
VISCUBE: a multi-layer vision chip

Ákos Zarándy*#, Csaba Rekeczky#, Péter Földesy*#, Ricardo Carmona-
Galán§, Gustavo Liñán Cembrano§, Gergely Sós*, Ángel Rodríguez-
Vázquez+, Tamás Roska*

#Eutecus Inc, Berkeley, CA, USA

*MTA-SZTAKI Budapest, Hungary

+AnaFocus, Seville, Spain

§Instituto de Microelectrónica de Sevilla, (IMSE-CNM), Sevilla, Spain

Abstract Vertically integrated focal-plane sensor-processor chip design, combin-
ing image sensor with mixed-signal and digital processor arrays on a 4 layer struc-
ture are introduced. The mixed-signal processor array is designed to perform early
image processing, while the role of the digital processor array is to accomplish fo-
veal processing. The architecture supports multi-scale, multi-fovea processing.
The deign was made for MIT Lincoln Laboratory 3DM2 0.15micrometer technol-
ogy.

1 Introduction

The main trade-off of the focal-plane sensor-processor design considerations is the
silicon resource distribution between the sensors and the processors. The problem
already starts at the technology selection. Conservative technologies with thicker
depletion layer and fewer metal/dielectric layers have larger light response; hence
they are better suited to be sensor materials. However, processor circuits can bene-
fit from modern deep sub-micron technologies because both the large number of
metals and the small minimal size transistors needed to build complex circuits, es-
pecially in the digital domain. After the technology is selected, the next hard
trade-off is the relation of the sensor area and processor area. The minimal sensor
area is determined by the sensitivity requirements, while the fill factor and the
maximum chip area limit the processor size. If we cannot squeeze the processor
circuits to the required area, we need to choose a finer silicon technology, and the
iteration starts again.

Vertical integration technology [4] makes possible the breakout form this cir-
cle. It enables the integration of multiple silicon and/or other semiconductor layers
above each other by interconnecting them with thru silicon vias (TSVs) [4]. In this
way, the sensors may occupy the entire top layer, leading to 100% fill factor [5].
Moreover, besides the visual domain, IR image sensor can be implemented also by

2

applying InGaAs [6] or other materials. Analog or mixed-signal layer for signal
conditioning, early image processing and AD conversion can be implemented on a
different silicon layer below, and digital post processor layer(s) can be built even
below. In ideal case, we can even choose different silicon technology for the dif-
ferent layers, which are well suited to the requirements of the implementation of
the optimal sensor, analog/mixed-signal cells, and digital processors.

This chapter introduces a focal-plane sensor-processor circuit design which us-
es vertical integration technology. The work was done in the framework of the
VISCUBE project [1], which is led by Eutecus Inc. Berkeley, California, and fi-
nanced by the Office of Naval Research (N00173-08C-4005). Two European de-
sign groups are involved in the VLSI design, one from Spain (AnaFocus LLC),
and one from Hungary (MTA-SZTAKI). The goal of the project is to build a visu-
al surveillance, reconnaissance, and navigation device, which can be carried by
miniature unmanned aerial vehicle (UAV). Due to the limited payload and power
supply on board, a single chip vision system, under 1W was the goal.

The algorithmic requirements are to perform moving platform video analytics,
including feature point extraction, displacement calculation (optical flow), and
feature extraction in multiple windows [3]. The image capturing and processing
speed should have to reach 1000FPS. To be able to fulfill these goals, the design
supports multi-scale multi-fovea processing.

The chapter is organized on the following way. After the introduction, the ar-
chitecture and the technology are introduced. It is followed by the implementation
details. Then, the simulated operational examples, and finally, the conclusions are
shown.

2 Architecture

In general, the architecture is derived by the required functionalities and the avail-
able technologies. Here the required functionalities are

 Image sensing;

 Moving platform image analysis:

o Feature point extraction;

o Displacement calculation;

o Feature extraction;

 Analog to digital conversion.

To fulfill these computational requirements in the given strict power budget,
we have to apply advanced algorithmic approaches such as multi-scale and multi-
fovea techniques. The common feature of these techniques is that they significant-
ly reduce the amount of data to be processed. The multi-scale algorithms apply
subsampling, hence lower resolution images are processed only.

3

Fovea processing techniques use detailed image analysis on small windows of
the image only. When these two methods are combined, a low resolution version
of the image is fully preprocessed, and as a result of this, the areas of interests are
detected. These areas of interests (windows) require further detailed processing.
The size and the resolution (scale) of these windows depend on the type of analy-
sis applied.

When selecting image processor devices we need to study the efficiency of dif-
ferent architectures. For early image processing the mixed-signal locally intercon-
nected processor arrays and the digital pass-through (pipe-line) pixel flow proces-
sor arrays can be efficiently applied [15]. However, above 1000 FPS under low
latency requirements in near-sensor processing, the fine-grain mixed-signal pro-
cessor array is the best choice. For fovea type post processing, coarse-grain digital
processor arrays can provide efficient solution [15].

To connect and efficiently use the fine-grain mixed-signal processor array and
the digital foveal processor array, we need (i) analog to digital converters; (ii) a
digital frame buffer, which can store the entire frame; (iii) and a switch matrix,
which makes possible glue-less scaling and windowing, to prepare data for the
multi-scale foveal processor array.

In this design, we consider three scales (Fig. 1):
Scale 0: Sensor resolution, 320x240 grayscale, 8-bit repre-

sentation
Scale 1: Mixed-signal processor resolution, 160x120 gray-

scale or binary
Scale 2: Downscaled Scale 1 resolution, 80x60 grayscale, 8-

bit

Scale 0 (sensor), 1:1 Scale 1 (mixed-s. cell), 1:2 Scale 2, 1:4

Fig. 1. The three different scales used in the VISCUBE design

4

2.1 Technology

The targeted technology contains 3 silicon on insulator (SOI) layers 0.15 micron
with 3 metals (plus backmetal on tier 2 and tier 3) provided by MIT Lincoln La-
boratory (Fig. 2) [8]. The layers are interconnected with 5 micron pitch Tungsten
thru silicon vias (TSV). The back-illuminated sensor array is implemented on an
additional bump bonded semiconductor layer on top.

Fig. 2. Targeted vertical integration technology whit 3 SOI layers and a bump bonded sensor

layer. (MITLL 3DM2 0.15) [8]

2.2 Architecture mapping

After defining the necessary architecture components, and having seen the 4 layers
provided by the technology, the architecture mapping is straightforward (Fig. 3).
The mixed-signal layer needs to be next to the sensors, because it processes the
raw analog sensor data, and takes part in the AD conversion. Between the mixed-
signal and the foveal processing layer, the frame buffer and the switch matrix
takes place, to provide efficient data communication.

Sensor array

Mixed-signal processor array + AD converter
Frame buffer + switch matrix

Foveal processor array

Fig. 3. Architecture mapping

After the architecture mapping is described, we introduce the architecture of
the individual functional blocks and layers. The implementation details are intro-
duced in Section 3.

5

2.3 Sensor layer

As it was said already, the back-illuminated sensor array is built on an extra semi-
conductor layer, connected to the processor array using bump bonding interface.
The resolution of the sensor array is 320x240. The choice of the sensor material
defines the wavelength. This can range from visual range to NIR, or even SWIR.
The sensor layer contains the photodiodes only. The integration type sensor inter-
face, implemented on the mixed-signal layer, keeps a constant bias voltage on the
diodes. This supports the usage of a wide range of sensor material, independently
of their sensitivity characteristics.

2.4 Mixed-signal processor array

The fine-grain mixed-signal processor array occupies the top silicon layer. Its res-
olution is 160x120 (Scale 1). The mixed-signal processing elements (MSPE) serve
the image acquisition; they can calculate diffusion, subtraction; and identify the
local maxima. Difference of Gaussians (DOG) filter can be calculated by subtract-
ing different linear diffusion results of the same image.

Each MSPE (Fig. 4) contains (i) electrical interface for 4 photodiodes (4 pix-
els), 4 local analog memories (LAMs) for storing an entire Scale 0 image; (iii) an
analog diffusion unit, (iv) a comparator, which is used either as the local extre-
mum detector, or as a component of a single-slop AD converter. Each MSPE is in-
terconnected with its 8 neighboring MSPEs, allowing for programmable real-time
spatial processing operations.

The mixed-signal processor array is designed to be able to handle both 160x120
and 320x240 sized images. It can process 160x120 sized images. The spatial opera-
tors are designed to handle full Scale 1 images. The 160x120 sized image is gener-
ated by subsampling or binning the 320x240 image. The AD converter can convert
either Scale 0, or Scale 1, or Scale 2 images.

Fig. 4. MSPE architecture of the mixed-signal processor array layer

6

2.4.1 Image acquisition

Image acquisition is performed together by the sensor layer and the mixed-signal
layer. The photodiodes are located on the sensor layer. Their photocurrent is inte-
grated by the mixed-signal layer. The integration time is controllable in a wide
range from sub-microsecond to hundred millisecond. The sensor interface applies
a transconductance amplifier. The photodiodes are kept on a constant bias voltage
during the integration. This bias voltage can be set externally to support various
sensor materials.

2.4.2 Diffusion operator and DOG filter

The diffusion operator processes Scale 1 resolution (160x120) images. It is im-
plemented with a discrete time 4 connected switched capacitor (SC) circuit which
makes possible fine control on the diffusion scale. The diffusion process can be
sampled and then continued, to be able to generate different images with different
smoothing operators. By subtracting these images from each-other, we get differ-
ence of Gaussians filter.

2.4.3 Extremum location detection

The extremum location detection is also defined on Scale 1 grid. The output of the
operator is a binary image, which is black in those pixels, which contains local
maximum/minimum in a 3x3 neighborhood. In order to suppress irrelevant local
extrema, a maximum/minimum pixel is accepted if its value exceeds a program-
mable global threshold limit.

2.4.4 AD conversion

Each of the MSPEs contains a single slope AD converter (Fig. 5). It contains four
components (i) a digital to analog (DA) converter, (ii) comparator, a (iii) 8 bit
counter, and (iv) a digital memory buffer. When an array of single slope AD con-
verters are implemented, the DA converter and the counter can be shared, and on-
ly the comparator and the digital memory are needed to be built in each location.
The comparator of the AD is located on Tier 3, in the mixed-signal layer, while
the digital memory is located in the frame buffer layer on Tier 2.

This requires a pitch matched mixed-signal and frame buffer layer design. Each
MSPE and its corresponding frame buffer cell, which contains the digital memory)
is connected with one wire only (called trigger on Fig. 5).

Since there is one AD converter in each MSPE, the conversion of a Scale 0 im-
age is done in 4 conversion cycles, while a Scale 1 image is converted in a single
cycle. When a Scale 2 image is converted, every fourth AD converter is used.

7

Fig. 5. Block diagram of the single slope AD. The comparator (left hand side) is implemented
on the 3rd tier in every MSPE, while the digital register is located in Tier 2

2.4.5 Operation example of the mixed-signal layer

Fig. 6 illustrates the operation of mixed-signal layer. As it is shown it can capture
a Scale 0 image, convert it to Scale 1 and Scale 2 images by applying either bin-
ning, subsampling or diffusion. It can also calculate difference of Gaussian, and
can identify the local extreme points.

Scale 0, Scale 1, 160x120 Scale 2, 80x60

Difference image Max. location map,
160x120

Binning Diffusion

Framebuffer, contains 6 times 160x120 pixels and 1x160x120 bit
Fig. 6. Sample images of the algorithm executed on the mixed-signal processor layer (simula-

tion)

2.5 Frame buffer layer

The frame buffer layer has three roles. It is used as the (i) digital registers of the
single slope AD converters. It is also used as a (ii) storage and communication in-
terface between the mixed-signal and the digital layer. Moreover, (iii) it supports
random access to scaled or not scaled windows of the captured and preprocessed
images, which is critical in the multi-scale and fovea processing approaches.

8

The frame buffer layer is constructed of an array of 160x120 memory units
(Scale 1). Each memory unit is corresponding to the mixed-signal processor geo-
metrically located exactly above it.

Each memory unit contains 6 bytes of memory and 2 bits (Fig. 7). 4 bytes are
needed to store a Scale 0 image, because each unit/cell handles 4 pixels. The re-
maining 2 bytes can be used to store multiple downscaled images. The single bits
can store the outputs of the extremum filters.

The registers of the frame buffer are constructed of twoport memories. They are
written when an AD conversion or extremum operation is executed. They are read
out by the digital processor array layer through a multiplexer. The multiplexer sup-
ports automatic windowing and downscaling functions to minimize IO time.

Fig. 7. Memory unit of the frame buffer layer

2.6 Foveal processor array

The foveal processor array is intended to be used for both area of interest (win-
dow) and full frame processing as well. This 8x8 digital processor array (Fig. 8) is
an advanced version of our previous deign [16]. The distinguishing feature of this
new implementation is the increased memory size and higher flexibility in the
processed window size and distribution.

The processors can work in two different modes. In the first mode, the 64 pro-
cessors are joining forces, and process a large or medium sized image (160x120,
80x60, or 64x64) by topographically distributing the image data among the proces-
sors. The second mode is used, when we have to execute the same operation (e.g.
displacement calculation of a feature point) on a large number of smaller windows
(24x24 or 16x16). In this case each processor processes one window individually.
In the formal mode, the neighboring processors are exchanging data intensively,

9

while in the latter mode, the processors are uncoupled. In both modes the processor
array operates in single instruction multiple data (SIMD) mode.

The basic constructing element of the foveal processor array is the processor
kernel. The kernels are locally interconnected. The processors in each kernel can
read the memory of their direct neighbors. There are boundary cells, which are re-
lying data to handle different boundary conditions.

Foveal processor array

C C C C C

Cel
l

Cel
l

C C

C C C C

C C C C

C C C C

C C CC C

Cel
l

Cel
l

C C

C CC C

C CC C

C CC C

C C C C C

Cel
l

Cel
l

C C

C C C C

C C C C

C C C C

C C CC C

Cel
l

Cel
l

C C

C CC C

C CC C

C CC C

Program
code
FIFO

Scheduler

to neighbors

Mem Proc Com

Fig. 8. The architecture of the foveal processor array

The block diagram of the processor kernel is shown in Fig. 9. Each cell contains
an arithmetic processor unit, a morphologic processor unit, data memory, internal
and external communication unit. The arithmetic unit contains an 8 bit multiple-add
core with a 24 bit accumulator, and 8 pieces of 8 bit registers. This makes possible
to perform either 8,16, or 24 bit precision calculations. The arithmetic unit can cal-
culate multiplication, multiple-add, addition, subtraction, and comparison opera-
tion. Image processing primitives, like block matching, convolution, look-up table,
diffusion, thresholding, rank order filters, contour detection, Sobel operator, medi-
an, etc. can be efficiently implemented on the arithmetic processor.

The morphology unit supports the processing of black-and-white images. It
contains 8 pieces of binary morphology processors, for parallel calculation of local
or spatial logic operations, pixel-by-pixel binary logic, like erosion, dilation, open-
ing, closing, hit and miss operations, etc.

10

Input mux
(crossbar)

External
interface

Sensors data from the 8x8
array through ADC

Memory of
the neighbors

Arithmetic processor with
flags and saturation logic

RegistersLocal
memory

Border cells
of the array
to mirror the
edge cell
values

Morphologic
processor

Constant

Fig. 9. The block diagram of the processor kernel

2.7 Control and communication

The VISCUBE design does not include internal control processor. This role can be
played by an external control processor. The control processor can execute the
main program of the system. It is responsible to initialize subroutines on the indi-
vidual processor array layers, and image data communication among the three
processing units. The control processor continuously evaluates the captured and
preprocessed image flow arriving from the mixed-signal layer, and decides which
parts (windows) of the input image requires more detailed analysis, and orders the
digital processor array to accomplish the necessary routines. It is also responsible
to switch between distributed or window processing modes, or modify parameteri-
zation of the routines according to the input image content.

The interconnection scheme of the main blocks is shown in Fig. 10. The sensor
array, the mixed-signal processor array, and the memory units on the frame buffer
layer are pitch-matched, hence direct parallel interconnections are used among
them, utilizing the through silicon vias. In this way 4 sensor units are connected to
one mixed-signal processing element (MSPE) cell. The interconnection between
the MSPEs and the memory units are one-to-one. There are no parallel intercon-
nection between the frame buffer and the foveal processor array. These layers are
connected through a multiplexer and a fast digital bus only, because the window-
ing technique does not need full parallel interconnection topology.

11

MSPE

Foveal processor array
Program scheduler

1-bit enable

External
data I/O

- Single slope
ADC ramp
control

- Row selector
- Word selector
- Column selector
- Multiplexer

Register
bank per cell

- Mixed-signal
layer operation
control

- Processor
operation
control

Arbiter Multiplexers for downscale access (crossbar)

TIER 3

TIER 2

TIER 1

Regs Regs Regs

Sensor array

MSPE MSPE

32

Fig. 10. The interconnection and the control scheme of the VISCUBE architecture.

3 Implementation

After the description of the architecture, the implementation is detailed in this sec-
tion. In the following, the circuits on the three active tiers are described.

3.1 Tier-3: Mixed-signal processor layer

The entire layout of Tier-3 is shown in Fig. 11. As it is shown there, the mixed-
signal processor layer has a topographic structure. Indeed, it is constructed of an
array of 160x120 mixed-signal processing elements (MSPE) (Fig. 12). The size of
an MSPE is 50x50 micron.

12

Fig. 11. Layout of Tier-3. It is constructed of a 120x160 sized, topographically arranged

mixed-signal cell array (middle), and buffers, analog reference generators, a ramp
generator, a programmable control unit, and IO circuits on the periphery.

Each MSPE (Fig. 4) includes four diodes/sensors interface circuits, a
transimpedance amplifier to adapt the sensor signal, Local Analog Memories
(LAM´s) to store the intermediate data, a programmable difussion network to
perform Gaussian filtering, a susbtractor to obtain DOG filters, a local minimum
and maximum locator and a single-ramp Analog Digital Converter.

13

Fig. 12. Layout of the mixed-signal processor cell

3.1.1 Sensor Interface

Each of the processing elements of the mixed-signal array (160 x 120) provides
access points for 4 diodes/sensors. The sensor interface has two stages, namely: a
front-end composed of a capacitive transimpedance amplifier (CTIA) with offset
sampling, and a switch capacitance (SC) circuit where the input data is stored in
voltage form. These analog storage places (the LAMs) are also used to realize
some arithmetic operations on the pixels data, such as averaging, diffusion, and
subtraction.

The capacitive transimpedance amplifier (CTIA) architecture consists of a dis-
crete time integrator (Fig. 13). The CTIA integrates the Iph photocurrent during the
integration period (Φint is on) and provides the following output:

int

int*

C

TI
VV

ph

inito  (1)

which can be tuned by changing the integration time.

14

Fig. 13. Transimpedance sensor interface

LAMs are designed by using a sample and hold structure (Fig. 14), which con-
tains some extra switches to perform arithmetic operations. Φav01, Φav02 and Φav23
switches are used to perform the averaging of the four memories containing the
four sensor readings. Φdif1 and Φdif2 are used to connect independently the different
capacitances with the diffusive network. Finally the switches ΦMT, ΦMA0 ΦMA1,
ΦMA2, ΦMB3 reconfigure the capacitors to calculate the subtraction of the stored da-
ta.

Fig. 14. Discrete-time sample & hold amplifier

3.1.2 Diffusion network for Gaussian pyramid generator

Gaussian filtering of the quarter image (160x120) is realized by a SC circuit. Fig.
15 shows the block diagram of the diffusion network unit. This circuit allows the
transference of charge packages among nearest neigbours, thus emulating the be-
havior of a Gaussian filtering.

15

The image on the nodes is sampled at different point of the discrete time evolu-
tion. These sampling points correspond to particular scale representations. The ac-
curacy of this correspondence is given by the performance of the SC emulator.
The samples of the diffused image is either processed to calculate significant
points on the Gaussian pyramid, or combined to generate the Laplacian pyramid,
or converted to be stored in the frame buffer layer because of the needs of a par-
ticular algorithm.









vdif i,j



 
















 

cellij

vdif i,j-1






















vdif i,j+1

vdif i+1,j

vdif i-1,j

Fig. 15. SC Gaussian diffusion unit

3.1.3 Local extrema values detector

The local extrema value detector can identify the position of the local maxima or
minima in 3x3 each neighborhood. In order to avoid the implementation of 8
comparators at each pixel the calculation is done in time, using the comparator and
the ramp generator (DA converter) of the AD converter, a flip-flop and some logic
circuit. The local minimum is calculated on a way that a rising ramp starts, and
when it becomes larger than the value in a certain pixel position, it tries to set the
flip-flop. However, the flip-flop can be set, if no other flip-flops in the 3x3 neigh-

16

borhood is set already. In this way, maximum one flip-flop is set in each 3x3
neighborhood, and this flip-flop belongs to the smaller pixel value in that neigh-
borhood. Fig. 16 shows the block diagram of the circuits that are used to calculate
local maximum and minimum respectively.

Fig. 16. - (a) local maximum locator (b) local minimum locator

3.1.4 AD converter and the comparator

The ADC is a per cell single slope converter. The comparator of the converter is in
the 3rd tier, while the latch is implemented on the second tier (Fig. 5). The critical
part of the design is the minimization of the offset variance of the large number of
the comparators, because this directly leads to fix pattern noise. To achieve this,
we used an offset compensation circuit in the comparator design (Fig. 17).

Fig. 17. Circuit diagram comparator

17

3.2 Tier-2: Frame buffer layer

The layout of the frame buffer layer is shown in Fig. 18. Its main function is to
provide connection between the mixed-signal layer and the foveal processor layer.
It is constructed of an array of 160x120 memory units. The array of the memory
units are designed on a pitch matched way with the mixed-signal processor array,
and the corresponding units are above each other, to be able to interconnect the
two units with a TSV. This condition determines the size of the memory units to
be 50x50 micron.

Fig. 18. Layout of Tier-2

The internal structure of the memory units in the frame buffer is derived from the
storage and special accessing needs of the memory content. Each memory unit
contains 6 bytes and 2 bits, plus the input register of the AD converter. This is
117kByte of memory, which can store 1 piece of Scale 0 image, 2 pieces of Scale
1 grayscale and 2 pieces of Scale 1 binary images. Since the images does not have
a predefined position, the images can be interchanged. In this way, one Scale 0
image can be replaced with 4 pieces of Scale 1 image, and on the same way, one
Scale 1 image can be replaced with 4 pieces of Scale 2 images. The layout of a
memory unit is shown in Fig. 19.

18

Fig. 19. The layout of a memory unit of the frame buffer

The output multiplexer of the memory units and the entire frame buffer is de-
signed to efficiently serve the arbitrary window access demands of the foveal pro-
cessor array. The frame buffer read-out is random access, the output data are
packaged in 32-bits word. During the readout the data of a whole row are sent to
the output column selector crossbar. The column selector crossbar connects the 4
selected columns, to the 32 bit output bus. This bus delivers data to the foveal pro-
cessor array, and provides external access to the frame buffer (Fig. 10). The block
diagram of a memory unit is shown in Fig. 7, while the structure of the frame
buffer, including the column multiplexer is shown in Fig. 20.

19

Fig. 20. Block diagram of the frame buffer and the columns selector crossbar

3.3 Tier-1: Digital processor layer

The primary role of the foveal processor array is to perform digital processing on
either Scale 0, or Scale 1, or Scale 2 images or image parts. It is constructed of an
8x8 SIMD processor cell array (Fig. 8). The cells are locally interconnected.

Fig. 21 shows the layout the foveal processing array. The processor circuits are
synthesized, while the memory blocks (the colored squares) are custom design.
Neighboring memory blocks denoted with the same color belong to the same pro-
cessor. The size of the memory blocks is 512 byte.

20

Fig. 21. Layout of Tier-1

3.3.1 Memory access

The communication between the processors is solved on a way that the processors
can read the memory of their direct neighbors. This has been obtained by inserting
an input multiplexer (crossbar) between the processor cores and their main
memory (Fig. 9). The neighborhood memory access works concurrently all over
the array, providing the avoidance of data congestion. The multiplexer is capable
to access the neighboring memories and provide the required data. In this way, the
processors need no distinguished instructions to operate on pixels that are actually
stored in a neighbor processor. Furthermore, there are special boundary modules
that are straightforward extensions of the arbiter mechanism. These modules pro-
vide the boundary condition of the array processor.

The upper two rows of processors (16 pieces) have 2 kbytes, while the lower 6
rows (48 pieces) have only 1 kbyte of memory. There is no pre-wired special pur-
pose usage of the memory from hardware point of view, which means, that user
may store any pixel of the images in any memory locations.

Two memory addressing types are supported. The first is the direct addressing
mode, when all the processors access the same memory location in the same step.
In this mode, the processors may access to their direct neighbors memory also.
The second is the offset addressing method. In this mode, the content of one of the
offset register is added to the global address coming from the scheduler. In offset
addressing mode the memory of the neighboring processors cannot be accessed.

3.3.2 Image data distribution

There are to different operation modes of the processor array. The first is the
topographic processing mode, when at least 32x32 sized images are cut to seg-
ments, and these segments are topographically mapped to the array. In this case,

21

the neighboring processors read each-others memories to acquire pixel data for the
neighborhood processing. The processor cell level memory requirements of the
images are summarized in Table 1.

Image resolution
Size of a subimage
handled by a cell

Memory requirements for gray-
scale images bytes/cell

160x120 (Scale 1) 20x15 300
80x60 (Scale 2) 10x8 80

64x64 8x8 64
32x32 4x4 16

Table 1. Processor level memory requirements of an image in the digital processor array

The second operation mode is the non-topographic processing mode, when
multiple (max 64) windows are cut out from a large image (typically Scale 0), and
each of these windows are assigned to one processing cell. Since there are no in-
dependent program memories of the cells, the task to be completed should be the
same, and cannot contain data dependent branches on the instruction level. How-
ever, thanks to the offset addressing mode, the algorithm may implement the same
processing steps on different locations of the windows at the same time. This can
be considered data dependent branch on the data level. This enables for example
gradient based searches tasks, such as diamond search.

3.3.3 Arithmetic unit

The arithmetic unit contains an 8 bit multiply-add datapath logic with a 24 bit ac-
cumulator. The data path enables either 8 or 16 bit precision calculations. The
arithmetic unit can calculate multiplication, multiple-add, addition, subtraction,
and saturation operations (Fig. 22). Adopted from the common practice of han-
dling both signed and unsigned data by the same unit, the hardware multiplier is of
signed 9 by 9 bit precision, and the barrel shifter and the accumulator logic sup-
ports sign extension as well. The saturation mechanism also has a great im-
portance in image processing, allowing the user to avoid the time consuming over-
flow and underflow management. Beside the arithmetical operations, this unit
encompasses bit-field access as well.

The comparator unit is capable to evaluate the relation between signed or un-
signed data of any modules. Depending on the outcome of the relation it sets sev-
eral flags that are used in later operations.

22

24-bit signed
accumulator

Barrel shifter
Sign extension

Saturation (signed /
unsigned 8-bit/16-bit)

Overflow,
negative, is zero

+

Barrel shifter
Sign extension

* 9-bit by 9-bit signed multiplier

From register
bank

Program coded
constant

Intra-core crossbar switch

Sign extension

To state flag unit

Fig. 22. The architecture of the arithmetical units

3.3.4 Morphology unit

The morphology unit supports the processing of black-and-white images (i.e. the
pixel representation is one bit per pixel). It contains eight pieces of identical single
bit morphology processors (Fig. 23). Hence, it accelerates greatly the parallel cal-
culation of local or spatial logic operations, like erosion, dilation, opening, clos-
ing, hit and miss operations. It can be efficiently used when each processor han-
dles an 8 pixel wide image segment.

Input selector

General LUT

Output selector

enable

Work register Lock register

A bit
slice

Intra-core crossbar switch

Fig. 23. The architecture of the binary morphology units

23

3.3.5 Scheduler

The cells do not have local program memory. The program is coming from a
global off-array scheduler. Each processor receives identical command, parame-
ters and attributes in each instruction cycle, which makes it a single instruction,
multiple data (SIMD) processor array architecture. The individual processors are
maskable. This means that content dependent masks may enable or disable the ex-
ecution of a certain image processing operation in a few pixel locations. This
masking can make the process locally adaptive.

The program scheduler receives the binary executable code from an on-chip
FIFO. The depth of the FIFO is 16 words. When the program execution is enabled
the scheduler takes an instruction out from the FIFO, decodes it, and sends it to
the digital processor array. This process is going on as long as the execution is en-
abled and the FIFO contains code. This FIFO is fed from an external source. It us-
es the digital I/O bus of the system.

3.3.6 Instructions of the processor array

The instruction set of the digital processor array contains five groups:

 Initialization instructions

 Data transfer instructions

 Arithmetic instructions

 Logic instructions

 Comparison instructions

The Initialization instructions are needed to clear or set the accumulator, the
boundary condition registers, the masks, and other registers of the cells.

The arithmetic instruction set contains addition, subtraction, multiplication,
multiple-add operation, and shift. These operators certainly set the flags of the
arithmetic units. These flags can be used in the next instruction as conditions.

The logic operations strongly support the execution of the binary mathematical
morphology operations, like erosion and dilation. Since the internal operand width
is 8 bit, each processor can handle 8 pixels in one clock cycle when executing log-
ic operation.

The comparison instructions are introduced to calculate the relation between
two scalars. These operators can be used for statistical filter implementations.

Using these instructions, we can efficiently implement the basic image pro-
cessing functions (convolution, statistical filters, gradient, grayscale and binary
mathematical morphology, etc) on the processor array.

24

4 Operational example: Displacement calculation

An operation example is shown in this section to demonstrate the operation of this
Viscube architecture. In this example, we show how to calculate displacement for
multiple points. The goal of the displacement calculation is to support image reg-
istration and optical-flow estimation also. In our UAV reconnaissance project, we
assume high image sampling rate (500-1000 fps), hence the displacement and the
rotation, introduced by the ego-motion of the on-board camera is supposed to be
small.

Our strategy is to calculate the displacement of two consecutive images in 64
feature points. The displacements in the different positions may be different, due to
(i) 3D structures in the ground, (ii) the rotation of the camera, and (iii) false meas-
urement results. The displacement calculation starts with the identification of those
points, where the displacement is calculated. These points are called feature points.
Here we show two possibilities for the identification of the feature points, and the
displacement calculation.

4.1 Identification of the feature points

We can define feature point as a point of low self-similarity. A point is considered
to be feature point, if the contrast changes are high in different orientations, and its
local interconnection topology is unique in small neighborhood. This uniqueness
is important, because during the displacement calculation, we calculate matches
around these feature points, and if there are points with similar topologies in the
neighborhood, the displacement calculation will not be unambiguous. Typical sit-
uation is, when we are looking for matching on a straight line. In this situation,
multiple matching positions can be found. This is called aperture problem (Fig.
24).

However, calculation of the uniqueness, which is practically an autocorrelation,
is very expensive, hence it is not used. Rather than that, special locations (like local
extrema or corners) are selected as feature points, with the assumption that the im-
age is not periodical, therefore there are no similar locations in the neighborhood.

The mixed-signal layer of the VISCUBE chips is designed to identify the local
extrema in different scales, which is considered to be the primary method of select-
ing feature points. However, we show a feature point selection method implement-
ed on the digital processor array as an alternative option as well. In both cases, the
feature point identification is done in 160x120 (Scale 1) resolution.

25







? ?
?

Fig. 24. Aperture problem in the displacement calculation. Two consecutive images with shift-
ed pattern. The green solid arrow shows those locations, where the displacement can
be calculated unambiguously, while the dotted red arrow shows a location, where the
displacement is ambiguous

4.1.1 Local extrema identification using the mixed-signal processor
layer

As we have seen, the mixed-signal layer is prepared to calculate difference of
Gaussian (DOG) operators, and identify the local extrema positions on them. The
variance of the Gaussians can be tuned, hence local extrema can be sought in dif-
ferent frequency components. To be able to reduce the number of the local extre-
ma points, the minimal value of the maximum locations, and the maximal value of
the minimum locations can be set. This avoids picking up the extrema coming
from local noises in flat locations, which cannot be considered as feature points.
The extrema calculation is done in 3x3 neighborhood. The DOG operation takes
about 200 microseconds (sigma dependent), while the local minima and maxima
calculation takes 25-25 microseconds.

4.1.2 Harris corner detection on the digital processor array

One of the most frequently used standard methods for identifying the feature
points is the Harris corner detection [11]. Harris corner detector calculates the ver-
tical and horizontal spatial derivatives of the image, puts them to the so called Har-
ris matrix (2).

2

2

x x y

x y y

I I I

I I I

 
 
  

A

 (2)

where Ix and Iy are the spatial derivatives and the angle brackets denote averag-
ing around the certain point (e.g. Gaussian averaging).

26

The special features of this matrix [11] are that

 if the eigenvalues are small, the area is flat;

 one large eigenvalue indicates an edge;

 two large eigenvalues indicate intersection of edges (corners, feature
points).

However, the calculation of the eigenvalues is computationally expensive due
to the square root. To be able to reduce the computational burden, it is enough to
calculate (3) [12].

 2det() ()cM trace A A (3)

where κ is the sensitivity parameter. The value of κ has to be determined empir-
ically, and in the literature values in the range 0.04 - 0.15 have been reported as
feasible. The good feature points are indicated by the large values of Mc [12].

In the digital processor array, the 160x120 image is distributed among the pro-
cessors, which means that each receives a 20x15 sized image. The image is
smoothened first with an averaging filter and then, the spatial derivatives are calcu-
lated applying Sobel operators. After that, Mc is calculated, and in each 20x15 seg-
ment, the location of the largest Mc is selected to be the feature point. In this way
the feature points are distributed over the image, and are not concentrated to the
vertexes of a few high contrast objects.

The feature point search on an entire Scale 1 image takes 30,005 clock cycles,
which is about 300 microseconds assuming 100MHz clock frequency.

4.2 Displacement calculation

The displacement calculation is done on a way that a certain location is cut out
from the currently captured image around the feature point, and the best matching
position is sought on the previous frame.

In our case an 11x11 window around the feature point is cut out from the origi-
nal 320x240 image. In the first method, we assume that the displacement is not
larger that 4 pixels, hence we are seeking the best matching position in a 9x9 win-
dow.

The matching is calculated by using L2 norm (4)

 2

2 1() ()n n
x N

L norm I x h I x


  
 (4)

where In are the intensity values in the current frame and In-1 are the intensity
values of the previous frame.

The best matching position is in that location, where the L2 norm is minimal.
(Certainly, the square root is not calculated.) To further reduce the computational
needs, we do not calculate the L2 norm in each location. There are several methods
to reduce the number of the points, where the L2 norm is actually calculated. These
strategies assume that there is a monotonic decrease in the L2 norm as we are pro-
ceeding towards the matching point.

27

Fig. 25. Matching position searching strategy. The 11x11 sized window (indicated with dots) is
cut out from the current image around the feature point. The large 19x19 window is
cut out from the previous frame from the same location. The x shows those 9 posi-
tions, where L2 norm is calculated in the first step

In our case, first we calculate the L2 norm in 9 positions as it is shown in Fig.
25. Then, we perform 8 new calculations around the minimal value, and finally se-
lect the best one. This means that we perform 17 L2 norm calculation altogether.
This calculation takes 102,791 clock cycles, which is roughly 1ms.

In those cases, when the feature point was not strong (e.g. the entire 20x15
window was from the blue sky) we reject the displacement vector, because there is
a high probability that is false. Fig. 26 shows an example of the identified dis-
placement vectors.

Fig. 26. Result of the displacement calculation

28

Scale 0

Scale 1

Scale 2

Fig. 27. Pyramid layers, and a possible sequential displacement calculation result.

If the displacement is larger than 4 pixels we have to use multi-scale (pyramid)
method (Fig. 27). This means that we make the displacement calculation on differ-
ent scales. It is calculated first on Scale 2. When the minimum of the L2 norm is
found, we start out the displacement calculation on Scale 1 from that point which
was the calculated displacement (result) on Scale 2. After that, it is repeated for
Scale 0 also on the same way. To calculate proper downscaling the diffusion opera-
tor of the mixed-signal layer is used. In this way the largest identifiable displace-
ment goes up to 16 pixels. Fig. 28 shows a simulation example for the displacement
calculation, where the pyramid method was used. As it can be seen both small and
large displacements were identified.

29

Fig. 28. Result of the displacement calculation on an image, where the displacements are larger
than 4 pixels, hence pyramid methods applied

5 Conclusion

Advanced focal-plane sensor-processor design, based on vertical integration is in-
troduced. The unique features of the design are that it incorporates heterogeneous
processor arrays, one high resolution fine-grain processor array operating in the
analog/mixed-signal domain, and one low resolution digital processor array. Algo-
rithmically, the senor-processor architecture is designed to perform multi-scale,
multi-fovea processing. The targeted application is UAV visual navigation and re-
connaissance.

References

[1] Péter Földesy, Ricardo Carmona-Galan, Ákos Zarándy, Csaba Rekeczky, Angel Rodríguez-
Vázquez, Tamás Roska: „3D multi-layer vision architecture for surveillance and reconnais-
sance applications”, ECCTD-2009 Antalya, Turkey

[2] Peter Foldesy, Ricardo Carmona-Galan, Akos Zarandy and Csaba Rekeczky: „Digital pro-
cessor array implementation aspects of a 3D multi-layer vision architecture”, proceedings of
the CNNA-2010, pp. 329-332 Berkeley, California, USA

[3] Akos Zarandy, David Fekete, Peter Foldesy, Gergely Soos and Csaba Rekeczky: „Dis-
placement calculation algorithm on a heterogeneous multi-layer cellular sensor processor
array”, proceedings of the CNNA-2010, pp. 171-176 Berkeley, California, USA

[4] Philip Garrou, Christopher Bower, Peter Ramm, “Handbook of 3D Integration: Technology and
Applications of 3D Integrated Circuits”, Wiley-VCH, ISBN: 978-3-527-32034-9, 2008

[5] G. Deptuch, Vertical Integration of Integrated Circuits and Pixel Detectors, Vertex
2008Workshop, July 28-August 1, 2008, Uto island, Sweden.

[6] Marlon D. Enriquez, Michael A. Blessinger, Joseph V. Groppe, Thomas M. Sudol, Jesse
Battaglia, Joseph Passe, Mark Stern, Bora M. Onat, “Performance of High Resolution Visible-
InGaAs Imager for Day/Night Vision”, Proc. of SPIE Vol. 6940, 69400O, (2008)

[7] S. Spiesshoefer, Z. Rahman, G. Vangara, S. Polamreddy, S. Burkett, and L. Schaper, “Process in-
tegration for through-silicon vias”, J. Vacuum. Sci. Technol. A Vol. 23, Issue 4, pp. 824-829 (July
2005)

[8] MITLL Low-Power FDSOI CMOS Process Design Guide, 2006.
[9] A. Rodríguez-Vázquez, R. Domínguez-Castro, F. Jiménez-Garrido, S. Morillas, A. García,

C. Utrera, M. Dolores Pardo, J. Listan, and R. Romay, “A CMOS Vision System On-Chip
with Multi-Core, Cellular Sensory-Processing Front-End”, in Cellular Nanoscale Sensory
Wave Computing, edited by C. Baatar, W. Porod and T. Roska, ISBN: 978-1-4419-1010-3,
2009

[10] Takeo Kanade; Bruce D. Lucas, An Iterative Image Registration Technique with an Appli-
cation to Stereo Vision; Computer Science Department Carnegie-Mellon University Pitts-
burgh, Pennsylvania 15213; From Proceedings of Imaging Understanding Workshop, pp.
121-130, 1981

[11] C. Harris and M. Stephens, "A combined corner and edge detector" (PDF). Proceedings of
the 4th Alvey Vision Conference. pp. pp 147--151. 1988

30

[12] C. Harris, "Geometry from visual motion". in A. Blake and A. Yuille. Active Vision. MIT
Press, Cambridge MA. 1992

[13] P. Foldesy, A. Zarandy, Cs. Rekeczky, and T. Roska, “Digital implementation of cellular
sensor-computers”, Int. J. Circuit Theory and Applications (CTA), Volume 34 , Issue 4,
Pages: 409 – 428, July 2006

[14] P. Foldesy, Á. Zarándy, Cs. Rekeczky, and T. Roska „Configurable 3D integrated focal-
plane sensor-processor array architecture”, Int. J. Circuit Theory and Applications (CTA),
pp: 573-588, 2008

[15] Akos Zarandy, and Csaba Rekeczky, “2D operators on topographic and non-topographic ar-
chitectures -implementation, efficiency analysis, and architecture selection methodology”,
Int. J. Circ. Theor. Appl., 2010

[16] P. Földesy, Á. Zarándy, Cs. Rekeczky, and T. Roska „Configurable 3D integrated focal-
plane sensor-processor array architecture”, Int. J. Circuit Theory and Applications (CTA),
pp: 573-588, 2008

