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Resumen

In 1955 Kovasznay et al. proposed to enhance an image by reversing the heat
equation. This process is highly unstable and blows up the noise. Thus an efficient
deblurring depends crucially on accurate denoising. In this paper we investigate the
use of neighborhood filters and of a recent variant, NL-means, to stabilize the reverse
heat equation. We shall prove that adding to the heat equation a term involving
the self-similarities of the image stabilizes the reverse heat equation. By experiments
on good quality images, not artificially blurred, we will illustrate the feasibility of
the method to reveal image details. In contrast with the various PDE’s for image
enhancement, the non-local reverse heat equation thus introduced is linear.

1. Introduction

Let u(t,x) denote the solution of the heat equation

∂u

∂t
= ∆u, u(0,x) = u0(x).

If u0 is sufficiently smooth, namely C2 and bounded, then we can write

u(t,x) − u(0,x) = t∆u0(x) + o(t). (1)

Now the difference between the original u0 and a blurred version image of it, k ∗ u0, is
roughly proportional to its Laplacian. We can write this relation as

kh ∗ u0(x) − u0(x) = h∆u0(x) + o(h). (2)
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for h → 0 and k a positive radial kernel.
The comparison of equations (2) and (1) shows that blurring u0 with a kernel kh is

for small h equivalent to applying the heat equation to u0 at scale h. These equations
have led to an image restoration method: We read in the paper [10] by Lindenbaum,
Fischer, and Bruckstein that Kovasznay and Joseph [7] introduced in 1955 the notion
that a slightly blurred image could be deblurred by subtracting a small amount of its
Laplacian. Numerically, this amounts to subtracting a fraction λ of the Laplacian of the
observed image from itself:

urestored = uobserved − λ∆uobserved.

Dennis Gabor studied this process and determined that the best value of λ was the one
that doubled the steepest slope in the image [10]. In other terms one can to some extent
enhance an image by reversing time in the heat equation:

∂u

∂t
= −∆u, u(0) = uobserved.

Numerically, this amounts to iterating substraction of its Laplacian from the observed
image. This operation can be repeated several times with some small values of h, until it
blows up. Indeed, the reverse heat equation is extremely ill-posed.

Since then one can list several attempts to stabilize the time-reverse heat equation or
to emulate it by another more stable partial differential equations

The Osher-Rudin ”shock filter”. The term of shock filter itself was framed by Rudin
in his PhD dissertation [13], inspired from the use of nonlinear filters in shock simulation
for P.D.E.’s. Osher and Rudin [12] proposed to sharpen a blurred image u0 by applying
the following equation:

∂u

∂t
= −sign(∆u)|Du|, with u(0,x) = u0(x)

where Du is the spatial gradient of u at x and |Du| its euclidean norm
√

u2
x + u2

y. This

equation can be seen as a pseudo reverse heat equation, where the propagation term Du
is tuned by the sign of the laplacian.

The Kramer Algorithm. In [8], Kramer defined a filter for sharpening blurred images.
The filter replaces the gray level value at a point x by either the minimum or the maximum
of the gray level values in a circular neighborhood B(x, h). This choice depends on which
is the closest to the current value. It was proved in [15] that the Kramer and the Osher-
Rudin filters share the same asymptotic behavior for regular 1D signal. In other terms,
they are infinitesimally identical in 1D. However this is not true in the case of images. In
that case, Guichard and Morel [5] proved that the PDE underlying the Kramer filter is

∂u

∂t
= −sign(D2u(Du,Du))|Du|.

Thus, the laplacian in the Rudin-Osher equation is replaced by a directional second deri-
vative of the image, D2u(Du,Du).
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Perona and Malik model Perona and Malik in 1987 [11] proposed to smooth what
needs to be smoothed, namely, the irrelevant homogeneous regions, and to deblur the
boundaries. With this in mind, the diffusion should look like the heat equation when |Du|
is small, but it should act like the inverse heat equation when |Du| is large. Here is an
example of a Perona–Malik equation:

∂u

∂t
= div(g(|Du|)Du), (3)

where g(s) = 1/(1 + λ2s2). It is easily checked that we have a diffusion equation when
λ|Du| ≤ 1 and an inverse diffusion equation when λ|Du| > 1. Thus the model mixes the
heat equation and the reverse heat equation.

Variational deblurring (case where the blurring kernel is known). Another
class of attempts covers the so called “variationalrestoration methods. Their principle is
to search for a function urestored which, once blurred by the heat equation or another
blurring kernel k, gives the original image uobserved. The Rudin–Osher–Fatemi algorithm
[14] is efficient when the observed image u0 is of the form k∗u+n, where k and the statistics

of the noise n are known. Given the observed image u0, one tries to find a restored version
u that minimizes the functional

ETV :=

∫

Ω

(

|Du(x)| + λ(k ∗ u(x) − u0(x))2
)

dx, (4)

where Ω denotes the image domain and the parameter λ controls the oscillation in the
restored version u. If λ is large, the restored version will closely satisfy the equation
k ∗u = u0, but it may be very oscillatory. If instead λ is small, the solution is smooth but
inaccurate. This parameter can be computed in principle as a Lagrange multiplier.

2. Neighborhood filters and NL-means

The principle of most denoising methods is quite simple: they replace the color of a
pixel with an average of the nearby pixels color. The variance law in probability theory
ensures that if N2 pixels with the same color plus some decorrelated noise are averaged,
then the noise in the average is divided by N . We shall not discuss all denoising methods
but concentrate on those which create the least artifacts. Among those, neighborhood
filters seem to be the most adequate as pointed out by several perceptual and structure
criteria in [2] and [3]. We shall call neighborhood filters all image filters which reduce the
noise by averaging similar pixels.

2.1. Local neighborhood filters

In order to denoise a pixel, it is better to average the color of this pixel with the nearby
pixels with similar colors and only them. This is exactly the technique of the sigma-filter.
This famous algorithm is generally attributed to J.S. Lee [9] in 1983 but can be traced
back to L. Yaroslavsky and the Soviet Union image processing school [18]. The idea is to
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average neighboring pixels which also have a similar color value. The filtered value by this
strategy can be written as

Y NFh,ρ u(x) =
1

C(x)

∫

Bρ(x)
e−

|u(y)−u(x)|2

h2 u(y)dy, (5)

where u(x) is the color at x and NFh,ρ u(x) its denoised version. Only pixels inside Bρ(x)
are averaged, h controls the color similarity and C(x) is the normalization factor. SU-
SAN [16] and the bilateral filter [17] make this process more symmetric by involving a
“bilateral”gaussian depending on both space and grey level. This leads to

SNFh,ρ u(x) =
1

C(x)

∫

Ω
e
−

|x−y|2

ρ2 e−
|u(y)−u(x)|2

h2 u(y)dy.

2.2. Non local averaging

The most similar pixels to a given pixel have no reason to be close to it. Think of
periodic patterns, or of the elongated edges which appear in most images. In 1999 Efros
and Leung [4] used non local self-similarities to synthesize textures and to fill in holes
in images. Their algorithm scans a vast portion of the image in search of all the pixels
that resemble the pixel in restoration. The resemblance is evaluated by comparing a whole
window around each pixel, not just the color of the pixel itself. Applying this idea to
neighborhood filters leads to a generalized neighborhood filter, the non-local means (or
NL-means) filter [2][3]. NL-means has a formula quite similar to the sigma-filter,

NLu(x) =
1

C(x)

∫

Ω
e−

(Gρ∗|u(x+.)−u(y+.)|2)(0)

h2 u(y) dy, (6)

where Gρ is the Gauss kernel with standard deviation ρ, C(x) is the normalizing factor,
h acts as a filtering parameter and

(Gρ ∗ |u(x + .) − u(y + .)|2)(0) =

∫

R2

Gρ(t)|u(x + t) − u(y + t)|2dt.

The formula (6) means that u(x) is replaced by a weighted average of u(y). The weights
are significant only if a gaussian window around y looks like the corresponding gaussian
window around x. Thus the non-local means algorithm uses image self-similarity to reduce
the noise.

3. Non-local deblurring

3.1. A non-local deblurring energy

Our proposition for deblurring follows from the discussion of the preceding sections.
Then, the new hypothesis we wish to introduce to justify a nonlocal deblurring method is
the following:
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Hypothesis The deblurred image must maintain the same similarities as the blurry
image.

It is clear that this hypothesis is a strong limitation since it forbids recreating by
deblurring new structures. On the other hand it permits to rebuild all structures provided
they left a trace, even tiny, in the blurry image. Thus given a slightly blurry image u0 we
want to define a deblurred version u which has the same self-similarities as u0. In order to
do so, define the new operator associated with u,

NL0u(x) =
1

C(x)

∫

Ω
w0(x,y) u(y) dy, (7)

with

w0(x,y) = e−
(Gρ∗|u0(x+.)−u0(y+.)|2)(0)

h2 .

This means that NL0u is obtained by applying the NL-means algorithm, but instead of
computing the weights with u they are computed with u0.

We are now in a position to define a non-local deblurring functional. Then we propose

ENL(u) :=

∫

(

(u(x) − NL0u(x))2 + λ(k ∗ u(x) − u0(x))2
)

dx. (8)

The first term can be viewed as a integral of the Laplacian of u with respect to a new
metrics defined on the image by the internal similarities of u0. Thus it forces u to maintain
the same coherence as u0 had. For this reason it can be viewed as a regularization term.
Let us see what link we can make for this term with more classical regularity term. If for
instance we had w0(x,y) = e−|x−y|2/2h2

(up to a normalization constant) and h is large
enough, the first term would boil down to the integral

∫

|∆(x)|2dx. The derivation of the
NL-means from such a variational principle was also commented in [6].

The second term introduces the hypothesized convolution kernel k. In the case where
no particular information is available, k is taken to be a gaussian. The parameter λ is the
usual Tikhonov weight parameter between the fidelity to the data term and the regularity
term.

3.2. The nonlocal reverse heat equation

The evolution equation associated to the deblurring process writes as a non locally
stabilized version of the reverse heat equation, namely

∂u

∂t
= −∆u + λNL0u, (9)

where λ plays the same role as before and therefore has the same name. This linear equation
can be by Chernoff’s principle implemented algorithmically by an alternate scheme. One
step of reverse heat equation is alternated with one step of nonlocal regularization. Thus
the numerical scheme can be described by the discrete iteration

un+1 = NL0(un) − c ∗ NL0(∆un) = NL0(un − c∆un) (10)

However, the NL-means filter is not fully symmetric and one can have w(x,y) 6= w(y,x)
because of the normalization factor C(x) in the definition of w(x,y). Thus the consistency
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of the above scheme with (9) is not guaranteed unless one symmetrizes the filter NL.
However, the alternate scheme (10) makes sense by itself and this is why it was used in all
experiments. The parameter c must be small enough to maintain stability CFL conditions.
Notice finally that the reverse heat equation and its implementation are linear, in contrast
with all above mentioned PDE’s.

4. Experiments

Figure 1 applies the alternate scheme to the Lena image. This figure shows how con-
trolling the growth of the Laplacian avoids a blow up of the edges.

Figure 2 compares the non local reverse heat equation with two classical equations,
the shock filter and the Perona Malik equation. The shock filter enhances the noise and
oscillations of the edges making the result unconvincing. The shock filter can be combined
with a mean curvature motion to avoid this effect as proposed in [1]. However, the mean
curvature motion filters out details and texture and rounds off corners. The Perona-Malik
enhances the main edges but filters the rest of the image. This makes this filter suitable
for edge detection but not for enhancement.

5. Conclusion

In this paper we made a quick review of PDE’s emulating a reverse heat equation for
image enhancement, when the blurring kernel is not known. In fact these PDE’s combine
a smoothing term with a reverse equation term but the reverse equation is not a real
reverse heat. In continuation we have shown that the smoothing term could be the NL-
means algorithm which preserves and enhances all image self-similarities. Thus alternating
this filter with a real reverse heat equation permits to control the noise and yields a
enhancement equation. Further work will concentrate on the mathematical analysis of the
consistency of a Chernoff iteration.
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