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Abstract

We show that any two outer-triangulations on the same closed surface can be transformed
into each other by a sequence of diagonal �ips, up to isotopy, if they have a su6ciently large
and equal number of vertices. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In this paper, we always suppose that a graph G is embedded in a closed surface,
and the vertex set, edge set and face set of G are denoted by V (G); E(G) and F(G),
respectively. In addition, all embeddings considered here will be 2-cell embeddings. A
k-cycle means a cycle of length k. A closed curve ‘ on a closed surface F 2 is said to
be 1-sided if the tubular neighborhood of ‘ is homeomorphic to a M>obius band, and
2-sided otherwise.
A triangulation on a closed surface F 2 is a simple graph on F 2 such that each face

is bounded by a 3-cycle, and any two faces share at the most one edge. A diagonal
+ip in a triangulation G is to replace a diagonal ac with bd in the quadrilateral abcd
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Fig. 1. A diagonal �ip.

formed by two faces abc and acd sharing the edge ac (see Fig. 1). As we want to
keep the graph simple whenever we carry out diagonal �ips, we do not allow this
operation if G already has the edge bd (since, in this case, the diagonal �ip would
create multiple edges between b and d).
Let G and G′ be two triangulations on the same closed surface. We say that G and

G′ are equivalent to each other if there exists a sequence of triangulations H0; : : : ; Hk

such that

(i) G=H0 and G′ =Hk ,
(ii) Hi+1 is obtained from Hi by one diagonal �ip, for i=0; : : : ; k − 1.

There are many papers concerning diagonal �ips in triangulations. It has been shown
that for the sphere [24], the projective plane [21], the torus [7] and the Klein bottle
[21], any two triangulations with the same number of vertices are equivalent to each
other, up to homeomorphism. Negami has generalized these theorems, as follows.

Theorem 1 (Negami [16]). For any closed surface F 2, there exists a natural number
M (F 2) such that any two triangulations G and G′ on F 2 with |V (G)|= |V (G′)|¿
M (F 2) are equivalent to each other, up to homeomorphism.

This theorem has been extended for triangulations with speciNed properties [4]. More-
over, a series of theorems have been improved to hold under the condition “up to
isotopy” [14]. Note that for the sphere and the projective plane, up to homeomor-
phism” and “up to isotopy” are equivalent. Recently, Negami [18] has given an upper
bound for the minimum value M (F 2) by a linear function with respect to the Euler
characteristic of F 2. In fact, he has shown that the linear function gives that for the
corresponding value M ′(F 2) for the isotopy version. Moreover, many other researches
have been derived from Theorem 1 [10,15,17,19,20].
A very important case with many practical applications is that of triangulations

of polygons in the plane (or the sphere). These triangulations agree with maximal
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outerplanar graphs. Thus, we shall generalize this concept to other surfaces. A trian-
gulation on a closed surface F 2 with boundary cycle C (or simply boundary) is an
embedding of a simple graph on F 2 containing C such that

(i) there is a speciNc face bounded by C, called the outer face, and
(ii) all other faces are bounded by 3-cycles.

We say that the vertices and the edges of a triangulation are outer if they lie on C,
and inner otherwise. An outer-triangulation G is a triangulation with boundary which
has no inner vertices.
As well as ordinary triangulations, we can deNne diagonal �ips for outer-

triangulations. However, as any �ippable edge must be shared by two triangular faces,
we cannot apply diagonal �ips for outer edges. Mimicking Negami’s argument in [18],
one will be able to show that for any two triangulations on a closed surface with the
boundary of the same length can be transformed into each other by a sequence of diago-
nal �ips if they have the same and su6ciently large number of inner vertices. However,
if we restrict the number of inner vertices, the problem seems to be far more di6cult.
In this paper, we focus on outer-triangulations on surfaces. It is easy to show that any

two outer-triangulations on the sphere with the same number of vertices are equivalent
to each other, up to isotopy. Moreover, the same fact has been shown for the projective
plane [8], the torus [5] and Klein bottle [6]. (The cases for the torus and the Klein
bottle have been solved, under the condition up to homeomorphism”.) In any case, the
arguments used in those papers strongly depend on the topology of these individual
surfaces and they cannot be applied, in general, for other surfaces. In this paper, we
will show the isotopy version of a general result, as follows.

Theorem 2. For any closed surface F 2, there exists a natural number N (F 2) such
that any two outer-triangulations G and G′ on F 2 with |V (G)|= |V (G′)|¿N (F 2) are
equivalent to each other, up to isotopy.

2. Diagonal �ips in outer-pseudo-triangulations

Although we have to keep any triangulation simple whenever we carry out a diag-
onal �ip, in order to prove our main result, we will neglect the simpleness of outer-
triangulations meanwhile, as follows.
An outer-pseudo-triangulation on a closed surface F 2 is a pseudograph (loops and

multiple edges are allowed) on F 2 such that there exists a speciNc face, called the
outer face, bounded by the cycle in which all the vertices appear, and other faces are
bounded by closed walks of length 3. A diagonal �ip of an inner edge of an outer-
pseudo-triangulation is also deNned in the same way as previously, but the diagonal
�ips need not preserve the simpleness of graphs.
The following theorem can be proved in the same way as in [18]. An inner edge

e in an outer-pseudo-triangulation is called self-incident if there is a triangular face f
such that e appears twice on the boundary walk of f.



66 C. Cort�es et al. / Discrete Mathematics 254 (2002) 63–74

Fig. 2. Self-incident edge e.

Lemma 3. Let P be an outer-pseudo-triangulation on a closed surface F 2 and let
e be a self-incident edge of P. Then, e is a 1-sided loop whose two ends of e are
consecutive in the rotation around the same vertex.

Fig. 2 illustrates a self-incident edge e explained in the above lemma, where ⊗
expresses a crosscap.

Proof. Suppose that e appears twice on the boundary 3-cycle v1e1v2e2v3e3 of a face f,
where vi ∈V (P) and ei ∈E(P) for i=1; 2; 3. We may suppose e1 = e2 = e. If v1 �= v2,
then v2 has degree 1. The vertex v2 of degree 1 cannot appear on the boundary of P,
a contradiction. Thus, we have v1 = v2 and hence e is a loop incident to v1 = v2. Since
e1 = e2, the right-hand neighborhood along e and its left-hand neighborhood are traced
consecutively along the boundary walk of f. Therefore, e is 1-sided and the two ends
are consecutive in the rotation around v2.

Theorem 4. Let P and P′ be two outer-pseudo-triangulations on a closed surface F 2

with the same number of vertices. Then, they can be transformed into each other, up
to isotopy, by a sequence of diagonal +ips. Furthermore, this sequence of diagonal
+ips does not switch any self-incident edge.

Note that by Lemma 3, if an outer-pseudo-triangulation P has a self-incident edge
e, then the graph obtained from P by �ipping e is obviously isomorphic to P itself.
Thus, the last sentence of the following theorem is trivial.
The original theorem concerning psuedo-triangulations T and T ′ (i.e., pseudographs

with each face triangular) has been proved, as follows. First, draw T and T ′ on F 2

simultaneously so that V (T ) and V (T ′) completely coincide. (Thus, each intersecting
point of T and T ′ is either a vertex of them or a crossing of an edge of T and an
edge of T ′ at their middle points.) The author of [18] proceeded to Nx T on F 2 and
apply diagonal �ips for T ′ to eliminate the crossings of edges. In this case, each edge
e′ of T ′ passes through the interior of several triangular faces of T , or coincides with
some edge e of T .
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Fig. 3. Contraction of an edge.

In case of outer-pseudo-triangulations P and P′, Nx P and P′ on F 2 so that their
vertices coincide along their boundaries. Then, we get the same situation that every
edge e′ of P′ passes through the interior of several triangular faces of P, or coincides
some edge e of P. Moreover, every diagonal �ip in P′ preserves this condition. Thus,
the same argument follows (see [18] for the details).

3. Irreducible outer-triangulations

Consider an ordinary triangulation G on a closed surface F 2. Let abc and acd be
two faces sharing an edge e= ac in G. The contraction of e (or contracting e) is
to identify the end-vertices a and c of e and replace the multiple edges {ab; cb} and
{ad; cd} by two single edges, respectively. We say that e is contractible if the graph
obtained from G by contracting e is simple. We also say that a triangulation G is
contractible to a triangulation T if G can be transformed into T by a sequence of
edge contractions. A triangulation with no contractible edge is said to be irreducible.
For the sphere, the projective plane, the torus and the Klein bottle, the complete lists
of irreducible triangulations have been determined in [23,1,11,12], respectively. It is
well-known that any closed surface admits only Nnitely many irreducible triangulations,
up to homeomorphism. This fact also follows from the a6rmative solution of Wagner’s
conjecture proved by Robertson and Seymour [22]. There are several papers proving
directly the Nniteness of irreducible triangulations [2,3,9], by bounding the number of
vertices of them. The following result gives the best bound for it in the present.

Theorem 5 (Nakamoto and Ota [13]). Let F 2 be a non-spherical closed surface with
Euler characteristic �(F 2)¡2, and r be the Euler genus of F 2 (i.e., r=2− �(F 2)).
If G is an irreducible triangulation of F 2, then |V (G)|6171r − 72:

Contraction of an edge in an outer-triangulation is deNned only for outer edges.
See Fig. 3. (If we contract an inner edge, then the boundary of the outer face will
be deformed into a closed walk which is not a cycle.) We say that an outer edge
e is contractible if its contraction yields a simple graph. We also say that an outer-
triangulation G is contractible to an outer-triangulation T if G can be transformed
into T by a sequence of contractions of outer edges. An outer-triangulation G with no
contractible outer edge is said to be irreducible.
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Fig. 4. Inserting m vertices of degree 3.

Lemma 6. For any closed surface, there exist only ;nitely many irreducible outer-
triangulations, up to homeomorphism.

In order to prove Lemma 6, we need the following lemma shown in [6].

Lemma 7. Let G be an outer-triangulation on a closed surface F 2. Let G̃ be the
triangulation on F 2 obtained from G by adding a vertex in the outer face of G and
joining it to all vertices of G. Then, the outer-triangulation G is irreducible if and
only if the triangulation G̃ is irreducible.

Now we prove Lemma 6.

Proof of Lemma 6. Combining Theorem 5 and Lemma 7, if G is an irreducible outer-
triangulation on a closed surface F 2, then |V (G)|6(171r− 72)− 1=171r− 71: Thus,
the proposition follows.

Let G be an outer-triangulation on a closed surface F 2 and let xyz be a face of G
such that xy is an outer edge. Subdividing xy by a single vertex v and adding an edge
vz, we obtain an outer-triangulation G′ with |V (G′)|= |V (G)|+1. In this case, we say
that G′ is obtained from G by inserting a vertex of degree 3 on xy. Lemmas 8 and 9
have already been proved in [5,6].

Lemma 8. Let G be an outer-triangulation on a closed surface F 2 with boundary C,
and let e; e′ ∈E(C). Let Ge (resp., Ge′) be the outer-triangulation on F 2 obtained
from G by inserting a vertex of degree 3 on e (resp., e′). Then, Ge and Ge′ are
equivalent to each other, up to isotopy.

Let G+�m denote the outer-triangulation obtained from G by adding m vertices of
degree 3, as shown in Fig. 4. By Lemma 8, since we can move an inserted vertex
of degree 3 to any outer edge by diagonal �ips, any two outer-triangulations with the
notation G+�m can be transformed into each other by diagonal �ips (i.e., independent
of the choice of the edges subdivided by the m vertices of degree 3).
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Fig. 5. Strip extension along e.

Lemma 9. Let G and T be two outer-triangulations on a closed surface F 2. If G
is contractible to T , then G can be transformed into T + �m, up to isotopy, by a
sequence of diagonal +ips, where m= |V (G)| − |V (T )|.

4. From outer-pseudo-triangulations to outer-triangulations

In this section, we show how to use the equivalence of outer-pseudo-triangulations
described in Section 2.
Let P be an outer-pseudo-triangulation on a closed surface F 2 with boundary C.

Let e= uv be an inner edge of P. We consider the following operation for P. We
now regard the outer face of P as a hole of F 2 (i.e., we regard C as the boundary of
the surface). We denote the punctured surface with boundary C by F̃2. Now cut F̃2

along e= uv from v to u, and denote the right- and left-side images of e by eR and
eL, respectively (then the resulting surface has the boundary C ∪ eR ∪ eL, which might
be disconnected). Suppose that eR (resp., eL) starts from a vertex vR (resp., vL) and
terminates in a vertex uR (resp., uL). Join vR and vL by a path vRv′vL of length 2,
join uR and uL by a path uRu′uL of length 2, and add an edge v′u′. Regarding each
of the 4-cycles vRuRu′v′ and v′u′uLvL as a quadrilateral region, we Nnally add two
diagonals uLv′ and u′vR (as shown in Fig. 5), or u′vL and uRv′. In particular, if e is
a self-incident edge, then by Lemma 3, we may assume that uL = vR and vL �= uR. In
this case, we add diagonals vLu′ and v′uR, not to make multiple edges between v′ and
uL and between v′ and uL. Here, uL = vR and vL = uR do not happen simultaneously,
and hence we can add these diagonals without breaking the simpleness of graphs.
Clearly, the resulting embedding is also an outer-pseudo-triangulation on F 2. We

call this operation the strip extension along e.
We call the union of the two quadrilateral regions the strip, denoted ẽ, corresponding

to e, and call each of eR and eL the brim of the strip.
Let P be an outer-pseudo-triangulation on a closed surface F 2. Apply the strip

extensions for all inner edges of P. We call the resulting outer-pseudo-triangulation
the brick graph of P, and denote it by B(P).
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Lemma 10. Given an outer-pseudo-triangulation P on a closed surface F 2, the brick
graph B(P) is an outer-triangulation (i.e., simple).

Proof. By construction, it is clear that any edge in a strip except brims is neither a
loop nor multiple edges. So, consider a brim in a strip ẽ coming from an edge e= uv
of G and Nrst suppose that it is a loop in B(G). Then, e is also a loop at a vertex
u= v in G. If the two ends of e are not consecutive in the rotation around u= v, then
the strip extension along edges between the two ends of e split u= v into two or more
distinct vertices and neither eL nor eR can be a loop in B(G), a contradiction. On the
other hand, if there is no edge between the two ends of e around u= v, the loop e
must be 1-sided; otherwise, it would bound a monogonal face. In this case, the two
edges eL and eR form together a path of length 2 and both of them are not a loop in
G, a contradiction again. Since even in this case, we can add diagonals not to make
multiple edges as described in the deNnition of the strip extension, B(G) has no loop.
Now suppose that B(G) includes a pair of multiple edges, which are brims coming

from two edges e1 and e2 of G. Then e1 and e2 also form a pair of multiple edges
between u and v in G. As well as a loop, strip extension cannot transform them
into a pair of multiple edges in B(G) unless their ends form consecutive pairs in the
rotations around u and v and unless e1 and e2 form a 2-sided 2-cycle. However, in
the exceptional case, the 2-cycle e1 ∪ e2 would bound a diagonal face, a contradiction.
Thus, B(G) has no multiple edges.

Lemma 11. Let G be an outer-triangulation on a closed surface F 2. Then, the brick
graph B(G) is contractible to G.

Proof. Let e be an inner edge of G. The outer-triangulation obtained from G by a
strip extension along e is clearly contractible to G. Thus, the lemma follows.

Let G and G′ be two outer-triangulations on the same closed surface F 2. When
G and G′ are equivalent to each other, up to isotopy, keeping the simpleness of
graphs, then we simply denote G∼G′. Combining Lemmas 9 and 11, we have the
following:

Lemma 12. Let F 2 be a closed surface with Euler characteristic �(F 2), and let G be
an outer-triangulation on F 2. Then,

B(G)∼G + �4(|V (G)|−3�(F 2)+3):

Proof. By Euler’s formula, we have |E(G)|=2|V (G)|−3�(F 2)+3. Thus, the number
of inner edges of G is equal to

|E(G)| − |V (G)|= |V (G)| − 3�(F 2) + 3:

Since each strip extension increases the number of vertices by four, we have

|V (B(G))| − |V (G)|=4(|V (G)| − 3�(F 2) + 3):
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Fig. 6. A sequence of diagonal �ips from B(P) + �4.

Since B(G) is contractible to G, we have B(G)∼G + �4(|V (G)|−3�(F 2)+3), by
Lemmas 9 and 11.

Lemma 13. Let P and P′ be two outer-pseudo-triangulations on a closed surface
F 2 such that P′ can be obtained from P by +ipping one edge. Then, two outer-
triangulations B(P) + �4 and B(P′) + �4 are equivalent.

Proof. Let Q= abcd be a quadrilateral in P formed by two triangular faces abd and
bcd. Suppose that the edge bd is �ipped to obtain P′. Since strip extensions to construct
B(P) and B(P′) are performed along the inner edges in P and P′, the proof naturally
falls into four cases, depending on the number of inner edges on the cycle abcd, but
we shall show the lemma only when every edge in Q is an inner edge because the
remaining cases may be handled in the same way.
See Fig. 6. We label the vertices of B(P) corresponding to a; b; c and d as in the

Ngure. The left-hand Ngure represents the local structure of B(P) + �4 corresponding
to the face abcd in P. By Lemma 8, we may suppose that a2; a3 and c3; c4 are the
inserted vertices of degree 3. By Theorem 4, we do not apply any diagonal �ip of a
self-incident edge, and hence we may suppose that the faces abd and bcd are diUerent
in P. Thus, the vertices a1; : : : ; a5; b1; : : : ; b5; c1; : : : ; c5; d1; : : : ; d5 are all distinct. Thus,
the sequence of diagonal �ips transforming the left-hand Ngure into the right-hand
Ngure keeps the simpleness of graphs. From the right-hand Ngure, applying diagonal
�ips in the region bounded by a2a3a4b4b3b2 and the region bounded by d2d3d4c4c3c2,
we can put edges a2bi and b4ai for i=2; 3; 4 and edges d2ci and c4di for i=2; 3; 4. The
resulting graph can easily be transformed into B(P′) + �4, similarly to the sequence
from the left-hand to the right-hand in Fig. 6.

Lemma 14. Let F 2 be a closed surface with Euler characteristic �(F 2), and
let G and G′ be any two outer-triangulations on F 2 with the same number of
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vertices. Then,

G + �4(|V (G)|−3�(F 2)+4) ∼G′ + �4(|V (G′)|−3�(F 2)+4):

Proof. By Theorem 4, if we neglect the simpleness of graphs, G and G′ are
equivalent up to isotopy, that is, there exists a sequence G=T0; T1; : : : ; T‘=G′ such
that

(i) T0 and Tl are outer-triangulations (i.e., simple),
(ii) for i=1; : : : ; ‘ − 1, Ti is an outer-pseudo-triangulation, and
(iii) for j=0; : : : ; ‘ − 1, Tj+1 is obtained from Tj by one diagonal �ip.

Now take the brick graphs of T0; : : : ; T‘ with four extra inserted vertices of degree 3
added, that is, B(T0) +�4; : : : ; B(T‘) +�4. Then, by Lemma 10, since B(Ti) is simple,
so is B(Ti)+�4 for i=0; : : : ; ‘. Moreover, by Lemma 13, B(Tj)+�4 ∼B(Tj+1)+�4 for
j=0; : : : ; ‘− 1. On the other hand, by Lemma 12, B(T0)∼T0 +�4(|V (T0)|−3�(F 2)+3) and
B(T‘)∼T‘+�4(|V (T‘)|−3�(F 2)+3), and hence we have B(T0)+�4 ∼T0+�4(|V (T0)|−3�(F 2)+4)
and B(T‘) + �4 ∼T‘ + �4(|V (T‘)|−3�(F 2)+4). Thus, we have

G + �4(|V (G)|−3�(F 2)+4) ∼B(T0) + �4 ∼ · · · ∼B(T‘) + �4 ∼G′

+�4(|V (G′)|−3�(F 2)+4):

Therefore, the lemma follows.

5. Proof of the main theorem

Now we have prepared all to prove Theorem 2.

Proof of Theorem 2. By Lemma 6, F 2 admits only Nnitely many irreducible outer-
triangulations, up to homeomorphism. Let {Ĩ1; : : : ; Ĩp} be the set of irreducible outer-
triangulations on F 2, up to homeomorphism. Now, let Ij be an outer-triangulation
represented by Ĩj, Nxed up to isotopy, for j=1; : : : ;p. Note that though any outer-
triangulation G is contractible to one of I1; : : : ; Ip, up to homeomorphism, G might be
contractible to none of them, up to isotopy.
Without loss of generality, we may suppose that |V (I1)|¿|V (I2)|¿ · · ·¿|V (Ip)|.

Let mi = |V (I1)| − |V (Ij)| for j=1; : : : ;p, and put I ′j = Ij + �mj for j=1; : : : ;p. By
Lemma 14, since |V (I ′1)|= · · · = |V (I ′p)|, we have

I ′1 + �4(|V (I ′1 )|−3�(F 2)+4) ∼ I ′2 + �4(|V (I ′2 )|−3�(F 2)+4) ∼ · · · ∼ I ′p + �4(|V (I ′p )|−3�(F 2)+4):

Moreover, by Lemma 14 again, for any j∈{1; : : : ;p} and any homeomorphism
h : F 2→F 2, we also have

h(Ij) + �4(|V (Ij)|−3�(F 2)+4) ∼ Ij + �4(|V (Ij)|−3�(F 2)+4):



C. Cort�es et al. / Discrete Mathematics 254 (2002) 63–74 73

Now put

N (F 2) = |V (I ′1)|+ 4(|V (I ′1)| − 3�(F 2) + 4)

=5|V (I ′1)| − 12�(F 2) + 16:

Then, putting ki =N (F 2)− |V (Ii)| for i=1; : : : ;p,

I1 + �k1 ∼ I2 + �k2 ∼ · · · ∼ Ip + �kp :

Let G be an outer-triangulation on F 2 with |V (G)|¿N (F 2). Since G is contractible
to an irreducible outer-triangulation, we may suppose that G is contractible to a home-
omorphic image of It , denoted by h(It). Hence, by Lemma 9, we have G∼ h(It)+�m,
where m= |V (G)|− |V (It)|. Since |V (G)|¿N (F 2), we have m′ =m− kt¿0. Thus, we
have, by Lemmas 8 and 9,

G ∼ h(It) + �m
∼ It + �m
∼ It + �kt + �m′

∼ I1 + �k1 + �m′

∼ I1 + �k1+m′ :

Similarly, if G′ is an outer-triangulation on F 2 with |V (G)|= |V (G′)|¿N (F 2), then
we have G′ ∼ I1 + �k1+m′ . Thus, G∼G′.

The following corollary is an immediate consequence of this.

Corollary 15. N (F 2)61371− 867�(F 2):

Proof. In the proof of Theorem 2, we have N (F 2)= 5|V (I ′1)|−12�(F 2)+16: The num-
ber |V (I ′1)|= |V (I1)| can be bounded by |V (I1)|6171(2−�(F 2))−71: (This inequality
was obtained in the proof of Lemma 6.) Thus,

N (F 2)65(171(2− �(F 2))− 71)− 12�(F 2) + 16=1371− 867�(F 2):
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