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Abstract

The following problem of rectilinear routing is studied: given pairs of points on a surface and
a set of permissible orthogonal paths joining them, whether is it possible to choose a path for
each pair avoiding all intersections. We prove that if each pair has one or two possible paths to
join it, then the problem is solvable in quadratic time, and otherwise it is NP-complete. From
that result, we will obtain that the problem of finding a surface of minimum genus on which the
wires can be laid out with only one bend is NP-hard. © 2002 Elsevier Science B.V. All rights
reserved.
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1. Introduction

Orthogonal layouts are used in many applications of computer science as circuit
schematics, data flow diagrams in Software Engineering or entity relationships diagrams
[1,2]. This fact has attracted the attention of many authors and numerous results have
been obtained about orthogonal drawings [3,6,9-12].

The problem of connecting pairs of points on the plane using orthogonal paths with
at most one bend was studied by Raghavan et al. [11]. A pair of points to be connected
is called a wire. They develop an O(m?) algorithm to determine whether or not a set
of m point pairs can be wired in this manner on the plane. The paths are not allowed
to cross, hence most wire sets cannot be wired in a rectilinear fashion on the plane. In
this case, the authors proved that the problem of determining a maximum cardinality
subset of wires which can be laid out in a single bend fashion on the plane is NP-hard.
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In order to extend the results of [11] to realistic constrains on circuit routing, some
other works have appeared [4,7]. In many applications, the connections are constructed
using more than one layout. This fact together with the results about the plane lead to
the problem on other surfaces.

Observe that, as it is pointed out in [8] layout problem is a multiobjective optimiza-
tion problem, and there are many cost functions that are of interest in layout. Among
those functions we can cite two: via count and the maximum number of bends per
wire. A via is a change of layer in a wire and usually introduces electrical instabilities
that decrease the yield, additionally, the use of vias increase the difficulties of some
manufacturing process. And a bend in a wire has adverse effects on the delay and other
electrical properties of the wire. Although, vias and bends are related, in general they
do not need to be correlated.

To allow only one bend for each wire has in addition some extra advantages on
other cost functions, since wires with only one bend have always minimum length and
all wires are represented in a minimum area. But, in this case, vias are unavoidable.
In some sense, we address here the problem of minimizing vias in the following way,
each time that two wires intersect, we can avoid that intersection by introducing a via.
As far as a via introduces a hole in a printed board that presents typically two faces
we can model our problem as a single bend wiring on a surface, of course to minimize
the number of vias is equivalent to asking for the problem of minimizing the genus
of the surface where we are representing our pairs of points. And we will prove that
this is a NP-hard problem.

This paper is structured in the following way. In the next section, we will model in
an adequate way our problem. Then, we will prove in the third section that if we use
only two path between each pair of points, then the problem is solvable in polynomial
time. The fourth section is devoted to the general problem, and we include a section
with some concluding remarks and open problems.

2. Modeling single bend wiring on surfaces

First of all, an adequate representation of a surface of genus ¢ is needed to connect
pairs of points orthogonal paths, namely, a system of orthogonal lines must be defined
on the surface. The planar representation of the surface of genus 1 (the torus) is a
rectangle whose parallel sides are identified. This rectangle will be the external rectan-
gle of the standard orthogonal surfaces that are constructed as follows: The standard
orthogonal surface of genus g [6] is obtained by the deletion of g — 1 small rectan-
gles or windows in the interior of the external rectangle (different positions for the
same number of windows lead to homeomorphic surfaces). The sides of all rectangles
(external rectangle and windows) are parallel and the opposite sides of each window
are also identified. In this way, two distinguished directions are defined, the horizontal
(=direction of the parallels) and the vertical direction (= direction of the meridians),
respectively. Note that these directions are parallel to the sides of the external rectangle
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Fig. 1. The standard orthogonal surface of genus ¢ and its orthogonal system.
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Fig. 2. The eight possible single bend wirings on a surface of genus g.

(see Fig. 1). Hence, in order to obtain such a representation of a surface it is necessary
to fix one parallel and one meridian forming the sides of the external rectangle. They
are called external parallel and meridian.

We can fix a coordinate system in which the axes are the external parallel and
meridian, x- and y-axis respectively, and the origin is the point in the bottom left-hand
corner of the standard orthogonal surface. In this way, any point or window on the
surface may be specified by its x- and y-coordinates. Notice that a surface is defined
by the number and positions of its windows.

An orthogonal path is made up of horizontal and vertical segments. These paths are
called rectilinear wirings or layouts. The number of bends of each rectilinear path can
be different, but, as we mentioned in the Introduction, from a practical point of view,
there are many applications where it is necessary to limit to one the number of them
on each rectilinear connection. When the wiring is restricted such that no wire has
more than one bend, it is called a single bend wiring.

Given a pair of points on the plane, there are at most two ways to wire them
using only one bend, lower and upper wirings (see Fig. 2 (0,0,0) and (0,0,1));
Fig. 2(0,*,*) corresponds to the possible single bend wirings for two points on the
cylinder. In general, there are at most eight wirings connecting a wire on a surface
of genus g > 1 using only one bend (Fig. 2). But, it is very common to face situ-
ations where no all possible wirings are permitted, typically by the situation of some
components that obstruct those wirings.
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Each single bend wiring is identified by three Boolean variables (vc,hc,d) in the
following way: The variables vc and k¢ indicate the possible intersection between the
rectilinear layout and the external parallel and meridian respectively. Set ve (hc) to true
if and only if the single bend wiring intersects with the external parallel (meridian).
For each single bend wiring, the variable d indicates if the segment adjacent to the
upper point wire is horizontal or vertical. Set d to true if and only if this segment is
horizontal. Fig. 2 shows the eight possible wirings and the corresponding values of the
variables. The single bend layouts with vc or /¢ being true are called essential wirings.

Below, we pose the general problem studied in this article, distinguishing whether
the connections are forced to be constructed along fixed layouts or all the wirings are
permitted.

Single bend wiring on surfaces with fixed layouts (n-sBws):

Instance: Surface &, a wire set #~ on . and at most n possible single bend wirings
for each wire.

Question: Can ¥ be single bend wired on % using the given wirings and without
intersection between the layouts of different wires?

For the sake of simplicity, a wire with n possible single bend wirings will be called
an n-wire.

Single bend wiring on surfaces (sBws):

Instance: Surface & and a wire set ¥/ on %.

Question: Can ¥~ be single bend wired on . without intersection between the
layouts of different wires?

As the maximum number of single bend wirings on any surface is eight, for the sBws
problem, each wire can be single bend wired using, exactly eight different layouts.

In Section 3, we show that the problem 2-sBws can be solved efficiently for arbitrary
surfaces. The algorithm has time complexity O(m?), where m is the number of wires in
the instance. In Section 4, we prove that the n-sBws problem for n > 3 is NP-complete
for arbitrary surfaces. Too, the NP-completeness of the sBws problem is established and,
hence, finding a surface of minimum genus on which a given wire set can be single
bend wired is NP-hard.

3. Feasibility of 2-sBws

In this section, we outline how to determine in polynomial time whether or not a
given 2-wire set ¥~ on a surface & of genus g can be single bend wired feasibly (i.e.,
without intersections). Raghavan et al. [11] solved this problem on a plane layer, where
at most two possible single bend wirings for each wire exist. On surfaces of higher
genus, the number of possible layouts is increased. On the cylinder there are at most
four possible layouts and on the torus and surfaces of higher genus there are at most
eight layouts for each wire. In these cases, there are more than a single possibility for
choosing the two allowed layouts. The inspection of the intersection of layouts on the
plane considered in [11] can be applied only in few cases and new cases appear.
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Fig. 3. A wire on the torus with two prefixed layouts and the assignment of truth values for each layout.

We consider all m(m — 1)/2 pairs of wires in %", where m is the cardinality of # .
For each pair we have three options:

(a) The two wires cannot be laid out feasibly. Then, the wire set ¥~ cannot be single
bend wired feasibly on the surface .&. If this case occurs for a pair, the answer
for the 2-sBws given instance is no.

(b) There are no intersections between layouts of two wires.

(c) There are intersections between some layouts of both wires but there are one or
more feasible combinations of layouts.

The information of a 2-sBws instance can be shown as a Krom formula which is

satisfiable if and only if the corresponding wire set can be laid out (without intersection)

in single bend fashion. A Krom formula (or 2-CNF formula) is a Boolean expression
which is in conjunctive normal form (CNF) and contains at most two literals per
clause.

The codification process in a logic formula is done as follows: we associate a Boolean
variable u; to each wire w; in #". The truth value assigned to the variable corresponds
to the layout of the wire, say true for the layout with smallest label (in the lexico-
graphic ordering) (vc, he,d), now called the lower layout, and false for the layout with
biggest label (the higher layout). An example is shown in Fig. 3. vc, hc and d are the
variables associated to the layout, as described in the introduction (see Fig. 2). Note
that this assignment is compatible with the assignment done for the plane in [11] and, in
this case, the words higher and lower refer to the geometrical location of the
layouts.

Each interaction between two wires can be turned into a Boolean formula inspecting
the possible crossings between layouts. There are sixteen classes of interaction:

(1) u; A ;. Infeasibility. This corresponds to case (a) mentioned above.

(2) w; vV ;. No intersections. This corresponds to case (b) mentioned above.

(3) w;. The lower layout for w; does not cross any layout from w;, but the higher
layout for w; is infeasible.

(4) u;. Symmetric to case (3) when i is replaced by ;.

(5) u;. Symmetric to case (3) when the lower layout is replaced by the higher layout.

(6) u;. Symmetric to case (4) when the lower layout is replaced by the higher layout.

(7) w;Vvi;. The lower layout for w; does not intersect any layout of w;, and the higher
layout for w; does not cross any layout of w;. The higher layout of w; and the
lower layout of w; can be laid out simultaneously.
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Fig. 4. All possible classes of interaction up to symmetries. The discontinuous lines correspond to the index ;.

(8) u; Vu;. Symmetric to case (7) when i is replaced by j.
(9) (u; Vuy) A(a; Vig). Two possible connections. The higher layout for one of the
two wires and the lower layout for the other one.
(10) w; Au;. Only the lower layout for w; and the higher layout for w; are feasible
simultaneously.
(11) u; Au,. Symmetric to case (10) when i is replaced by ;.
(12) w; Vu;. The lower layouts are both feasible and there are intersection between the
higher layouts.
(13) w; vu;. The higher layouts are both feasible and there are intersection between the
lower layouts.
(14) w; Aw;. Only the lower layouts are feasible simultaneously.
(15) w; Au;. Only the higher layouts are feasible simultaneously.
(16) (u; Vu;)A(d; Vu;). In this case there are two possibilities. Either both wires have
to be laid out using the higher layout or using both the lower layout.
Note that classes (1)—(9) of interactions can appear on the plane [11] and (1)—(16)
can appear on the cylinder and on surfaces of higher genus. Note also that these
sixteen clauses are all possible Boolean 2-clauses with at most two variables
(Fig. 4).
Each pair of points can be connected using eight possible single bend wirings on
a surface of genus g (Fig. 2). Then, we have 28 possible choices of two layouts for
each 2-wire. Two pairs of points can be placed in 72 different relative positions, up to
vertical symmetries between the pairs. Thus, there are 56448 (28 x 28 x 72) different
pairs of 2-wires.
Using a simple computer routine, all the 56448 different pairs of wires on a surface
of arbitrary genus have been turned into Boolean formulae. Note that a same pair can
produce different clauses on different surfaces (see Fig. 5).
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Fig. 5. Different clauses for the same wiring on different surfaces.

When all the interactions are turned into Boolean formulae, the result is a Krom
formula with at most two clauses in each relation.

Theorem 1. The 2-sBws problem is solvable in quadratic time.

Proof. The m(m — 1)/2 interaction relations between pairs of 2-wires determine the
same number of Boolean formulae which must be satisfied simultaneously. Then, the
conjunction of all these formulae corresponds to the entire set of pairs of 2-wires.
Obviously, it is possible to exclude those formulae corresponding to case (2), because
they are tautologies. This gives a Krom formula containing at most O(m?) clauses.
One can determine whether a Krom formula is satisfiable in linear time in the number
of clauses and find within the same asymptotic time a satisfying truth assignment if
one exists [5].

Hence, in our case it can be decided in O(m?) time whether there exists a satisfying
truth assignment and in the affirmative case such an assignment can be found in O(m?)
time.

If a satisfying truth assignment can be found, it is a simple task to construct the
equivalent wire layout for the wire set #". [

4. Single bend wires on surfaces of minimum genus

Given a wire set, Raghavan et al. [11] developed an O(m?) algorithm to determine
whether or not a set of m wires can be single bend wired on a plane layer. For those
wire sets that cannot be single bend wired on the plane, the question of determining
a maximum cardinality subset such that all their wires can be laid out in single bend
fashion on the plane is considered. These authors established the NP-hardness of this
second problem.

Another option for such wire sets could be to introduce vias or layouts on surfaces
of higher genus. As we have indicated in the introduction, there are at most two ways
to wire a pair of points on the plane using only one bend. On an arbitrary surface, for
a wire there are eight possible single bend layouts.
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Fig. 6. (a) Clause assembly o, (b) variable wire .

In the previous section, we have seen that it is possible to solve in polynomial time
single bend wiring on surfaces when only two layouts for each wire are permitted
(2-wires). Now, we will observe that the situation changes drastically if three or more
wiring are permitted for each wire.

In this section, we prove the completeness of two problems: n-sews for n > 3 and
sBws. Note that the result for one problem is not an immediate consequence of the
other one because, for each wire there are at most n possible wirings for the n-sBws
problem and exactly eight wirings for the sBws problem. Observe that an optimization
problem related with sBws is to find a surface of minimum genus on which the wires
can be laid out with only one bend. Obviously, if we can give an answer to this
problem in polynomial time, we will know to solve the sBws problem in polynomial
time. Hence, the problem of determining the minimum genus of a surface on which a
wire set can be laid out in single bend fashion is NP-hard.

Theorem 2. The 3-sBws problem is NP-complete.

Proof. 3-sBws is readily seen to be solvable in nondeterministic polynomial time, i.e.,
3-sBws is in NP. Thus, in order to prove the NP-completeness of the problem 3-sBws, it
suffices to transform an NP-complete problem to ours. In order to do this we consider
the well-known NP-complete problem 3-SATISFIABILITY (3-saT). Let U = {uy,ua,...,up}
be a set of variables and let C = {ci,¢2,...,¢c,} be a set of clauses making up an
arbitrary instance # of 3-satr. Corresponding to #, we construct a 3-sBws instance J~
as follows:

Step 1. Each clause ¢; will be represented by a clause assembly o;, shown in
Fig. 6(a) (for each wire, only the permitted layouts are pictured). The three literals of
each clause are indexed following the enumeration of its corresponding variables (it
can be supposed no clause contains the same complemented and non-complemented
variable). With this order, let /!, I and /! be the lowest, medium and highest index
literals of the clause ¢;, respectively. The literal wires !, f and p! of the clause
assembly o; are associated to //, /" and /?, respectively.
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Fig. 7. Variable wire ; and literal wires f;.

Place the clause assemblies «j,...,o, from top to bottom of the surface such that
e if i < j then the literal wires B!, B and B! are on the left of [3_’, B} and [)’_’-’;
e there is no any meridian intersecting literal wires of different clauses.
The position of the lowest points of /, ™ and " will be determined in Step 3.

For each clause in £, the genus of the surface of 7 is increased 6 units.

Step 2. Each variable u; will be represented by a wvariable wire w;, shown in
Fig. 6(b). Let ¥ and ' be the upper and lower points of the variable wire, re-

spectively. Place the variable wires wi,...,®, under the clause assemblies, from w;
to w,, such that
e w/ is on the left of B and w/ is on the right of f, where i=1,..., p;

e w; and w; (i # j) do not intersect.

Step 3. Finally, we fix the position of the lowest points of the literal wires as shown
in Fig. 7. The different situations depend on the type of literal wire, i.e., f/, p” or p",
and whether or not the corresponding literal is a complemented one. In any case, the
lowest points of the literal wires are placed under their respective variable wires. The
genus of the surface is increased 2 units for each literal wire to place, hence 6g units.

In order to place these wires as Fig. 7 determines, the genus of the surface is in-
creased to avoid intersections between literal wires and the posterior clauses assemblies
and anterior variables wires. If literal /; belongs to the clause c; then the genus of the
surface, that is 12¢ + 1, is increased 2(¢ — j) units to avoid intersections between f3;
and the clause assemblies o;1,...,0,. In addition, it is necessary to add 4(i — 1) units
corresponding to w1,...,m;_1.

This completes the construction of the 3-sBws instance < corresponding to £. It
is easily verified that the genus of the surface ¥ and the number of wires in 7~
constructed is polynomial in p and gq.
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Suppose that Z is satisfiable. Let u; =z, 1 < i < p, be a truth assignment for
which all the clauses in C are satisfied. A layout of the wires in 7 is obtained as
follows:

(1) The assignment of the literal determines the layout of each clause assembly. If
I' (I"y is true then B’ (p") is laid out using the upper layout. If it is false, the
lower layout is used. On the contrary, if [ is true, ™ is laid out using the lower
wiring. If it is false, the upper layout is used. For each «;, observe that each false
wiring (wiring associated to the false value) intersect with only one segment of
the layouts of 0.

Since u;=z;, 1 < i < p, satisfies all the clauses, at least one literal in each clause
is true under this assignment. Hence, at least one false wiring is not used
for the layout of the literal wires, which allows one of the layouts of 0; to
be free.

(2) For the variable wires, if z; = true, then the wire w; is laid out using the upper
layout. If z; = false, the lower layout is used. The wirings of variable wires and
literal wires do not intersect with this choice as can be seen from Fig. 7.

Next, suppose that 7~ can be laid out on . Set u; to true, if and only if, the upper
wiring is used for the layout of w;. From this assignment, it is easy to verify that the
choice of the upper layouts of  and " and the lower one of " forces the truth
value for /!, " and [, respectively (see Fig. 7). In each clause assembly there are
three possible wirings for the wire 6. It is easy to see by inspection that each one
of these three possibilities forces the layout of a literal with truth value. Hence, this
assignment satisfies all the clauses of the instance of 3-sat. [

Fig. 8 shows an example for the set of variables U = {uy,us,u3,us} and the clauses
C ={c1,¢2,¢3} with ¢; = {uy,it2,u3}, ¢y = {it1,us,us} and c3 = {uy, up, ti4}.

Fig. 9 depicts a layout of the wires of the example (see Fig. 8) which corresponds
to the truth assignment u; = true, u, = false, u3 = false and u4 = true.

As an immediate consequence of Theorem 2, the following corollary is obtained:

Corollary 3. The n-sBws problem is NP-complete for n = 3.

Below, the NP-completeness of the sBws problem (without restrictions as to the
number of permitted layouts) is proved. Note that this result cannot be followed directly
from the NP-completeness of the n-sBws problem.

Theorem 4. The sBws problem is NP-complete.

Proof. sBws is easily seen to be in NP.

Again, we consider the NP-complete problem 3-saAT.

The main steps to construct an sBws instance are similar to those which we have
seen in Theorem 2, but as we need to control the number of layouts of each wire
(now all the wirings are permitted for each wire), three additional wires are placed as
Fig. 10 indicates, forming the blocker assembly. There are two possible layouts for the
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Fig. 8. An example of Theorem 2 for the set of variables U ={u;,us,u3,us} and the clauses C={c,cp,c3}
with ¢ = {ul,ﬁz,m}, ) = {ﬁ|,u3,u4} and c3 = {ul,uz,ﬁ4}.

Fig. 9. Layout of the wires in Fig. 8.

wire /, on the contrary, the only possible layouts of the wires u and v are depicted
in Fig. 10(a). The symbolic form for the blocker assembly is shown in Fig. 10(b).
When a layout has been blocked by the blocker assembly, only the remaining feasible
layouts will be shown. [

Now, the clause assemblies are constructed as Fig. 11 shows and are placed starting
below u; and such that the literal wires are placed between the meridians containing
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Fig. 11. Clause assembly.

vy and v,. Note that all the essential wirings for the literal and variable wires have
been blocked by the blocker assembly. For each clause assembly, the wire 6 can use
only the wirings showed in Fig. 11.

The considerations done in the proof of Theorem 2 are valid in order to prove the
equivalence between the affirmative answers of both problems. And it is not essential
which of the two possible layouts of wire /4 is chosen from a truth assignment.

Figs. 12 and 13 are the adaptation of Figs. 8 and 9 to the sBws problem, respectively.

As we indicated above, if the sBws problem can be solve in polynomial time, it is
also possible to solve the problem of determining the minimum genus of a surface on
which a wire set can be laid out in single bend fashion in polynomial time. Hence,
the following result is obtained as a consequence of Theorem 4.

Corollary 5. Given a wire set, finding a surface of minimum genus on which the wires
can be laid out with only one bend is NP-hard.

5. Conclusions and open problems

Wire layout problems and in particular orthogonal layouts appear in many applica-
tions of computer science. In this paper, we have considered the problem of wiring
pairs of points on different surfaces using wirings with only one bend. This problem
was studied by Raghavan et al. [11] on the plane. They developed an O(m?) algorithm
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Fig. 12. An example of Theorem 4 for the clauses of Fig. 8.

Fig. 13. Layout of the wires in Fig. 12 from the truth assignment of Fig. 9.

to determine whether or not a set of m wires can be single bend wired on the plane.
As the layouts are not allowed to cross, the answer for most wire sets is negative. We
generalize the problem allowing vias in the wires and so we consider pairs of points
in surfaces rather than in the plane.

Given a wire set on a surface and only two possible single bend wirings for each
wire, we prove that in this case the problem can be solved in polynomial time. The
NP-completeness of the problem is obtained if the number of possible layouts is

39
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increased. So, the problem of finding the surface of minimum genus on which a wire
set can be single bend wired is NP-hard.

Raghavan et al. [11] show that determining the maximum number of point pairs
that can be wired with at most one bend on the plane is NP-hard. On the other hand,
the same problem is posed considering multilayered wiring media but they show that
determining the minimum number of layers needed to wire a set of point pairs is also
NP-hard. We tried to relate these results to the problem on higher genus surfaces but,
despite initial ideas, though, we see no way to derive our theorems, directly, or by
way of corollary, from their results.

Many open problems arise in this context. Since the problems n-sBws and sBws are
NP-complete, it will not be a rewarding task to develop an exact algorithm for their
solution. On the other hand, the surface % is arbitrary in the problems n-sBws and
sBws and we might try to obtain efficient algorithms for special surfaces, for example
for cylinders (in that case there are four possible single bend wirings for each wire).
It is an open problem to decide whether or not a wire set can be laid out with only
one bend on the cylinder having three or four possible layouts for each wire.
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