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Abstract

We consider a porous media entirely enclosed within a °uid region, and present
a well posed conforming mixed flnite element method for the corresponding coupled
problem. The interface conditions refer to mass conservation, balance of normal forces,
and the Beavers-Joseph-Safiman law, which yields the introduction of the trace of the
porous media pressure as a suitable Lagrange multiplier. The flnite element subspaces
deflning the discrete formulation employ Bernardi-Raugel and Raviart-Thomas ele-
ments for the velocities, piecewise constants for the pressures, and continuous piece-
wise linear elements for the Lagrange multiplier. We show stability, convergence, and
a priori error estimates for the associated Galerkin scheme. Finally, we provide several
numerical results illustrating the good performance of the method and conflrming the
theoretical rates of convergence.

1 Introduction

The interest in developing e–cient numerical methods for approximating the solution to
the coupling of °uid °ow (modelled by the Stokes equation) with porous media °ow (mod-
elled by the Darcy equation) has been increasing lately (see, e.g. [3], [6], [9], [12], and the
references therein). In particular, the mathematical theory and the associated numerical
analysis of a mixed variational formulation was recently provided in [9]. There, the cou-
pling across the interface is determined by the Beavers-Joseph-Safiman conditions, which
yields the introduction of the trace of the porous media pressure as a suitable Lagrange
multiplier. In addition, well posedness of the corresponding continuous formulation and
a detailed analysis of a nonconforming mixed flnite element method are given in [9]. We
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Figure 1: Geometry of the problem.

remark that the nonconformity of this discrete scheme arises from the fact that the La-
grange multiplier is approximated by piecewise constants functions, which are certainly
not contained in the Sobolev space for the traces on the interface. A similar formulation
to [9] is studied in [6].

In this paper we consider for simplicity a particular case of the model from [9], which
is given by a porous media entirely enclosed within the °uid region, and introduce a new
conforming mixed flnite element method. Up to the author’s knowledge, the method
proposed here is the flrst one which is conforming for the original formulation in [9] (see
also (2.1) below). Other conforming methods are proposed in [9], but for an alternative
formulation. Now, in order to describe the geometry we let ›2 be a bounded and simply
connected domain in R2 with polygonal boundary ¡2, and let ›1 be the annular region
bounded by ¡2 and another closed polygonal curve ¡1 whose interior contains ›2 (see
Figure 1). Then, the transmission problem consists of an incompressible viscous °uid
occupying ›1, which °ows back and forth across ¡2 into a porous media living in ›2 and
saturated with the same °uid.

In what follows, „ > 0 is the viscosity of the °uid and K is a symmetric and uniformly
positive deflnite tensor in ›2 representing the permeability of the porous media divided
by the viscosity. We also assume that there exists C > 0 such that kK(x) zk • C kzk for
almost all x 2 ›2, and for all z 2 R2. Then, the constitutive equations are given by the
Stokes and Darcy laws, respectively, that is

¾1(u1; p1) = ¡ p1 I + 2 „ e(u1) in ›1 ; and u2 = ¡ K r p2 in ›2 ;

where (u1; u2) and (p1; p2) denote the velocities and pressures in the corresponding do-
mains, I is the identity matrix of R2×2, ¾1(u1; p1) is the stress tensor, and

e(u1) :=
1
2

(
ru1 + (ru1)t

)

is the strain tensor. Hereafter, given any normed space U , U2 and U2×2 denote, respec-
tively, the space of vectors and square matrices of order 2 with entries in U . Also, the
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superscript t stands for the transpose matrix. Hence, given f1 2 [L2(›1)]2 and f2 2 L2(›2)

such that
∫

›2

f2 = 0, the coupled problem reads: Find (u1; u2) and (p1; p2) such that





¡ div ¾1(u1; p1) = f1 in ›1 (conservation of momentum) ;
div u1 = 0 in ›1 (conservation of mass) ;

u1 = 0 on ¡1 (no slip) ;
div u2 = f2 in ›2 (conservation of mass) ;
u1 ¢ ” = u2 ¢ ” on ¡2 (conservation of mass) ;(

¾1(u1; p1)”
)

¢ ” = ¡ p2 on ¡2 (balance of normal forces) ;
¡

•
„

(
¾1(u1; p1) ”) ¢ t = u1 ¢ t on ¡2 (Beavers-Joseph-Safiman law) ;

(1.1)
where ” is the unit outward normal to ›1, t is the tangential vector on ¡2, • > 0 is the
friction constant, and the Beavers-Joseph-Safiman law establishes that the slip velocity
along ¡2 is proportional to the shear stress along ¡2 (assuming also, based on experimental
evidences, that u2 ¢ t is negligible). We refer to [2], [8], and [13] for further details on this
interface condition.

Throughout the rest of the paper we utilize the standard terminology for Sobolev
spaces, norms, and seminorms, employ 0 to denote a generic null vector, and use C and
c, with or without subscripts, bars, tildes or hats, to denote generic positive constants
independent of the discretization parameters, which may take difierent values at difierent
places.

2 The continuous formulation

We put › := ›1 [ ¡2 [ ›2 and deflne the spaces

L2
0(›) :=

{
q 2 L2(›) :

∫

›
q = 0

}
;

[H1
¡1(›1)]2 :=

{
v1 2 [H1(›1)]2 : v1 = 0 on ¡1

}
;

and
H(div ; ›2) :=

{
v2 2 [L2(›2)]2 : div v2 2 L2(›2)

}
:

In addition, we let

H := [H1
¡1(›1)]2 £ H(div ; ›2) and Q := L2

0(›) £ H1/2(¡2)

endowed with the product norms kvkH := kv1k[H1(›1)]2 + kv2kH(div ;›2) for all v :=
(v1; v2) 2 H, and k(q; »)kQ := kqkL2(›) + k»kH1/2(¡2) for all (q; ») 2 Q. Also, we denote

u := (u1; u2), p :=
{

p1 in ›1
p2 in ›2

, and introduce the Lagrange multiplier

‚ := p2 = ¡
(

¾1(u1; p1)”
)

¢ ” on ¡2 :
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Hence, proceeding as in [9], we flnd that the mixed variational formulation of (1.1) reads:
Find (u; (p; ‚)) 2 H £ Q such that

a(u; v) + b(v; (p; ‚)) =
∫

›1

f1 ¢ v1 8 v := (v1; v2) 2 H ;

b(u; (q; »)) = ¡
∫

›2

f2 q 8 (q; ») 2 Q ;
(2.1)

where a : H £ H ! R and b : H £ Q ! R are the bilinear forms deflned by

a(u; v) := 2 „
∫

›1

e(u1) : e(v1) +
„
•

∫

¡2

(u1 ¢ t) (v1 ¢ t) +
∫

›2

K−1u2 ¢ v2 ;

b(v; (q; »)) := ¡
∫

›1

q div v1 ¡
∫

›2

q div v2 + hv1 ¢ ” ¡ v2 ¢ ”; »i¡2 ;

with h¢; ¢i¡2 being the duality pairing of H−1/2(¡2) and H1/2(¡2) with respect to the
L2(¡2)-inner product.

We employ the classical Babu•ska-Brezzi theory to prove that (2.1) is well posed.

Theorem 2.1 There exists a unique (u; (p; ‚)) 2 H £ Q solution to (2.1). In addition,
there exists ~C > 0, depending on fl, fi, and the boundedness constants for a and b, such
that

k(u; (p; ‚))kH×Q • ~C
{

kf1k[L2(›1)]2 + kf2kL2(›2)

}
:

3 The Galerkin formulation

Let T1 and T2 be regular triangulations of „›1 and „›2, respectively, by triangles T of
diameter hT , and assume that the vertices of T1 and T2 coincide on the interface ¡2. We
let h := maxfh1; h2g, where hi := maxf hT : T 2 Ti g for each i 2 f1; 2g. Then, for each
T 2 T2 we let RT0(T ) be the local Raviart-Thomas space of lowest order, that is

RT0(T ) := span
{ (

1
0

)
;
(

0
1

)
;
(

x1
x2

)}
;

where x :=
(

x1
x2

)
is a generic vector of R2. In addition, for each T 2 T1 we let BR(T )

be the local Bernardi-Raugel space (see [4], [7]), that is

BR(T ) := [P1(T )]2 ' span f ·2 ·3 ”1; ·1 ·3 ”2; ·1 ·2 ”3 g ;

where f·1; ·2; ·3g are the baricentric coordinates of T , and f”1; ”2; ”3g are the unit out-
ward normals to the opposite sides of the corresponding vertices of T . Hereafter, given a
non-negative integer k and a subset S of R2, Pk(S) stands for the space of polynomials
deflned on S of degree • k. Hence, we deflne the following flnite element subspaces for
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the velocities and the pressure:

H h1 :=
n

v 2 [C( ¹­ 1)]2 : v jT 2 BR(T) 8 T 2 T1 ; v = 0 on ¡ 1

o
;

H h2 :=
n

v 2 H (div ; ­ 2) : v jT 2 RT 0(T) 8 T 2 T2

o
;

Qh :=
n

q 2 L 2(­) : qjT 2 P0(T) 8 T 2 T1 [ T 2

o
; Qh;0 := Qh








