. Then, for each
T 2 T, we let RTo(T) be the local Raviart-Thomas space of lowest order, that is

wan{(3)(2):(2))

X1 ) js a generic vector of R?. In addition, for each T 2 T; we let BR(T)

X2
be the local Bernardi-Raugel space (see [4], [7]), that is

where X ;=

BR(T) := [P(T)]* = spanf-2-371;-1-372; 12730 ;

where f-1; -2; -39 are the baricentric coordinates of T, and 1;”’»; ’3g are the unit out-
ward normals to the opposite sides of the corresponding vertices of T. Hereafter, given a
non-negative integer k and a subset S of R?, P;(S) stands for the space of polynomials
deflned on S of degree = k. Hence, we deflne the following flnite element subspaces for
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the velocities and the pressure:

n (0]
Hp, = Vv2[CED%: Vjtr2BR(T) 8T2Ty; v=20o0ni1 ;
n (0]
Hpn, = Vv2H(iv;-2): VjT2RTo(T) 8T2T, ;
n (0]
Qn = Q2 L2%(-): qt 2 Po(T) 8T2T1[T> ; Qno = Qn












