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Summary. PDP systems are a type of multienvironment P systems, which serve as a
formal modeling framework for Population Dynamics. The accurate simulation of these
probabilistic models entails large run times. Hence, parallel platforms such as GPUs has
been employed to speedup the simulation. In 2012 [14], the first GPU simulator of PDP
systems was presented. In this paper, we present current updates made on this simulator,
and future developments to consider.

1 Introduction

P systems[16, 17] have become good candidates for computational modeling thanks
to the compartmental and discrete features, both in Systems Biology [19, 20] and
Population Dynamics [3]. In this concern, it is worth to mention the achieved
success in real ecosystem modeling through probabilistic P systems, such as the
Bearded Vulture in the Catalan Pyrenees (endangered species) [2], and the zebra
mussel in Ribarroja reservoir (exotic invasive species) [1]. These works have lead
to a formal, computational modeling framework called Population Dynamics P
systems (PDP systems) [4].

In order to experimentally validate these P systems based models, the devel-
opment of simulators is requested [17]. P-Lingua [5, 25] is a simulation framework
for P systems, which aims to be generic, multi-platform (it is written in Java)
and to provide a standard description language for P systems. It has been used
to develop simulators for many variants of P systems, specially for PDP systems.
Furthermore, experts and model designers are able to run virtual experiments in
an abstracted way (without the need of accessing to details of P systems) through
a special software called MeCoSim [18, 24]. MeCoSim uses P-Lingua as the simu-
lation core.
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The run times offered by these general simulation frameworks are high for some
scenarios involving large and complex models. This lack of efficiency is mainly given
from the facts of both using Java Virtual Machine and implementing sequential
algorithms [10]. Indeed, simulating massively parallel devices like P systems in a
sequential fashion is twice inefficient. This issue is can be addressed by harnessing
the highly parallel architecture within modern processors to map the massively
parallelism of P systems [10, 11].

Whereas commodity CPUs can contain dozens of processors, current graphic
processors (GPUs) [8, 15] provide thousands of computing cores. They can be
programmed using general-purpose frameworks such as CUDA [9, 23], OpenCL
and OpenAcc. GPUs exploit data parallelism by using a very fast memory and
simplistic cores. Given the high level of parallelism within modern GPUs (up
to 3500 cores per device [23]), they have provided a platform to implement real
parallelism of P systems in a natural way. Many P system models have been
considered to be simulated with CUDA [11]: P systems with active membranes,
SAT solutions with families of P systems with active membranes and of tissue
P systems with cell division, Enzymatic Numerical P systems, Spiking Neural P
systems without delays, and Population Dynamics P systems [14], among others.
Most of these simulators are within the scope of PMCGPU (Parallel simulators for
Membrane Computing on the GPU) software project [26], which aims to gather
efforts on parallelizing P system simulators with GPU computing.

As shown by all of these research works, the development of a new P system
simulator requires a big research and development effort. For example, in the case
of the simulator for PDP systems, the simulation algorithm called DCBA [13, 3]
was implemented. It is based on 4 different phases with completely different char-
acteristics, and the parallelization effort is also different in each one (e.g. second
phase of DCBA is a random sequential loop that cannot be easily parallelized).
Therefore, the different semantical and syntactical elements of each P system vari-
ant lead to completely different GPU-based simulators. Not only does the GPU
code depend on the simulated variant, but its efficiency also depend on the simu-
lated P system within the variant [14].

In this paper, we show new developments on the GPU simulator for PDP
systems. In summary, a new input module received binary files has been created,
allowing to run real ecosystem models defined with P-Lingua. Moreover, we present
a road map proposal, a set of research lines for future work that is going to be
addressed.

The paper is structured as follows: Section 2 provides an overview of the re-
quired concepts to understand this paper. Section 3 presents the new feature of
the simulator consisting in a input module to read binary files, and also some
preliminary results. Finally, Section 4 discuses future developments to take into
consideration.
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2 Preliminaries

In this section we briefly provide the minimum concepts for the understandability
of the paper. We will not introduce the model of PDP systems and GPU computing
into detail. Instead, we provide short descriptions along with useful references.

2.1 PDP systems model and simulation: DCBA

PDP systems [4, 3] are a branch of multienvironment P systems [6], which con-
sists in a directed graph whose nodes are called environments. Each environment
contains a single cell-like P system. Moreover, the arcs of the graph is implicitly
given by a set of communication rules which allow the movement of objects be-
tween environments in a one-to-many fashion. Thus, these rules are of the form:
(x)ej

pr−→(y1)ej1 · · · (yh)ejh . All the P systems within a PDP system have the same
skeleton: the same membrane structure (with three polarizations), the same work-
ing alphabet, and the same set of (skeleton) evolution rules. These rules are of the

form: u [ v ]αh → u′ [ v′ ]βh. It can be seen that these P systems are an extension of
the active membranes model. However, no dissolution neither division are allowed,
and special care on the consistency of rules has to be taken.

PDP systems have also a probabilistic flavor in terms of probabilities associated
to the rules. On the one hand, a probability is associated to each skeleton rule for

each environment, thus being of the following form: u [ v ]αh
fr,j−→u′ [ v′ ]βh. On

the other hand, a probability is associated to each communication rule globally
to the PDP system. Rules are executed in a maximal parallel way according to
the probabilities. Rules having the same left-hand side must satisfy the following
condition: the sum of their probabilities has to be 1. Eventually, rules having an
“unique” left-hand side have associated the probability 1. Inherently to the model
is the concept of rule block: a block is formed by rules having the same left-hand
side.

For the syntax of the models, refer to [3, 4] and [6]. Concerning the semantics of
the model, several simulation algorithms have been proposed since the introduction
of PDP systems. Each new algorithm aimed at improving the accuracy in which
the reality is mapped to the models. Perhaps, the most difficult feature to handle
by the simulation algorithms is the competition of objects between rules from
different blocks (note that rules within a block have a the same left-hand side, and
the objects are consumed according to the probabilities) [10].

The latest introduced algorithm for PDP system is called Direct distribution
based on Consistent Blocks Algorithm (DCBA) [13]. The approach taken in it is
based on the idea of distributing the objects along the rule blocks in a proportional
way. After this distribution, the rules within the blocks are selected according to
their probabilities using a multinomial distribution. In summary, DCBA consists
in 4 phases: 3 for selecting rules and the last one for performing the execution.
The scheme of DCBA is the following:
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1. Initialization of the algorithm: static distribution table (columns: blocks,
Rows: (objects,membrane))

2. Loop over Time
3. Selection stage:
4. Phase 1 (Distribution of objects along rule blocks)
5. Phase 2 (Maximality selection of rule blocks)
6. Phase 3 (Probabilistic distribution, blocks to rules)
7. Execution stage

The proportional distribution of objects along the blocks is carried out through
a table which implements the relations between blocks (columns) and objects in
membranes (rows). We always start with a static (general) table, and depending
on the current configuration of the PDP system, the table is dynamically modified
by deleting columns related to non-applicable blocks. Note that after phase 1, we
have to assure that the maximality condition still holds. This is normally conveyed
by a random loop over the remaining blocks.

Finally, DCBA also handles the consistency of rules by defining the concept of
consistent blocks [13, 10]: rules within a block have the same left-hand side and
the same charge in the right-hand side. There is a further restriction within phase
1: if two non-consistent blocks (having different associated right-hand charge) can
be selected in a configuration, the simulation algorithm will return an error, or
optionally non-deterministically choose a subset of consistent blocks.

2.2 GPU computing

Today, PC’s processors offer from 2 to 16 computing cores, and this number can
be increased to 64 or even 128 in high end equipments. These cores are complex
enough to run threads simultaneously, each one with its own context, exploiting a
coarse grain level of parallelism. For example, OpenMP [22] is a threading library
for multicore processors, which can be used in C/C++.

High Performance Computing world has changed in the past years. The intro-
duction of the GPU [8] as a co-processor unit to compute and render 3-D graphics,
encouraged the change of trend in HPC solutions and start to consider heteroge-
neous platforms having CPUs and co-processors. The GPU has been devised as
a highly parallel processor since it was conceived, and now, GPGPU enables the
GPU to be used for general purpose scientific applications [21].

A GPU consists in SIMD multiprocessors interconnected to a fast bus with the
main memory system [15, 9]. Each multiprocessor has a set of computing cores
that execute instructions synchronously (they always perform the same instruction
over different data) and a small portion of sketchpad memory (similar to caches in
CPUs, but manually managed by programmers), among other elements. Current
GPUs also implement cache memories (one L2 at the level of the memory system,
and a L1 cache which resides within the sketchpad memory).

Fortunately, all these aspects are abstracted to the programmer with high level
programming models such as CUDA [9, 23]. Introduced by NVIDIA in 2007, CUDA
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allows to run thousands of lightweight threads concurrently arranged in blocks.
Threads belonging to the same block can cooperate and easily be synchronized.
Threads from different blocks can only be synchronized by finishing their execution.
All these threads execute the same code, called kernel, in a SPMD (single-program,
multiple-data) fashion, since they can access to different pieces of data by using the
identifiers associated to each thread and block. Moreover, each thread can also take
different branches of execution, but this is penalized when happened within a warp
(a group of 32 threads), given that it will makes the execution to be serialized. The
largest but slowest memory system is called global memory, whereas the smallest
but fastest sketchpad memory belonging to each block is called shared memory.
The access to these memories should be done carefully, since best bandwidth is
achieved when threads access to memory in coalesced (to contiguous addresses)
and aligned way [15].

Finally, the GPU architecture has been improving by the different releases.
GT800, Fermi, Kepler and Maxwell are the codename of each NVIDIA GPU gen-
eration. Each one has been associated to a Compute Capability (CC), 1.X, 2.X,
3.X, and 5.X, respectively [23].

2.3 PDP systems parallel simulation on the GPU

As mentioned above, the main objective of DCBA is to improve the accuracy of
the algorithm. However, it comes at expenses of low efficiency. Currently, P-Lingua
framework implements the algorithm, but it is usually not recommended when
dealing with large models because of the large simulation times. This lack of effi-
ciency is mainly due to the use of Java Virtual Machine and sequential algorithms.
Indeed, simulating massively parallel devices like P systems in a sequential fashion
is twice inefficient. A solution to outcome this issue is by harnessing the highly
parallel architecture within modern processors to map the massively parallelism
of P systems [10].

GPUs provide a good platform to implement real parallelism of P systems
in a natural way, by using their high level parallelism [11]. Most of P systems
simulators based on GPU are within the scope of PMCGPU (Parallel simulators
for Membrane Computing on the GPU ) software project [26], which aims to gather
efforts on parallelizing P system simulators with GPU computing. Specifically,
there is a subproject for PDP systems, called ABCD-GPU.

ABCD-GPU started with a multi-core version [12, 10], based on C++ and
OpenMP, in which the environments and/or the simulations are distributed along
the processors. Experiments showed that parallelizing by simulations leads to bet-
ter speedups; that is, in a multiprocessor CPU, it is better to parallelize coarsely.
In order to deal with finer-grain parallelism, a CUDA version has been also de-
veloped [14, 10]. In general, these parallel simulators are based on the following
principles:

• Efficient representation of the data, both for PDP system syntactical elements
and auxiliary structures of DCBA. In this concern, the static and dynamic
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tables for phase 1 are not really implemented. Instead, the operations over
these tables are translated to operations over the syntactical elements of the
PDP system, together with much smaller structures. This approach is called
virtual table, and has shown to dramatically decrease the required amount of
data and time in DCBA.

• Exploiting levels of parallelism presented in the simulation of PDP systems:
processing of rule blocks and rules, evolution of environments, and conducting
several simulations to extract statistical data from the probabilistic model.

As mentioned in previous section, CUDA requires a large amount of parallelism
to effectively use GPUs resources [9]. Parallelizing only by simulations as in the
OpenMP version is not enough, and the parallelism level is coarse. Instead, the
solution was to extract more parallelism from the PDP systems as follows [14]:

• Thread blocks: they are assigned to each environment and each simulation.
For each transition step, there is a minimal communication along environ-
ments (only when executing communication rules), and each simulation can be
executed independently.

• Threads: each thread is assigned to each rule block/column in selection phases
(1, 2 and 3). In execution phase (4), threads will execute rules in parallel. As
it is possible to have more rule blocks than threads per thread block, they
perform a loop over rule blocks in tiles.

So far, ABCD-GPU simulator has been tested by using randomly generated
PDP systems. The goal of this was to provide a flexible way to construct bench-
marks for performance analysis, by stressing the simulator with different topolo-
gies. For example, Table 1[14] shows the performance of the simulator with PDP
systems having different lengths of the left-hand sides (in terms of number of dif-
ferent objects in the multisets u and v) in average, and running on a NVIDIA
Tesla C1060 GPU, which has 240 cores and CC 1.3. These results clearly show
that phase 2 is the bottleneck of the simulator, since it is the less parallel phase
consisting in a random sequential loop. Moreover, when the competition for ob-
jects increase (having more objects in the LHS leads to more competitions), overall
performance drastically decreases.

Test with average LHS length of 1.5
% CPU % GPU Speedup

Phase 1 53.7% 30.1% 14.23x

Phase 2 12.6% 47% 2.13x

Phase 3 22.6% 13.7% 13.2x

Phase 4 11.1% 9.2% 9.7x

Table 1. Performance testing through randomly generated PDP systems.
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3 A new input module: binary files

After the first version of ABCD-GPU [14], the efforts were focused on creating a
input module to read PDP system descriptions. In this section, we briefly present
the new features of the ABCD-GPU simulator, which is a module to read bi-
nary files defining PDP systems models. We also show preliminary results of the
simulator with a real ecosystem model.

3.1 Format definition

Similarly to the simulator of P systems with active membranes [10, 11], the design
decision for the input file was a binary format. The reason for this is twofold:

• Size of files: the GPU simulator is conceived for running very large models.
Otherwise, it is not worth to be used. Thus, the communication with the simu-
lator should be as efficient as possible to avoid overheads. Since we use P-Lingua
for describing PDP system models, it makes sense to use pLinguaCore to parse
the files. In this concern, P-Lingua is used as the parser and compiler which
send a file to the simulator with unwrapped rules (recall that rules in P-Lingua
can be defined in a symbolic way). Thus, in order to reduce the size of the file
as much as possible, we have defined a binary format which assign the less bits
to each syntactic element.

• Efficiency : related with the latter, the binary file is also organized in such a
way that it fits well with the initialization of structures in the simulator. This
helps the efficiency of the parser, while reducing the size of the files.

Although using this kind of format lead to a coupled design (between the
P-Lingua parser and the simulator), it will allow to use the GPU engine while
reducing the communication/storage cost.

Next, we show the structure of the format for the binary file, which is divided
into 5 sections:

• Header: unequivocally identify this file as a binary description file for PDP
systems.

• Sub-header: defines the accuracy used along the file, for the different fields. This
allows to use the exact number of bytes according to the number of objects,
rules, etc.

• Global sizes: define the size of alphabet, number of rules, membranes, environ-
ments and membrane structure.

• Rule blocks: their information is given in 3 subsections, each one giving infor-
mation for allocating space related with the next one.

• Initial configuration description.

1 ####################################################################

2 # Binary file format for the input of the simulator: PDP systems

3 # (revision 16-09-2014). The encoded numbers must be in big-endian
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4

5

6 # Header (4 Bytes):

7 0xAF

8 0x12

9 0xFA

10 0x21 (Last Byte: 4 bits for P system model, 4 bits for file version)

11

12 # Sub-header (3 Bytes):

13 Bit-accuracy mask (2 Bytes, 2 bits for each number N (meaning a precision

14 of 2^N Bytes)), for:

15 - Num. of objects (2 bits (meaning 2^0 -- 2^2 Bytes))

16 - Num. of environments (2 bits (meaning 2^0 -- 2^2 Bytes))

17 - Num. of membranes (2 bits (meaning 2^0 -- 2^2 Bytes))

18 - Num. of skeleton rules (2 bits (meaning 2^0 -- 2^2 Bytes))

19 - Num. of environment rules (2 bits (meaning 2^0 -- 2^2 Bytes))

20 - Object multiplicities in rules (2 bits (meaning 2^0 -- 2^2 Bytes))

21 - Initial num. of objects in membranes (2 bits (meaning 2^0 -- 2^2 Bytes))

22 - Multiplicities in initial multisets (2 bits (meaning 2^0 -- 2^2 Bytes))

23 Listing char strings (1 Byte, 5 bits reserved + 3 bits), for:

24 - Reserved (5 bits)

25 - Alphabet (1 bit)

26 - Environments (1 bit)

27 - Membranes (1 bit)

28

29

30 #---- Global sizes

31

32 # Alphabet

33 Number of objects in the alphabet (1-4 Bytes)

34 ## For each object (implicit identificator given by the order)

35 Char string representing the object (finished by ’\0’)

36

37

38 # Environments

39 Number of environments, m parameter (1-4 Bytes)

40 ## For each environment (implicit identificator given by the order)

41 Char string representing the environment (finished by ’\0’)

42

43

44 # Membranes (including the environment space as a membrane)

45 Number of membranes, q parameter + 1 (1-4 Bytes)

46 ## For each membrane (implicit identificator given by the order,

47 from 1 (0 denotes environment))

48 Parent membrane ID (1-4 Bytes)

49 Char string representing the label (finished by ’\0’)

50

51
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52 # Number of rule blocks

53 Number of rule blocks of Pi/Skeleton (1-4 Bytes)

54 Number of rule blocks of the environments (1-4 Bytes)

55

56

57 #---- Information of rule blocks: number rules and length LHS

58

59 # For each rule block of Pi (skeleton)

60 Information Byte (1 Byte: 2 bits for precision of multiplicity in L/RHS

61 (2^0 -- 2^2 Bytes) + 1 bit precision number of objects

62 in LHS (2^0 -- 2^1 Bytes) + 1 bit precision number of

63 objects in RHS (2^0 -- 2^1 Bytes) + 2 bits precision

64 number of rules in the block (2^0 -- 2^2 Bytes) + 1 bit

65 don’t show probability for each environment + 1 bit show

66 parent membrane)

67 Number of rules inside the block (1-4 Bytes)

68 Number of objects in LHS; that is, length U + length V (1-2 Bytes)

69 Active Membrane (1-4 Bytes)

70 # If show parent membrane flag is active (deprecated)

71 Parent Membrane (1-4 Bytes, this is deprecated)

72 Charges (1 Byte: 2 bits for alpha, 2 bits for alpha’, 4 bits reserved,

73 using 0=0, +=1, -=2)

74

75 # For each rule block of environment

76 Information Byte (1 Byte: 2 bits for precision of multiplicity in LHS

77 (2^0 -- 2^2 Bytes) + 1 bit precision number of objects

78 in LHS (2^0 -- 2^1 Bytes) + 1 bit precision number of

79 objects in RHS (2^0 -- 2^1 Bytes) + 2 bits precision of

80 number of rules in the block (2^0 -- 2^2 Bytes) + 1 bit

81 probability for each environment + 1 bit show parent

82 membrane)

83 Number of rules inside the block (1-2 Bytes)

84 Environment (1-4 Bytes)

85

86

87 #---- Information of rule blocks: length RHS, probabilities and LHS

88

89 # For each rule block of Pi

90 ## For each rule

91 Number of objects in RHS; that is, length U’ + length V’ (1-2 Bytes)

92 ### For each environment

93 Probability first 4 decimals (prob*10000) (2 Bytes)

94 ## For LHS U: multiset in the LHS in the parent membrane U [ V ]_h^a

95 Number of objects in U (1-2 Bytes)

96 ### For each object

97 Object ID (1-4 Bytes)

98 Multiplicity (1-4 Bytes)

99 ## For LHS V: multiset in the LHS in the active membrane U [ V ]_h^a
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100 Number of objects in V (1-2 Bytes)

101 ### For each object

102 Object ID (1-4 Bytes)

103 Multiplicity (1-4 Bytes)

104

105 # For each rule block of environment

106 Object in LHS (1-4 Bytes)

107 ## For each rule

108 Number of objects (involved environments) in RHS (1-2 Bytes)

109 Probability first 4 decimals (prob*10000) (2 Bytes)

110

111

112 #---- Information of rule blocks: RHS

113

114 # For each rule block of Pi

115 ## For each rule

116 ### For RHS U’: multiset in the RHS in the parent membrane U’ [ V’ ]_h^a’

117 Number of objects in U’ (1-2 Bytes)

118 #### For each object

119 Object ID (1-4 Bytes)

120 Multiplicity (1-4 Bytes)

121 ### For RHS V’: multiset in the RHS in the active membrane U’ [ V’ ]_h^a’

122 Number of objects in V’ (1-2 Bytes)

123 #### For each object

124 Object ID (1-4 Bytes)

125 Multiplicity (1-4 Bytes)

126

127 # For each rule block of environment

128 ## For each rule

129 #### For each object in RHS

130 Object ID (1-4 Bytes)

131 Environment (1-4 Bytes)

132

133

134 #---- Initial multisets and sekeleton states

135

136 # For each environment

137 ## For each membrane (membrane 0 for environment)

138 Charge (1 Byte: 2 bits, 6 bits reserved, using 0=0, +=1, -=2)

139 Number of different objects in the membrane (1-4 Bytes)

140 ## For each object:

141 Object ID (1-4 Bytes)

142 Multiplicity (1-4 Bytes)

143
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3.2 Input/output parsers

The ABCD-GPU simulator has been extended with a input module which is able
of reading the above described binary format. Currently, the version is still exper-
imental, and in order to decouple the input parser from the simulator structures,
the module creates temporal data structures. Of course, in the final version, these
structures should be avoided, making the reading of input files more efficient. The
input PDP systems can be used both by the CPU and the GPU simulators.

On the other side, a first output module has been also developed. So far, the
results were printed on screen. Today, it is possible to generate CSV (Comma
Separated Values) files, which can be opened by statistics software such as R and
Excel.

3.3 Preliminary results: a real ecosystem model

Thanks to this input module, we have been able to test our simulator with a real
ecosystem model. We have chosen the model of the Bearded Vulture ecosystem in
the Pyrenees, presented in [2], for its simplicity, allowing us to perform debugging
and performance testing.

We have run two tests with 100 simulations, and 47 time steps (as required
by the model for 10 years), using two GPUs from different generations: (a) Tesla
C1060 (GT800 architecture), and (b) GeForce GTX550 (Fermi architecture). Un-
fortunately, we couldn’t use our Tesla K40 (Kepler architecture) yet since some
artifacts happened in the simulator, that requires more debugging and testing.
Table 2 shows the preliminary results extracted from our simulators.

Tesla C1060 GTX550
% CPU % GPU Acc % CPU % GPU Acc

Phase 1 53.8% 56% 4.2x 53.8% 61.2% 12.6x

Phase 2 1.6% 2% 3.4x 1.6% 6.5% 3.5x

Phase 3 37% 9.4% 17.2x 37% 22.8% 23.3x

Phase 4 7.6% 32.6% 1.02x 7.6% 9.5% 11.6x

Total 4.38x 14.4x

Table 2. Profiling the Bearded Vulture ecosystem model (2008)

At first glance, the results show that the GPU (b) (GTX550) achieves better
performance, up to 14.4x of speedup with respect to the sequential version, while
the GPU (a) achieves barely 4.38x. As we have shown before, GPU (a) can achieve
up to 7x of speedup with randomly generated P systems. However, we can see two
new behaviors that were not expected before:

• Phase 2 is not the bottleneck: it is easy to see that the considered model has
no competition for objects. Thus, phase 2 is not required for its simulation (the
only mechanism carried out is the checking of remaining active blocks).
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• Phase 4 is the bottleneck: this results is completely unexpected at first glance.
However, a deeper analysis shows that since a few ratio of rules is executed,
and most of them has common objects in the right hand side, the generation
of objects is not performed completely efficiently. The main reason is the usage
of atomic operations for adding new objects.

However, the behavior is completely different on GPU (b):

• Phase 2 is again the bottleneck. Although it is not required, the first phase of
the kernel is run, which checks the remaining active blocks.

• The rest of phases are well accelerated. This demonstrates that the better
bandwidth and the L2 cache of this GPU help to achieve better speedups
when simulating PDP systems.

4 Road map

In what follows, we will discuss some of the future development lines under our
consideration for next versions. In fact, this list is the road map for the ABCD-
GPU project.

1. Making available Phase1 filter Kernel for GPUs with CC 3.x. In a Tesla K40
GPU, the consistency checking between rule blocks fails randomly.

2. More work on the obtaining the results from the GPU:
(a) Use asynchronous copy from the GPU (it will require a double buffer for

the multisets).
(b) Filtering the multisets on the GPU, according to some parameters defined

by the user.
(c) Finishing the output module for binary files.
(d) Development of a module that uploads the results into a database (inter-

operability with MeCoSim framework).
3. Phase 4 is becoming a bottleneck when running real ecosystem models. We

have to change the scatter strategy into a gather one. That is, the threads
reads the selection number for each rule, and create the corresponding objects.
Why not using hybrid approaches, or a queue-levels approximation? That is,
perform some atomics operations on shared memory, and then dump them to
global memory. However, this is not easy, because the multiset structure might
not fit into shared memory.

4. Phase 2 is also very slow.
(a) Auto-detect if Phase 2 is really required. For example, if we know that

the model has no competition of objects. Or if we analyze the number of
active blocks remaining after Phase 1. Otherwise, we can skip it.

(b) Compact active blocks after phase 1 for more efficiency.
(c) Real (random) disorder of rule blocks (maybe taking some ideas from [7]).

Currently, the random order is given by the thread scheduler (not a really
random).
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5. Avoid current synchronization of DCBA phases. That is, run all the phases
with one single kernel (perhaps one global kernel which calls to device ver-
sions of current kernels). It could be convenient to maintain the original version
for GPUs that are used for the graphic system on the computer (limitation of
kernel time).

6. In PDP systems, the working alphabet for the skeleton and for the environ-
ments are disjoint. That is, Γ ∩ Σ = ∅. Therefore, we can work with all the
communication rules apart from the virtual table.

7. Implement a variant of DCBA, called µDCBA:
(a) It will allow to extract more parallelism within each environment. If we

pre-calculate the group of rules that really depend on each other because
they compete for objects, we will be able to apply DCBA separately to
each group, i.e. more locally and in parallel. Moreover, there will be less
resources to handle (and perhaps we would be able to move more data into
shared memory, such as the multisets).

(b) We define a transitive relation between rule blocks, called competition:
block bi directly compete for objects with block bj if they have overlapping
but not equal left-hand side. Moreover, if bk directly compete with Bj , but
not with Bi, then Bi and Bk also compete for objects (however, indirectly
through Bj).

(c) The idea is to define disjoint sets of rule blocks holding the competition
relation, and apply DCBA to each one.

(d) It would be desirable to use this variant only when the sets are balanced.
We could also assign different “small” sets to one thread block.

8. Improving the data structures. Concerning the storage of objects appearing
in the left-hand side of the rule (blocks), the current implementation on the
GPU could be improved.
(a) Current implementation is based on CSR representation of sparse matrices.

All the objects of all the left-hand sides (LHS) are stored consecutively in
a single array (see Figure 1), the array at the bottom). Each rule block
has a corresponding entry in an array that contains a pointer (the index)
to the array for LHS objects. This index says the first object of the LHS,
and the end is given by the index of the next rule block. In this way, for
example, ruleblock 4 has no object in LHS (what is weird, but can take
place in our implementation), since idx5-idx4=0. However, rule block 2
has 3 objects, since idx3-idx2=3.

(b) The problem is that each thread will iterate the objects of the LHS of each
rule block. However, the access to the array of LHS is not coalesce, what
is really bad for performance.

(c) The idea would be to use the ELL representation of sparse matrices, and
compact the objects in the LHS by chunks of consecutive rule blocks.
Rule blocks with short LHS will need to replicate with dummy objects.
In this way, the access is made coalesced (see Figure 2). The array of
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objects should be linear (that’s why there are lines connecting each chunk).
Moreover, the array of lengths could be avoided.

(d) This will entail an interesting research. Is it good to do it or not? How
much is the waste of memory? Can we use it only when LHS lengths are
more or less balanced? Otherwise, can we use the COO representation? Is
it really much more faster? What about Fermi architecture? Will their L2
cache improve the results?, is it good or not?

9. Implement model-oriented optimizations. That is, to analyze the PDP system
model prior to the simulation and extract properties that will help to the
efficiency. For example, test if there are competition for objects, inconsistent
rule blocks, etc.

10. Parallel P-Lingua. Moreover, it would be interesting to let the model designer
to provide the above mentioned properties to the simulator. For example, to
allow in P-Lingua the usage of directives for defining modules of rules that can
be executed in parallel, similarly to the pragma directives in OpenMP.

11. Hybrid simulation of PDP systems, by using both the CPU and GPU platforms
at the same time, and implement a merge module of simulations at the end of
the process.

RB1 RB2 RB3 RB4 RB5 RB6 RB7 RB8

idx1 idx2 idx3 idx4 idx5 idx6 idx7 idx8

O1,1 O1,2 O2,1 O2,2 O2,3 O3,1 O5,1 O5,2 O6,1 O6,2 O7,1 O8,1

Rule blocks

Left-hand side indexes
(points to first object)

Objects in LHS

Fig. 1. Data structure for storing the information of left-hand sides of rule blocks, as
currently implemented.

5 Conclusions

In this paper, we have shown the preliminary results related with the input mod-
ule for the CPU/GPU simulators of PDP systems (ABCD-GPU). This module
supports files with a binary format, which we have introduced here. The purpose
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RB1 RB2 RB3 RB4 RB5 RB6 RB7 RB8

len1 len2 len3 len4 len5 len6 len7 len8

O1,1 O2,1 O3,1 X O5,1 O6,1 O7,1 O8,1

Rule blocks

Left-hand side lengths

Objects in LHS

O1,2 O2,2 X X O5,2 O6,2 X X

X O2,3 X X X X X X

Fig. 2. Data structure for storing the information of left-hand sides of rule blocks, as
proposed.

of using a restricted, binary format is for efficiency. We have also shown that simu-
lating a real ecosystem model leads to different behaviors, depending on the GPU
generation. Specifically, we have seen that phase 2 is the bottleneck for a Tesla
C1060, while phase 4 is for a GTX 550 (Fermi).

Figure 3 shows the current structure of the project. The simulation engine
implements DCBA in both multicore (CPU) and manycore (GPU) platforms. The
input files are generated by pLinguaCore, which acts as a parser in the creation
of binary files. The output files will be both in CSV and binary formats soon, and
a module to upload results to a database is also under consideration. Moreover,
the platform still support the input of randomly generated PDP systems and the
output of corresponding profiling and debugging information, in order to conduct
performance benchmarks to new versions of the simulator.

Finally, it is noteworthy that in this case, Parallel Computing is not only used
to get faster solutions, but also, to obtain better results, because it enables the
users to run DCBA-based simulations in an affordable time.
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18. I. Pérez-Hurtado, L. Valencia-Cabrera, M.J. Pérez-Jiménez, M.A. Colomer, A.
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