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Abstract

We study the existence of monochromatic planar geometric k-factors on sets of red
and blue points. When it is not possible to find a k-factor we make use of auxiliary
points: white points, whose position is given as a datum and which color is free; and
Steiner points whose position and color is free. We present bounds on the number
of white and/or Steiner points necessary and/or sufficient to draw a monochromatic
planar geometric k-factor.
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1 Introduction

We consider two disjoint sets R and B of red points and blue points in the
plane, respectively, such that no three points of R ∪ B lie on the same line.
For a survey on discrete geometry on red and blue points in the plane we refer
to [2].

Given a set of points S in the plane, we call a geometric k-factor of S to
a planar k-regular graph embedded in the plane whose vertices are the points
of S and whose edges are straight-line segments. A geometric matching of S
is a geometric 1-factor. Given two sets R and B of red and blue points, we
calla geometric k-factor of R∪B to be monochromatic it its edges join points
with the same color.

From now on, for the sake of simplicity we will assume the k-factors to be
geometric and monochromatic.

We look for monochromatic planar geometric k-factors on sets of red and
blue points. In most of the cases it will be necessary to consider auxiliary
points: white points, whose position is given as a datum and which color is
free; and Steiner points whose position and color is free. We present bounds
on the number of white and/or Steiner points necessary and/or sufficient to
draw a monochromatic planar geometric k-factor.

Through this paper we will make a wide use of the following result [1],

Theorem 1.1 [1] Let R∪B a set of n red and blue points. Then the following
two statements hold:

(i) There exists a monochromatic matching which covers at least 0.8571n
points of R ∪ B. There exists an algorithm for finding such a matching
in O(n2) time.

(ii) There exists a configuration R ∪ B for which every monochromatic geo-
metric matching covers at most 0.9871n points of R ∪ B.

2 Monochromatic matchings

There is an immediate extension of the Theorem 1.1 to monochromatic perfect
matchings when the use of Steiner points is allowed,

Corollary 2.1 Let R ∪B a set of n red and blue points. Then (1− 0.8571)n
Steiner points are always sufficient in order to obtain a monochromatic perfect
matchings. Moreover there are sets that require at least (1− 0.9871)n Steiner
points.
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If we allow only white points, we have the following result,

Theorem 2.2 Let R∪B a set of n red and blue points. Then n white points
are always sufficient and sometimes necessary in order to obtain a monochro-
matic perfect matching.

Proof (Sketch) First we proof the sufficient condition. It is well-known
[3] that if |R| = |B|, then there exists a non-crossing bichromatic geometric
planar perfect matching on R ∪ B. So we connect each colored point with a
white one and assign it the corresponding color.

A situation where n white points are necessary is shown in Figure 1. �

n − 1 white points

Fig. 1. Any monochromatic segment joining two colored point isolate an odd number
of points of the other color.

Finally, if we combine white and Steiner points we obtain the following
result,

Theorem 2.3 Given a set of n red and blue points and k a positive integer,
then n− k white ones and �(1/3 + 0.15)k� Steiner points are always sufficient
in order to obtain a monochromatic perfect matching.

Proof (Sketch) Let S be the set of the colored and white points. We look for
a pair of consecutive red or blue points on CH(S), or for a white point with a
colored neighbor. When we find one of such pairs we match them and remove
the points from S, update CH(S) and repeat the procedure. If CH(S) is made
of alternate red and blue points we make use of Steiner points. Acting in this
way we reduce the number of points until either there is the same number of
colored points than of white points in S and we apply Theorem 2.2, or all the
white points have been removed, and we make use of Corollary 2.1 to obtain
a matching. �
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3 Monochromatic k-factors

We focus now in construct a k-factor of R∪B instead a perfect matching, by
making use of Steiner and/or white points. We begin with a result related to
2-factors and Steiner points,

Theorem 3.1 Let R∪B a set of n red and blue points. �n/2� Steiner points
are always sufficient and sometimes necessary to obtain a 2-factor. This 2-
factor can be found in O(n log n) time.

Proof (Sketch) Regarding the necessary condition it suffices to consider the
colored points on alternate convex position. Any segment matching two blue
points left a red one isolate, requiring at least one Steiner point to join it to
the next red point.

To construct a 2-factor we sort the point the points of R and B lexico-
graphically by polar angle and distance from a point inside their convex hulls
and construct two cycles CR and CB by making use of Steiner points, drawn
as squares in Figure 2 �

p p

a) b)

Fig. 2. a) Polygons PR and RB; and b) cycles CR and CB.

If we consider white points instead Steiner ones, the following statement
holds,

Theorem 3.2 Let R ∪ B a set of n red and blue points. 2n white points are
always sufficient and sometimes necessary to obtain a 2-factor.

Proof. Regarding to the necessary condition it suffices to consider the points
on a circle, being the white points on a hemisphere and the colored points
alternated in the opposite one, as it is shown in Figure 3.

To prove that 2n white points are always sufficient we make use of the
Equitable Subdivision Theorem [4], that establishes that we can divide the
plane in n convex sets containing just a colored and two white points. The
union of the triangles obtained gives rise to the 2-factor. �
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Fig. 3. To join two colored points left a third isolated, so the 2-factor must be made
including two white points.

Theorem 3.2 cannot be extended to 3-factors, because points can be in
convex position, as we saw in Figure 3, and any four points will give rise to an
K4 with self-intersections. The same happened when k = 4 or 5. But, what
happened if we consider Steiner points? There is one obvious result

Theorem 3.3 Let R ∪ B a set of n red and blue points. O(n) Steiner points
are always sufficient and sometimes necessary to obtain a k-factor, with 1 ≤
k ≤ 5.

Nevertheless the constants involved can be reduced with a more careful
studying going down to n Steiner points for 3-factors, 5n/3 for 4-factors, and
26/3 for 5 factors.

4 Open problems

The main problems that leave unsolved are related to the combine use of white
and Steiner points to obtain k-factors. The only result in this sense concerns
to 2-factors, and even in this case it would be interesting to study if it possible
to reduce the number of Steiner points involved.
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