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Resumen
We present a numerical method to compute derivatives of the rotation number for

parametric families of circle diffeomorphisms with high accuracy. Our methodology is
an extension of an existing approach to compute rotation numbers, that it is based on
suitable averages of the iterates of the map and Richardson extrapolation. In order to
justify the method, we require the family of maps to be differentiable with respect to
the parameters and the rotation number to be Diophantine. The method is used to
compute the Taylor expansions of Arnold tongues with high precision.

1. Introduction

The rotation number is a very important topological invariant in the study of the
dynamics associated to circle maps and, by extension, invariant curves for maps or two
dimensional invariant tori for vector fields. For this reason, during the last years, several
numerical methods for approximating rotation numbers have been developed. We refer to
the works [1, 2, 3, 4] as examples of methods of different nature and complexity.

Recently, a new method for computing rotation numbers of circle diffeomorphisms
with high precision at low computational cost has been introduced in [6]. Concretely, this
method is built assuming that the circle map is conjugate to a rigid rotation in a sufficiently
smooth way and, basically, it consist in averaging the iterates of this circle map together
with Richardson extrapolation. From the practical point of view, it is specially suited if
we are able to compute the iterates of the map with high precision, for example if we can
work with a computer arithmetic having a large number of decimal digits.

The goal of this paper is to extend the method of [6] in order to compute derivatives
of the rotation number with respect to parameters in parametric families of circle dif-
feomorphisms. Our idea is based in the same averaging-extrapolation process applied to
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the derivatives of the iterates of the map. To this end, we only require the family to be
differentiable with respect to the parameters and the rotation number to be Diophantine.
Hence, we are able to obtain accurate variational information at the same time that we
approximate the rotation number. Consequently, the method allows to study parametric
families of circle maps from a point of view that is not given by the previously mentioned
methods.

2. Review of the method of [6] to compute rotation numbers

Let T = R/Z be the real circle and Diff r
+(T), r ∈ [0,+∞) ∪ {∞, ω}, the group of

orientation-preserving homeomorphisms of T of class Cr. Given f ∈ Diff r
+(T), we identify

f with its lift to R by fixing the normalization condition f(0) ∈ [0, 1).

Definition 2.1. Let f be the lift of an orientation-preserving homeomorphism of the circle
such that f(0) ∈ [0, 1). Then the rotation number of f is defined as the limit

ρ(f) := ĺım
|n|→∞

fn(x0)− x0

n
,

that exists for all x0 ∈ R, is independent of x0 and satisfies ρ(f) ∈ [0, 1).

Given f ∈ Diff 2
+(T) with ρ(f) ∈ R\Q, Denjoy’s theorem ensures that f is topo-

logically conjugate to the rigid rotation Rρ(f), i.e., there exist η ∈ Diff 0
+(T) such that

f ◦ η = η ◦Rρ(f), where Rθ(x) = x + θ. In addition, if we require η(0) = x0, for fixed
x0 ∈ [0,∞), then η is unique. The theoretical support of the method is provided by the
regularity of η, that follows from the next result:

Theorem 2.2. Assume that f ∈ Diff r
+(T) has Diophantine rotation number θ = ρ(f) of

(C, τ)-type, i.e., there exist constants C > 0 and τ ≥ 1 such that

|1− e2πikθ|−1 ≤ C|k|τ , ∀k ∈ Z∗. (1)

Then, if τ +1 < r, f is conjugated to Rρ(f) by means of a conjugacy η ∈ Diff r−τ−ε
+ (T), for

any ε > 0. Note that Diff ω
+(T) = Diff ω−τ−ε

+ (T) while the domain of analyticity is reduced.

From now on we focus in the analytic case, although finite differentiability is enough.
Let us consider f ∈ Diffω

+(T) with rotation number θ = ρ(f) ∈ D. Notice that we can write
η(x) = x + ξ(x), being ξ a 1-periodic function normalized in such a way that ξ(0) = x0,
for a fixed x0 ∈ [0, 1). Now, we can write the following expression for the iterates under
the lift:

fn(x0) = fn(η(0)) = η(nθ) = nθ +
∑

k∈Z
ξ̂ke2πiknθ, ∀n ∈ Z, (2)

where the sequence {ξ̂k}k∈Z denotes the Fourier coefficients of ξ.
We introduce the following recursive sums for p ∈ N

S0
N (f) := fN (x0)− x0, Sp

N (f) :=
N∑

j=1

Sp−1
j (f). (3)
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Then, the result presented in [6] says that, under the previous hypotheses, the following
sums (3) satisfy the expression (basically, the idea is to use (2) and the fact that the
Fourier coefficients decay very fast due to the analyticity of η)

(
N + p

p + 1

)−1

Sp
N (f) = θ +

p∑

l=1

Ap
l

N l
+ Ep(N), (4)

where the coefficients Ap
l depend on f and p but are independent of N . Furthermore, the

remainder Ep(N) is uniformly bounded by an expression of order O(1/Np+1). Then, if we
select a maximum number N = 2q of iterates, we obtain

θ = Θq,p(f) +O(2−(p+1)q), Θq,p(f) :=
p∑

j=0

cp
j

(
N + p

p + 1

)−1

Sp
N (f), (5)

for some universal coefficients cp
j which are given by

cp
l = (−1)p−l 2l(l+1)/2

δ(l)δ(p− l)
, (6)

where we define δ(n) := (2n−1)(2n−1−1) · · · (21−1) for n ≥ 1 and δ(0) := 1. The operator
Θq,p corresponds to the Richardson extrapolation of equation (4) of order p.

As far as the behavior of the error is concerned, by comparing (5) with 2q−1 and 2q

iterates, we obtain the following (heuristic) expression

|θ −Θq,p(f)| ≤ ν

2p+1
|Θq,p(f)−Θq−1,p(f)|, (7)

where ν is a “safety parameter” whose role is to prevent the oscillations in the error as a
function of q due to the quasi-periodic part. We take ν = 10.

3. Derivatives of the rotation number with respect to para-
meters

Now we adapt the previous ideas in order to compute derivatives of the rotation
number with respect to parameters (assuming that they exist). For a sake of simpli-
city, we introduce the method for one-parameter families of circle diffeomorphisms, al-
beit the construction can be adapted to deal with multiple parameters. Thus, consider
µ ∈ I ⊂ R 7→ fµ ∈ Diff ω

+(T) depending on µ in a regular way. The rotation numbers of the
family {fµ}µ∈I induce a function θ : I → [0, 1) given by θ(µ) = ρ(fµ).

Our goal is to generalize formula (5) to approximate numerically the derivative Dd
µθ for

any d, when it exists. For a full discussion of the construction we refer to [5]. We assume
that the family µ 7→ fµ ∈ Diff ω

+(T) depends Cd-smoothly with respect to the parameter.
As before, we define the recursive sums

Dd
µS0

N (fµ) := Dd
µ(fn

µ (x0)− x0), Dd
µSp

N (fµ) :=
N∑

j=0

Dd
µSp−1

j (fµ).

Then, if θ(µ0) ∈ D and Dd
µθ(µ0) 6= 0, we obtain (omitting the point µ0)
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(
N + p

p + 1

)−1

Dd
µSp

N (fµ) = Dd
µθ +

p−d∑

l=1

Dd
µÂp

l

N l
+O(1/Np−d+1), (8)

where the remainder Dd
µEp(N) is of order O(1/Np−d+1). Therefore, according to formu-

la (8), we can extrapolate the d-th derivative of the rotation number as

Dd
µθ = Θd

q,p,p−d(f) +O(2−(p−d+1)q), Θd
q,p,m(f) :=

m∑

j=0

cm
j

(
N + p

p + 1

)−1

Dd
µSp

N (fµ),

and we observe that now the extrapolation order is p− d instead of p. Finally, we obtain
the following heuristic formula for the extrapolation error

|Dd
µθ −Θd

q,p,p−d(f)| ≤ ν

2p−d+1
|Θd

q,p,p−d(f)−Θd
q−1,p,p−d(f)|. (9)

Remark 3.1. Up to this point we have assumed that Dd
µθ 6= 0 at the computed point.

However, if we know a priori that Dr
µθ = 0 for r = 1, . . . , d, then the remainder Dd

µEp(N)
is now of order O(1/Np+1). This allows to approximate Dd

µθ with the same extrapolation
order as the averaging order p. Indeed, we obtain

0 = Dd
µθ = Θd

q,p,p(f) +O(2−(p+1)q).

4. Application to the Arnold family

As an example, we consider the Arnold family of circle maps, given by

fα,ε : S −→ S
x 7−→ x + 2πα + ε sin(x),

(10)

where (α, ε) ∈ [0, 1)× [0, 1) are parameters and S = R/(2πZ). Notice that, for this family
of maps, it is convenient to take the angles modulo 2π just for avoiding the lost of significant
digits due to the factors (2π)d−1 that would appear in the d-derivative of the map.

4.1. Stepping up to a Devil’ staircase

Let us fix the value of ε ∈ [0, 1) and consider the one-parameter family {fα}α∈[0,1)

given by equation (10), i.e. fα := fα,ε. The map α 7→ ρ(fα) gives rise to a “staircase” with
a dense number of stairs, that is usually called a Devil’ staircase.

To illustrate the behavior of the method we have computed the above staircase for
ε = 0,75. The computations have been performed by taking 104 points of α ∈ [0, 1), using
32-digit arithmetics, and a fixed averaging order p = 8. In addition, we estimate the error
in the approximation of ρ(fα) and Dαρ(fα) using formulas (7) and (9), respectively. Then,
we stop the computations for a tolerance of 10−26 and 10−24, using at most 222 = 4194304
iterates.

Let us discuss the obtained results. First, we point out that only 11,4% of the selected
points have not reached the previous tolerances for 222 iterates. Moreover, we observe that
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Figura 1: Devil’ staircase (top-left) and its derivative (top-right) for the Arnold family with ε = 0,75.

The plots in the bottom correspond to some magnifications of the derivatives top-right one.

the rotation number for 98,8% of the points has been obtained with an error less that
10−20, while the estimated error in the derivatives is less than 10−18 for 97,7% on the
points.

In figure 1 we show α 7→ ρ(fα) and its derivative α 7→ Dαρ(fα) for those points that
satisfy that the estimated error is less than 10−18 and 10−16, respectively. We recall that
the rational values of the rotation number correspond to the constant intervals in the
top-left plot, and note that looking at the derivative (top-right plot) we can visualize
the density of the stairs better than looking at the staircase itself. We remark that both
these rational rotation numbers and their vanishing derivatives have been computed as
well as the Diophantine cases. Moreover, at the bottom of the same figure, we plot some
magnifications of the derivative to illustrate the non-smoothness of a Devil’ staircase.
These magnifications have been computed by taking 105 and 106 points, respectively. We
refer to [5] for more details on these computations and further discussion of the results.

4.2. Computation of the Taylor expansion of Arnold tongues

All through the rest of the section, we assume that θ ∈ D and consider the Arnold
Tongue Tθ = {(ε, α(ε)) : ε ∈ [0, 1)}. Then, we can expand α at the origin as

α(ε) = θ +
α′(0)

1!
ε +

α′′(0)
2!

ε2 + · · ·+ α(d)(0)
d!

εd +O(εd+1), (11)
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and our goal is to compute the derivatives α(r)(0), r ≤ d, that appear in this power series.

d 2πα(d)(0) e1

0 3.883222077450933154693731259925391915269339787692096599014776434 -
1 5.289596087298835974306750728481413682115174017433159533705768026 ·10−54 2·10−50

2 -1.944003667801032197325141712953470682792841985057545477738933600 ·10−1 7·10−50

3 6.353866339253870417285870622952031667026712174414003758743809499 ·10−52 3·10−48

4 9.865443989835495993231949890783720243438883460505483297079900562 ·10−1 2·10−47

5 4.733853534850495777271526084574485398105534790325269345544052633 ·10−49 2·10−45

6 -1.451874181864020963416053802229271731186248529989217665545212404 ·101 6·10−45

7 -1.986768674642925514096249083525472601734104441662711304098209993 ·10−47 7·10−44

8 1.673363822376717001078781931538386967523434046199355922539083323 ·101 8·10−42

9 -5.559060362825539878039137008326038842079877436013501651866007318 ·10−44 2·10−40

10 1.974679484744669888248485084754876332689468886829840384314732615 ·104 2·10−39

11 4.019718902900154426125206309959051888079502318143227318836414835 ·10−42 1·10−38

12 3.594891944526889578314748272295019294147597687816868847742850594 ·105 6·10−37

13 -4.123166034989923032518732576715313341946051550138603536248010821 ·10−39 2·10−35

14 2.198602821435568153883567054383394767567371744732559263055644337 ·106 3·10−33

15 1.307318024754974551233761145122558811543944190022138837513637182 ·10−35 6·10−32

16 -4.009257214040427899940043656551946700300230713255210114705187412 ·1010 4·10−31

17 -6.641638995605492204184114438636683272452899190211080822408603857 ·10−33 4·10−29

18 -2.582559893723659427522610275977697024396910000154382754643273110 ·1012 1·10−27

19 -4.366235264281358239242428788236090577328510850575386329987344515 ·10−30 2·10−26

Tabla 1: Derivatives of 2πα(ε) at the origin for θ = (
√

5− 1)/2. The column e1 corresponds
to the estimated error using (7).

Our idea is to use the fact that the rotation number is constant on the tongue combined
with remark 3.1. To this end, we consider the one-parameter family {fα(ε),ε}ε∈[0,1) of circle
diffeomorphisms, where the graph of α parametrizes the tongue Tθ. For this family, we
have ρ(fα(ε),ε) = θ for any ε ∈ [0, 1), and hence, from remark 3.1 we read the expression

0 = Θd
q,p,p(fα(ε),ε) +O(2−(p+1)q). (12)

Then, let us assume that the values α′(0), . . . , α(d−1)(0) are known, and isolate the
derivative α(d)(0) from Dd

ε(f
n(x0))|ε=0. Proceeding by induction with respect to n we

obtain the following formula

Dd
ε(f

n(x0))|ε=0 = 2πnα(d)(0) + gd
n, (13)

where gd := {gd
n}n=1,...,N is a sequence that only requires the known derivatives α(r)(0),

for r < d. Concretely,

gd
n = Dd−1

ε (∂εg(fn−1(x0))|ε=0

+
d−1∑

r=1

(
d− 1

r

)
Dr

ε(∂xg(fn−1(x0)))Dd−r
ε (fn−1(x0))|ε=0 + gd

n−1.

Hence, by introducing an extrapolation operator for the previous sequence we obtain

Θd
q,p,p(f)|ε=0 = 2πα(d)(0) + Θq,p,p(gd) = O(2−(p+1)q).
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Therefore, the Taylor expansion (11) follows from the sequential computation of α(d)(0)
by means of the expression 2πα(d)(0) = −Θq,p,p(gd) with an error of order O(2−(p+1)q).

In particular, in table 1 we show the computations of 2πα(d)(0), for 0 ≤ d ≤ 19, that
correspond to the Arnold Tongue associated to θ1,1 = (

√
5− 1)/2. The computations are

performed using 64-digit arithmetics. The implementation parameters are selected as
p = 11 and q = 23.
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