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ABSTRACT:  Most neural network approaches to the cell formation problem have been based on 
Competitive Learning-based algorithms such as ART (Adaptive Resonance Theory), Fuzzy Min-
Max or Self-Organizing Feature Maps. These approaches do not use information on the sequence of 
operations on part types. They only use as input the binary part-machine incidence matrix. There are 
other neural network approaches such as the Hopfield model and Harmony Theory that have also 
been used to form manufacturing cells but again without considering the sequence of operations. In 
this paper we propose a sequence-based neural network approach for cell formation. The objective 
function considered is the minimization of transportation costs (including both intracellular and 
intercellular movements). Soft constraints on the minimum and  maximum on the number of 
machines per cell can be imposed. The problem is formulated mathematically and shown to be 
equivalent to a quadratic programming integer program that uses symmetric, sequence-based 
similarity coefficients between each pair of machines. To solve such a problem two energy-based 
neural network approaches (Hopfield model and Potts Mean Field Annealing) are proposed. 

 

INTRODUCTION 
 
Cellular manufacturing consists in forming a number of manufacturing cells, each one dedicated to 
the processing of a family of similar part types. This can lead to a reduction of setup times, waiting 
times and work-in-process inventories (Wemmerlöv and Johnson 1997). There are many approaches 
to cell formation ranging from heuristics (e.g. Askin and Subramanian 1987) and metaheuristics 
(e.g. Lozano et al 1999a), to mathematical programming methods (e.g. Wang and Rose 1997) and 
conventional (e.g. McAuley 1972) as well as fuzzy (Dobado et al 1999) clustering methods. 
 
There have also been a number of neural network approaches for cell formation. Most approaches 
involving neural networks use either competitive learning (Malave and Ramachandran 1991; Chu 
1993), ART1 (Dagli and Huggahalli 1991; Kaparthi and Suresh 1992; Prasad and Rajan 1994), 
Fuzzy ART (Suresh and Kaparthi 1994, Kamal and Burke 1996), Fuzzy Min-Max (Lozano et al 
1999b) or SOFM (Venugopal and Narendran 1994). The basic input data these methods use is a 
binary part-machine incidence matrix 
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Other neural networks that aim at optimizing a certain energy function have also been proposed for 
cell formation (Lozano et al 1993, Canca et al 1999) but they too use the binary part-machine 
incidence matrix. 
 
In this paper we propose a neural network approach that uses the information on the sequence of 
operations of the different part types. In the next section the problem is formulated and analyzed. 
The two solution approaches proposed are presented in section 3 and 4. Section 5 presents some 
computational experiences and in section 6 conclusions are drawn. 

 
 

PROBLEM FORMULATION 
 
Let 

i machine index 
j part type index 
k machine cell index 
l operation index 
M Number of machines 
P Number of part types 
Mmin Minimum number of machines per cell 
Mmax Maximum number of machines per cell 
Cmax  =  M/Mmin  Maximum number of cells that can be formed 
Cmin  =  M/Mmax  Minimum number of cells that can be formed 

jo  Number of operations of part type j 

jlm  Machine on which operation l of part type j is performed 
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Dj Demand of part type j 

∑ ∑
= =

=
P

j

o

l
jliijii

j

Dn
1 1

’’ δ  Total number of movements from machine i to machine i’ 

iiiiii nn ’’’ +=η   Total number of movements between machines i and i’ 
intrah  Unit cost of intracellular movements 
interh  Unit cost of intercellular movements 

inter

intra

h

h
q =  Ratio of unit cost of intracellular movements to unit cost of intercellular movements 

 
The decision variables are 
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Total transportation costs can be computed as 
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or equivalently 
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Since the first term within the bracket is a constant and assuming q≤1 the minimization of total 
transportation costs is equivalent to maximizing the following objective function 
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where the similarity coefficient between machines i and i’ is defined as Sii’ = ηii’. 

This objective function represents the sum of all pair-wise similarity coefficients between machines 
in the same cell. It also represents the total number of intracellular movements. Note that the value 

of q (or equivalently of intrah ) does not influence the optimal solution, as long as intrah ≤ interh . The 
reason is that since the total number of movements in the system is fixed, as long as intercellular 
movements are more costly than intracellular ones but irrespective of their absolute values, total 
transportation costs are minimized when intercellular movements are minimized or equivalently 
intracellular movements are maximized. This means that there would have been no generality loss 
should we have assumed that instead of total transportation costs only intercellular (respectively 
intracellular) movements costs are minimized (respectively maximized). 
Although in principle the number of cells to form is not fixed but can vary between Cmin and Cmax, in 
practice, since the objective function increases as the number of cells are decreased, the optimal 
solution will very likely involve the minimum feasible number of cells Cmin. Therefore we can solve 
the problem assuming that the number of cells to form is fixed to Cmin. 

Thus, the complete model that results is 

∑ ∑ ∑
= > =

M

i ii

C

k
kiikii

min
xxS

1 ’ 1
’’Maximize  

subject to 

 ix
minC

k
ik ∀∑ =

=1
1   

 kMxM max
M

i
ikmin ∀∑ ≤≤

=1
  

{ } minik CkMix ,...,2,1,...,2,11,0 ===  

This is a quadratic programming problem with a combinatorial structure. To solve it we propose two 
energy function-based neural networks: the Hopfield model and Mean Field Annealing. 
 
 

HOPFIELD MODEL APPROACH 
 
The Hopfield model (Hopfield and Tank 1985) is a recurrent neural network with symmetric, 
bidirectional connections between every pair of units. Each unit has an activation level which is a 
sigmoid function of its net input. The net input of a neuron evolves according to an equation of 
motion that depends on the activation levels of the other neurons and on the weights of its 
connections with them. Hopfield (1984) shows that this dynamic system has an energy function and 
that the stable states to which the activation levels converge are local minimum of such Lyapunov 
function. 



For the cell formation problem formulated above, the corresponding Hopfield model has M@Cmin 
nodes, i.e. one for each possible machine to cell assignment. Each node has an associated activation 
level xik. The weight of the symmetric, bidirectional connection between each pair of nodes i and i’ is 
the similarity coefficient Sii’. The energy function of the network is 
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The first term in the energy function corresponds to the quadratic objective function of the problem. 
The second term is a penalty aimed at imposing the integrality constraints on variables xik. The third 
term is also a penalty aimed at imposing the constraints that guarantee that each machine is assigned 
to one and only one cell. The fourth term is an approximate method of imposing the cell size limits. 
The need for these penalty terms and their corresponding penalty coefficients is one the major 
drawbacks of using the Hopfield model for constrained optimization problems since they distort the 
original objective function so that the network will eventually trade it off with the penalty terms 
trying to find a compromise: a feasible (or nearly feasible) solution with a good value of the 
objective function. 
 
The activation level of a neuron ik is computed as xik=gT(uik) where uik is the net input to neuron ik 
and the transfer function gT(u) =1/1+e-u/T is the logistic function with gain 1/T. The equation of 
motion describing the time evolution of the model is 
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The interpretation of the second term is that if xik is less than 0.5 then the net input should decrease 
so that the activation level is decreased trying to approach 0. On the contrary, if xik is greater than 0.5 
then the net input should increase so that the activation level is also increased trying to approach 1. 
Note, however, that when xik=0.5 the second term does not contribute to changing the net input. 
 
The interpretation of the other terms of the equation is easier if we assume that except xik the other 
activation levels are already binary. Then, 

• the first term means that the higher the similarities between machine i and the other machines in 
cell k, the higher the increase in the net input uik in order to move xik towards 1 and join that cell 

• the third term means that if machine i is already partially assigned to more than one cell, the net 
input uik (and consequently the activation xik) should decrease and if it is under-assigned both 
should increase. Note that if the equality holds, no change is made. Note also that this term does 
not depend on k so that the grade of membership of machine i to all cells are changed by the 
same amount. 

• the fourth term means that if the total number of machines already in cell k is above 
(respectively below) the target size (Mmin+Mmax)/2 then the net input uik and consequently the 
activation xik should decrease (respectively decrease). Note that this term does not depend on i so 
that the grade of membership of all machines assigned to cell k are changed by the same amount. 

 
The solution provided by the Hopfield neural network depends on the initial value of the activations 
xik and of the penalty coefficients α,β and γ. Activations are initialized randomly in the vicinity of 
the center of the unit hipercube, i.e. xik≈0.5 ∀ik. The strategy followed to determine the values of the 
penalty coefficients consists in augmenting gradually the value of α or β if any of its associated 



constraints does not hold. Such a process continues both constraints hold, i.e., the activations are 
binary and each machine is assigned to one and only one cell. Since the target size (Mmin+Mmax)/2 is 
a soft constraint the value of γ is not augmented gradually but stays fixed. After convergence is 
obtained cell sizes are computed and in case the maximum cell size is exceeded a greedy heuristic is 
used to guarantee feasibility. 
 

POTTS MEAN FIELD ANNEALING APPROACH 
 
One way of reducing the number of penalty terms in the energy function (which distort the original 
objective function) is using Mean Field Annealing. The Potts Mean Field Annealing (PMFA) 
algorithm (Peterson and Söderberg 1989, Van den Bout and Miller 1989, 1990, Gislen et al 1992) is 
a neural network approach with the same topology that the Hopfield model. However, in this 
approach: 

• Neurons are considered as binary valued units with stochastic transfer functions P(xik=1)=gT(uik) 
and P(xik=0)=1-P(xik=1) while the operating variables are their mean values 〈xik〉 

• The gain 1/T of the logistic function is gradually increased or equivalently the Temperature 
parameter T is gradually decreased from a large initial value until it reaches a value close to zero 
that leads to the saturation of the activation levels, i.e. the activation levels are approximately 
binary. This is the way in which the integrality constraints are imposed and therefore do not need 
to be included in the energy function 

• The mean activation levels 〈xik〉 are not computed independently for each pair ik but according to 
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is called the mean internal field experienced by neuron ik. This form of computing the mean 
activation levels guarantee that 
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At each temperature T the PMFA algorithm iterates the activation levels computation equations 
until convergence. Then T is decreased and corresponding activation levels are computed again. 
This process is repeated until, for a sufficently low value of T the saturation condition holds 
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• The energy function is equal to the original objective function plus the penalty terms 
corresponding to the cell size constraints. Its mean value is 
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is the mean internal field experienced by neuron ik. 
 
 

COMPUTATIONAL EXPERIENCES 
 
In order to test the performance of Hopfield and Potts MFA we have carried out a set of experiments 
with 120 random instances corresponding to four groups of problems. The number of machines and 
part types in each group of problems is shown in table 1. 

Table 1 

Number of Machines and Part Types 

Problem group M P 

I 20 40 

II 30 60 

III 40 80 

IV 50 100 

 
The route for each part type was generated randomly with a length between 2 and 10 operations. The 
demand for each part was generated randomly between 100-δ and 100+δ. Three values of δ were 



used (δ=10, δ=25 and δ=50). For each problem group and each value of δ 10 different problems 
were generated. A value of Mmax=7 was used for all problems. 
 
As a comparison, the best solution found by a Tabu Search algorithm has also been computed. Tabu 
Search (TS) is known to be a very good (and fast) metaheuristic [Lozano et al, 1999]. Since neural 
network approaches are not expected to outperform a well designed TS algorithm, we use it just as a 
benchmark. Table 2 shows for each problem category the average ratio of the objective function 
found by each method and the best value of the objective function found by any method. Recall the 
problem is a maximization one so the closer the ratio to unity, the better performing the method. 
Table 3 shows the average of the same ratios for each problem group. Note that, as expected, Tabu 
Search gives almost always the best solution, followed by PMFA with an average deviation of 6% 
and Hopfield in third place with an average deviation of 10%. 
 

Table 2 

Objective function ratios (TS=Tabu Search, HOP=Hopfield, PMFA=Potts MFA) 

Problem group δ O.F. TS/ Best O.F. O.F. HOP/ Best O.F. O.F. PMFA/ Best O.F. 

I 10 1.000 0.955 0.940 

I 25 1.000 0.937 0.960 

I 50 1.000 0.951 0.944 

II 10 0.998 0.901 0.971 

II 25 0.999 0.900 0.959 

II 50 0.988 0.876 0.956 

III 10 1.000 0.882 0.912 

III 25 1.000 0.884 0.919 

III 50 1.000 0.867 0.907 

IV 10 1.000 0.880 0.932 

IV 25 1.000 0.855 0.940 

IV 50 1.000 0.863 0.925 

 
Table 3 

Objective function ratios by problem group (TS=Tabu Search, HOP=Hopfield, PMFA=Potts MFA) 

Problem group O.F. TS/ Best O.F. O.F. HOP/ Best O.F. O.F. PMFA/ Best O.F. 

I 1.000 0.948 0.948 

II 0.995 0.892 0.962 

III 1.000 0.877 0.913 

IV 1.000 0.866 0.932 

Average 0.999 0.896 0.939 

 
As for efficiency, Tables 4 and 5 show the average CPU times (in an Intel Pentium II 450 MHz) for 
each method. It can be noted that for all methods running times are correlated with problem size, i.e. 



the larger the number of machines the longer it takes to explore the solution space. Of the three 
methods tested, Hopfield is slowest and PMFA is fastest. Tabu Search is in between. 
 
 

CONCLUSIONS 
 
In this paper a new approach to cell formation is proposed. It uses similarity coefficients between 
pairs of machines. These similarity coefficients are computed using the information on the sequence 
of operations along the routes of the part types. Although two neural networks have been proposed 
to solve the machine grouping problem, the one based on Potts MFA seems best suited because it 
requires only one penalty coefficient. Compared with a Tabu Search algorithm PMFA gives an 
average of 6% deviation but its computational requirements are much lower. 
 

Table 4 

CPU times (TS=Tabu Search, HOP=Hopfield, PMFA=Potts MFA) 

Problem group δ CPU time TS CPU time HOP CPU time PFMA 

I 10 0.126 0.774 0.045 

I 25 0.110 0.582 0.046 

I 50 0.104 0.676 0.050 

II 10 0.390 2.748 0.081 

II 25 0.357 2.724 0.077 

II 50 0.396 2.285 0.068 

III 10 1.302 5.108 0.125 

III 25 1.297 5.668 0.159 

III 50 1.319 6.359 0.149 

IV 10 1.676 11.649 0.187 

IV 25 1.769 16.490 0.187 

IV 50 1.857 13.153 0.195 

 
Table 5 

CPU times (TS=Tabu Search, HOP=Hopfield, PMFA=Potts MFA) 

Problem group CPU time TS CPU time HOP CPU time PFMA 

I 0.114 0.677 0.047 

II 0.381 2.586 0.075 

III 1.306 5.712 0.144 

IV 1.767 13.764 0.190 

Average 0.892 5.685 0.114 
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