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Resumen

We consider the initial boundary value problem for the system of equations de-
scribing the nonstationary flow of an incompressible micropolar fluid in a domain Ω of
R3. Under hypotheses that are similar to the Navier-Stokes equations ones, by using
an iterative scheme, we prove the existence and uniqueness of strong solution in Lp(Ω),
for p > 3.

1. Introduction

The objective of the present work is to study the existence of strong solutions of the
evolution equations for the motion of incompressible micropolar (asymmetric) fluids in
a bounded or unbounded domain Ω ⊂ R3 having a compact C2-boundary. That is, the
domains we are considering include the the so called exterior domains. To describe these
equations, let T > 0 and QT ≡ Ω× (0, T ); then the system we will study is the following:





∂u
∂t

+ (u · ∇)u − (µ + µr)∆u + ∇η = 2µr rotw + f in QT ,

div u = 0 in QT ,
∂w
∂t

+ (u · ∇)w − (ca + cd)∆w + 4µrw

− (c0 + cd − ca)∇div w = 2µrrot u + g in QT ,

(1)
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together with the following boundary and initial conditions




u = 0 on ST ,
w = 0 on ST ,
u(x, 0) = u0(x) in Ω ,
w(x, 0) = w0(x) in Ω ,

(2)

where ST ≡ ∂Ω × (0, T ). The vector-valued functions u = (u1, u2, u3), w = (w1, w2, w3)
and the scalar function η denote respectively the velocity, the angular velocity of rotation
of particles and the pressure of the fluid. The vector-valued functions f and g denote
respectively the external sources of linear and angular momentum. The positive constants
µ, µr, c0, ca and cd are viscosities-type coefficients satisfying the following inequality c0 +
cd > ca.

For the derivation and physical discussion of equations (1)-(2) see Petrosyan [15],
Condiff and Dalher [1], Eringen [4], [5] and Lukaszewicz [9]. We observe that this model
of fluid include as particular case the classical Navier-Stokes equations, which has been
widely studied (see for instance the books by Ladyzhenskaya [6] or Temam [24], and the
references therein). In this case, since µr = 0, equations (1) and (2) decouple.

It is appropriate to recall earlier works on the initial-value problems closely related to
(1)-(2) in order to clarify the intended contribution of the present work.

Let us firstly consider the situation when Ω is a bounded regular domain. In this case,
Lukaszewicz [9] established for a restricted class of initial data, the existence of weak and
strong global solutions using, in both cases, an iterative linearized scheme together with a
fixed point result. For initial data similar to the case of the classical Navier-Stokes equa-
tions, by applying the spectral Galerkin method, Rojas-Medar & Boldrini [17] proved the
global existence and uniqueness of weak solutions in the two-dimensional case; existence
of the local and global in time strong solution was obtained respectively by Rojas-Medar
in [18] and by Ortega-Torres and Rojas-Medar in [13]. Ortega-Torres and Rojas-Medar,
following the arguments given by Serrin in [21], also considered the uniqueness of weak
solution in [14]. In [19], Rojas-Medar obtained the convergence rates associated to the
approximate solutions constructed by the Galerkin method. The existence of reproductive
solution (so called periodic weak solution) for the previous system was proved in [17].
Recently, Reséndiz and Rojas-Medar [16] have proved the existence of weak solution in
a smooth time dependent domain. By using and interactive approach Rojas-Medar and
Ortega-Torres [20] show the existence and uniqueness of the strong solutions in bounded
domains in the L2-context. The existence and uniqueness of periodic strong solutions was
done in [10] using the Galerkin method. Yamaguchi [25] also studied the problem (1)-(2)in
bounded domains using the semigroup approach in Lp, 1 < p < ∞; he shows the existence
of global strong solutions for small data.

The case of unbounded domains Ω is less studied. When Ω is an exterior domain, for the
related model of the magneto-micropolar fluid, existence of a stationary weak solution was
studied by Durán et al. in [2], while the existence of reproductive solution was established
in [3]. For two-dimensional unbounded domains, one can look at the word by Lukaszewicz
an Sadowski [12].

In the present work, as we said previously, we are interested in the flow of micropolar
fluids in bounded ou unbounded domains of R3 with compact C2-boundaries. By using
an iterative procedure we will prove the existence and uniqueness of strong solutions in

2



Micropolar fluids in domains of R3

Lp(Ω), for any p > 3. Specifically, we will prove the following (local) existence result of
strong solutions.

Theorem 1.1 Let Ω ⊂ R3 have a non-void regular boundary ∂Ω in the sense of Solonnikov

and let p > 3. Assume that u0(x) ∈ W
2− 2

p (Ω), u0|ST
= 0, div u0 = 0, w0(x) ∈ W

2− 2
p

p (Ω),
w0|ST

= 0, f ,g ∈Lp(QT ).
Then there exists T1 ∈ (0, T ] such that problem (1)-(2) has a unique solution (u,w, η)

satisfying u ∈ W 2,1
p (QT1), ∇η ∈ Lp(QT1), w ∈ W 2,1

p (QT1).

In this statement, we used the classical notations for the Sobolev-type spaces W k
p (Ω) and

W 2,1
p (QT ).
The present work is organized as follows: in Section 2 we fix the notations, and state

preliminaries results that will be useful in the rest of the paper. More precisely, we state the
existence, the uniqueness and regularity (a priori estimates) for two linear problems closely
related to (1)-(2). We also describe in this section the iterative scheme that construct
the approximate solutions. In Section 3, we obtain estimates in several norms for such
approximate solutions. Finally, in Section 4, we show that the approximate the solutions
converge to a strong solution of our original problem.

We remark that, as it is usual in this kind of context to simplify the notations, we
will denote by c, C0, M0 and so on generic finite positive constants depending only on Ω
and the other fixed parameters of the problem (like the initial data). That is, they may
have different values in different expressions. In a few points to emphasize the fact that
the constants are in fact different, we use C1, C2, ..., M1,M2. · · · and so on.

2. Preliminaries and iterative scheme

For any t ∈ (0, T ], we will denote Qt = Ω × (0, t). As previously said, we will use
classical notations for the Sobolev-type spaces; we will also use freely the standard results
for such spaces. Here we just recall that the restriction of a function in W 2,1

p (QT ) on
the hyperplane t = constant belongs for ∀ t ∈ [0, T ] to the Slobodetskii-Besov space

W
2− 2

p
p (Ω) and depend continuously on t in the norm of W

2− 2
p

p (Ω). Moreover, it holds that

‖u(·, t)‖
W

2− 2
p

p (Ω)
≤ ‖u(·, 0)‖

W
2− 2

p
p (Ω)

+ ĉ‖u‖
W 2,1

p (QT )
, (3)

where the constant ĉ does not depend on t ∈ [0, T ]. For more details of the Slobodetskii-
Besov space see [8], for instance.

Next, we recall some results associated to two linear problems closely related to (1)-(2).
The first result is proved in Solonnikov [23] and is the following:

Lemma 2.1 Let F (x, t) ∈ Lp(QT ) and u0(x) ∈ W
2− 2

p
p (Ω) with u0|ST

= 0 and div u0 = 0,
then the following problem

ut − (µ + µr)∆u +∇η = F,
div u = 0,
u|ST

= 0,
u(0) = u0(x)
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has a unique solution u ∈ W 2,1
p (QT ), η ∈ W 1,0

p (QT ) (η is unique up to a constant,)
satisfying

‖u‖
W 2,1

p (QT1
)
+ ‖∇η‖Lp(QT1

) ≤ K1(T1)(‖u0‖
W

2− 2
p

p (Ω)
+ ‖F‖Lp(QT1

)),

where K1(·) is an increasing function of T1 ∈ (0, T ]

The following result is a special case of the result for parabolic system given in [22].

Lemma 2.2 Let G(x, t) ∈ Lp(QT ) and w0(x) ∈ W
2− 2

p
p (Ω) with w0|ST

= 0, then the
following problem

wt − (ca + cd)∆w − (c0 + cd − ca)∇div w + 4µrw = G
w|ST

= 0,
w(0) = w0(x)

has a unique solution w ∈ W 2,1
p (QT ), satisfying

‖w‖
W 2,1

p (QT1
)
≤ K2(T1)(‖w0‖

W
2− 2

p
p (Ω)

+ ‖G‖Lp(QT1
)),

where K2(·) is an increasing function of T1 ∈ (0, T ].

Iterative Scheme:
Next, we describe the iteration scheme used to construct approximate solutions of our

problem.
Take

u(0) = 0, w(0) = 0

and for k = 1, 2, 3, . . . recursively take {u(k), η(k)} and {w(k)} respectively as the solutions
of problems

u(k)
t − (µ + µr)4u(k) +∇η(k) = f + 2µr rot w(k−1) − (u(k−1) · ∇)u(k−1),

div u(k) = 0,

u(k)|ST
= 0,

u(k)(0) = u0(x)

and
w(k)

t − (ca + cd)4w(k) − (c0 + cd − ca)∇ div w(k) + 4µrw(k)

= g+2µr rot u(k−1) − (u(k−1) · ∇)w(k−1),

w(k)|ST
= 0,

w(k)(0) = w0(x).

3. Estimates of the approximate solutions

To obtain the required estimates for the sequence (uk, ηk,wk), we start by defining:

Φ(k)(T1) = ‖u(k)‖
W 2,1

p (QT1
)
+ ‖w(k)‖

W 2,1
p (QT1

)
+ ‖∇η(k)‖Lp(QT1

), (4)

for 0 < T1 ≤ T
Then, we can prove the following two lemmas.
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Lemma 3.1 The elements of the sequence {w(k)} satisfy for any T1 ∈ (0, T ] the following
estimate:

‖∇w(k−1)‖Lp(QT1
) ≤ C(‖w0‖

W
2− 2

p
p (Ω)

+ aT
1−a
ap

1 Φ(k−1)(T1) + T δ1Φ(k−1)(T1)),

where C is independent of T1 ∈ (0, T ] and

a =
p− 3
2p− 3

and δ1 = (1− 1
p
)(1− 3

p
)(1− a) +

1− a

p
.

Remark 3.2 Analogous result is valid for {u(k)}.

Lemma 3.3 Let 0 < T1 ≤ 1. Then, there is a constant α > 0 such that

‖(u(k−1) · ∇)w(k−1)‖Lp(QT1
) ≤ C[‖u0‖2

W
2− 2

p
2

p (Ω)

+ ‖w0‖2

W
2− 2

p
2

p (Ω)

+ Tα(Φ(k−1)(T1))2].

where C is independent of T1 ∈ (0, T ].

Next, we prove the boundness of the sequence {u(k), η(k),w(k)}.

Lemma 3.4 For sufficiently small T1 ∈ (0, T ], the sequence {u(k), η(k),w(k)} is bounded
in W 2,1

p (QT1)× Lp(QT )×W 2,1
p (QT1).

4. Proof of Theorem 1.1

Setting u(n,s)(t) = u(n+s)(t)−u(n)(t), η(n,s) = η(n+s)−η(n) and w(n,s) = w(n+s)−w(n),
we have

u(n,s)t− (µ + µr)4u(n,s) +∇η(n,s) = F (n,s),

div u(n,s) = 0,

u(n,s)|ST
= 0,

u(n,s)(0) = 0,

(5)

where

F (n,s) = 2µr rot w(n−1,s) − (u(n−1,s) · ∇)u(n+s−1) − (u(n−1) · ∇)u(n−1,s). (6)

Also

w(n,s)
t − (ca + cd)4w(n,s) − (c0 + cd − ca)∇ div w(n,s) + 4µrw(n,s) = G(n,s),

w(n,s)|ST
= 0,

w(n,s)(0) = 0,
(7)

where

G(n,s) = 2µr rot u(n−1,s) − (u(n+s−1) · ∇)w(n−1,s) − (u(n−1,s) · ∇)w(n−1). (8)

5



J.L. Boldrini, M. Durán, M.A. Rojas-Medar

We then are able to prove that

‖F (n,s)‖p
Lp(Qt)

≤ c

∫ t

0
‖u(n−1,s)‖p

W 2,1
p (Qτ )

dτ + (‖u0‖
W

2− 2
p

p (Ω)

+ĉ‖u(n−1+s)(τ)‖
W 2,1

p (Qt)
)p

∫ t

0
ĉp‖u(n−1,s)‖p

W 2,1
p (Qτ )

dτ

+(‖u0‖
W

2− 2
p

p (Ω)
(9)

+ĉ‖u(n−1+s)(τ)‖
W 2,1

p (Qt)
)p

∫ t

0
ĉp‖u(n−1,s)‖p

W 2,1
p (Qτ )

dτ.

‖G(n,s)‖p
Lp(Qt)

≤ c(‖∇u(n−1,s)‖p
Lp(Qt)

+ ‖(u(n−1,s) · ∇)w(n−1)‖p
Lp(Qt)

+‖(u(n+s−1) · ∇)w(n−1,s)‖p
Lp(Qt)

≤ c

∫ t

0
‖u(n−1,s)‖p

W 2,1
p (Qτ )

dτ + c(‖w0‖
W

2− 2
p

p (Ω)

+ĉ‖w(n−1)(τ)‖
W 2,1

p (Qt)
)p

∫ t

0
‖u(n−1,s)‖p

W 2,1
p (Qτ )

dτ (10)

+c(‖u0‖
W

2− 2
p

p (Ω)

+ĉ‖u(n+s−1)‖
W 2,1

p (Qt)
)p

∫ t

0
‖w(n−1,s)‖p

W 2,1
p (Qτ )

dτ.

From estimates (9)-(10) and Lemma 3.4, we conclude that for t ∈ [0, T1] and p > 3, if
we call

Ψ(n,s)(t) = ‖u(n,s)‖
W 2,1

p (Qt)
+ ‖w(n,s)‖

W 2,1
p (Qt)

+ ‖∇η(n,s)‖Lp(Qt), (11)

we then have

Ψ(n,s)(t) ≤ c

(∫ t

0
Ψ(n−1,s)(τ)p

) 1
p

.

Therefore, [
Ψ(n,s)(t)

]p
≤ cp

∫ t

0

[
Ψ(n−1,s)(τ)

]p
dτ, (12)

and consequently Ψ(n,s)(t) → 0 as n →∞, ∀ t ∈ [0, T1].
In particular, since W 2,1

p (QT1) and Lp(QT1) are Banach spaces, there exist u,w ∈
W 2,1

p (QT1) and η ∈ Lp(QT1) such that

un → u strongly in W 2,1
p (QT1),

wn → w strongly in W 2,1
p (QT1),

ηn → η strongly in Lp(QT1).

The next step is to take the limit as n → +∞ in the approximate equations in the
iterative scheme. However, once the above convergences have been established, this is
standard and we obtain that u,w, η is a strong solution of the problem (1)-(2).
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We need only to consider the uniqueness of the solution in order to complete the proof
of Theorem. For this, suppose that there exists another solution u1,w1, η1 of (1) and (2)
with the same regularity as stated in the theorem. Then, define

U = u1 − u, W = w1 −w, P = η1 − η,

and observe that these auxiliary functions verify a set of equations similar to (5)-(7).
Repeating the arguments used to obtain (12), using the known regularity of the solutions,
we get for θ(t) = ‖U‖p

W 2,1
p (Qt)

+ ‖W‖p

W 2,1
p (Qt)

+ ‖P‖p
Lp(Qt)

an inequality of the following
type

θ(t) ≤ c

∫ t

0
θ(τ)dτ

which by Gronwall’s inequality implies that U = 0, W = 0, P = 0 and thus the uniqueness
of our strong solutions.
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