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The DNA molecule is modeled by a parabola embedded chain with long-range interactions between twisted
base pair dipoles. A mechanism for bubble generation is presented and investigated in two different configu-
rations. Using random normally distributed initial conditions to simulate thermal fluctuations, a relationship
between bubble generation, twist and curvature is established. An analytical approach supports the numerical
results.
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I. INTRODUCTION

In recent years, biomolecular modeling has received an
ever increasing amount of attention, especially focused on
the DNA molecule as well as protein structures. The basic
structure of DNA is fairly well understood since the discov-
ery of Crick and Watson[1], but it is becoming increasingly
apparent that structure alone does not explain its complex
functionality sufficiently[2–5].

An example is the mechanism leading tobubble genera-
tion in DNA, in which the two polypeptide strands open to
allow replication of the molecule, processing of proteins or
complete strand separation(denaturation). Thermal fluctua-
tions at physiological temperatures and nonlinear localiza-
tions are expected to produce bubbles when geometrical fea-
tures, such as twist and curvature, are taken into account.

In initial works investigating the denaturation bubble, the
geometrical features of the molecule were essentially ne-
glected and energy localization was mostly attributed to in-
homogeneities and impurities in the lattice chain, which may
model the action of an enzyme[6–12], or nonlinear excita-
tions [9,13–17]. Also, discreteness plays an important role
for the localization of these excitations. The inhomogeneities
have been modeled by different masses at various chain sites
[6,11,12,18], by conformational defects[17] or by changes in
the coupling between molecular sites[9,11]. Also, different

on-site potentials[8,18–20] have been used as inhomogene-
ities, corresponding to the different number of hydrogen
bonds between the two strands. In DNA, the AT base pair
connects through two hydrogen bonds, whereas the CG base
pair has three. It has to some extent been experimentally
verified that bubbles form at AT-rich sections of the DNA
molecule[21], but recent work[22] also suggests that other
mechanisms are involved.

Recently, both long-range dipole-dipole interaction
[23,24], helicity [25,26] and curvature[27–29] have been
included in the nonlinear transport theory, as well as combi-
nations of these effects[30–34]. It has been shown that chain
geometry induces effects similar to those of impurities
[27–29,32].

In biological environments, thermal fluctuations are al-
ways present and have been considered in Refs.
[10,12,35–39], for example. In these references it was shown
that solitons or discrete breathers can be generated from or
exist among random thermal fluctuations.

The aim of the present work is to study an augmented
Peyrard-Bishop model of the DNA molecule[40]. We in-
clude both dipole-dipole long-range interaction and chain ge-
ometry in the form of a rigid, parabola embedded chain.
Elaborating on earlier work[41], we show how both chain
curvature and twist can initiate bubble generation in the
DNA molecule. We consider two different chain configura-
tions and randomly distributed initial conditions, modeling
physiological temperatures.

In Sec. II, we introduce the model Hamiltonian and equa-
tions of motion and discuss relevant parameter values as well*Electronic address: p.v.larsen@mat.dtu.dk
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as the dipole interaction and chain geometry. In Sec. III,
numerical investigations are performed and the results are
supported by an analytical approach in Sec. IV. Finally, Sec.
V contains a summary and a discussion.

II. MODEL

We consider parabola embedded chains, as illustrated in
Fig. 1. The base pair sites are embedded along a parabola in
thexy plane at uniform distances. The dipole moments of the
base pairs, represented by arrows, are orthogonal to the pa-
rabola and twisted in the orthogonal plane. Within thenth
base pair, the deviation from the equilibrium transverse dis-
tance between the bases is denotedun [40]. The intrasite
dynamics of the base pairs is governed by a Morse potential,
see Fig. 2, and we assume a harmonic intersite coupling be-
tween neighboring base pairs. The coupling—orstacking—
parameter,C, remains constant along the chain, i.e., indepen-
dent of curvature and twisting.

As a result, using the scalings and parameter values pre-
sented below, we obtain the dimensionless Hamiltonian,

H = o
n=−N

n=N H1

2
u̇n

2 +
C

2
sun+1 − und2 + se−un − 1d2

+
1

2o
m

8JnmunumJ , s1d

where the prime indicatesmÞn in the last summation, ac-
counting for the long-range interaction(LRI) between the
dipoles. The total number of sites are thusNT=2N+1. With-

out the LRI, this Hamiltonian has previously been used to
describe thermal denaturation in DNA, see Ref.[36].

The LRI is a dipole-dipole interaction, with coefficients
Jnm given by [23,42]

Jnm=
Jhdn ·dm − 3sdn · r nmdsdm · r nmdj

ur n − r mu3
, s2d

wherer n and dn are the position vector and the unit dipole
vector at thenth site, respectively, andr nm denotes the unit
vector from thenth to themth site,

r nm=
r n − r m

ur n − r mu
. s3d

We note that the geometry of the chain only comes into play
through the LRI’s[45].

Dimensionless variables have been introduced as

un = aũn, t = t̃/t0, r n = r̃ n/l, andH = H̃/D,

where original physical variables are indicated by tildes.l is
the constant intersite distance between neighboring base
pairs,a andD are parameters in the dimensional Morse po-
tential, Dse−aũn−1d2, and the time constant is given byt0
=ÎM /Da2, whereM is the mass of a base pair. The dimen-
sionless parametersC andJ are given by

C = C̃/sDa2d and J = 2J̃0/l
3Da2, s4d

with J̃0=q2/4p«0, whereq denotes the dipole charge of the
base pair and«0 is the dielectric constant.

A. Parameter values

We use the parameter valuesD=0.04 eVs=0.64
310−20 Jd, a=4.45 Å−1 s=4.4531010 m−1d, M =300

a.m.u.s=5.00310−25 kgd and the coupling parameterC̃
=0.06 eV/Å2 s=0.96 J/m2d, which have been widely used in
DNA-like models [23,30,36]. The dimensionless stacking
parameter then becomesC=0.075, which we use throughout

the paper. We note thatC̃ values between 0.03 eV/Å2 [40]
and 31.7 eV/Å2 [43] have been reported in the literature.

The resulting time constant,t0=0.20 ps, is in the picosec-
ond range, as seen in Table I.

The dipole moment for the base pair,ddip, is the geometric
sum of the moments for the bases, which range between 3

TABLE I. Physical parameters for the DNA molecule.

Symbol Parameter Physical value

C̃ Stacking 0.96 J/m2

D Morse depth 0.64310−20 J

a Inverse Morse width 4.4531010 m−1

M Base pair mass 5.00310−25 kg

q Dipole charge 1.17310−19 C

J̃0
Interaction strength 0.90310−28 Jm

l Lattice constant 3.4310−10 m

t0 Time constant 0.20310−12 s

FIG. 1. DNA chain embedded on a parabola in thexy plane.
Sites sxn,ynd with yn=sk /2dsxn−gd2, indicated by light gray dots.
Base pair dipoles, orthogonal to the parabola, shown as dark gray
arrows. Curvaturek=2 and twist t=1. The z-axis (not shown)
forms a right-handed system withx and y axes. Left, the on-site
case,g=0. Right, the intersite case,g=1/2.

FIG. 2. The Morse potentialVMorsesund=se−un−1d2 (solid curve).
Effective potential, Eq.(9), in the analytical approximation(dashed
curve).
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and 7 debye[44]. In our simulations we useddip<7 debye.
The corresponding dipole chargeq=ddip/adip, whereadip is
the equilibrium distance between the dipole charges(<2 Å
[23]) then becomes 1.17310−19 C , yieldingJ=0.5 [46].

B. Geometry

We introduce the twist angle,fn, which the dipoles create
with thez direction, in the form of a kink(5), whereg gives
the position of the kink center,

fn = 2 arctanfe−tsn−gdg. s5d

Thus,g is 0 in the on-site case, butg=1/2 in theintersite
case. The most important difference between the two is that
the on-site case always has a dipole aligned in the bending
plane atn=0 sf0=p /2d.

As illustrated in Fig. 3, the largertwist, t, the faster the
twist angle changes—especially in the region of maximal
twist and curvature. Note that the maximal slope of the twist
function occurs atg. In the limit t→`, Eq. (5) gives fn
=p for n,0, andf=0 for nù1 for both cases. In the same
limit, at n=0, the on-site case hasf0=p /2, whereas the
intersite case hasf0=p. In the limit t→0, all fn=p /2 in
both cases.

On the parabola embedded chain,yn=sk /2dsxn−gd2, the
resulting unit dipole vectors then become

dn = f− jnksxn − gdsin fn,jn sin fn,cosfng, s6d

with jn=1/Î1+k2sxn−gd2 (corresponding to the dark gray
arrows in Fig. 1). In the on-site case,x0−g;0, and the other
site positions are numerically calculated to fulfill the require-
ment that the distance between adjacent sites is always unity.
In the intersite case, we definex0−g;−1/2 and x1−g
;1/2 and compute the other sites in a similar way. Thus, the
axis of symmetry passes through the siten=0 in the on-site,
g=0, case and passes through the middle of the bond con-
necting sitesn=0 andn=1 in the intersite,g=1/2,case[47].
See Fig. 1.

It is difficult to determine the actual value of the twist,t.
The standard value for the twist angle between neighboring
base pairs in an undisturbed DNA molecule is about 36°
[25,26,31]. Requiring that a twist of 180° should be achieved

over five sites, thus corresponds to a value oft about 1(Fig.
3) in equilibrium and larger when twisted more.

Similarly, the bending of a DNA chain can be approxi-
mately determined from experimental results. In Refs.
[27,30] a parabolic approximation with curvature parameter
kø4 was used. Here, we shall only consider the rangek
ø2 as larger curvature has never been observed in measure-
ments.

III. SIMULATION RESULTS

From the Hamiltonian(1) we obtain the equations of mo-
tion

ün + Cs2un − un−1 − un+1d − 2e−unse−un − 1d + o
m

8Jnmum = 0.

s7d

In the following we solve these equations numerically us-
ing a fourth order Runge-Kutta solver with free boundary
conditionsu−N−1=u−N and uN+1=uN. In all simulations the
relative change of the Hamiltonian is less than 10−5 and we
consider a chain withNT=99 sites.

In our previous work considering an approximate dipole-
dipole interaction on a wedge shaped chain[41] we investi-
gated random initial conditions. This was done as nonlinear
excitations are known to be generated from randomness
[10,36–39]. As the outcome of collisions between nonlinear
excitations depends strongly on their relative phases, we
made 500 different random initial conditions to be able to
find effects independent of the random phases. The random
initial conditions created nonlinear excitations, which led to
bubble generation at various collision sites. We found that
bending of the chain caused the bubble generation to localize
at the bent region.

In the following we use a similar approach to investigate
the relationship between twist and curvature in this realistic
expression for the dipole interaction(2). We consider random
initial conditions: Initial displacements set to zero, i.e.,
uns0d=0 for all n, while initial velocities of the chain sites
are normally distributed with mean valueku̇ns0dl=0 and
standard deviationsu̇n

. The standard deviation is chosen to
be su̇n

=1.156, corresponding a temperature ofT<310 K.
The system dynamics is simulated for 100 different real-

izations of the initial conditions with stepsize 0.01 in time.
The simulations run for 100 time units(corresponding to
20 ps) or until the Hamiltonian is no longer conserved. As
mentioned, the constant dipole-dipole interaction coefficient
J=0.5 is used in all the simulations.

For different values of twist or curvature, the same initial
condition can result in very different behavior. Consider Fig.
4, where the same initial condition is simulated for two dif-
ferent values of the twist,t, in the on-site case. With the
larger twist (dashed curve) the amplitude grows in an
exponential-like manner(see Sec. IV).

At the end of each simulation, we examine the ampli-
tudes. We use a threshold value ofun=100, corresponding to
about 20 Å, i.e., twice the equilibrium distance between base
pairs. If the threshold is exceeded in at least two adjacent

FIG. 3. (Color online) The twist angle,fn, for various values of
the twist, t, around the chain center. On-site case,g=0; intersite
case,g=1/2.
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sites, we consider this as a precursor for bubble generation.
In the following sections, we have depicted the regions of
curvature,k, and twist, t, where at least one of the 100
simulations result in bubble generation.

A. Results for the on-site case

The combined effect of both curvature and twist for the
on-site case is depicted in Fig. 5, where the shaded region
corresponds to bubble generation. We see that bubbles are
generated for strong twist and strong curvature, which is ex-
pected here. For the on-site case, the strongest attraction be-
tween dipoles occur at the sitesn=−1 andn=1 (which are
almost antiparallel for strong twist). Increasing the curvature
bring these next-to-center sites closer, which augments the
dipole-dipole interaction(2). As the inset(a) shows, the am-
plitude increase is localized to the region of maximal twist
and curvature. We are aware that in reality, whole regions of
DNA base pairs move apart during denaturation. Therefore,
our mechanism should only be perceived as a precursor for
bubble generation.

The exact shape of Fig. 5 depends on the chosen ampli-
tude threshold—as well as system parameters—but its quali-
tative shape is unchanged. Close to the region border, only a
few of the simultations results in bubble generation, but this
number increases as one proceeds in the direction of stronger
twist and larger curvature(i.e., towards the upper right cor-
ner). We note that for the on-site case the amplitude is in-
creased at the three center sitesn=−1, n=0, andn=1 as
indicated in the inset(a).

B. Results for the intersite case

In the intersite case, Fig. 6, the picture is different. First of
all, the twist needed for bubble generation is smaller. Sec-
ond, the dependence on the curvature is less pronounced.
This is because the dipoles, that for strong twist are antipar-
allel, in this case are neighbors. Since, in the framework of
our model, the chain has constant distance between adjacent
sites, increasing the curvature does not increase the tendency
for bubbles to be generated.

In fact, the opposite is the case: As the dipole twist is
perpendicular to the chain, increasing the curvature has the
consequence that the center dipoles interact in a less attract-
ing way, since the center dipoles become more antiparallel
(Fig. 8).

Note that in this case, the displacement at the two center
cites, n=0 and n=1, is increased as the inset(a) shows.
Close to the region border, the number of simulations result-
ing in bubble generation is small, but it increases as one
increases the twist or decreases the curvature(i.e., moves to
the upper left corner).

C. Effective potential

It is obvious that having initially randomly distributed en-
ergy along the chain, successful bubble generation should
include, as a first stage, funneling of energy in the bent and
twisted region. Therefore we can expect that only in the case
when this region acts as a potential well, bubbling may oc-
cur. The behavior found in Figs. 5 and 6 can be qualitatively
explained by theeffective on-site potential, Vn;om8 Jnm,
which is introduced as

o
n

o
m

8Jnmunum = −
1

2o
n

o
m

8Jnmsun − umd2 + o
n

Vnun
2.

We consider the dipole potential at given sites for both the
on-site and the intersite case for constant curvature,k=1.0,
with respect to the “ground state” atn→ ±`. Thus, Fig. 7
depicts the depth of the potential well for constant curvature
for both the on-site[Fig. 7(a)] and the intersite[Fig. 7(b)]
case. We see that in the vicinity of the bending point, there
exist an effective potential well fort larger than about 0.5.
This corresponds to the behavior found in Figs. 5 and 6. The

FIG. 4. Evolution of the center site amplitude fork=1.0 andt
=6 (dashed curve) andt=4 (solid curve) for an on-site case.

FIG. 5. Region of bubble generation in the on-site case. Light
gray region, bubble generation. Dark gray region, transition region
indicating the uncertainty of the simulations. White region, no
bubble generation. Insets show the displacement,un, versus site,n,
at the points(a) and (b) at simulation times(a) t=51 and (b) t
=100 for the same initial condition.

FIG. 6. Region of bubble generation in the intersite case. Light
gray region, bubble generation. Dark gray region, transition region
indicating the uncertainty of the simulations. White region, no
bubble generation. Insets show the displacement,un, versus site,n,
at the points(a) and (b) at simulation time(a) t=45 and (b) t
=100 for the same initial condition.
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depth of the potential well increases with increasing twist,
until a saturation is reached att<5. The existence of a po-
tential well is a necessary, but not sufficient, condition for
bubble generation.

For constant twist, Fig. 8, we find different behaviors in
the two chain configurations. For the on-site case witht=6
[Fig. 8(a)], we see a decreasing potential well depth with
increasing curvature at sitesn=−1 and n=1, whereas the
potential atn=0 is almost constant. This corresponds to an
effective potential well for increasing curvature in the on-site
case. In the intersite case[Fig. 8(b)], the twist is fixed att
=2, but in contrast to the on-site case, we see that the depth
of the potential well increases with increasing curvature at
the center sitesn=0 andn=1. Therefore, bubble generation
is not found for larger curvature in the intersite case, corre-
sponding to the behavior seen in Fig. 6.

Thus both curvature and twisting play a role in the local-
ized formation of precursors for denaturation bubbles in our
model of the DNA molecule and it is clear that the chain
configuration is important. Stronger twist increases the ini-
tiation of bubble generation in both cases considered. The
effect of increasing curvature is different: In the on-site case,
curvature clearly enhances bubble generation, but in the in-
tersite case it slightly decreases the formation of bubbles in
the range ofk considered.

Simulations for smaller values of the parameterJ showed
that stronger twist was required to create bubbles.

IV. ANALYTICAL APPROACH

Considering only the center sitesn=0 and n=1 in the
intersite case, we are in effect looking at adimer. Assuming
that both displacements are equal,u0=u1;u, the coupling
term in the Hamiltonian, Eq.(1), vanishes and we are left
with

H = u̇2 + 2se−u − 1d2 − Ju2, s8d

with J= uJ01u= uJ10u. For a strong twist,t@1, the last term
becomes negative, due to opposite dipole orientations, corre-
sponding to attractive interaction. The effective potential

Vsud = 2se−u − 1d2 − Ju2 s9d

is shown as the dashed curve in Fig. 2.
Equation(8) may now be integrated as

t − t̄ =E
ū

u dw
ÎH − 2se−w − 1d2 + Jw2

, s10d

whereu= ū at the timet= t̄. Choosingt̄ so large thatw@1,
the power term in the square root of Eq.(10), Jw2, dominates
(as seen in Fig. 2). Therefore, Eq.(10) may be approximated
as

t − t̄ < E
ū

u dw
ÎJw2

,

from which we findu ~ expfÎJst− t̄dg, in accordance with
the exponential behavior found numerically in Fig. 4. A simi-
lar approach can be used for the on-site case with identical
results.

V. CONCLUSION

We have shown that bubble generation in DNA-like mod-
els can be initiated by curvature and twisting of the molecu-
lar strands.

Stronger twist facilitate bubble generation, whereas the
effect of curvature depends on the details of the geometry.
For the on-site case, increasing curvature increases the ten-
dency for bubble generation. Conversely, the intersite case
decreases bubble generation for increasing curvature.

Bubbles emerge in the region of maximal twist and cur-
vature, and are found at physiological temperatures.

Numerical results are supported by analytical approxima-
tion. Widely used parameter values for DNA are used in our
model.
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FIG. 7. Effective potentialVn−V` for constant curvaturek
=1.0. (a) On-site case.(b) Intersite case.

FIG. 8. Effective potentialVn−V` for constant twist.(a) On-site
case,t=6. (b) Intersite case,t=2.
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