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Abstract

v

Physalis peruviana is a native plant from the
South American Andes and is widely used in tra-
ditional Colombian medicine of as an anti-inflam-
matory medicinal plant, specifically the leaves,
calyces, and small stems in poultice form. Pre-
vious studies performed by our group on P. pe-
ruviana calyces showed potent anti-inflamma-
tory activity in an enriched fraction obtained
from an ether total extract. The objective of the
present study was to obtain and elucidate the ac-
tive compounds from this fraction and evaluate
their anti-inflammatory activity in vivo and in vi-
tro. The enriched fraction of P. peruviana was pu-
rified by several chromatographic methods to ob-
tain an inseparable mixture of two new sucrose
esters named peruviose A (1) and peruviose B
(2). Structures of the new compounds were eluci-
dated using spectroscopic methods and chemical
transformations. The anti-inflammatory activity
of the peruvioses mixture was evaluated using
A-carrageenan-induced paw edema in rats and
lipopolysaccharide-activated peritoneal macro-
phages. Results showed that the peruvioses did
not produce side effects on the liver and kidneys
and significantly attenuated the inflammation in-
duced by A-carrageenan in a dosage-dependent
manner, probably due to an inhibition of nitric
oxide and prostaglandin E2, which was demon-

strated in vitro. To our knowledge, this is the first
report of the presence of sucrose esters in P. pe-
ruviana that showed a potent anti-inflammatory
effect. These results suggest the potential of su-
crose esters from the Physalis genus as a novel
natural alternative to treat inflammatory dis-
eases.
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v

COX-2: cyclooxygenase 2

IL: interleukin

iNOS: inducible nitric oxide synthase

LPS: lipopolysaccharide
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PGE2: prostaglandin E2
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TPA: 12-0-tetradecanoyl-phorbol-13-
acetate

1400W:  N-[[3-(aminomethyl)phenyl]methyl]-

ethanimidamide dihydrochloride
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Introduction

v

Inflammation is a frequent and immediate re-
sponse to external and internal injurious stimuli
including infections, chemicals, physical stress,
and immune pathologies. It is a complex phe-
nomenon that involves many cell types and cellu-
lar pathways [1]. Molecules produced during in-
flammation trigger pain receptors, induce local
vasodilatation, and recruit phagocytic cells, espe-

cially neutrophils and macrophages, which then
activate other immune system components [2].
Excessive or persistent inflammation leads to the
overproduction of mediators that are a key factor
for the development of severe pathologies such as
rheumatoid arthritis [3], bacterial sepsis [4], asth-
ma [5], atherosclerosis [6], inflammatory bowel
disease [7], and cancer [8], which represents an
important cause of morbidity worldwide. Thus,
the reduction or elimination of the persistent in-
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flammatory response and/or the overproduction of proinflam-
matory mediators is an important target to prevent or treat these
diseases [9].

Plants represent an excellent source to obtain new drugs, as they
constitute an immense reservoir of structurally diverse second-
ary metabolites that might potentially inhibit the inflammatory
process by affecting different molecular targets [4]. In this sense,
Physalis peruviana L. (Solanaceae), widely used in traditional
medicine as a diuretic and hypoglycemic agent and to treat ma-
laria, asthma, hepatitis, dermatitis, and rheumatoid arthritis [10],
represents a promissory source of bioactive compounds. This has
been experimentally validated, with extracts showing relevant
antioxidant [11,12], antiproliferative [13-15], cytotoxic [16],
anti-hepatotoxic [17], hipoglycaemic [18], immunomodulatory
[19], and anti-inflammatory activities [20,21].

P. peruviana, also known as “uchuva” in Colombia or “goose-
berry” in English speaking countries, is native to tropical South
America and is characterized because the fruit grows enclosed
in a papery husk or calyx, which is one of the best-known exam-
ples of persistent sepals due to its conspicuous post-floral growth
and enlargement [22-24]. The P. peruviana calyx protects the
fruit against insects, birds, diseases, and adverse climatic situa-
tions; this structure represents an essential source of carbohy-
drates during the first 20 days of growth and development of
the fruit, and the conservation of it even after harvest, allowing
for a shelf life of one month, whereas without the calyx, it is only
lasts for 4 to 5 days or so [23,24]. Three varieties of P. peruviana
are currently grown, originating from Colombia, Kenya, and
South Africa. The ecotype Colombia, which has a great demand
on the international markets, presents small and colorful fruits
and different morphological characteristics in the calyx [25].
Although the fruit is highly appreciated for its commercial value,
the calyx constitutes a waste generated in fruit production as
well as an unexplored source of bioactive molecules.

The experimental studies of P. peruviana have been focused on
the chemical and biological characterization of the whole plant,
stems, leaves, and fruits, with only a few reports for calyces.
Chemical studies on P. peruviana, mainly of the aerial parts,
showed the presence of withanolides, steroids, alkaloids, and gly-
cosides [15-17,23,26]. Phytochemical studies made by our re-
search group on P. peruviana calyces indicated the presence of
flavonoids, steroids and/or triterpenes, and lactones a-f unsatu-
rated. Our previous studies also demonstrated that the major
fraction obtained from the ether extract of P. peruviana calyces
showed potent anti-inflammatory activity in a TPA-induced ear
edema model, with inhibition to nearly 70% [20]. In this work,
we elucidated the structure of two new sucrose esters from this
major fraction and evaluated their anti-inflammatory activity in
vivo in the A-carrageenan-induced paw edema model and the in
vitro effect on NO+, PGE2, and TNF-a production from LPS-stimu-
lated murine macrophages. Sucrose esters have been isolated
from Physalis species in fruits, flowers, and stems [27-29]. To
our knowledge, this is the first report on the presence of sucrose
esters in calyces of the Physalis genus.

Results and Discussion

v

Colum chromatographic purification of the methanol-water
soluble fraction, obtained by liquid/liquid partition from the total
ether extract of P. peruviana calyces, provided a major fraction
which constituted 3.03% of the initial material and was subjected
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to preparative TLC to lead to the isolation of one spot that showed
a single peak on reversed-phase HPLC. However, spectroscopic
signals of this fraction revealed a mixture of two new sucrose es-
ters, peruvioses A (1) and B (2), occurring in a 6:4 ratio, respec-
tively. All attempts at the separation of the components with sev-
eral combinations of solvent systems using preparative TLC and
HPLC were ineffective. Therefore, we elucidated their structures
by analyzing the spectroscopic data of the mixture.

Compounds 1 and 2 were isolated as a gummy solid, with a
99.05% purity based on HPLC that exhibited strong absorption
bands for hydroxyl (v=3411cm™) and saturated ester functions
(v=1746 cm™) in the IR spectrum. Despite the fact that it was a
mixture, NMR spectra displayed many duplicated peaks slightly
displaced and MS showed similar but distinguishable fragmenta-
tion pathways, which allowed for the elucidation of both com-
pounds separately.

TH-NMR and "*C-NMR signals and the connectivities observed in
the HMBC and NOESY spectra for 1 revealed the presence of one
pyranose and one furanose unit as the monomers of a disaccha-
ride structure, as well as four acyl substituents: one decanoyl and
three isobutanoyl chains (© Table 1 and Fig. 1). The relative con-
figuration of the sugars was determined by comparing the
TH-NMR coupling constants and *C-NMR chemical shifts with
literature values [26-29]. The pyranose was identified as a-D-
glucopyranose by the observed coupling constants (J;,=3.7Hz,
J23=10.4Hz, J3 4=]45=9.4 Hz) that also established H-1 as equa-
torial, whereas the strong coupling observed between H-2 and H-
3, H-3 and H-4, and H-4 and H-5 established these protons as ax-
ial. On the other hand, the furanose was identified as -D-fructo-
furanose showing the following coupling constants: J3.4(H3') =
J34(H4")=8.2 Hz. The NOE contact between glucose H-1 to H-1a’
and H-1b’ of the fructose ring confirmed the glycosidic linkage
with a- and B-orientations on the anomeric carbon for D-glucose
and D-fructose, respectively. Moreover, the HMBC signal between
H-1 and C-2" unequivocally indicates the 1,2 linkage between D-
glucose and D-fructose (Fig. 1S, Supporting Information).

The positions of all substituents in the disaccharide structure
were determined from the analysis of the HMBC spectrum, which
showed correlations between H-2 and the carboxylic carbon C-
1". This data evidences that the aliphatic decanoyl chain is placed
in position 2 of the glucose unit. On the other hand, the HMBC
spectrum showed correlations between H-3 of the glucopyra-
nose and C-1" of an isobutanoyl group, which, in turn, was
coupled with H-3". The same bidimensional spectrum showed
connectivities of H-4 with C-1"" of another isobutanoyl group,
which was coupled with H-3"". In the furanose moiety, a clear
correlation between H-3' and carboxylic C-1"""" was found, indi-
cating that another isobutanoyl substituent was located in posi-
tion 3 of this unit.

This analysis led us to elucidate the structure of the new com-
pound as 2-O-decanoyl-3,3'4-tri-O-isobutanoylsucrose, named
peruviose A (1), C34Hsg015. The adduct ion peak at m/z 729 [M +
Na]* obtained by FABMS, as well as fragments at m/z 155 (dec-
anoyl) and m/z 71 (isobutanoyl), are in agreement with the pro-
posed molecular formula and structure. Additionally, the ion
peak at m/z 897 [M + Na]* (calcd. for C4oHggO19Na) of the corre-
sponding acetylated derivate confirmed the presence of the four
ester groups, while the fragment at m/z 233 supported the pro-
posed substitution of the furanose moiety.

Compound 2 was identified on the basis of 1D and 2D NMR anal-
yses and FABMS spectra in a similar manner. These analyses
pointed out that both compounds shared an almost identical
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Table 1 NMR spectroscopic data for peruviose A (1) in CDCl3 (500 MHz for 'H and 125 MHz for '3C).

Number H [6 (ppm), m, 3| (Hz)] 13C (6, ppm)|DEPT NOESY HMBC
Glucose-1 5.59,d,3.7 89.40/CH H-2, H-1"a, H-1'b C-5,C-2
2 4.96-4.90" 70.06/CH H-1'a C-3,C1"
3 5.48,dd, 10.4,9.4 69.02/CH H-5 C-2,C4,C1
4 4.96-4.90* 68.25/CH H-6 C-3,C-5,G6-6,C-1
5 4.19-4.12% 72.18|CH H-6
6 3.60, m 61.60/CH, H-4'
Fructose-1'a 3.58,d,12.0 64.69/CH; H-3', H-5"
1'b 3.45,d,12.0 H-3'
2 = 103.81/C
3 5.20,d,8.2 79.26/CH H-5' C1',C4',Cc1
4' 4.56,t,8.2 71.19/CH H-6'a, H-6'b C-3', G5, C6’
5 3.94,m 82.55/CH -4
6'a 3.90,m 59.73/CH, c-4'
6'b 3.74,m
1" - 172,88/C=0
2" 2.25,m 33.85/CH, H-3"", H-4" Cc-3"
3" 1.54,m 24.55/CH; H-4" c-2"
4"-7" 1.24, swide 29.33-29.06/CH,
8" 1.24, swide 31.82/CH;
9" 1.24, s wide 22.63/CH;,
10" 0.87,t,7.0 14.06/CHs c-8",C9"
1 = 175.74/C=0
2" 245,m,7.0 33.89/CH H-3"""a,H-3"""b
3'""a 1.07,d,7.0 18.79-18.70/CH3 c-2'
3'""b 1.08,d, 7.0 c-2'"
fooss = 175.98/C=0
A 2.51,m,7.0 33.93/CH H-3""""a,H-3""""b c-3m
3'""a 1.13,d,7.0 18.79-18.70/CH3 ;-2
3'"""b 1.06,d, 7.0 c-2m
1 - 177.87/C=0
20 2.75,m, 7.0 34.02/CH H-3"""""a,H-3""""'b c-3m
3'""""a 1.32,d,7.0 18.87/CH3 c-2
3"p 1.29,d,7.0 18.87/CHs c-2m
* The multiplicity could not be determined
) B, C35Hg0015. After acetylation of this compound, the ion peak at
OH Fig.1 Structure of pe-

ruvioses A (1) and B (2)
isolated from calyces of
P. peruviana.

1

3 ¢]
CHS(CHZ)s/‘(o O

1 2
Ri1 Isobutyryl Isobutyryl
R2 Isobutyryl Isobutyryl
R3 Isobutyryl 3-methylbutanoyl

structure with an esterified sucrose core with four acyl groups
(CTable 2 and Fig. 1). The only difference between these com-
pounds was observed in the HMBC correlations of 2 with the
presence of a connectivity signal between H-3" and C-1""", corre-
sponding to a 3-methylbutanoyl substituent. The quasimolecular
ion peak m/z 743 [M + Na|* obtained by FABMS, as well as frag-
ments at m/z 155 (decanoyl), m/z 71 (isobutanoyl), and m/z 85
(3-methylbutanoyl), supported the structural characteristics of
the acyl groups. The peak at m/z 247 also corroborates the differ-
ence on the furanose moiety substitution and confirms the struc-
ture of the new sucrose ester derivative as 2-0-decanoyl-3,4-di-
O-isobutyryl-3'-0-(3-methylbutanoyl)sucrose, named peruviose

m/z 911 [M + NaJ* (calcd. for C43HggO19Na) also confirmed the
presence of the four original ester groups on the sugar moiety.
Determination of the absolute configuration of the sugar moiety
was performed by alkaline hydrolysis and comparison with a su-
crose authentic standard. The hydrolysis of peruvioses A and B (1
and 2) with NH40H (2 M) yielded a product with an identical ab-
solute configuration ([a]p2°™® product = +62.2) in respect to the
sucrose standard ([a]p?°C standard = + 66).

Acylsucroses are considered the main protective constituents of
the resin covering the inner parts of the calyces of several Physalis
species, since other known sucrose esters exhibit aphicidal, mol-
luscidal, and antifeedant activities [29]. Consequently, we per-
formed an acute toxicity evaluation of the mixture of peruviose
A and B, which did not produce mortality or visible signs of tox-
icity within 24 h when administered intraperitoneally (i.p.) at
doses below 100 mg/kg. Doses higher than 200 mg/kg produced
a toxic effect in a dose-dependent manner with slight hypoactiv-
ity, weakness, and labored breathing before animal death, ac-
companied by permanent piloerection (© Table 3). The LD5y was
estimated to be 223.59 (95% confidence interval 209.91-234.52)
mg/kg.

The toxicity of peruvioses A and B was significantly high as ex-
pected, not only because of the known toxicity of sugar esters
[30], but also because of the nearly complete access of the tested
compounds to the general circulation. However, subchronic and
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Table 2 NMR spectroscopic data for peruviose B (2) in CDCl; (500 MHz for 'H and 125 MHz for 3C).

Number H [6 (ppm), m, 3| (Hz)] 13C (6, ppm)|DEPT NOESY HMBC

Glucose-1 5.60,d, 3.8 89.42|CH H-2,H-1'a,H-1'b C-5,C-2'

2 4.96-4.90* 70.13/CH H-1'a C-3,C-1"

3 5.46,dd, 10.3,9.4 69.05/CH H-5 C-2,C4,C1

4 4.96-4.90* 68.30/CH H-6 C-3,C-5,C-6,C-1"""
5 4.19-4.12* 72.01/CH H-6

6 3.60,m 61.55/CH H-4'

Fructose-1'a 3.58,d,12.0 64.54/CH; H-3', H-5’

1'b 3.45,d,12.0 H-3'

2 - 103.89/C

3! 5.23,d,8.2 79.12|CH H-5' C-1',C-4', C-1
4’ 4.56,t, 8.2 71.15/CH H-6'a,H-6'b C-3',C-5, C-6'

5' 3.96,m 82.55/CH c-4'

6'a 3.92,m 59.79/CH, c-4'

6'b 3.71,m

1" - 172,88/C=0

2" 2.25,m 33.85/CH; H-3"", H-4" c3"

3" 1.54,m 24.55/CH; H-4" c-2"

47" 1.24, s wide 29.33-29.06/CH,

8" 1.24, swide 31.82/CH;

9" 1.24, s wide 22.63/CH;

10" 0.87,t,7.0 14.06/CH3 C-8",C-9"

1 - 175.64/C=0

2! 2.45,m, 7.0 33.88/CH H-3"""a,H-3""'b

3'""a 1.08,d,7.0 18.79-18.70/CH3 c-2""

3'"'b 1.07,d,7.0 2"

1 - 176.06/C=0

20 2.52,m, 7.0 33.91/CH H-3"""'a,H-3"""'b c-3""

3" 1.144,d,7.0 18.79-18.70/CH3 C-2"""

3""b 1.119,d, 7.0 c-2"

10 - 174.06/C=0

20 2.39, ABX-system, 7.0, 14.8 43.14/CH, H-4'""""a,H-4"""""'b C-4'""""3

30 2.20,m 25.86/CH H-4'"""1a, H-4"""'b c2m

43 1.05,d,6.7 22.42|CH3 c-2", C-3", C4'"'b
4'"""b 1.04,d,6.7 22.29/CH3 C-2"" -3 C-41

* The multiplicity could not be determined

Table 3 Acute toxicity in mice after 24 h administration of a mixture of peruvioses A and B isolated from P. peruviana calyces.

Dose (mg|Kg)? D[T® Mortality latency©
0 0/6 -

100 0/6 =

150 0/6 =

175 0/6 =

200 0/6 =

215 3/6 >5h,<24h

230 4/6 >5h,<24h

240 5/6 >3h,<24h

250 5/6 >5h,<24h

300 6/6 3-10h

Signs of toxicity observed

No toxic changes observed.

No toxic changes observed. Abdominal contractions.4
Abdominal contractions. Slight hypoactivity in the first 30 min.

Abdominal contractions. Slight hypoactivity in the first 2 h.

Abdominal contractions. Piloerection. Slight hypoactivity in the first 2 h.
Marked hypoactivity, peripheral cyanosis, and respiratory arrest before death.
Abdominal contractions. Piloerection. Marked hypoactivity. Peripheral cya-
nosis and respiratory arrest before death.

2 The mixture of peruvioses A and B was co-precipitated with PVP K-25, dissolved in saline, and administered as a single i. p. dose to groups of six mice, which were carefully
examined for any signs of behavioral changes and mortality for 24 h; ® D/T refers to the number of mice deaths/total number of mice; ¢ Mortality latency refers to the time to death
(in hours) after the injection; ¢ Abdominal contractions were noted only after the administration of treatments (10-20 min)

chronic toxicological evaluations, employing several routes of ad-
ministration, are needed before conducting further studies with
these molecules.

During necropsy, a macroscopic examination did not show de-
tectable changes in the shape, color, or size of the liver and kid-
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neys due to the administration of peruvioses A and B. In addition,
a histopathological evaluation did not reveal significant changes
in tissue architecture, inflammatory cell infiltration, swelling, or
necrosis in comparison to the control group (© Fig. 2). Our results
directly demonstrated that toxicity induced by peruvioses A and

Downloaded by: Universidad de Sevilla. Copyrighted material.
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Fig.2 Peruvioses A and B isolated from P. peru-

> viana calyces did not produce an effect on the his-
Vi g i tological structure of the liver (A) and kidneys (B) of
o SRR mice treated i. p. with doses of the mixture of su-
crose esters ranging from 0 (control) to 300 mg/kg
for 24 h. Micrographs are representative of a histo-
logical section of organs stained with hematoxylin
and eosin from at least six different animals. Mag-
nification 10x. Scores were assigned by a blinded
pathologist according to the parameters estab-
lished in Table 1S, Supporting Information. Each
value represents the mean + SEM. (Color figure
available online only.)

230 mg/Kg

250 mg/Kg

P J_"."_.[_T_ _IIJ_

Total Score (0-27)
—
Totsl Score (0-24)
- T
&
A

Peruvioe A and B (mg/Kg)

B is not mediated through effects on liver or kidney function. Fu-
ture studies should include examination of other vital organs like
the brain, heart, lungs, and spleen.

Based on the experimental LDsg, we decided to select doses lower
than 200 mg/kg to evaluate the anti-inflammatory effect of su-
crose esters employing the A-carrageenan paw edema test, a clas-
sical model of acute inflammation for the discovery of anti-
edematous agents [31]. Subplantar injection of A-carrageenan
generated an increase in paw volume of the rats in the control
group, which intensified progressively to reach a maximum peak
at5h(134.15% increase). As can be seen in © Fig. 3, the peruviose
A and B mixture (25, 50, and 100 mg/Kg, i.p.) significantly inhib-
ited the edema induced by A-carrageenan in a dose-dependent
manner as early as 1 h after induction of inflammation. The high-
est effect of the mixture was produced at 3h by the dose of
100 mg/kg (62.58 +3.35% inhibition).

In vivo anti-inflammatory activity of four related sucrose esters
isolated from Physalis sordida (Clsg=0.24-0.35pumol/ear) has
been recently described [32]. We have also demonstrated the ef-
fect of the major glycosidic fraction from P. peruviana calyces,
which includes peruvioses A and B among its constituents, using
the TPA-induced ear edema model [20]. These experimental evi-
dences suggest that the presence of sucrose esters can be highly
related to the anti-inflammatory activity exerted by some plants
of this genus [32]. However, the mechanism underlying this
pharmacological activity has not been described.

Edema is an essential feature of acute inflammation caused by in-
creased vascular permeability [33,34]. The effect induced by A-
carrageenan is a biphasic response with multiple mediators act-
ing in sequence. The first phase (0-1h) is triggered through the
rapid release of histamine, serotonin, and bradykinin. The more
pronounced second phase (1-6h) is elicited by the production
of prostaglandins and NO+ by inducible isoforms of COX-2 and
iNOS, respectively [33,35]. Since our results suggest that the
anti-inflammatory effect produced by the mixture of peruvioses

ns

Ei %0 300

Peruviose A and B (mg/Kg)

A and B is due to the inhibition of the synthesis or release of the
proinflammatory mediators from the second phase, and consid-
ering a previous study which reported inhibition of LPS-induced
NO- and PGE2 generation on RAW 264.7 macrophages by a
supercritical fluid extract of P. peruviana leaves [21], we decided
to further evaluate the effect of the mixture of sucrose esters
from P. peruviana calyces in the production of some of the major
mediators of acute inflammation, NO+, PGE2, and TNF-qa, by LPS-
stimulated mouse peritoneal macrophages.

Macrophages play a pivotal role in host defense against bacterial
infection, being the principal cellular target for LPS, the major
component in the outer membrane of gram-negative bacteria cell
walls, which stimulates the secretion of NO+ and PGE2 as well as
proinflammatory cytokines including TNF-q, IL-1f, and IL-6 [36].
To verify whether peruvioses A and B are able to inhibit the prod-
uction of NO- and PGE2, we first evaluated their effect on cell via-
bility by employing the MTT assay. As shown in © Fig. 4A, the
mixture of peruvioses inhibited the cell viability in a concentra-
tion-dependent manner, with an LCsy value of 25.41 (15.28-
40.24) pg/mL, without exerting significant toxicity at 10 pug/mL.
Therefore, concentrations employed in the subsequent experi-
ments were equal or less than this concentration.

NO- is a gaseous signaling molecule that plays a crucial role in
host defense mechanisms via its antimicrobial and cytoprotective
activities. Stimulation of murine macrophages by LPS results in
the increased expression of iNOS, which catalyzes the production
of large amounts of NO-. We found that peritoneal macrophages
produced a considerable amount of nitrite under basal condi-
tions, 21.82 +1.25 uM. However, after stimulation with LPS, ni-
trite production was increased significantly to a concentration
of 65.44 + 3.42 nM. Nontoxic concentrations of the mixture of pe-
ruvioses A and B produced a significant reduction of nitrite prod-
uction depending on the concentration, ICs59=2.317 (1.368-
4.055) pg/mL, showing a similar activity for that presented by
1400 W (© Fig. 4B), without exerting an important scavenging ef-

Franco LA et al. Sucrose Esters from... Planta Med 2014; 80: 1605-1614
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Fig.3 Anti-inflammatory effect of the mixture of peruvioses A and B on A-
carrageenan-induced paw edema. Six rats per group were administered su-
crose esters (25, 50, and 100 mg/kg, i. p.) or indomethacin (10 mg/kg, i.p.),
1 h before the A-carrageenan injection. Paw volume was measured at 1, 3,
and 5 hintervals, after phlogistic agent administration, and data expressed as

fect of NO- (Table 4S, Supporting Information), indicating that
suppression of its release can be directly attributed to a blocked
production by stimulated macrophages.

PGE2 is known to be a key mediator of immunopathology in
chronic inflammatory diseases and cancer [37]. As can be seen
in ©Fig.4C, LPS produced a significant increase of PGE2 levels
in cell culture, changing its concentration from 4.18 + 0.38 ng/mL
to 27.43 +0.61 ng/mL. The mixture of peruvioses A and B exhib-
ited a potent inhibitory effect on PGE2 release in cell culture in a
concentration-dependent manner, with 1C5,=0.072 (0.019-
0.293) pg/mL. The effects of the mixture of sucrose esters are
comparable to those of rofecoxib, which is a selective COX-2 in-
hibitor.

In vitro anti-inflammatory activity through the inhibition of
PGE2 production of LPS-induced RAW 264.7 macrophages by
three sucrose esters isolated from Bidens parviflora has also been
described [38]. Taken together, these results suggest that the
anti-inflammatory activity of sucrose esters might be related to
the inhibition of this important prostanoid.

TNF-a is a potent proinflammatory cytokine released primarily
from stimulated macrophages playing a critical role in the host
response to infection and injury [39]. LPS-stimulated macro-
phages significantly increased TNF-a production in 2.93-fold
(©Fig. 4D). Unexpectedly, the mixture of peruvioses A and B did
not affect the production of TNF-a, even at the highest tested
concentration, which suggests that the anti-inflammatory activ-
ity of these sucrose esters is mediated through the selective
downregulation of iNOS and COX-2, independently of common
pathways or transcription factors with TNF-a.

Of the mediators that modulate PGE2 synthesis in macrophages,
NO- seems to play a key role. A large body of evidence suggests
that there is significant crosstalk between iNOS and COX-2 bio-
synthetic pathways, especially in biological systems like LPS-
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(A) delta volume (mL), which denotes the degree of swelling after A-carra-

geenan treatment or (B) area under curve (arbitrary units). Each value repre-
sents the mean + SEM. * P<0.05, ** P<0.01, *** P<0.001, ANOVA followed
by the Dunnett test, statistically significant compared with the control group.

stimulated peritoneal macrophages [40]. However, the final ef-
fect of these interactions is often unclear, varying between differ-
ent kinds of cells and tissues [41,42]. Further studies are needed
to clarify the effect of peruvioses A and B on iNOS and COX-2 in
peritoneal macrophages.

In conclusion, we described the isolation of a mixture of two new
anti-inflammatory sucrose esters from the calyces of P. peruvi-
ana. Overall, our results suggest that sucrose esters are important
anti-inflammatory compounds of the Physalis genus, mainly
through the downregulation of NO- and PGE2 production, with-
out exerting significant acute toxicity.

Material and Methods

v

Experimental instrumentation and chemicals

Melting points were determined by differential scanning calo-
rimetry-DSC7 (Perkin-Elmer) and are uncorrected. IR spectrum
was recorded on a FTIR (Perkin Elmer 1600 series). NMR spectra
were obtained on a Bruker AMX-500 spectrometer, with TMS as
the internal standard. FAB-MS was obtained on a Kratos MS80-
RFA mass spectrometer. A Hitachi-LaChrom Elite® apparatus
equipped with PDA was used for analytical HPLC separations. Re-
versed-phase chromatography was performed with a 100 x
4.6 mm Chromolith® C-18 column (Merck). TLC was performed
on silica gel 60 F254 plates (250 um thickness; Merck). Silica gel
60 (0.063-0.200 mm) and NH4OH were also obtained from
Merck. All solvents were of analytical grade and purchased from
Merck. A plethysmometer (model 7140 Ugo Basile) was used to
determine the paw volume in rats. To work with cell cultures,
thioglycollate broth, RPMI-1640 medium, FBS, PBS tablets, anti-
biotics, N-(1-naphthyl)-ethylenediamine, sulfanilamide, A-carra-
geenan, LPS, 1400 W (purity >98%), NaNO,, SNP, indomethacin
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Fig.4 Effect of the mixture of peruvioses A and B on lipopolysaccharide-in-
duced mouse peritoneal macrophages viability and proinflammatory media-
tor production. Macrophages were treated with various concentrations of the
mixture of sucrose esters (0.01-100 pg/mL) for 30 min, and activated with

LPS (10 pg/mL) for 24 h. After incubation, cell viability was determined by the
MTT assay (A) or culture supernatants were collected. Nitrite production was

(purity 98-101%), dexamethasone (purity > 97%), curcumin (pu-
rity > 80%), and DMSO were obtained from Sigma-Aldrich. MTT,
rofecoxib (purity > 99%), and caffeic acid (purity > 95%) were pur-
chased from Calbiochem®.

Plant material

Calyces of P. peruviana L. were collected in La Mesa, Colombia
(4°37"49.22" N; 74°27' 45.60" W elevation 1198 m.a.s.l.) in No-
vember 2003. Taxonomic identification was performed by Claral.
Orozco at Herbario Nacional Colombiano (Instituto de Ciencias
Naturales, Universidad Nacional de Colombia), Bogota, Colombia,
where a voucher specimen (COL-512200) has been deposited.
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assessed using Griess reaction (B), and ELISA was employed to quantify PGE2
(€) and TNF-a release (D). Triton X-100® (20%), 1400 W (2.50 pg/mL), rofe-
coxib (6.29 ug/mL), and dexamethasone (7.85 pg/mL) were employed as
positive controls, respectively. Results are expressed as the mean + SME of at
least two independent experiments. * P<0.05, ** P<0.01, *** P<0.001,
ANOVA followed by the Dunnett test, compared with the LPS-treated group.

Extraction and isolation

Dried calyces (2 kg) were powdered and extracted with petro-
leum ether by percolation at room temperature until exhaustion
of the material. The concentrated extract (271.6 g) was parti-
tioned with ether and methanol-water (9:1) to give a polar frac-
tion (223.3 g). This fraction (22 g) was subjected to column chro-
matography (CC, 14 x 30 cm columns) on silica gel (600 g, 0.063-
0.200 mm) and eluted with petroleum ether, dichloromethane,
ethyl acetate, and methanol mixtures, gradually increasing the
polarity. Fractions were combined based on TLC examination us-
ing a proper mobile phase and visualized by heating after spray-
ing with Godin reagent [43] to obtain 38 main fractions with a
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94.77% efficiency. The major fraction (8.23 g), named Pp-Dog-LF
[20], was subjected to analytical HPLC analysis using a mixture
of methanol and 0.07 M monobasic potassium phosphate buffer
(6.5:3.5, pH4.0) as the mobile phase, a 1 mL/min flow rate, and
an operating temperature of 25°C to show one component that
constituted nearly 82% of the mixture. This major fraction (2 g)
was purified by CC (gradient elution CH,Cl;, to EtOAc) followed
by two successive preparative TLCs (eluent CH,Cl,-EtOAc 4:6) to
yield 293 mg of an inseparable mixture of two new sucrose es-
ters, peruviose A (1) and peruviose B (2). Their structures were
elucidated trough IR, FAB-MS, and extensive 2D NMR methods
including 'H-NMR, *C-NMR, Dep90, Dep135, HMBC, and NOESY.
Peruvioses A and B (1 and 2): Light yellow gummy solid mixture
of 1 and 2; Rf 0.489 on silica gel 60 F-254 (CH,Cl,/EtOAc, 4:6);
purity (HPLC) 99.05% [tg 2.35min; CH30H/KH,PO3; (0.07 M),
6.5:3.5, pH4.0]; m.p.20-22°C (uncorrected); UV (EtOH) Amax
220 nm; [a]p?°C = +52.08, IR (KBr) vmax 3411, 2927, 2858, 1746,
1191, 1155, 1063, 1017cm™’; 'H-NMR (500 MHz, CDCl3),
3C-NMR, HMBC, and NOESY (125 MHz, CDCl3) spectra, see © Ta-
ble 1 and Fig. 2S and 3S, Supporting Information. FAB-MS: (1) m/z
729 [M + NaJ* (calcd. for C34Hs3015Na), m/z 233 [C1oH170g], m/z
155 [C10H190], and m/z 71 [C4H7O]; (2) m/z 743 [M + Na[*, (calcd.
for C35H50015Na), m/z 247 [C]1H1906], m/z 155 [C10H190], m/z 85
[CsHg0], and m/z 71 [C4H70], Fig. 4S, Supporting Information.

Chemical modifications

To verify the presence of glycosylated esters and the absolute
configuration of the sugar moiety, the mixture of peruvioses A
and B (10 mg) was hydrolyzed with 2 mL of NH4OH 2 M for 4 h
at 50 °C. The reaction mixture was adjusted to pH 3 by the addi-
tion of formic acid 2 M and subjected to successive liquid-liquid
extraction with ethyl acetate (3 x3 mL). The aqueous solution
was used to determine the absolute configuration of glycosides.
Additionally, 90 mg of the compound mixture were acetylated
by the usual procedure with acetic anhydride and pyridine (5:1
per gram of the compound) to yield 90.9 mg of the acetylated ma-
terial (efficiency 81.9%), after the usual workup. Acetylated peru-
vioses A and B (3 and 4) were submitted to "H-NMR, *C-NMR,
Dep90, Dep135, HMBC, NOESY, and FABMS to confirm the eluci-
dation of their structure.

Acetylated peruvioses A and B (3 and 4): Light yellow gummy sol-
id; NMR (500 MHz, CDCl3) data are described in Table 2S and 3S,
Supporting Information. FAB-MS: m/z 897 [M + Na]* (calcd. for
C42H66019Na) and m/z 911 [M + Na]* (calcd. for C43H63019Na).

Experimental animals

Female Wistar rats (140-170 g) and ICR mice (20-25 g) were pro-
vided by Instituto Nacional de Salud, Colombia. Animals were al-
lowed to acclimatize for ten days before use and fed with stan-
dard rodent food and water ad libitum. They were housed in fil-
tered-capped polycarbonate cages and kept in a controlled envi-
ronment at 22 +3°C and relative humidity between 65 to 75%,
under a cycle of 12 h light/darkness. Animals were sacrificed by
cervical dislocation at the corresponding time of each experi-
ment. All experiments were designed and conducted in accord-
ance with the guidelines of the Ethics Committee of the Univer-
sity of Cartagena (minutes of October 23,2010) and the European
Union regulations (CEC council 86/809).
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Acute toxicity

The acute toxicity test was carried out to evaluate any possible
toxic effect exerted by the mixture of peruvioses A and B from P.
peruviana calyces. Mice were randomly divided into ten groups
of six animals per group and treated intraperitoneally with
graded doses of sucrose esters ranging from O (control) to
300 mg/kg. Mice were observed for 24 h post-treatment for mor-
tality, behavioral changes, and signs of toxicity. The LDsq value
was determined by the Miller and Tainter method [44]. At the
end of experiment, all animals were sacrificed, and the kidneys
and liver were carefully excised for histological examination,
fixed in 4% buffered formaldehyde, embedded in paraffin, and
stained with hematoxylin and eosin using standard techniques.
All slides were coded and evaluated in a blinded manner by a pa-
thologist observer according to the parameters described in Table
1S, Supporting Information.

A-Carrageenan paw edema

The anti-inflammatory activity was evaluated according to the
method described by Winter et al. [45]. Edema was induced by
subplantar injection of A-carrageenan (0.1 mL of a 2% solution)
in the right hind paw of each animal. Rats were randomly divided
into three groups of six animals each, and saline (control), indo-
methacin 10 mg/kg (positive control), or the mixture of peruvio-
ses A and B (100, 50, and 25 mg/kg) was prophylactically admin-
istered (i.p.) 1 h before the administration of A-carrageenan. Paw
volume was determined by means of a volume displacement
method using a plethysmometer immediately prior to the injec-
tion of A-carrageenan and 1, 3, and 5 h thereafter. Edema was ex-
pressed as the increase in paw volume (mL) after A-carrageenan
injection relative to the preinjection value for each animal.

Isolation and culture of peritoneal macrophages
Peritoneal macrophages were isolated from ICR mice three days
after i.p. injection of 10% sterile thioglycollate broth (1 mL). Peri-
toneal exudate cells were obtained by lavage with 20 mL of cold
sterile PBS, pH 7.4, supplemented with 2% antibiotics (penicillin
100 U/mL and streptomycin 100 pg/mL). The cells were placed in
RPMI-1640 medium with 2% antibiotics and 10% FBS, seeded in
24-well plates (1 x 106 cells/mL), and incubated at 37°Cina 5%
CO, atmosphere. The isolation and purification of the macro-
phages were carried out by adherence to culture plates. After a
period of 2 h, non-adherent cells were washed off with PBS. The
adherent cells were treated for 30 min with various concentra-
tions of the peruviose A and B mixture (0.01-10 pg/mL), 1400 W
(2.50pg/mL), dexamethasone (7.85ng/mL), and rofecoxib
(6.29 ug/mL), stimulated with LPS (10 ug/mL), and incubated for
24 h. Culture supernatants were collected and assayed for NOe,
PGE2, and TNF-a levels as described below. Control cells were
cultured under the same conditions but were not activated.

MTT assay

The mitochondrial-dependent reduction of MTT to formazan was
used to assess the cytotoxic effect of the test compounds [46,47].
Cells (1 x 106 cells/mL) were cultured at 37 °C with various con-
centrations of peruvioses A and B (0.1-100 pg/mL). Triton X-100
(20%) was used as a positive control. After 24 h, the medium was
removed and cells were incubated with MTT solution (3 mg/mL).
Four hours later, the medium was carefully aspirated and forma-
zan crystals were dissolved in DMSO (100 puL). The ODs59 was
measured using a microplate reader (Multiscan EX Thermo®).
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NO -+ production

NO- release was determined spectrophotometrically by the accu-
mulation of NO;, a stable metabolite of the reaction of NO* with
oxygen, using the Griess reaction [48]. Briefly, 100 pl of cell cul-
ture supernatant were mixed with 100 pL of Griess reagent [1:1
mixture of 0.1% N-(1-naphthyl) ethylenediamine dihydrochlor-
ide and 1% sulfanilamide in 5% H3POy4], and incubated at room
temperature for 5 min. The ODs5 of the samples was measured
using a microplate reader (Multiscan EX Thermo®) and compared
with a standard curve prepared with NaNO, (1-200 uM).
Additionally, a direct NOe scavenging effect of peruvioses A and B
was determined as described in Supporting Information.

Tumor necrosis factor-a and prostaglandin E2 release
Levels of TNF-a and PGE2 in culture supernatants were deter-
mined using commercially available competitive ELISA kits (R&D
Systems) according to the manufacturer’s instructions. The final
results are expressed as ng/mL.

Statistical analysis

Data are presented as mean + SEM. Concentrations that inhibited
cell survival (LCsp) and inflammatory mediators (ICsg) by 50%
were calculated employing nonlinear regression. Statistical com-
parisons between groups were established using analysis of var-
iance (ANOVA), followed by Dunnett test post hoc analysis. P val-
ues less than 0.05 were considered statistically significant.

Supporting information

Methods to determine the NO--scavenging effect of peruvioses A
(1) and B (2), as well as the scoring criteria of liver and kidney
sections for histological analysis are described in Supporting In-
formation. Results of the radical scavenging effect, in addition to
FABMS and NMR spectra for 1 and 2, and NMR spectra for the
acetylated compounds (3 and 4) are also included.
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