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Abstract—This paper reports an integrated 64-channel neural
recording sensor. Neural signals are acquired, filtered, digitized
and compressed in the channels. Additionally, each channel
implements an auto-calibration mechanism which configures the
transfer characteristics of the recording site. The system has two
transmission modes; in one case the information captured by
the channels is sent as uncompressed raw data; in the other,
feature vectors extracted from the detected neural spikes are
released. Data streams coming from the channels are serialized
by an embedded digital processor. Experimental results, including
in vivo measurements, show that the power consumption of the
complete system is lower than 330uW.

I. INTRODUCTION

Besides fostering advances in neuroscience, wireless neural
prostheses for the measurement of intracranial neural activity
are expected to play a significant role in the development of
novel treatments for some neurological diseases and in the
implementation of untethered brain-machine interfaces [1]-
[5]. As long as these prostheses are implanted, they have
to achieve and maintain stable long-term recordings so that
the need for re-surgery is essentially eliminated. This poses
important challenges on the hardware implementation of the
prostheses as they have to exhibit utra-low power consumption,
not only to prevent from harmful effects in the brain but also
to minimize energy requirements; low form factor; versatility,
to prove useful in different scenarios as determined by neu-
rologists; and adaptability to deal not only with the intrinsic
statistical deviations of the fabrication process but also with
the non-stationary nature of the electrode-tissue interface.

In this scenario, this paper presents an integrated 64-channel
neural recording sensor suitable for acquiring Local Field
Potentials (LFPs) and Action Potentials (APs). An on-chip
dedicated processor defines the operation mode of the channels
and implements a full-duplex communication protocol for data
transmission through a wireless link. In one operation mode,
the recording system can be configured to detect and compress
neural spikes so that feature vectors instead of raw signal sam-
ples are transferred. In another mode, the system runs a self-
calibration mechanism which automatically adapts the filter
bandwidth and the gain setting of the channels. The sensor also
offers different alternatives for raw data transmission in which
the number of active channels and the effective sampling
rate are traded off. In all cases, the total throughput rate of
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the sensor keeps below 4Mbps as imposed by the wireless
link. The sensor has been fabricated in a 0.13um standard
CMOS process and consumes 330uW from a 1.2V voltage
supply in the spike compression mode, the most demanding
one. The architecture of the recording sensor as well as a
description of the different operation modes are presented in
Section 2. Afterward, Section 3 presents some experimental
measurements and in vivo validation results. Finally, Section
4 concludes the paper and compares the proposed recording
system to others in the current state-of-the-art.

II. NEURAL SENSOR ARCHITECTURE

Fig. 1 shows the architecture of the proposed system. It
consists of an array of 8 x 8 neural recording channels,
each of them serially connected to an Event-Based Processing
Unit (EBPU). The data stored in these EBPUs are read
and classified by an embedded digital processor, which also
handles the timing of the implant. A wireless transceiver (not
shown) provides the link to/from an external hub. Additionally,
the system includes one tunable Digital Frequency Synthesizer
(DFS) per row for calibration purposes.

A. Channel sensor interface

Each channel comprises all the needed circuitry to acquire
and digitize neural waveforms including a Band-Pass Filter
Low Noise Amplifier (BPF-LNA), a digitally tunable band-
pass filter, a Programmable Gain Amplifier (PGA), an Analog-
to-Digital Converter (ADC) and a local digital processor to
detect neural spikes and extract their features. The spike
detection is accomplished in digital domain and the decision
threshold is adaptively updated according to the noise floor of
the captured signal.
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Figure 2. (a) Schematic of the BPF-LNA and (b) the OTAs. (c) Schematic
of the PGA-ADC

Fig. 2(a) shows the schematic of the BPF-LNA which
uses a two-stage capacitive feedback network architecture. Its
midband gain is given by the ratio between the input and the
feedback capacitance, C;/Cy. The position of the high-pass
and low-pass corners of the bandpath characteristic are approx-
imately given by 1/R¢C; and 2g.,2Cf/C.Cj, respectively.
The first amplifier stage (OTA;) has been designed so that
its output pole matches the low-pass corner of the bandpass,
thus leading to a 40dB/dec roll-off, beneficial for suppressing
high frequency noise components. Additionally, as Fig. 2(b)
shows, a complementary input differential pair has been used
for OTA; to nearly double its equivalent transconductance for
the same biasing current. Each feedback resistor in Fig. 2(a)
is implemented as a 3-b digitally-controlled tapped cascade
of transistors biased in deep subthreshold region [6]. This
makes the feedback resistors programmable thus, allowing to
externally tune the position of the high-pass pole of the BPF-
LNA. Similarly, the load capacitor can be digitally adjusted
through 2 programming bits and, hence, the low-pass pole is
tunable as well.

Fig. 2(c) shows the schematic of the implemented ADC
[7]. Tt is built around a SC integrator whose gain can be
controlled from O to 18dB by digitally programming the input
capacitor bank Cj,. Hence, besides conversion, the circuit
also features PGA capabilities. Outputs bits are derived by
successively detecting the sign of the voltage stored in the
integrator. Depending on the output of the comparator, the
integrated voltage is updated by adding or substracting binary
scaled versions of a voltage reference V;..r. These voltages
V; = Tef/2-7, j=1,....,n—1,, where n is the output
resolution of the converter, are obtained by capacitive voltage
division at every step of the conversion process. Solved bit
are stored in a SAR register. In the presented design, the bias
current of the OTA is dynamically adapted for power saving by
taking advantage that settling requirements are progressively
relaxed along the conversion.

B. Modes of operation

Three operation modes are available in the proposed neural
recording system. They are the calibration, signal tracking and
feature extraction modes. These modes and their associated
parameters are specified through a custom communication
protocol implemented in the embedded digital processor.

Calibration: In this mode, the passband and gain of the
recording channels are individually adjusted. In one case, the
objective is to automatically tune the programming words for
the high- and low-pass corners of the BPF-LNA in order to
satisfy a given capture frequency range. In the other, the cali-
bration mode automatically programs the gain of the PGA in
order to maximize the voltage swing at the input of the ADC.
Different to [8], reference tones to set the passband corners of
the recording channels are provided by programmable DFSs.
As there is one DFS per row, passband calibration is done
in a column-wise manner. As shown in Fig. 1, each DFS
consists of a programmable frequency divider, followed by
a phase-to-amplitude converter. This block cyclically accesses
the registers of a ROM memory which stores equally spaced
samples of a sine function. The phase-to-amplitude converter
is followed by a DAC and an analog attenuator which adapts
the amplitude of the generated tone to the LNA’s input swing.
By controlling the clock rate provided by the programmable
divider, the frequency of the output tone can be adjusted to
the desired value.

Signal tracking: Under the signal tracking mode, the sys-
tem transfers the uncompressed recorded data acquired from
the selected channels. The system offers different tracking
possibilities which trade-off the number of selected channels
and the time interval between samples. In all cases, the
overall throughput rate of the system remains below 4Mbps,
as imposed by the wireless transceiver. Regardless of the
configuration, a sampling rate of 30kS/s is used in all the
selected channels.

Feature extraction: In this case, the system is configured for
spike detection and data compression tasks. All the 64 chan-
nels are enabled during feature extraction. Spike compression
is implemented by obtaining on-the-fly a Piece-Wise Linear
(PWL) representation of its waveform. As shown in Fig. 3,
this representation comprises two amplitude values (V1 and
Vp2) and three time slots (A;_3), together with the magnitude
of the threshold voltage used in the detection of the spike. All
these parameters are coded in 8-b words, with the exception of
the threshold amplitude which uses 7-b; hence, the whole PWL
representation occupies 47-b. The feature extraction process is
similar to the one presented in [6], however, in the proposed
implementation both the spike detection and the spike feature
extraction tasks are performed in the digital domain.

C. Event-Based Processing Units

EBPUs are used for temporarily storing the information
provided by the channels. During the calibration and signal
tracking modes, channels serialize and transfer data to the
EBPUs, where information is retained until it is retrieved by
the system digital processor. In the feature extraction mode,
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Figure 3. Piecewise linear approximation of spikes.
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Figure 4. Microphotography of the (a) 64-channel neural sensor, (b) channel

EBPUs also calculate the time intervals comprised in the
PWL representation of spikes. Every channel informs to the
associated EBPU on the instants in which waveform peaking
and threshold crossing events are taking place, as Fig. 3 shows.
Then, the EBPU uses these triggering signals for evaluating
the time slots between events by means of counters. In order
to obtain increased time resolution for the measurement of
the interval durations, the sampling frequency of the PGA-
ADC is changed from the nominal 30kS/s rate to 90kS/s.
When a spike finishes, the channel sends to the EBPU the
amplitude parameters needed to complete the PWL feature
vector. Once the vectors of the representation are gathered,
the EBPU asserts a flag to inform that the stored data is ready
to be read out. The system digital processor cyclically checks
the state of these flags. In case a flag is enabled, it retrieves
the information from the EBPU at a rate of 4Mbps, builds
up a transmission frame and sends this stream to the wireless
transceiver for data transmission.

III. EXPERIMENTAL RESULTS

Fig. 4(a) shows the microphotography of the presented 64-
channel neural array sensor fabricated in a standard 0.13um
CMOS process. The whole system occupies an area of
13.45mm? and is organized in 8 x 8 channels, each of them
laid out in a square of 400 x 400um?, as shown in Fig. 4(b).
Note that each channel includes an internal pad for flip-chip
connection to a microelectrode. DFSs and embedded digital
processor are respectively placed at both sides of the channel
array.

Fig. 5(a) shows the frequency response of the BPF-LNA
under different configurations for the LP and the HP pole
positions. The HP pole can be adjusted between 15 and 232Hz
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Bandpass transfer function, (b) Power spectral density of the input referred
noise. PGA-ADC: (c) FFT spectrum of the output at 90kS/s for low and
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Figure 6. Measurement under feature extraction mode

along 8 different positions, while the LP pole can be tuned
at four different frequencies between 5.2kHz and 10.15kHz.
The midband gain is 45dB. Fig. 5(b) illustrates the power
spectral density of the BPF-LNA’s input referred noise. Note
that the 1/f noise contribution is attenuated at low frequencies
by the HP transfer pole, so it results in a flat noise level band.
The total integrated noise power is 3.8uVrms when integrated
between 1Hz and 100kHz, and reduces to 3.2uVrms within
the spike recording band, between 200Hz and 7kHz. The BPF-
LNA consumes 1.92uW, resulting in a Noise Efficiency Factor
(NEF) of 2.16.

Fig. 5(c) shows the spectrum of the PGA-ADC operated
at 90kS/s conversion rate (similar results were obtained for
30kS/s) for inputs tones at low frequency and close to Nyquist
rate. The Signal-to-Noise and Distortion Ratio (SNDR) is
above 47.0 dB and the Equivalent Number of Bits (ENOB)
is about 7.65 bit. These results remains unaltered regardless
of the selected amplification setting (0-18dB). As shown in
Fig. 5(d), both the integral and differential nonlinearity are
bounded between +0.5dB. The power consumption of the
PGA-ADC is 1.52uW and 515nW for the 90kS/s and the
30kS/s sampling modes, respectively.

Fig. 6 illustrates the operation of a neural channel under
the feature extraction mode. If no spike is detected, the EBPU
associated to the channel remains idle. When a spike is
detected, both the channel and the EBPU work together to
obtain the parameters of the PWL representation. Once the
spike ends, the EBPU stores the parameters and enables the
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Figure 7. In vivo neural spike activity recorded from 16 channels using an
intracranial microelectrode array. Vertical axis correspond to the ADC output
code and range between 0 and 255.
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Figure 8. In vivo LFP activity recorded from 16 channels using a flexible
non-penetrating sub-dural microelectrode array. Vertical axis correspond to
the ADC output code and range between 0 and 255.

ready flag. Afterward, the digital processor reads and serializes
the feature vector (see the inset of the figure). In this operation
mode, all channels are active, each consuming 4.54uW. This
together with the power consumption of the EBPUs and the
digital processor gives a total dissipation of 330uW.

Fig. 7 shows 16 in vivo recordings captured by the system
by using an intracranial microelectrode array by Blackrock Mi-
crosystems (adult male Long Evans rat model). The bandpath
characteristics of the 16 selected channels were set between
200Hz and 7kHz in order to capture spike activity. As can be
observed, isolated action potentials and bursts of spikes are
clearly noticeable in the recordings. The power consumption
of the system in this experiment was 98uW.

Another in vivo experiment with a different rat model was
conducted using a flexible non-penetrating sub-dural micro-
electrode array (Multi Channel Systems MCS GmbH) with
TiN electrodes separated by 300um. In this case, all the 64
channels of the array were selected and their bandpass char-
acteristics were set between 15Hz and 5.2kHz. The throughput
rate per channel was reduced to 4KS/s. Fig. 8 shows that LFPs
were successfully recorded (only 16 channels are presented for
simplicity). The power consumption in this case was 241.5uW.

IV. CONCLUSIONS

A 64-channel neural array with embedded data reduction
techniques, fabricated in a standard CMOS 130nm process,
is presented. Each channel embeds all the circuitry to filter,
amplify and digitizes the input data, as well as compress
the detected neural spike activity, minimizing the amount
of generated data. A distributed digital signal processing
approach, with tasks at channel- and array levels, has been
found an efficient solution for reducing the power consumption
of the SoC and simplifying communications through the array.
Table I compares the proposal to the state-of-the-art. Note that
the most power efficient solutions don’t include any embedded
data compression technique.
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