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Resumen

The existence of a new class of inclined periodic orbits of the collision restricted
three–body problem is shown. The symmetric periodic solutions found are perturba-
tions of elliptic kepler orbits and they exist only for special values of the inclination
and are related to the motion of a satellite around an oblate planet.

1. Introduction

From Keplerian orbit theory, without perturbations, elliptic orbits are always confined
on an planet centered plane known as orbital plane. Six parameters a, e, i, h, g and f ,
called the classical orbital elements, completely characterize a conic orbit (see, for example,
[3]).

For Earth–orbit design, the main effect that must be included is the so called J2 term,
named after the coefficient of a planet’s geopotential harmonic expansion. The J2 term
corresponds to the planet’s equatorial bulge and has two important effects on the orbit.
Due this extra mass the satellite reach its ascending node sooner than it would without
the perturbation. Hence the node appears to move backward and the effect is called nodal
regression. The second effect is the precession of the argument of perigee. J2 causes the
perigee to rotate around the orbit’s normal vector. It is apparent (see, for example, pages
503–504 of [3]), that there exist a critical inclination angle, i ' 63◦, such that perigee
is fixed. Critically inclined elliptic orbits are very useful. The most famous of these is
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the Molniya orbit, which is a highly elliptic 12–hour–period orbit the Soviets originally
designed to observe the northern hemisphere.

The existence of a class of inclined periodic solutions in the circular restricted three–
body problem was shown by Jefferys in [6]. He showed the existence of families of elliptic
orbits for any value of the eccentricity and a critical inclination. In fact, when one of the
primaries is small enough, and the infinitesimal body is far away from the primaries, the
small primary moves very fast and the potential looks almost like that of an oblate planet.
This is why Jefferys finds a critical inclination for these orbits. The method used in [6]
was the continuation method developed by Poincaré (see [9]), which is one of the most
frequently used methods for proving the existence of periodic orbits.

The case dealt with in this communication (see the complete text in [2]) is different
from Jefferys because the primaries move on an elliptic collision orbit along the z-axis.
Heuristically speaking, however, it can be expected that far away from the primaries the
potential will be similar to that of a very eccentric prolate ellipsoid, so that a J2 effect, with
its critical inclination, will exist. We show the existence of periodic solutions of Jefferys
type: large semi-axis compared to the that of the primaries, arbitrary eccentricity and
inclination close to critical.

The perturbed problem is degenerate due to the fast motion of the primaries, and
the equations are no longer analytic when the parameter equals zero, which precludes
the use of standard implicit function theorem. We overcome the difficulty by using Arens-
torf’s theorem, where weaker assumptions of differentiability are needed (see [1]). A planar
configuration of this problem is studied in [7].

In our case, the problem has a rotational symmetry around the z-axis (which contains
the colliding primaries). This symmetry would be lost if we considered elliptic non collision
orbits for the primaries. See [4] and [5], where the elliptic restricted three-body problem is
considered. In those papers, the periodic orbits are perturbations of the circular solutions
of the Kepler problem having large radii on a plane perpendicular to that of the primaries.
If the unperturbed orbit is a polar one, the precession induced by a small variation of the
inclination can be used to compensate for any variation of the orbital plane due to the
perturbation.

Periodic orbits in the spatial elliptic restricted three–body are also studied using double
averaging in [8].

2. The Collision Restricted Three Body Problem

The Collision Restricted Three Body Problem describes the motion of a massless par-
ticle under the attraction of two primaries with equal masses, m1 = m2 = 1/2, moving
on a collision elliptic orbit. In order to avoid a triple collision, we consider that the third
body is far from the primaries compared to the distance between them. This fact can be
introduced in the equations of motion by making the primaries very close to each other and
looking for solutions of the massless particle at distance of order unity to the primaries.

Let µ be a small parameter. The distance between both primaries is given by

ρ = µ(1− cosEp(t)),

where Ep = Ep(t) is the eccentric anomaly of m1 and it is related to its mean anomaly `p
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through Kepler’s equation
Ep − sinEp = `p, (1)

where `p = µ−3/2t. The period of the motion of the primaries is Tp = 2πµ3/2, so that
Ep = kπ when t = πkµ3/2.

The equations of motion, in spherical coordinates, for the infinitesimal body can be
written as a non autonomous Hamiltonian system depending on the parameter µ as
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with R1 and R2 given by

R2
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Notice that Ep as given by Equation (1), is a function of time t and µ, which is not defined
for µ = 0. So, neither the Hamiltonian (2) is defined.

Since R1 and R2 do not depend on θ, ṗθ = 0 and the angular momentum pθ = Θ
is constant. Thus, it can be calculated from the initial conditions and the equation for θ
can be decoupled from the other equations. We call, the problem in variables (r, φ, pr, pφ),
reduced problem.

3. Main result

THEOREM. Consider the Three–Dimensional Collision Restricted Three Body Problem
with masses m1 = m2 = 1/2, and primaries’s semimajor axis µ/2. If µ = k−2/3, where k is
a positive integer large enough, there exist initial conditions such that the infinitesimal body
moves in a symmetric periodic orbit of the reduced problem, of period 2π, near a Keplerian
elliptic orbit. The inclination of the orbit is close to the “critical value” cos i = 1/

√
5.

Remark: all the orbits found are on an integral resonance with the motion of the
primaries, i.e. the primaries undergo k complete orbits in one orbit of the infinitesimal
body. If k = p/q is an irreducible rational then similar arguments show that in q complete
orbits of the infinitesimal the primaries undergo p complete orbits.
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