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Resumen

We consider a segmentation problem which arises in medical imaging and liver
surgery. The model problem is based on an active contour without edges technique
formulated in a level set dictionary. Previous work indicates that a feasible solution can
be obtained solving the gradient descent equation associated to the original minimiza-
tion problem but the convergence of the algorithm is too slow for practical clinical
purposes. Here, we study the implementation of multigrid methods to the elliptic
problem and the numerical results are compared with the parabolic approach.

1. Introduction

Planning liver surgery requires accurate volumetric measures of the organ to be oper-
ated on. After acquiring images of the adequate modality for a certain organ, the main
step of the process is the segmentation of the organ, which is generally carried out by
manually using a software platform. Manual delineation of the liver is time-consuming
and can lack repeatability among users. This leads to the need of developing automatic
segmentation techniques. The automatic segmentation of the liver is quite challenging due
to several structural reasons, among with, the fact that the Hounsfield units correspond-
ing to the liver are the same as those of neighbouring organs, so the use of simple gray
level segmentation methods give inaccurate results. Also, the shape and size of the liver
can vary a lot between patients, making it difficult to impose a priori conditions on pure
statistical based models. Recently, we proposed a PDE based method for the automatic
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segmentation of the liver, which needs no a priori shape or size information and stops
automatically [2]. It is based on Total Variation regularization, a very useful technique in
image restoration [11]. The associated PDE is solved following a gradient descent method
[2]. Results of the algorithm have been compared to manual segmentations by an expert
with good correlation. The convergence of the gradient descent implementation, however,
is too slow for pratical clinical use.

In this work we study the possibility to accelerate the algorithm using multigrid tech-
niques. Multigrid methods are generally accepted as being the fastest numerical methods
for the solution of elliptic partial differential equations [4] but their perfomance and accu-
racy depend on the structural difficulties of the underlying PDE.

This paper is organized as follows: in section 2 the model is described in detail and
in section 3 the algorithm is shown. Section 4 shows some results on clinical datasets.
Finally, we discuss our conclusions and some open problems which deserve a throughout
study (section 5).

2. Model equations

Efficient resolution of segmentation models is a basic problem in image processing
and computer vision. We consider here the active contour method proposed by Chan
and Vese, [7], which can be deduced from the piecewise Mumford-Shah model for image
segmentation [5]. In its level set formulation this leads to consider a quasilinear elliptic
equation for the Total Variation (TV) differential operator (which corresponds to the
p−laplacian operator for p = 1). Basically the active contour is the set of discontinuities of
the Mumford-Shah problem (the minimal partition problem) and the resulting functional
defines gradient descent evolution equations to deform the active contour which provide the
final segmentation. Considering that the original problem is an elliptic one, this amounts
to solve parabolic equations until stabilization and it is typically slow, not feasible for
medical image segmentation [2]. Moreover, these variational problems have multiple (local
and global) minima and this makes the initial conditions for gradient descent critical.
Some effort has been dedicated to speed up the algorithms involved in the resolution of
TV operator in this context [8] and we explore here their suggestions. Reformulating the
original, not convex minimization problem associated to the two-phase (binary) Chan-Vese
model (CV) as a convex one we solve the Chan-Essedouglu-Nikolova model (CEN) in a
multigrid framework.

Chan-Vese model Let Ω ⊂ IR2 be an open, bounded domain (usually a rectangle)
where (x, y) ∈ Ω denotes pixel location and I0(x, y) is a function representing the intensity
image values. The Chan-Vese model for binary segmentation is based on the minimization
of an energy functional expressed in terms of a level set dictionary which we briefly resume.
Let ω ⊂ Ω be an open (eventually not connected) positive measured sub-region of the
original domain. If the curve C represents the boundary of such a segmentation ω then, in
the level set formulation, the (free) boundary C is the zero level set of a Lipschitz function
φ : Ω → IR, that is: C = {(x, y) ∈ Ω : φ(x, y) = 0}, C = ∂ω where ω = {(x, y) ∈ Ω :
φ(x, y) > 0}, Ω\ω = {(x, y) ∈ Ω : φ(x, y) < 0}. Let H(φ) be the Heaviside function defined
by H(φ) = 1 if φ ≥ 0 and H(φ) = 0 otherwise. Notice that the term H(φ) parametrize
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the level set in the class of binary functions. The level set function φ (the active contour)
can be characterized as a minimum of the following energy functional:

Jcv(φ) = µ

∫

Ω

|∇H(φ)|dxdy + λin

∫

Ω

H(φ)eindxdy + λout

∫

Ω

(1 − H(φ))eoutdxdy (1)

where µ, λin and λout are parameters which can be considered as weight factors which
control the trade off between smoothness (µ) and the fidelity data terms (λin, λout). The
functions ein, eout are defined as [2]

ein(φ) =









∫

D

I0dxdy

|D|
− cin(φ)









2

, eout(φ) =









∫

D

I0dsdr

|D|
− cout(φ)









2

(2)

where D = Dx,y ⊂ Ω is a neighbour centered at pixel (x, y) ⊂ Ω. The local mean term in
(2) is a slight modification of the functional proposed in [8] which we proposed in [2]. A
two step algorithm which makes ein, eout, cin, cout explicit is implemented. The (constants)
cin and cout are the mean value inside (cin) and outside (cout) the binary segmentation.

Following variational calculus, the minimum of (1) corresponds to a solution of the
Euler-Lagrange equation:

0 = δε(φ)

[

µ∇ ·

(

∇φ

|∇φ|

)

− λinein(φ) + λouteout(φ)

]

, a.e. (x, y) ∈ Ω (3)

where δε(φ) is a non-compactly supported, smooth approximation of the Dirac delta func-
tion δ(φ) located at C [7]. The equation is complemented with (no flux) homogeneous
Neumann boundary conditions.

Chan-Esedoḡlu-Nikolova model This model has been proposed in [8] and convexifies
minimization of (1) in the class of binary functions (characteristic functions of sets which
are a non-convex collection). The key idea is to extend the minimization to all functions
and to transform the minimizers of the original (non-convex minimization problem) into
minimizers of (1) by thresholding. As a result, equation (3) has the same solutions as:

0 = µ∇ ·

(

∇φ

|∇φ|

)

− λinein + λouteout, a.e. (x, y) ∈ Ω

which is the Euler-Lagrange of the (linear) energy functional:

J(φ) = µ

∫

Ω

|∇φ|dxdy + λin

∫

Ω

φ ein(φ)dxdy − λout

∫

Ω

φ eout(φ)dxdy

which has to be constrained [8] to the level sets 0 ≤ φ ≤ 1 to fix the non-uniqueness of the
representation of the level sets. After some observations it is claimed that for any given
fixed cin, cout ∈ IR (hence ein, eout by (2)) a global minimizer for the energy (1) can be
found solving the convex, unconstrained minimization problem:

Jcen(φ) = µ

∫

Ω

|∇φ|dxdy + α

∫

Ω

ν(φ) + λin

∫

Ω

φ eindxdy − λout

∫

Ω

φ eoutdxdy (4)
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where ν(ξ) :=max{0, 2|ξ − 1/2| − 1} is a penalty term and α has to be properly chosen
[8]. The (global) minima of the energy (4) correspond to a solution of the Euler-Lagrange
equation:

0 = µ∇ ·

(

∇φ

|∇φ|

)

− λinein + λouteout − αν ′(φ), a.e. (x, y) ∈ Ω (5)

which we discretize in the following section.

2.1. Numerical Implementation

The fast and accurate numerical resolution of the TV operator is still a challenging
problem and it has been typically solved by finite difference discrete formulations em-
bedded in time-marching schemes. Interesting contributions are due, among many others,
to Vogel and Oman, [12], with the so called lagged diffusivity method which corresponds
to a fixed-point iteration, Chan et al. with their primal-dual method [6] and Oman for
a multigrid approach [10] in the context of denoising and deblurring. In this section we
describe and compare the algorithms we used to solve (5). A number of additional diffi-
culties arise when considering (5) which are associated to the multivalued character of the
subdifferential of the penalty term. We shall discuss this in the last section.

Parabolic equation Instead of solving the elliptic equation (3) directly, we solve the
associated parabolic equation:

∂φ

∂t
= δε(φ)

[

µ∇ ·

(

∇φ

|∇φ|

)

− λinein + λouteout

]

(6)

This introduces an artificial time which diminishes the difficulties inherent to the
TV elliptic operator. A simple L1-norm bound is selected as a stopping rule between
consecutives iterations. The derivatives are implemented with a finite difference scheme,
where D±

d denote the forward (backward) difference in the direction d. The parabolic
equation (6) is solved by an explicit gradient descent method:

φn+1 − φn

∆t
= δε(φ

n)



µD−

x





D+
x φn

√

(D+
x φn)2 + (D+

y φn)2 + ε1



+

+µD−

y





D+
y φn

√

(D+
x φn)2 + (D+

y φn)2 + ε1



 − λinein + λouteout





where ein and eout are computed using (2) and 0 < ε1 � 1 is a small regularizing parameter
avoiding the singularity due to the nondifferentiability of the TV functional when ∇φ = 0.
This explicit scheme linearizes the highly nonlinear oscillating diffusion term in (6).
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Elliptic equation Equation (5) is discretized following a finite difference scheme:

0 = µD−

x





D+
x φ

√

(D+
x φ)2 + (D+

y φ)2 + ε1



 + µD−

y





D+
y φ

√

(D+
x φ)2 + (D+

y φ)2 + ε1





−λinein + λouteout − αν ′

ε2
(φ) (7)

where ν ′
ε2

is a smooth approximation of ν ′, which is a bounded maximal monotone graph.
System of equations obtained by finite differences discretization is solved following a

multigrid method. Multigrid methods for numerical analysis are algorithms for solving dif-
ferential equations using a hierarchy of discretizations between coarser and finer grids. The
key idea is that low frequencies in finer grids appear as high frequencies in coarser grids.
They can be traced back to the pioneering work of A. Brandt. The typical application for
multigrid methods is in the numerical solution of elliptic partial differential equations. No-
tably, they do not depend on the kind of discretization (finite difference or finite elements).
Nevertheless it is known that highly oscillating coefficients in quasilinear equations can
deteriorate the performance of this strategy [13]. A great deal of care is needed in order
to assess the basic steps of the algorithm. Iterative solvers, such as Gauss-Seidel, have fast
smoothing properties but, after few iterations the convergence slows down significantly.
Multigrid algorithms take this idea and combine it with a hierarchycal model of equations
systems that come from differents levels of detail in the problem discretization. There are
several kinds of multigrid methods: multilevel methods, bidirectional multigrid and full
multigrid. The most simple (multilevel methods) use an aproximated solutions, calculated
from some level of discretization, as a seed for the iterative solver. However, the main
idea of more advanced multigrid methods is to first approximate a solution in a level of
discretization, then calculate the error of the solution from a coarser level and to correct
the approximate solution with the computed error.

In the next section we describe our algorithm and compare the results obtained with
multilevel, bidirectional and full multigrid.

3. Algorithm

Starting with the finite difference discretization scheme (5) we use the frozen coefficient
method of Savage and Chen [14] to linearize the elliptic operator. Also a fixed point
iteration is implemented to deal with the term ν ′

ε2
. The resulting system of equations

can be written in form A(x) = b. We briefly describe the multigrid methods we used for
comparison.

Multilevel Method: The equation system A(x) = b obtained at the finest grid is
solved by an iterative method using a seed calculated at a coarser level. This approach is
implemented iteratively through several levels starting from the coarsest one.

Bidirectional multigrid (FAS method): Let x̃ be an approximated solution where
x = x̃ + e is the exact solution of A(x) = b and e is the error which can be estimated
from the residual equation r = b −A(x̃) solving the residual system A(x̃ + e) − A(x̃) = r.
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This has the same complexity as the original system A(x) = b, but we can solve it at a
coarser discretisation level, where the system is smaller and easier to solve. Once we have
estimated e at the coarser level, we calculate ẽ interpolating e from the coarser level to
the finest level and later we do the correction ˜̃x = x̃ + ẽ.

The biridectional multigrid method is based on this scheme of prediction-correction
using several levels of discretisation. This approach is also called V-cycle.

Full multigrid: Full multigrids methods combine the multilevel approach and the bidi-
rectional implementations. Basically, it is a multilevel method where a bidirectional multi-
grid is implemented at each level.

The global procedure for liver segmentation is implemented using a multistep approach,
consisting of three tightly interleaved steps: preprocessing step, segmentation step, and
postprocessing step. The preprocessing and postprocessing step are carried out as in [2].
The segmentation step is as follows:

1. Initialize φ0 with a segmentation by Otsu algorithm.

2. Compute cout(φ
n).

3. Solve the system (7) using a multigrid method, obtaining φn+1.

4. Reinitialize φ to a binary function.

5. Go to 2 until |φn − φn−1| < tolerance

4. Results

To test the three multigrid implementations, we used a set of CT images of the liver,
acquired at Fundación Hospital de Alcorcón in Madrid. All images are 512x512 pixels.
All images were manually segmented by an expert radiologist and automatically using the
three versions of the multigrid algorithms with different settings. Results of the segmenta-
tion are shown in figure 1, where we considered the parabolic equation by gradient descent,
parabolic equation by gradient descent in a multilevel scheme, the elliptic equation in a
V-Cycle and the elliptic equation in the full multigrid scheme. The black contour in the
top row is the manual segmentation performed by the radiologist and the white (active)
contour is the automatic segmentation. Tables 1-4 show, for every method, the symmet-
ric difference between the manual and automatic segmentations and the time taken by
the method. Our preliminary results indicate that in terms of time consumption the best
algorithm is the V-cycle with five levels which also minimizes the symmetric difference
between the automatic and the manual segmentation. On the contrary, the full multigrid
performs worst as we increase the number of levels. This, in a different problem but with
the same elliptic operator has been observed also in [13].

Symmetric difference CPU Time

3.230599 321.156

Tabla 1: Results of gradient descent method
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Figura 1: Top row shows manual segmentation (in black) and automatic segmentations (in white),
from left to right, parabolic (gradient descent), elliptic with multilevel (2 levels), elliptic with V Cycle
(5 levels) and elliptic with full multigrid (3 levels). At the bottom row, the symmetric differences
between manual segmentation and automatic segmentation are shown in black.

Coarse grid size # Levels Symmetric difference CPU Time

25x25 5 3.227273 410.688000

26x26 4 3.229491 410.297000

27x27 3 3.225056 401.421000

28x28 2 3.219513 390.516000

Tabla 2: Results of multilevel method

5. Conclusions and open problems

Real applications (i.e. not phantoms o synthetic images) are always affected by some
sort of unknown noise contamination or uncertainty in the grey levels which can deteriorate
the final segmentation. Despite of this, we showed that the CV model (which is quite robust
with respect to noise) and the low order statistics we introduced in [2] can attract the active
contour towards the desired position. Our preliminary numerical results indicate that a
iterative smoother can be used successfully but much care is need choosing the initial
parameters λin, λout, µ, α. The best results in time have been obtained with the V-cycle
(bidirectional) multigrid scheme (see tabla 3) where we can reach a quite coarse level of
discretization without making the solution worse. This is not any more true when the Full
multigrid is applied whereas the solution deteriorates in coarser levels of discretization.

Interesting performances of the full multigrid and of the FAS method for the TV
operator have been reported in Bruhn et al. [1] for the optic flow problem and this and
this suggests to explore their indications in future work. Mathematically we believe that the
difficulties associated to the minimization of (4) plead for a rigorous formulation of (5) in
terms of a multivalued equation accounting for the maximal monotone graph ∂ν(u) which
arise in the unconstrained formulation. This, together with a finite elements framework
can lead to the definition of new duality methods [3] for the numerical resolution of (5)
and shall be considered in future work. More work also has to be done with a view to
hybrid methods, able to take into account natural variability and pathology.
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Coarse grid size # Levels Symmetric difference CPU Time

25x25 5 3.395788 47

26x26 4 3.852551 49.312

27x27 3 3.968959 130.156

28x28 2 4.300444 230.766

Tabla 3: Results of V-cycle method

Coarse grid size # Levels Symmetric difference CPU Time

25x25 5 34.718403 194.9680

26x26 4 23.050998 861.9240

27x27 3 4.863637 1444.6560

28x28 2 4.996675 464.8910

Tabla 4: Results of full multigrid method
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