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Abstract

We introduced a new augmented variational formulation for the elasticity problem
in the plane that involves four unknowns, namely, the displacement, the stress tensor,
the strain tensor of small deformations and the pressure. We proved that this problem
is well posed for appropriate values of a stabilization parameter. We also gave sufficient
conditions for the well posedness of the corresponding Galerkin scheme, and detailed
concrete examples of discrete spaces satisfying these conditions. We provided error
estimates for these cases.

1 Introduction

Recently, J.K. Djoko and B.D. Reddy [8] proposed a new class of mixed formulations for
the linear elasticity problem in the plane. The new formulations are based on the discrete
EVSS (Elastic-Viscous-Split-Stress) method (see [9, 10]), and involve the displacement, the
strain and the stress as unknowns. A stabilization term of the form 2αdiv(t−e(u)), where
t denotes the infinitesimal strain, is added, and two different variational formulations are
derived. The first one fits the abstract framework of [15, 3], and the second one has the
same structure as the problem considered in [7].

Here, we introduce the infinitesimal strain and the pressure as further unknowns,
and obtain a four-field variational formulation with a saddle point structure. Using the
abstract theory from [5], we show that this problem is well posed. However, the bilinear
form a(·, ·) is not coercive on the whole space and thus, it would be difficult to define finite
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element subspaces such that the corresponding Galerkin scheme is well posed. For this
reason, we add a Galerkin least-squares term that renders coercive the bilinear form on
the whole space. The new augmented variational formulation is showed to be well posed
for appropriate values of the stabilization parameter. We also give sufficient conditions for
the well posedness of the corresponding Galerkin scheme. We showed that to approximate
the displacement-pressure pair, we can choose any pair of stable spaces for the Stokes
problem. We consider in particular, the approximation of the pair displacement-pressure
using the mixed finite element introduced in [4] and the mini-element, and provide error
estimates in both cases.

2 The augmented variational formulation

Let Ω ⊂ R2 be a bounded and simply connected domain with Lipschitz-continuous boun-
dary Γ. We consider the following problem: Given a volume force f , determine the dis-
placement vector field u and the symmetric stress tensor field σ of a linear elastic material
occupying the region Ω, and thus satisfying the equations

σ = C e(u) in Ω
−div(σ) = f in Ω

u = 0 on Γ
(1)

We denote by e(u) := 1
2 (∇u + (∇u)t) the strain tensor of small deformations, and by C

the elasticity tensor determined by Hooke’s law, that is,

C ζ := λ tr(ζ) I + 2 µ ζ ∀ ζ ∈ [L2(Ω)]2×2

where I is the identity matrix of R2×2 and λ, µ > 0 are the Lamé parameters.
In order to obtain a new variational formulation of problem (1), we introduce two

auxiliary unknowns in Ω, the strain tensor of small deformations t := e(u) and the pressure
p := λ tr(t). Then, the constitutive law can be written as follows

σ = C t = p I + 2 µ t in Ω (2)

Testing equation (2) with a function s ∈ [L2(Ω)]2×2
sym , we obtain that

−
∫

Ω
σ : s +

∫
Ω

p tr(s) + 2 µ

∫
Ω

t : s = 0 ∀ s ∈ [L2(Ω)]2×2
sym (3)

On the other hand, testing the equilibrium equation with a function v ∈ [H1
0 (Ω)]2, inte-

grating by parts in Ω, and using the symmetry of σ and the boundary condition, we have
that ∫

Ω
σ : e(v) =

∫
Ω

f · v ∀v ∈ [H1
0 (Ω)]2 (4)

From now on, we assume that f ∈ [L2(Ω)]2.
Now we remark that in case of pure homogeneous Dirichlet boundary conditions,∫

Ω
p = λ

∫
Ω

div(u) = λ

∫
Γ
u · n = 0
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where n is the unit outward normal to Γ. Therefore, we look for p ∈ L2
0(Ω) := {q ∈

L2(Ω) :
∫
Ω q = 0}. Testing appropriately the relations defining the auxiliary unknowns t

and p, we obtain that∫
Ω

e(u) : τ −
∫

Ω
t : τ = 0 ∀ τ ∈ [L2(Ω)]2×2

sym (5)

− 1
λ

∫
Ω

p q +
∫

Ω
tr(t) q = 0 ∀ q ∈ L2

0(Ω) (6)

Let us denote by X = [L2(Ω)]2×2
sym ×[H1

0 (Ω)]2 and by M = [L2(Ω)]2×2
sym ×L2

0(Ω). Summing
up equations (3) and (4), and equations (5) and (6), we arrive at the following variational
formulation of problem (1): Find ((t,u), (σ, p)) ∈ X ×M such that

a((t,u), (s,v)) + b((s,v), (σ, p)) =
∫

Ω
f · v ∀ (s,v) ∈ X

b((t,u), (τ , q)) − c((σ, p), (τ , q)) = 0 ∀ (τ , q) ∈ M

(7)

where the bilinear forms a : X ×X → R, b : X ×M → R and c : M ×M → R are defined
by

a((t,u), (s,v)) = 2 µ

∫
Ω

t : s c((τ , q), (ϕ, r)) =
1
λ

∫
Ω

q r

b((s,v), (τ , q)) = −
∫

Ω
τ : s +

∫
Ω

q tr(s) +
∫

Ω
τ : e(v)

In the following Theorem, we prove that problem (7) is well posed.

Theorem 2.1 Problem (7) has a unique solution ((t,u), (σ, p)) ∈ X × M . Moreover,
there exists a constant C > 0, independent of λ, such that

||((t,u), (σ, p))||X×M ≤ C ||f ||[L2(Ω)]2

Proof. Problem (7) is a saddle point problem that fits the abstract framework of [5]
(see Section II.1.2). Therefore, in order to prove that this problem is well posed, with
a continuous dependence constant independent of λ, we first remark that all the bilinear
forms, a(·, ·), b(·, ·) and c(·, ·), are continuous. Now, let B : X → M ′ be the linear operator
associated with the bilinear form b(·, ·). It is easy to see that

Ker(B) =
{

(s,v) ∈ X : s = e(v) in Ω; div(v) = 0 in Ω
}

Then, by virtue of Korn’s inequality, the bilinear form a(·, ·) is coercive on Ker(B). Indeed,
given (s,v) ∈ Ker(B), we have that

a((s,v), (s,v)) = µ
(
||s||2[L2(Ω)]2×2 + ||e(v)||2[L2(Ω)]2×2

)
≥ µmin(1, c2

K)||(s,v)||2X

On the other hand, it is clear that the bilinear form c(·, ·) is positive semi-definite and
symmetric.

Let us prove that b(·, ·) satisfies an inf-sup condition in X×M . Let (σ, p) ∈ M . Then,
from Corollary 2.4 in [13], there exists a unique w ∈ [H1

0 (Ω)]2 and a positive constant c1
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such that div(w) = p in Ω and ||w||[H1(Ω)]2 ≤ c1||p||L2(Ω). Taking (s,v) = (e(w),w) ∈ X,
we have that

sup
(s,v)∈X

(s,v) 6=0

b((s,v), (σ, p))
||(s,v)||X

≥ b((e(w),w), (σ, p))
||(e(w),w)||X

≥
||p||2L2(Ω)√

2 ||w||[H1(Ω)]2
≥ 1

c1

√
2
||p||L2(Ω) (8)

On the other hand, taking (s,v) = (−σ,0) ∈ X and applying the Cauchy-Schwarz in-
equality, we obtain that

sup
(s,v)∈X

(s,v) 6=0

b((s,v), (σ, p))
||(s,v)||X

≥
||σ||2[L2(Ω)]2×2 −

∫
Ω

p tr(σ)

||σ||[L2(Ω)]2×2

≥ ||σ||[L2(Ω)]2×2 −
√

2 ||p||L2(Ω) (9)

Finally, we deduce from (8) and (9) that

sup
(s,v)∈X

(s,v) 6=0

b((s,v), (σ, p))
||(s,v)||X

≥ β ||(σ, p)||M

and therefore, the result follows. �
In the previous Theorem, we proved that problem (7) is well posed. However, since

the bilinear form a(·, ·) is not coercive on the whole space X, it will be difficult to find
finite-dimensional subspaces such that the corresponding Galerkin scheme is well posed.
For this reason, we enrich the variational formulation (7) with the least-squares term

α

∫
Ω
(e(u)− t) : (e(v) + s) = 0 ∀ (s,v) ∈ X

where α is a positive parameter. This term seems superfluous at the continuous level, but
it will play an important role in the discrete setting. Adding this term to the bilinear form
a(·, ·), we obtain the following augmented variational formulation of problem (1): Find
((t,u), (σ, p)) ∈ X ×M such that

ã((t,u), (s,v)) + b((s,v), (σ, p)) =
∫

Ω
f · v ∀ (s,v) ∈ X

b((t,u), (τ , q)) − c((σ, p), (τ , q)) = 0 ∀ (τ , q) ∈ M

(10)

where the bilinear form ã : X ×X → R is given by

ã((t,u), (s,v)) = a((t,u), (s,v)) + α

∫
Ω
(e(u)− t) : (e(v) + s)

and b(·, ·) and c(·, ·) are the bilinear forms defined above.
We remark that, by virtue of Korn’s inequality, if 0 < α < 2 µ, then the bilinear form

ã(·, ·) is coercive on X. Indeed, given any (s,v) ∈ X, we have that

ã((s,v), (s,v)) = (2µ− α) ||s||2[L2(Ω)]2×2 + α ||e(v)||2[L2(Ω)]2×2

≥ min(2µ− α, α c2
K) ||(s,v)||2X

(11)

Now, we are able to prove the following result.
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Theorem 2.2 For α ∈ (0, 2 µ), problem (10) has a unique solution ((t,u), (σ, p)) ∈ X ×
M . Moreover, there exists a constant C > 0, independent of λ, such that

||((t,u), (σ, p))||X×M ≤ C ||f ||[L2(Ω)]2

Proof. Clearly, the bilinear form ã(·, ·) is continuous. Moreover, from (11), ã(·, ·) is
coercive on X and, in particular, on Ker(B). Therefore, the result follows from the proof
of Theorem 2.1 and the abstract theory in [5]. �

3 The augmented primal-mixed finite element method

In this section, we consider the Galerkin scheme associated to (10) and provide sufficient
conditions on the finite-dimensional subspaces that allow us to guarantee that the discrete
problem is well posed. We also define explicit finite element subspaces satisfying these
conditions and give the corresponding error estimates.

Let h be a positive parameter and let us consider finite-dimensional subspaces Xt
h ⊂

[L2(Ω)]2×2
sym , Xu

h ⊂ [H1
0 (Ω)]2, Mσ

h ⊂ [L2(Ω)]2×2
sym and Mp

h ⊂ L2
0(Ω). We define Xh :=

Xt
h × Xu

h and Mh := Mσ
h × Mp

h . The Galerkin scheme associated with the augmented
variational formulation (10) reads: Find ((th,uh), (σh, ph)) ∈ Xh ×Mh such that

ã((th,uh), (sh,vh)) + b((sh,vh), (σh, ph)) =
∫

Ω
f · vh ∀ (sh,vh) ∈ Xh

b((th,uh), (τ h, qh)) − c((σh, ph), (τ h, qh)) = 0 ∀ (τ h, qh) ∈ Mh

(12)

We can prove the following result.

Theorem 3.1 Assume that α ∈ (0, 2 µ) and that the finite element subspaces Xt
h, Xu

h ,
Mσ

h and Mp
h are such that

1. e(Xu
h ) ⊂ Xt

h

2. (Xu
h ,Mp

h) is a stable pair for the Stokes problem

3. Mσ
h ⊂ Xt

h

Then the discrete problem (12) has a unique solution ((th,uh), (σh, ph)) ∈ Xh ×Mh and
there exists a positive constant C, independent of h and λ, such that

||((t,u), (σ, p))− ((th,uh), (σh, ph))||X×M ≤

≤ C inf
((sh,vh),(τ h,qh))∈Xh×Mh

||((t,u), (σ, p))− ((sh,vh), (τ h, qh))||X×M

(13)

Proof. The properties of the bilinear forms ã(·, ·) and c(·, ·) are satisfied in any subspaces
of X and M , respectively. Therefore, it only remains to prove that the bilinear form b(·, ·)
satisfies a discrete inf-sup condition in Xh ×Mh, that is, there exists a positive constant
β̃, independent of h, such that

sup
(sh,vh)∈Xh
(sh,vh) 6=0

b((sh,vh), (σh, ph))
||(sh,vh)||X

≥ β̃ ||(σh, ph)||M ∀ (σh, ph) ∈ Mh (14)
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Let (σh, ph) ∈ Mh. Since we assume that e(Xu
h ) ⊂ Xt

h, we can take (sh,vh) = (e(vh),vh) ∈
Xh. Then, we have that

sup
(sh,vh)∈Xh
(sh,vh) 6=0

b((sh,vh), (σh, ph))
||(sh,vh)||X

≥ sup
vh∈Xu

h
vh 6=0

b((e(vh),vh), (σh, ph))
||(e(vh),vh)||X

≥ 1√
2

sup
vh∈Xu

h
vh 6=0

∫
Ω

phdiv(vh)

||vh||[H1(Ω)]2

Now, using that (Xu
h ,Mp

h) is a stable pair for the Stokes problem, there exists a positive
constant γ, independent of h, such that

sup
wh∈Xu

h
wh 6=0

∫
Ω

qhdiv(wh)

||wh||[H1(Ω)]2
≥ γ||qh||L2(Ω) ∀ qh ∈ Mp

h

Therefore, we deduce that

sup
(sh,vh)∈Xh
(sh,vh) 6=0

b((sh,vh), (σh, ph))
||(sh,vh)||X

≥ γ√
2
||ph||L2(Ω) (15)

On the other hand, since Mσ
h ⊂ Xt

h, we can take (sh,vh) = (−σh,0) ∈ Xh. Then,
applying the Cauchy-Schwarz inequality, we obtain that

sup
(sh,vh)∈Xh
(sh,vh) 6=0

b((sh,vh), (σh, ph))
||(sh,vh)||X

≥ ||σh||[L2(Ω)]2×2 −
√

2 ||ph||L2(Ω) (16)

Thus, inequality (14) follows from inequalities (15) and (16). �

Next, we define explicit finite element subspaces satisfying the assumptions of Theo-
rem 3.1. In what follows, we let {Th}h>0 be a regular family of triangulations of Ω̄ and
assume that Ω̄ = ∪T∈Th

T . We denote by hT the diameter of a triangle T ∈ Th and define
the mesh size h := max

T∈Th

hT . Given a triangle T ∈ Th, we denote by a1, a2 and a3 its

vertices, and by si the side opposite ai, for i = 1, 2, 3. We also let ni be the unit outward
normal to si. Finally, λ1, λ2 and λ3 denote the barycentric coordinates of triangle T . In
addition, given an integer k ≥ 0, we denote by Pk(T ) the space of polynomials in two
variables defined in T of total degree at most k.

3.1 An approximation using discontinuous pressures

We first consider the pair (Xu
h ,Mp

h) introduced by Bernardi and Raugel (see [4] or [13])
to solve the Stokes problem. Then, we define

Xu
h = {v ∈ [H1

0 (Ω) ∩ C0(Ω̄)]2 : v|T ∈ [P1(T )]2 ⊕ 〈n1λ2λ3,n2λ3λ1,n3λ1λ2〉, ∀T ∈ Th }

and
Mp

h = {q ∈ L2
0(Ω) : q|T ∈ P0(T ), ∀T ∈ Th}
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In order to approximate the symmetric stress tensor field σ, we define Mσ
h as the

space of piecewise-constant symmetric tensors:

Mσ
h :=

{
τ ∈ [L2(Ω)]2×2 : τ |T ∈ S0 ∀T ∈ Th

}
where

S0 :=
〈 (

1 0
0 0

)
,

(
0 1
1 0

)
,

(
0 0
0 1

) 〉
Finally, to satisfy the assumptions of Theorem 3.1, we define the finite element subspace
Xt

h as follows:

Xt
h :=

{
s ∈ [L2(Ω)]2×2 : s|T ∈ S0 ⊕

〈
e(n1λ2λ3), e(n2λ3λ1), e(n3λ1λ2)

〉
, ∀T ∈ Th

}
Using the approximation properties of the subspaces involved (see [6, 13]), we deduce

from (13) the following result.

Theorem 3.2 Assume that u ∈ [H1
0 (Ω)]2 ∩ [H2(Ω)]2, σ ∈ [L2(Ω)]2×2

sym ∩ [H1(Ω)]2×2, t ∈
[L2(Ω)]2×2

sym ∩ [H1(Ω)]2×2 and that p ∈ L2
0(Ω)∩H1(Ω). Then there exists a constant C > 0,

independent of h and λ, such that

||((t,u), (σ, p))− ((th,uh), (σh, ph))||X×M ≤

≤ C h
(
||u||[H2(Ω)]2 + ||σ||[H1(Ω)]2×2 + ||t||[H1(Ω)]2×2 + ||p||H1(Ω)

)
3.2 An approximation using continuous pressures

Now we consider the so-called mini-element, introduced by Arnold et al. (see [2, 13]). In
this case,

Xu
h = {v ∈ [H1

0 (Ω) ∩ C0(Ω̄)]2 : v|T ∈ [P1(T )⊕ 〈λ1λ2λ3〉]2, ∀T ∈ Th }

and
Mp

h = {q ∈ L2
0(Ω) ∩ C0(Ω̄) : q|T ∈ P1(T ), ∀T ∈ Th}

To approximate the symmetric stress tensor field σ, we consider the finite element
space Mσ

h defined in the previous subsection. Then, in order to satisfy the assumptions
of Theorem 3.1, we define the finite element subspace Xt

h as follows:

Xt
h :=

{
s ∈ [L2(Ω)]2×2 : s|T ∈ S0 ⊕

〈
e

(
λ1λ2λ3

0

)
, e

(
0

λ1λ2λ3

) 〉
, ∀T ∈ Th

}
Using the approximation properties of the subspaces involved (see [6, 13]), we deduce

from (13) the following result, analogous to Theorem 3.2.

Theorem 3.3 Assume that u ∈ [H1
0 (Ω)]2 ∩ [H2(Ω)]2, σ ∈ [L2(Ω)]2×2

sym ∩ [H1(Ω)]2×2, t ∈
[L2(Ω)]2×2

sym ∩ [H1(Ω)]2×2 and that p ∈ L2
0(Ω)∩H1(Ω). Then there exists a constant C > 0,

independent of h and λ, such that

||((t,u), (σ, p))− ((th,uh), (σh, ph))||X×M ≤

≤ C h
(
||u||[H2(Ω)]2 + ||σ||[H1(Ω)]2×2 + ||t||[H1(Ω)]2×2 + ||p||H1(Ω)

)
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