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The literature about non-linear dynamics offers a few recommendations, which sometimes are
divergent, about the criteria to be used in order to select the optimal calculus parameters in the
estimation of Lyapunov exponents by direct methods. These few recommendations are circumscribed
to the analysis of chaotic systems. We have found no recommendation for the estimation of A starting
from the time series of classic systems. The reason for this is the interest in distinguishing variability
due to a chaotic behavior of determinist dynamic systems of variability caused by white noise or linear
stochastic processes, and less in the identification of non-linear terms from the analysis of time series.
In this study we have centered in the dependence of the Lyapunov exponent, obtained by means of
direct estimation, of the initial distance and the time evolution. We have used generated series of
chaotic systems and generated series of classic systems with varying complexity. To generate the series

we have used the logistic map.
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INTRODUCTION

The discovery of chaotic behavior in deterministic
dynamical systems has changed some philosophical
aspects in the prevailing scientific paradigm and has
opened new perspectives for the design and analysis of
time series (Barnett and Choi, 1989; Casdagli, 1991;
Casdagli et al., 1991; Sayers, 1991; Berliner, 1992;
McCaffrey et al., 1992; Nychka et al., 1992; Gerr and
Allen, 1993; Takens, 1993).

In the 1980s, the breakthroughs in the analysis of time
series based on the Qualitative Theory of Dynamical
Systems have yielded a set of indexes. These, in theory,
should allow us to determine if the apparently random
time sequence observations of a system state, can or
cannot be due to chaotic behavior generated by a system of
nonlinear deterministic equations (Ashley et al., 1986;
Broomhead and King, 1986; Ashley and Patterson, 1989;
Brown et al., 1991; Grassberger et al., 1991; McCaffrey
et al., 1992; Abarbanel et al., 1993; Palus et al., 1993;
Takens, 1993). As a sub-product, it is possible to
determine the number of variables which this set of

unknown equations would bring into play, as well as to
classify systems into universal classes (linear—non-linear,
stochastic—deterministic) and relate the changes in the
behavior quantifiers with changes occurred in the
dynamical behavior of the system (bifurcations) (Sugihara
and May, 1990; Montero and Moran, 1992).

Although characterizing dynamical systems using the
analysis of uni-dimensional time series has been a method
widely developed since the 1980s, there are several
questions that need some consideration, at least in the
cases when the indicators are obtained from time series
resulting from behavioral investigation. In this type of
investigation, like in most situations in real life, the data
combine deterministic dynamics with noise of different
nature and magnitude; in addition to this, in Psychology it
is difficult to maintain the same observation situation for a
long time and this leads to a reduction in the length of the
series, therefore the reliability of such indexes can be
questionable.

In this study, we have tried to provide answers to the
questions arising from the calculation of dominant
Lyapunov exponent using direct methods. We have
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centered on analyzing the strength of the exponent for
different values of evolution times and initial distances in
short time series.

LYAPUNOV EXPONENTS: DIRECT ESTIMATION

The dominant Lyapunov exponent is one of the most
widely used indicators to describe the qualitative behavior
in a dynamical system using the analysis of uni-
dimensional time series.

To define what is understood by Lyapunov exponent (A )
we start from an initial condition y,, of a discrete
dynamical system and we consider a very close point,
where the initial distance (dy) is extremely small. Let d, be
the distance after ¢ iterations. If we assume that

|d:| =~ Idol exp (1) @

then A is what we call Lyapunov exponent (Packard et al.,
1980; Schuster, 1984; Montero and Moran, 1992; Nychka
et al., 1992; Abarbanel et al, 1993; Simmons, 1993;
Strogatz, 1994; Hilborn, 1994; Martin et al., 1995). That is,
the average exponential rate of divergence or convergence of
trajectories which are very close in phase space (Wolf et al.,
1985; DeSouza-Machado ef al., 1990; Zeng et al., 1991).

The number of Lyapunov exponents in a dynamical
equals the number of state variables considered. A uni-
dimensional system is characterized by one single
exponent. The signs of Lyapunov exponents provide
qualitative information about the dynamics of a system. If
the sign is positive, this is an indication of chaos. If it is
negative, there is convergence between close trajectories
and therefore classic attractors exist. If the behavior of a
dynamical system represented by function f converges to a
fixed point (y*) or to a limit cycle of a period p which
contains a y* point, then it is easy to prove that Lyapunov
exponent A < 0.

When Lyapunov exponent A = 0 the initial perturbation
will remain with ¢, i.e. trajectories neither diverge nor
converge, their initial distance remains constant. This kind
of behavior is typical of a constant periodical orbit (Sano
and Sawada, 1985; Wolf er al., 1985; McCaffrey et al.,
1992). If the system is three-dimensional (i.e. it contains
three state variables) the possible combination of signs
and the attractors they describe are: (+, 0, —), for a strange
attractor; (0,0, —), a quasi-periodical attractor known as
torus; (0, —, —), limit cycle and (—, —, —), a fixed point.

If in Eq. (1) we take logarithms and we replace d, by its
mathematical expression we obtain
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If the expression (2) has a limit as t — oo we define that
limit to be the Lyapunov exponent:
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in Eq. (3) when dy draws to 0, the term within the
logarithm is the derivative of the iterate ¢ of f evaluated in
Yo((f"Y (y0)). Applying the chain rule of differentiation, the
derivative of f* can be written as a product of ¢ derivatives
of y) evaluated at the successive trajectory points
Y0,¥1,¥2,-.. and so on. We can then define Lyapunov
exponent in a more intuitive way with the following
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Equation (4) tells us that the Lyapunov exponent is the
average of the natural logarithm of the absolute value of
the derivatives of the discrete dynamical system evaluated
in the trajectory points or time series considered. If the
application of the discrete dynamical system for two close
trajectories eventually leads us to separate points, then the
absolute value of the derivative of fis greater than 1 when
we evaluated at those trajectory points. If the absolute
value is greater than 1, its corresponding logarithm is also
positive. If the points of the trajectory continue to diverge,
then the average of the logarithms of the derivatives is
positive.

If we calculate Lyapunov exponent for a sample of
initial points and we average the results, we can define the
average Lyapunov exponent (X) for the system. An uni-
dimensional discrete system has chaotic trajectories, for
certain parameter values on which its behavior depend, if
the average of Lyapunov exponents (X) is positive.

The expression (4) for calculating A requires that the
shape of the discrete dynamical system be known. But,
what happens when we do not know the system but know
one time series of a relevant state variable? Studies
concerning non-linear dynamics have suggested two
approximations for the estimation of Lyapunov exponent:
direct methods or direct estimation and Jacobian methods
(Guckenheimer, 1982; Eckmann and Ruelle, 1985; Wolf
et al., 1985; McCaffrey et al., 1992; Nychka et al., 1992;
Abarbanel et al., 1993; Diamming and Mitschke, 1993).

Direct methods calculate Lyapunov exponent directly
from the time series, without any additional assumptions
or approximations about the subjacent dynamical system.
Since the subjacent system and its dimensions are
unknown, we calculate, using the reconstruction vector
method and for different dimensions, exponents until that
ceases to vary significantly as the dimension of
reconstructed space increases. Although the disadvantage
of this procedure is that it only provides the largest
Lyapunov exponent, we will discuss this method below.
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FIGURE 1 Scale region for a series of distances obtained from
Yer1 =4y (1 = yo).

Let us define y,ys,...,yr, as the elements of a time
series and d,, as the maximum distance between two
points of the series required to be considered as
“infinitesimally” close. If the system behaves chaotically
for points y; and y; with a distance dy =< dpax, the
divergence of close trajectories will be shown in the
sequence differences

do = ly; — yil
di = lyj1 — yirl

dy = lyj12 = yiral

dr = lyjrr — yisrl

This will show an exponential increase, of at least the
mean, 7. With this method for calculating A, we find two
close trajectories in the state space and we calculate the
series of distances, which derive from these two initial
conditions.

Although in general, calculating Lyapunov’s maximum
exponent is easy, we believe that it is worth considering a
few aspects.

We assume a separation rate or exponential approxi-
mation between two close trajectories. For a given time
series it is necessary to demonstrate this assumption. One
way of doing this is by plotting the natural logarithm of the
differences (Indy) as a function of index T (see Fig. 1). If
the divergence is exponential, the points (Indr,T) will
approximate a line given by the following expression

Indr = Indy + AT

The slope of the fitted line—generally by least
squares—is then the value of Lyapunov exponent. The
dispersion diagram is never exactly a line because the
exponential divergence varies along the attractor and
reaches a maximum when it is comparable to the
attractor’s diameter, which is defined as the maximum
distance between the points of the trajectory evolved
over the attractor. Two regions are usually distinguished:
one that is called scale region to which the line is fitted
and another one in which Ind; remains more or less
constant as 7 increases. Adjusting a line with least squares

to the scale region provides the measurement of the
dominant Lyapunov exponent and the accuracy of the
adjustment.

On the other hand, the values of A can, and generally
depend on y; values chosen to be the initial conditions, or
rather, the values of the initial distance (|dy|) between them.

To characterize the subjacent attractor of a given time
series we have to calculate the average corresponding
value for the set of Lyapunov exponents obtained from a
number of trajectories which follow the condition (5).

do = lyi — yjl = dmax )

At a practical level, several questions arise concerning
the time span required between points y; and y; so that they
can be considered as initial conditions of two trajectories,
the length of the series, the number of initial conditions or
distances, the number of iterations or optimal evolution
time required and the initial distance in order to consider
points as infinitesimally close in the phase space.

We do not have many answers to the matters mentioned
in the last paragraph. However, we have found some
suggestions, which have resulted from some simulation
experiments made with specific dynamical systems in
which the theoretical value of Lyapunov’s maximum
exponent is known, in this study, we have gathered some
of the most general suggestions made in the research
material that we have revised.

The initial separation required between two points so
that these can be considered as initial conditions of two
different trajectories in the reconstructed phase space tends to
be related to what is called orbital period (Wolf et al., 1985;
Theiler, 1986). This is the time, which a system takes to
cover an orbit. It is recommended that the initial separation
between two points should be at least one orbital period. The
difficulty for applying this recommendation lies in that the
shape of the dynamical system generating the data must be
known since it is on system itself that the calculation of the
orbital period is based.

In the cases for which the shape of the dynamical
system is unknown, we can follow the recommendations
given by Hilborn (1994) and Theiler (1986). They
maintain that the initial separation required between two
points so that they can be considered as initial conditions
of two different trajectories, must be greater than what is
known as auto-correlation time (7) which is given by the
expression (6).

1
T=——
In(1/p)
In Eq. (6) p is the autocorrelation coefficient of lag 1.

When p approaches 1, Eq. (6) changes and becomes
Eq. (7).
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As far as the number of initial conditions required is
concerned, we have found several recommendations. Sano
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FIGURE 2 Evolution of the distances between two series generated
from the logistic map for a = 4 and d = 0.001.

and Sawada (1985) establish a lower limit which will
depend on the dimension of the reconstructed space; for
them, the number of initial conditions required for the
estimation of Lyapunov’s maximum exponent must be
higher or equal to the dimension of the reconstructed
space (N = d,). Hilborn (1994) recommends from 30 to
40 initial conditions distributed over the attractor. Other
authors establish a dependence on the dimension of the
reconstructed phase space and on the initial tolerance in
order to consider points as infinitesimally close. The
expression (8), by Dammig and Mitschke (1993), provides
the number of initial conditions required for characteriz-
ing the attractor according to Lyapunov’s maximum
exponent

N = (@)de ®

dmax

where d., is the dimension of the reconstructed space and
dnax is the maximum initial distance required to consider
two trajectories as close. Wolf et al. (1985) recommend
from 10% to 30%.

For each of the series of distances we calculate the local
Lyapunov exponent (A4). The average Lyapunov
exponent (A) is given by

Z|

o1y
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where N is the number of series of distances considered.

Another aspect to take into account is the number of
iterations 7, optimal evolution time or length of the series
of distance that are suitable for calculating the Lyapunov
exponent. In the case of chaotic systems, we know that
convergence to theoretic values depends, among others
variables, on the use of an evolution time (7') that is not
too large. Thus, the exponent brings the sensitivity of the
initial conditions and not the convergence produced by the
boundary of the attractor values to a region of the phases
space and of the initial distance (dy) to consider two
neighboring trajectories. We know that there is divergence
in chaotic dynamics but at the same time, due to the
folding mechanism, the values go through points that are
infinitesimally close to previous values.

In Fig. 2 we have shown the evolution of the distances
between two series generated from the logistic map, for
a =4 and for the initial conditions yo; = 0.1 and yg; =
0.101. A large T value may produce an underestimation of
the Lyapunov exponent. Three criteria have been proposed
to fix the number of iterations or evolution times (7'): (a) To
establish, a priori, a fixed evolution time (i.e. T = 10), (b)
To establish a final distance that can be when the attractor
diameter or a percentage is reached. In this case, the time of
evolution would be variable and (c) To identify in the
graphic In dr before T in the scale region.

Finally, the distance d,4, for the limited systems that
interest us, cannot be too large. Due to the fact that the
values y; are constrained in size, the initial distances
cannot be larger than the difference between the
maximum value, yns, and the minimum value, yy,.
Moreover, there are practical limits when determining the
initial distance for the finite precision of the data. The
number of decimals is an inferior limit for the initial
distance. For example, if the data is registered with three
decimals, it would be senseless to question a difference
lesser than 0.001. Another effect of the finite precision is
that we can encounter repeated data.

To summarize, the literature about non-linear dynamics
only offers a few recommendations, which sometimes are
divergent, about the criteria to be used in order to select
the optimal calculus parameters in the estimation of
Lyapunov exponents by direct methods. These few
recommendations are circumscribed to the analysis of
chaotic systems. We have found no recommendation for
the estimation of A starting from the time series of classic
systems. The reason for this is the interest in distinguishing
variability due to a chaotic behavior of determinist dynamic
systems of variability caused by white noise or linear
stochastic processes, and less in the identification of non-
linear terms from the analysis of time series.

In this study, we have centered in the dependence of the
Lyapunov exponent, obtained by means of direct
estimation, of the initial distance and the time evolution.
We have used generated series of chaotic systems and
generated series of classic systems with varying complex-
ity. To generate the series we have used the logistic map
10).

Yr1 = ay(1 — yp) (10)

We know that the logistic equation is a structurally
unstable system. That is, its behavior depends on the value
of the parameter a. In Table I we have specified the values
of a used in this research, its behavior and the diameter of
the corresponding attractor (Hilborn, 1994; Strogatz,
1994).

METHOD

In this section, we describe the dependence of the
Lyapunov exponent both on the initial distance and the
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TABLE I
Value of a Behavior Diameter of attractor Lyapunov exponent
32 Limit cycle (p = 2) 0.29[0.51,0.81] -091
3.52 Limit cycle (p = 2) 0.51[0.37,0.88] —0.19
3.55 Limit cycle (p = 8) 0.53[0.36,0.89] -0.1
3.58 Chaos (low extent) 0.56[0.34,0.90] 0.1
4 Chaos (high extent) 1[0,11 0.69

evolution time in series generated by the logistic map. We
wrote a program in the Mathematica programming
language (v. 2.1 for Windows) and we generated series
with close initial values. The proximity criteria used was
the one recommended by Sano and Sawada (1985)
according to which two generated series of a dynamic system
are considered to be close if the initial distance between
them (d,) is between 1 and 5% of the attractor diameter.

With the program made to generate the data and given
that sensitivity or insensitivity to initial conditions is a
characteristic of a group of trajectories with close initial
conditions, for the values

a=1{3.2,3.52,3.55,3.58,4}

We initially generated 50 series of N = 100 data with
initial conditions (yo) whose distance was 1% of the
attractor diameter (see Table I). From the 50 series
generated we obtained: 49 series of distances with dy =
1%, 48 with dy = 2%, 47 with dy = 3%, 46 with dy = 4%
and 45 with dy = 5%. The initial value for the first series
generated (yo) coincided with the minimum value of the

Zid
13

c)a=32 d,=3% Bas=004

attractor amplitude (see Table I) with the exception of the
series generated for a = 4, where we started from yo, =
0.1. For this last value, we used three additional distances
among the initial conditions 0.1, 0.25 and 0.5% and 50
distance series were generated.
The Lyapunov exponent for 1 = 7 = 99 and the initial
distance (dy) were obtained by means of the expression
1 dr

=21 ar
A=pln o

yir — YiTr
Yio — Yjo

1
=—1In

T At

We calculated the average Lyapunov exponent (A) as
estimator of d. A of the coefficients obtained with
expression (11) for each dj and T.

We graphically represented A as a function of index T
for each value of dj in order to study the incidence of these
parameters.

RESULTS

We organized the results in two different sections. In the
first part, we show those results corresponding to the
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FIGURE 3 Behavior of X according to T when increasing the dy for a = 3.2.
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FIGURE 4 Behavior of A when increasing d; to 10 and 20%.

values of a whose behavior converges on a classic
attractor. In the second part, we offer the results for the
values of a with a chaotic behavior. We have preferred to
show the graphics corresponding to the evolution of A
facing T instead of the value tables because we see them as
more illustrative and easier to interpret.

Classic Attractor
a=32

In Fig. 3, we represented the average Lyapunov exponent
(X) as a function of the evolution time (7') for the set of
distances that were considered.

] j

cvleene
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In the different graphics of Fig. 3, we have drawn a
broken line through the value of the theoretic Lyapunov
exponent. The convergence to this value can be seen with
the increase of the evolution time 7. The convergence
form is independent from the initial distance (dg)
considered. In all cases there is an oscillatory decrease
of A.

For the set

do = {1%,2%,3%)

the convergence stops in T = 14, obtaining the value of A
closest to the theoretic when 7 = 13.
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FIGURE 5 Behavior of A according to the evolution time (T') for a = 3.52.
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FIGURE 6 Behavior of A according to the evolution time () for a = 3.55.

For the set
do = {4%,5%}
the convergence stops in T = 16. The closest mean
Lyapunov exponent (A) is obtained for T = 15and T = 13
(the bias is 0.04).

To see if increasing the initial distance would decrease
the bias (A — A), we analyzed in 16 and 15 series of
distances the behavior of X according to the evolution time
(T) when increasing the initial distance (dy) between the
trajectories to 10 and 20% of the attractor diameter. We
have presented the results in Fig. 4.

It can be observed (graphic (a)), how the value of the
bias and the shape of the convergence are similar to those
obtained for the initial distances analyzed previously. On
the contrary, when the value for the initial distance
increases to 20% the bias increases dramatically to 0.51.

a=3.52

Figure 5 shows the behavior of A according to the
evolution time for the unit of initial distances considered:

do = {1%,2%, 3%, 4%, 5%)

As with the series represented in Fig. 3, for a = 3.52 the
mean Lyapunov exponent declines oscillatory when T

increases. Moreover, some differences can be observed in
relation to dy. In the graphics of Fig. 5, we have drawn a
continuous line. This is perpendicular to the axis of the
intersection of the value of T, which provides the best
estimation of A. As is customary, a broken line represents
the theoretic value of the Lyapunov exponent. We can see
(graphics a, b and ¢ in Fig. 5) that A tends to the theoretic
value when the initial distances are 1-3%. When
increasing the initial distance to 4 and 5% (graphics d
and e in Fig. 5), the limit of X is not the theoretic value but
a larger one. For the values of distances and evolution
times considered, the direct estimation provides values
that are biased positively of A.

a =355

Figure 6 shows the behavior of A according to 7T for the
distances considered.

In the graphics in Fig. 6, we have drawn an ordinate line
A =0 (the gray line) with the aim of assessing possible
qualitative errors when identifying the subjacent attractor
to the data generating system. The 7, (optimal) is the
values of T for which the bias is less.

In graphs (a) and (f) in Fig. 6, we can see an initial
period with great variability in which A oscillates between
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FIGURE 7 Oscillations of A in the interval: T = [60, 100].

the zone of chaotic behavior (A > 0) for the even T values,
and the zone of recurrent behavior (A > 0) for the odd
values. After this first span, when T grows to the value of A
that is higher than the theoretical value (A = —0.1), the
direct estimations for A converge slowly and in an
oscillating way. The increase in the initial distance process
brings the boundary of the convergence process of A to 0.

In the interval 5 = T =< 11 we can find the values that
provide the best estimations of A. A common value for 7,
that provides reliable estimations (bias = 0.02) for the set
of distances under consideration is T, = 7.

From this initial period, both the decline of A for even
values of 7, as well as the growth for odd values, is very
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slow and practically stabilizes itself oscillating between
—0.04 and —0.02 when the initial distance is 1%, as can
be seen in Fig. 7. For the rest of the d, with the evolution
time, oscillation stabilizes between —0.03 and —0.001.

In any case, we can deduce from the Fig. 6, that using
short and even evolution times (first section of the
dispersion diagrams) can be more problematic than using
longer evolution times as, although the bias increases with
T, there are no qualitative errors noted.

Chaotic Behavior
a=3.58

Amongst the many values of a whose behavior is chaotic
in the interval [3.58, 4], we used precisely the extremes,
which correspond to the strange attractor of the smallest
and largest diameters, respectively. Figure 8 shows the
results relative to the form of the dependence of A as
opposed to the evolution time.

In the set of graphs in Fig. 8, we can distinguish three
sections: in the first section for approximately 1 = T = 4,
we can see a sharp increase of A towards the theoretical
value.
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FIGURE 8 Behavior of A according to the evolution time (T') when increasing the initial distance for a = 3.58.
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FIGURE 9 Behavior of A for T > 8 for a = 3.58.

We can consider the second section as stabilization, in
which A oscillates around a constant value very near to the
theoretical value for the even values of T. This second span
becomes progressively shorter as the initial distances
grow. Thus, for dy = 1%, the values of A remain
practically constant until 7" = 25, whilst for do = 5%,
this section finishes in 7 = 8. During this time of
stabilization, as the initial distance increases, error is more
likely in identifying the type of attractor present in the
data, especially for the odd values of T.

The third section, which is clearly identifiable in the
figures, is the longest. In this section, A oscillates with
variations that are practically constant in size, around 0,
independent of the initial distance. The increase in
evolution time to higher than optimal 7 underestimates the
value of A It seems that with 7, the average exponent A
would be centered on 0 for all the initial distances. We
have widened this section specifically in order to observe
whether the behavior in this area is really independent
of the initial distance or not. The results are shown in
Fig. 9.

Taking the values of Afor T > 8, we can see that, with
the initial distances d, increases the possibility of
qualitative error when using longer evolution times. In
graph (a) in Fig. 9, practically 100% of the A values are
greater than 0. Here, although the bias is sharp,

nevertheless the qualitative conclusion regarding the
nature of the attractor contained in the series would be
correct. Graphs (b)—(d) in Fig. 9 shows how the
distribution of values around A =0 inverts with the
increase in the initial distance and the number of negative
exponents increases progressively. The behavior of A in
relation to 7 is similar to that observed for the values of a
with recurrent behavior at intervals of 2, 4 and 8.

In graph (f) in Fig. 8 we can see how, for the values of T
that constitute the first and second section of the evolution
of A for the set of initial distances, the bias is independent
of these.

a=4

Graphs (a) and (h) in Fig. 10 show the dependence of A
with respect to the evolution time for the set of dj that was
applied.

In graphs (b)—(g) (see Fig. 10) we can appreciate a very
rapid initial increase which is more or less lineal, towards
the theoretical value of A. This growth is interrupted
abruptly in A values below the theoretical value. For
growing values of the set of initial distances do =
{1%,2%,3%,4%,5%}, the maximum A values reached
are: 0.59, 0.58, 0.55, 0.55 and 0.53. It appears that we
can confirm a direct relationship between the bias
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FIGURE 10 Behavior of A for a = 4.

in the estimation of A by means of the maximum value of A
and the initial distance. The value 7 = 4, for which a
maximum A value is reached, is independent of the dj.

From these optimal values of 7, X begins to decline
towards A = 0, which acts as the horizontal asymptote.

With the aim of reducing the bias in the direct
estimation of A, we have considered the initial distances
below 1% of the attractor diameter. Specifically, graphs
(H)—(h) (see Fig. 10) show the behavior of A for the set of
initial distances dy = {0.1%,0.25%,0.5%}. We can see
that after an initial period of rapid growth in which values
higher than the theoretical exponent are reached, there is a
decrease of A towards O when 7 increases. In the decrease
phase, we have found A values that are nearer the practical
value. For falling d, values, these values were 0.66, 0.68
and 0.69, that are obtained for 7 = 6 in the first two, and
T = 7 in the third.

From a qualitative point of view the A values are greater
than 0, following the theoretical estimations in all the
cases analyzed (except the value of T = 1).

DISCUSSION AND CONCLUSIONS

We must remember that with this research we were
looking firstly to validate the recommendations of Sano
and Sawada (1985) and Wolf et al. (1985) regarding
suitable initial distances to calculate the largest Lyapunov
exponent, both in classical and strange attractors.
Secondly, we aim to clarify the role of evolution time
and determine an optimal value, if possible, for the set of
values of the parameters analyzed. In the two objectives,
the generalizations are problematic although we have
observed some patterns.
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This study shows that the direct estimation of Lyapunov
exponent in time series that are generated by the logistic
equation depends largely on the calculus parameters that
are selected. Furthermore, these vary according to the
asymptotic behavior of the data generating system. We can
see how, in the limit cycle of period 2, A converges to the
theoretical value with the increase in the evolution time,
independent of the initial distances between trajectories.
In general this convergence process is interrupted before
reaching the objective (broken line in the graphs) and for
any T (except T = 1), the values of A bias positively with
respect to A.

For the values of a, which correspond to the cycle limits
of periods 4 and 8, the convergence boundary depends on
the initial distance, with this limit becoming further and
further removed from the theoretical value of A as the
initial distance increases. However, as in previous cases,
with the value a = 3.2, the behavior zone is not surpassed
at any time.

For the direct estimation of the Lyapunov exponent
corresponding to the classical attractors considered in this
study, it appears that if we take the qualitative division
between recurrent behavior and chaotic behavior based on
A being greater or less than 0, respectively, as relevant
criteria for analyzing the effect of the initial distances and
the evolution time, any value for T where the convergence
is explicit would correctly estimate the type of behavior
present in the data generating mechanism and independent
of the initial distance considered. We have carried out
another study to prove whether these results appear in
short series with noise.

It would be better if other systems whose asymptotic
behavior is either a specific attractor or limit cycles of
different evolution periods for A in relation to T, had
similar behavior.

A fact that we have found no reference in the literature
reviewed is about the way that A converges. In the cases
analyzed in this study we have observed that convergence
oscillates when the subjacent attractor is periodic and in
these oscillations the values of A are softened approxi-
mately with the same regularity as that of the cycle limit
that characterizes the behavior of the system. We believe
that the absence of this kind of results is due to the scarcity
of application of the behavior indicators of the behavior of
a system when this system is classical. In this sense, rather
than specific A values for a specific T value, we believe
that it is necessary to take the study of the A functions
further as they provide information, not only on the
theoretical value of A, but also on the behavior of the
system.

As regards the values for a, whose behavior is
characterized by a chaotic attractor, generalizing the
recommendations of Sano and Sawada (1985) and
establishing the same or less than 5% of the attractor
diameter as a suitable initial distance in the direct
estimation of A values can lead to error when the evolution
time is high and the chaotic attractor diameter is small.
When the amplitude of the chaotic attractor increases

(a = 4) with the evolution time, A moves towards 0. From
a qualitative point of view, by removing the accuracy of
the A estimator for the larger chaotic attractor (a = 4), the
incidence of the initial distance and the evolution time in
the correct identification of the kind of attractor present in
the series is zero.

To sum up, for the chaotic attractors under consider-
ation, it does not appear that long evolution times lead to
error when identifying the data generating mechanism’s
behavior when the initial distances are around 1% of the
diameter. Lower distance values can even help A for some
T values (named by us as optimal T') being focused on the
value of the parameter or with very small bias.
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