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Abstract. In this work, we present a class of fast first order finite volume solvers, named as
PVM (Polynomial Viscosity Matrix), for balance laws or, more generally, for nonconservative hyper-
bolic systems. They are defined in terms of viscosity matrices computed by a suitable polynomial
evaluation of a Roe matrix. These methods have the advantage that they only need some information
about the eigenvalues of the system to be defined, and no spectral decomposition of Roe Matrix is
needed. As consequence, they are faster than Roe method. These methods can be seen as a gener-
alization of the schemes introduced by Degond et al. in [12] for balance laws and nonconservative
systems. The first-order path conservative methods to be designed here are intended to be used as
the basis for higher order methods for multi-dimensional problems. In this work, some well known
solvers as Rusanov, Lax-Friedrichs, FORCE (see [30], [8]), GFORCE (see [31], [8]) or HLL (see [18])
are redefined under this form, and then some new solvers are proposed. Finally, some numerical tests
are presented and the performance of the numerical schemes are compared among them and with
Roe scheme.
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1. Introduction. The goal of this article is to design robust, simple and fast first
order explicit numerical schemes for solving Cauchy problems for hyperbolic systems
of conservation laws with source terms and/or nonconservative products:

w + F(w)y + B(w) - wy = G(w)Hy, (1.1)

where w(z,t) takes values on an open convex set O C R, F is a regular function
from O to RY, B is a regular matrix function from O to My xn(R), G is a function
from O to RN, and H is a function from R to R. A number of models of this type
have been introduced in fluid dynamics to serve as simplified models of multiphase or
multilayer flows.

The theory introduced in [10] is used here to define the weak solutions of the
system (1.1). This theory allows one to give a sense to the nonconservative terms of
the system as Borel measures provided that a Lispchitz-continuous family of paths is
prescribed in the space of states.

We consider here the discretization of system (1.1) by means of numerical schemes
which are path-conservative in the sense introduced in [24]. The concept of path-
conservative method, which is also based on a prescribed family of paths, provides a
generalization of conservative schemes introduced by Lax for systems of conservation
laws. The first-order path conservative methods to be designed here are intended to
be used as the basis for higher order methods for multi-dimensional problems.

In [6] and [25] it has been proved that, in general, the numerical solutions pro-
vided by a path-conservative numerical scheme converge to functions which solve a
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perturbed system in which an error source-term appears on the right-hand side. The
appearance of this source term, which is a measure supported on the discontinuities,
has been first observed in [19] when a scalar conservation law is discretized by means
of a nonconservative numerical method. Nevertheless, in certain special situations
the convergence error vanishes for finite difference methods: this is the case for sys-
tems of balance laws (see [23]). Moreover for more general problems, even when the
convergence error is present, it may be only noticeable for very fine meshes, for dis-
continuities of large amplitude, and/or for large-time simulations: see [6], [25] for
details.

The family of generalized Roe schemes introduced in [32] constitutes a particular
case of path-conservative numerical methods. Although the schemes of this family are
robust and have good well-balanced properties (see, for instance [2],[7],[26],[24]) they
also present, as their conservative counterpart, some drawbacks as their implementa-
tion requires the explicit knowledge of the eigenstructure of the intermediate matrices
(see [29]). Some times their analytic expression is not available, making Roe schemes
computationally expensive. Also, they do not satisfy in general an entropy inequality,
as a consequence, an entropy-fix technique has to be added to capture the entropy
solution in the presence of smooth transitions (see [17]). It is also well known that the
use of incomplete Riemann solvers as Rusanov, Lax-Friedrichs, HLL, etc. allows one
to reduce the cpu time required by a Roe solver which resolves all the characteristic
fields (see, for instance, [15]). Although when combined with piecewise constant ap-
proximation Roe solvers give in general a better resolution of the discontinuities than
incomplete Riemann solvers, when combined with high order reconstructions the res-
olution may be indistinguishable. Therefore high order methods based on incomplete
Riemann solvers may be more efficient than high order Roe methods.

The goal of this article is to design incomplete simple Riemann solvers named as
PVM (Polynomial Viscosity Matrix), for nonconservative hyperbolic systems, defined
in terms of viscosity matrices computed by a suitable polynomial evaluation of a Roe
linearization, that overcome theses difficulties. PVM schemes can be seen as the
natural extension of the one proposed in [12] for balance laws, and, more generally,
for nonconservative systems.

The structure of this paper is the following: In Section 2 we recall some basic
concepts. Section 3 is the core of the article. PVM schemes are introduced for balance
laws and for nonconservative hyperbolic systems. First, some well known solvers as
Rusanov, Lax-Friedrichs, FORCE (see [30], [8]), GFORCE (see [31], [8]) or HLL (see
[18]) are redefined under the form of a PVM scheme, and then some new solvers
are proposed. Next, a simple analysis of the numerical diffusion associated to the
considered schemes are provided. Finally, the extension to high order is performed,
following the main ideas introduced in [3].

In Section 4 the numerical schemes introduced here are compared between them
and with Roe scheme when they are applied to the one-layer shallow water system
and the two-fluid flow model of Pitman and Le [28] under the formulation given by
Pelanti et al. in [27], where the friction terms are neglected. Finally, some conclusions
are derived.

2. Preliminaries. Let us consider system (1.1). By adding to (1.1) the equation
H; = 0, the system (1.1) can be rewritten under the form

W, + A(W) - W, =0, (2.1)
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where W is the augmented vector

W:[ ]eQ:OchRN“

H
and A(W) is the matrix whose block structure is given by:

Aw) | —Gw)
o] o |

A(W) = [

where A(w) = J(w) + B(w) and J(w) = g—i(w)

Solutions of (2.1) may develop discontinuities and, due to the non-divergence form
of the equations, the notion of weak solution in the sense of distributions cannot be
used. Under some hypotheses of regularity for A, the theory introduced by Dal Maso,
LeFloch, and Murat (DLM in the former) [10] allows one to define the nonconservative
product A(W)W,, as a bounded measure for functions W with bounded variation,
which may have step-like singularities, provided a family of Lipschitz continuous paths,
O(s;Wr,Wg), s € [0,1], is prescribed, which must satisfy certain regularity and
compatibility conditions, in particular

©(0; W, Wg) = W, O(1; Wi, Wr) = wr, O(s; W, W) =W. (2.2)

The interested reader is addressed to [10] for a rigourous and complete presentation
of this theory. Here, the family of paths will be just understood as a tool to give a
sense to integrals of the form:

b
/ A(W ()W () da,

for functions W with jump discontinuities. More precisely, given a bounded variation
function W : [a,b] — RV we define:

AW (2))We (x) de = [ AW (2))We (z) dx

a a

+ Z/Ol A(D(s; W, W;))g—i’(s; W, Wihds. (2.3)

m

In this definition, W, and W, represent, respectively, the limits of W to the left and
right of its m-th discontinuity. Observe that, in (2.3), the family of paths has been
used to determine the Dirac measures placed at the discontinuities of W, and the first
term on the RHS is the integral computed in regions of smoothness of W, in the usual
sense.

Notice that the meaning of the nonconservative products and thus the concept
of weak solution has to be assigned together with the system of equations, and its
initial /boundary conditions. For example, a family of straight segments can be con-
sidered:

O(s;Wr,Wg) =W +s(Wg —Wp).

A concept of entropy is also necessary to select the meaningful physical solutions as
it occurs in systems of conservation laws.
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We consider here path-conservative numerical schemes in the sense defined in [24],
that is, numerical schemes of the general form:

At
n+1 n _
Wit =W — M(D;r_l/2 + Dy 9) (2.4)

where Az is, for simplicity, assumed to be constant; W/ is the approximation provided
by the numerical scheme of the cell average of the exact solution at the i-th cell,
I; = [v;_1/2,i11/2] at the n-th time level " = nAt, and

@:I:

i+1/2 = Di(W'n inH)v

where D~ and DT are two Lipschitz continuous functions from Q x Q to Q satisfying:
DEW, W) =0, VW e€Q, (2.5)
and for every Wy, Wg € Q,

1
D= (W, Wg) + DT (W, Wg) = /0 .A((I)(S; W, WR)) g—f(s, W, Wg)ds.
These conditions provide a generalization of the concept of conservative scheme in-

troduced by Lax for systems of conservation laws.

Let us remark that the two main difficulties linked to the discretization of non-
conservative systems using the DLM theory, that is, the choice of the family of paths
and the convergence of the numerical solutions, are not studied in this paper. We
refer to [25] for a review.

The numerical schemes considered in this work are based on a decomposition of a
generalized Roe matrix for (2.1) defined by Toumi in [32]: given a family of paths ®,
a function Ag: @ x Q= M(n41)x(nv+1)(R) is called a Roe linearization if it verifies
the following properties:

o for any W, Wgr € Q, Ae(Wy,Wg) has N + 1 distinct real eigenvalues,
o for every W € Q, Ae(W, W) = A(W);
o for any Wr,Wg € Q,

A@(WL, WR) . (WR — WL) = /0 .A((I)(S, WL, WR))?;I) (S; WL, WR) ds. (26)

S

Following [26], we consider Roe linearizations for system (1.1) given by:

Ag (WL, Wg) | —Ga(Wp, W
Ae (W, Wg) = [ (P( é 1) I (b( OL R) , (2.7)
where
A@(WL,WR) = L(’LUL,U}R) +B¢(WL,WR). (28)

Here, L(wr,wg) is a Roe linearization of the Jacobian of the flux F' in the usual
sense:

L(wy,wgr) - (wg —wr) = F(wg) — F(wy); (2.9)

Bg (W, Wg) is a matrix satisfying:

! 0d,,
B@(WL,WR> . (’LUR 7’LUL) = / B(@(S;WL,WR))W(S;WL,WR) dS; (210)
0
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and Gg (W, Wg) is a vector satisfying:

0Py
Os

1

G@(WL,WR)(HR —HL) = / G((I)(S;WL,WR)) (S;WL,WR) ds. (2.11)
0

It can be easily shown that, if (2.9)-(2.11) are fulfilled, then the matrix defined by

(2.7)-(2.8) is thus a Roe linearization provided it has N + 1 different real eigenvalues.

Once the Roe linearization has been chosen, a numerical scheme can be defined
by (2.4) with

Diﬂ/z = Az (W, i) - (Wi = W), (2.12)
where
Ag (WL, Wgr) = .//l\; (WL, Wgr) + le\(; (WL, Wgr) (2.13)

is any decomposition of the Roe linearization of the form:
-~ 1
Ag (Wi, W) = 5 (A2 (WL, Wr) £ Qe (WL, Wr)), (2.14)

where Qg (Wr, Wg) is defined as follows

Qa(Wr,Wg) | —Qa(Wr,Wgr)Az" (WL, Wr)Ga (WL, Wg)
0 | 0 ’
(2.15)
where Q¢ (Wp,, Wg) is a numerical viscosity matrix defined using Ag (W, Wg).
Therefore, different numerical schemes can be obtained choosing different viscosity
matrices. For example, Roe scheme corresponds to the choice

Qe (W, Wg) =

Qo (Wi, Wg) = |Ae(Wr, Wg)|, (2.16)
where
|Ae(Wr, Wg)| = Ko(WL, Wr)|Ae (WL, Wr)| K5 (WL, Wr), (2.17)

where |[Ag (W, Wr)| the diagonal matrix whose coefficients are the absolute value of
the eigenvalues of Ag (W, Wg) and K¢ (W, Wg) is the matrix whose i-th column is
an eigenvector associated to the i-th eigenvalue.

Lax-Friedrichs scheme corresponds to the choice

A
Qo(Wr, Wg) = Kfld, (2.18)

where Id the identity matrix.
FORCE and GFORCE schemes (see [30], [31] and [8]), correspond to the choice

A At
Q@(WL,WR) = (1 — W>Kfjd+wA_xAé(WL’ WR), (2.19)

with w = 0.5 and w = ﬁ, respectively, where v the CFL parameter (3.4).
Finally, the numerical scheme in the unknowns w can be written as follows:
At
n+1l _ n + _
w; =Wy — E(Di—lﬂ + Di+1/2)’ (2.20)
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where D = D(wi,wi+1,Hi,Hi+1)i,

i+1/2

D(w;, wit1, Hy, Hiy1)* = % (F(wit1) — F(wi) + Bit1/2(wit1 — w;)
—Giy1y2(Hiv1 — Hy)
+ Qip1/2(wig1 — w; — A;ﬁ1/2G1+1/2( i+1 — Hi ))) ;
(2.21)
where B;i /0 = Bo(Wi, Wit1), Gig1/2 = Go(Wi, Wig1) and A; /0 = Ae(Wi, Wit1)

and Q1172 = Qa(Wi, Wiy1).
Notice that in the definition of (2.21) the term

Cit12 = Q1+1/2A1+1/2G1+1/2( i1 — H;)

can be interpreted as the upwinding part of the source term discretization, and it
makes no sense if one of the eigenvalues of A;;;/; vanishes. In this case, two eigen-
values of Ag (W, W/ ) vanish and the problem is said to be resonant. Resonant
problems exhibit an additional difficulty, as weak solutions may not be uniquely de-
termined by their initial data. The analysis of this difficulty is beyond the scope of
this article. Here, we follow the strategy described in [8] to get rid of this difficulty
and to obtain well-balanced numerical schemes for a given set of stationary solutions.

In this paper we focus into the definition of Q¢ (W5, Wg). In particular, we
propose a family of methods, denoted by PVM methods, in which, Q4 is defined by
polynomial evaluation of Ag.

3. PVM methods. We propose a class of finite volume methods defined by
(2.20)-(2.21), where the numerical viscosity matrix is given by

Qit1/2 = Bi+1/2(14¢+1/2), (3.1)

where PiJrl/2 ) a polynomial of degree [
l poly g )

l
P2 () = 3 0l 200, (3.2
7=0

and A; /0 = Ap(W;, Wiy1) a Roe matrix.
Taking into account (3.1) and using (2.8)-(2.9), Dii—l-l/Q can be rewritten as follows:

n iaé"t‘l/Q »
Divz = T(wi“ —wi — A G2 (Higr — Hi))
1 it1/2
0j1 o, —
+ Z %Af-il/)g <F(wi+1) — F(w;) + By /2(wig1 — w¢)>

j=1
l i+1/2
(5 1ia 1
- Zngil/)ngJrl/Q( i+1 — H)a

=1
where

s 1 =1,
170 0 otherwise.



PVM METHODS 7

The definition of the polynomial (3.2) will be related to the stability and the
numerical diffusion of the scheme. Moreover, if Ay j11/2 < Agip1/2 < 0 < Anjit1/2
are the eigenvalues of A, /9, then the numerical scheme (2.20)-(2.21)-(3.3) is linearly
L*°-stable under the usual CFL condition

At

A sufficient condition to ensure that the numerical scheme is linearly L°°-stable is
that (see [12])

22> PR (@) > a| Vo € [Migjas Anigayal, Vi€ 2. (3.5)

Effectively, note that for linear problems the numerical scheme (2.20), (2.21), (3.3)
can be written as

ntl (14 At Pli_l/Q(Az‘ﬂ/z) + Pli+1/2(z4¢+1/2) n
vt = Mg 2 Jui=
x

At Pli_1/2(Ai—1/2) —Ai_1)2 wh At P;H/Q(Ai+1/2) —Ait1/2 n
Az 2 =L Ax 2 1

The condition Pli+1/2 (ZL') > |SC|, Vo € [)\1,7;_;’_1/2, )‘N,i+1/2] 1Inphes that

[x;rll/g(PlHl/Q(Ain) = Aiy172)Kig12]55 20, Vi=1,...,N,

where X;11/2 = Ko (wi,wiy1). On the other hand, the condition P;H/Q(x) < WM
implies that
At

(Id_ _Pli+/2(Ai+1/2))j<i+l/2]jj Z 0, v_j = 1,...,N.

-1
X Az

i+1/2
Then, (3.5) implies that the numerical scheme is linearly L*°-stable under the usual
CFL condition.

Let us consider the following notation: a numerical scheme (2.20)-(2.21)-(3.3)
whose viscosity matrix Q;;1 /2 is defined in terms of the polynomial P;H/ 2 (2) which
coefficients depend on the choice of some parameters Sp,--- ,Si will be denoted by
PVM-1(Sp, - -+ ,Sk). In practice, the parameters Sp,---, S, will be related to the
approximations of some wave speeds. Thus, for example, Lax-Friedrichs corresponds
to PVM-0(Sy), where Sy = ﬁ—f, where At is related to the maximum wave speed by
the CFL condition (3.4).

DEFINITION 3.1. A PVM method is said to be upwind if

i+1/2, 4 A if Mg >0 ,
P (Az+1/2){ A o >0 e, (3.6)

and it will be denoted as PVM-IU. Thus, it is straightforward that if

i+1/2 . x if )\171'4,1/2 >0 .
P, (z) = { e if Anapis <0, i€Z, (3.7)

the resulting PVM is an upwind scheme.
REMARK 1. If ay = 0, then the resulting PVM method is not an upwind scheme.
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REMARK 2. In what follows, in order to simplify the notation, we drop the
dependency of i + 1/2 on the definition of the polynomials and its coefficients. That
is, we denote Pj(x) instead of P;+1/2(z) and o instead of oz;+1/2

In what follows, some PVM schemes are derived. Some of them like Rusanov,
Lax-Friedrichs, FORCE (see [30], [8]), GFORCE (see [31], [8]) or HLL (see [18]) are
redefined under this form, and some new solvers are also proposed.

3.1. PVM-(N-1)U()\y,---,\;) or Roe method. Roe method corresponds to
the choice Qs (Wr,Wgr) = |As (W, Wg)|, where |As (W, Wr)| is given by (2.17).
Notice that, in order to rewrite Roe method as a PVM method, |A¢ (W, Wr)| can
be redefined as

N—
|Ae (WL, WR)| Z (WL, W),
j=0

where o, j =0,---, N — 1 are the solution of the following linear system:

1 )\1 e )\{Vil (7)) |)\1|

IR PR PA ai Az

. ) . = . , (3.8)

1 Ay ... AV an-_1 AN
where A1, -+, Ay are the eigenvalues of the matrix Ag(Wp, Wg). Notice that system

(3.8) has a unique solution provided that all eigenvalues are different. Therefore, Roe
method can be redefined as a PVM-(N-1)U(Ay, -+ , Any) where Qo = Pn_1(Ag), and
Pn_1(z) is the polynomial whose coefficients are given by (3.8).

3.2. PVM-0(Sy) methods: Rusanov, Lax-Friedrichs and modified Lax-
Friedrichs schemes. The simplest choice for a PVM method corresponds to

Py(w) = So. (3.9)

That is, y = Py(z) is an horizontal line (see Figure 3.1). Stability requirements
imply that max |X;;11/2] < So < thg Thus, several interesting choices for Sy can be
J
Ax Az
< —

TAL S AL . Therefore, Sy can

performed, taking into account that max |\;;41/2| =
J

be defined by

SO 6 {SRusvsLF;SZnFOd}v (310)

Az
where Spus = max; [A;;1/2|, Sor = —— and Smod — 'yAf Notice that Rusanov

scheme corresponds to the choice So = Sgys, Lax-Friedrichs to Sy = Spr and modified
Lax-Friedrichs to Sy = S”L”I?d.

3.3. PVM-1U(S, Sg) or HLL method. The definition of the classical HLL

flux (see [18]) for a conservative system can be written as follows

At
't = uf - 5 (38, - 5HEL). 311
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-+ ,PVM—1U(SL,SH)
-6 ,FVM—EU(SL,SR)
o -PVM-4S, )
MWMM
& | |
W | AN
,+‘,PVM—U(SU)
g P25
o -PIN-48)
‘ )\‘w )\‘2 A‘, E )\‘V S‘n 51_:‘5,\1 A‘| /\‘; )\‘, = )\‘:\ S,;S"
(a) one-wave PVM polynomials (b) two-waves PVM polynomials
Fic. 3.1. Graphics of the PVM polynomials.
where
F(wl) if S;, >0,
HLL _ o _ SrF(wi) — SLF(wiv1) + SpSL(wiy1 — wi) S, <0<
it1/2 = F = 1 L <0< R,
Sr—SL
F(U}i+1) if 0 Z SR,
(3.12)

where Sy, (respectively Sg) is an approximation of the minimum (respectively max-
imum) wave speed. One possible choice is to set Sp, = Ay ;4172 and Sg = Ay it1/2,
although some other different possibilities have been proposed in the bibliography, as,
for example (see Davis [11])

Sy =min(Ayi1/2, A1), Sk =max(Ay 4172, ANi+1), (3.13)

where \; 1 < --- < \; v are the eigenvalues of matrix Ag(W;, W;).
HLL flux can be rewritten as a PVM-1U(Sy, Sg) method by considering the
polynomial

Pi(z) =ap+arx suchas Pi(Sy) =S|, and Pi(Sg) = |Sr|- (3.14)

That is, y = Pi(z) defines the straight line through points (S, |Sz|) and (Sg,|Sg|)
(see Figure 3.1).
Some straightforward computations give

_ Sg|SL| — SL|SR| _|Sr| — 151
Qo =

= —". 1
SR — SL ) aq SR — SL (3 5)

Let us suppose that the system (1.1) is conservative (B = 0 and G = 0), and let us
define the conservative flux ;12 = Dy + F(w;), where Dy, ), is given by (3.3),
where Q;11/2 = P1(L(w;, wit1)). Taking into account the expression of o and oy in
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(3.3) gives
Fit12 = (F(wi)(SR +[Sr| = S = |SL]) + F(wit1)(Sr — [Sr| = Sr + |SL])

~(SrlSz| — SuISa])(win —wa)/@sR ~as)),

which is a compact definition of the numerical HLL flux S’fﬁ% given in (3.12). Notice

that PVM-1U(SL, Sg) is an upwind scheme, in the sense of Definition 3.1. Finally,
observe that if Ay ;11/2 = —An,it1/2, then PVM-1U(SL, Sr) coincides with PVM-
0(SRus)-

3.4. PVM-2(Sp) methods or FORCE type methods. In this subsection
we study PVM methods corresponding to a second order polynomial of the form (see
Figure 3.1)

Py(x) = a9 + apz?, such as Py(Sy) = So, Py(So) =1, (3.16)

where Sy is given by (3.10).
Observe that, as a3 = 0, PVM-2(Sp) is not upwind in the sense of Definition 3.1.
Some straightforward computations give

So 1
—, Qg = ——=.
27 "7 28,

Notice that if Sg = S, then PVM-2(S.r) coincides with FORCE scheme (see
[30], [8]), while the other two can be seen as FORCE types schemes.
REMARK 3. GFORCE scheme can be obtained by imposing Py(S70%) = Smed,

2) mod 1
Py(STedy = %, which gives g = fﬁjﬁy, and g = Wﬁ
easily proved that Py(z) = ag + aex? given by (3.17) verifies that Py(z) > |z],
Va € [A1it1/2, AN,i+1/2] C [=S0, S0, and therefore, the resulting methods are linearly
L*-stable with the usual CFL condition.

REMARK 4. Notice that if So = Spr or So = ST2e, then the coefficients g
and ag given in (3.17) depend on % and PVM-2(Sy) can be interpreted as a com-
bination of Laz-Friedrichs and Lax-Wendroff schemes. In fact, this is the form in
which FORCE and GFORCE schemes were introduced for conservative (see [30]) and

nonconservative (see [8]) systems.

3.5. PVM-2U(S)ys, S;n) method. In [12] Degond et al. proposed a numeri-
cal scheme for conservative systems, that can be easily extended to nonconservative
systems by considering a PVM method associated to the polynomial (see Figure 3.1)

(3.17)

Qo =

It can be

Py(z) = aptarx+asz?, such as Py(Sp) = |Sml, P2(Sam) = |Suml, Pa(Sa) = sgn(Sar),
(3.18)

where

Mit12 i A ir1/2] 2 AN it1/2]
Sy = ,i+1/ . ,i+1/ ,i+1/20 3.19
M { ANyit1s2 i A iga/2] < [Anjig1y2]- ( )

and

S, = { AN, i+1/2 %f [ALiv1/2] = [ANit1/2]s (3.20)
)\1,i+1/2 if |>\1,i+1/2| < |)\N,i+1/2|-
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It is easy to check that the coefficients are given by:

(Sar)? Sm (sgn(Sm) — sgn(Su))

o= (S — Si1)? ’
_ Su(ISn| = 1Sml]) + Sm(sgn(Sar)Sm — Sarsgn(Sy))
o = B 5ur)? : (3.21)
vy SulsEn(Sm) = sen(Sar)
? (Sm - S]\/I)2 .

It is easy to prove that Po(ji41/2) > [Ajip1/2| Vi =1,...,N,s0 PVM-2U(Sys, Sin) is
linearly L°-stable. Moreover, P;(z) verifies (3.7), thus PVM-2U(Sy/, Sy,) is upwind.
Finally, observe that if Ay ;11/2 = —An,i41/2, then PVM-2U(S)s, S,,) coincides with
PVM-2(SRus).

3.6. PVM-4(S),Sr) and PVM-4(Sy) methods. In this section we introduce
PVM methods defined by 4" order polynomials given by (see Figure 3.1)

P4($) :a0+a2x2+a4x4, such as P4(SM) = |S]\/[|, P4(S]) =5, Pi(S]) =1,

(3.22)
where Sy is defined by (3.19) and
.. 1 . > .
B Qg}z%xN ([N i41/21) if [Aiv1/2] > [ANit1/2],
S = max (A1) if [Aivtse] < [ANit1/2]- (3.23)
1< (N-1) P i1/ i1/

It is easy to check that

. |Sa|1S1I(1S1] + 2[Sm) 1 |Snm| —1

205+ 1SmD)? ™ 21Su] <|sz|+|sM|>2"“42|SMI<ISI|+(|SM>'>2'
3.24

Observe that ag, as and a4 are also well defined if Sy = S; = Sp. In that case,
the coefficients reduce to

35, 3 -1
80 = 4—507 a4 = 8—8’6’, (325)
and the method will be denoted as PVM-4(Sy), where Sy is given by (3.10).
Concerning the stability of PVM-4(Sy;, S7) method (PVM-4(Sy) is a particular
case) the following result can be proved:
THEOREM 3.2. The numerical scheme PVM-4(Sy, S1) is linearly L™ stable
under the usual CFL condition.

Proor
As Py(z) given by (3.22) is symmetric with respect to 0 and Py(Sys) = |Sas], by
the definition of Sy it is enough to prove that Py(z) > z, Vz € [0, S1].

Notice that, the first derivative of Py(z) is zero at z = 0 and 2 = £,/352, and

the second derivative of Py(x) is zero at x,:)t =+,/72

6oy *
- S% +382, +2|Su||S
Taking into account that |Sas| > |Sy]|, then 6a2 2t M—g [SaulISi] > S2.
o]

Therefore S; < 27 < 2. We conclude that Pj(z) is increasing in [0, S7]. Moreover,
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as P;(0) =0, P4(0) >0, P;(S;) =1, and P4(Sy) = Sy then Py(z) > z for z € [0, Sy],
what concludes the proof.

REMARK 5. The extension to high order of PVM schemes can be performed
following the procedure described in [3]. The extension to 2D systems is also straight-
forward following [4].

3.7. Numerical diffusion. In this section, a simple analysis of the numerical
diffusion of the PVM schemes is performed. Let us consider the linear advection
equation

ug+ Auy =0, A>0. (3.26)

It is easy to check that the numerical viscosity of methods PVM-1(Sy), I = 0,2,4,
when they are applied to equation (3.26) is given by

= 2B~ 1), (3.27)
where ﬁ—;)\ = v, and Pj(z) are the polynomials associated to PVM-1(Sp) methods,
[ =0,2,4 given by (3.9), (3.16), and (3.22) respectively. It is clear from (3.27) that vx
will be smaller if P;(A), I = 0,2, 4 is as small as possible. Notice that P;(Sgys) = A and
Pi(S7edy = A, 1 = 0,2,4 and PVM-1(Sgus) (PVM-1(S729) respectively), | = 0,2, 4
coincide with the CIR scheme (see [9]) for system (3.26). If Sop = Spp, then

1++2
2y

3469 —~*
8y '

Py(A) = %

L Py(A) = A L Py(A) = A

Therefore, vy is minimum when Sy = Sgys or So = S’L"I?d. If S;F is used, then PMV-
4(SLF) is the one with smallest numerical viscosity among the PVM-1(Syr) schemes,
I = 0,2,4. Tt is also easy to check that Py(z) > Py(z) > Py(z), x € [—So,So].
Finally, it is also easy to prove that PVM-1(Sp), | = 0,2, 4 with Sy given by (3.10) are
monotone schemes when they are applied to equation (3.26).

Concerning PVM-1U(Sy,, Sg) and PVM-2U(Sys, Sm), is also easy to check that
Pi(x) > Py(x), Vo € [A 4172, AN,i+1/2), where Pi(z) and Py(z) are defined by (3.14)
and (3.18), respectively. Therefore, the numerical viscosity of PVM-2U (S, Sy,) is
smaller than PVM-1U(S, Sg).

4. Numerical tests. Let us consider the two-fluid flow model of Pitman and
Le [28] under the formulation given by Pelanti et al. in [27], where the friction terms
are neglected

Ohy | 94y
e S W A
ot + ox ’
dqy 0 (4  g,» Ohs db
ot + Ox (hf + 2hf +ghy dr ghfd:c’
(4.1)
Ohs dqs _
ot "o O
dgs 0 (@2 9,0 1-p Ohy _ db
ot +8x (hs +2h8+g 2 hshs |+ pghs dr ghsdz'
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In these equations, index s (f respectively) makes reference to the solid (fluid re-
spectively) phase. The granular fluid is assumed to occupy a straight channel with
constant rectangular cross-section and constant width. The coordinate z refers to the
axis of the channel, ¢ is time, and g is the acceleration due to gravity. b(x) represents
the fixed bottom topography and p is the ratio of densities between the solid and fluid
phase. The unknowns hs and hy are related to the total height of the granular fluid
h and the solid fraction ¢ by hs = ¢h and hy = (1 — ¢)h. The unknowns ¢s and gy
represent the mass-flow of each phase and they are related with the mean velocity of
each layer by qr = ughg, k= s, f.
System (4.1) can be written under the form of (1.1) by setting

2 1"
hf((ac,t>) a5 n gh? Oh
_ | wzt _ hy 2 _ | 9
w(z,t) = ha(a ) | F(w) = 0 , Gw)= 0
qs(x,t) @ g, 1—r —ghs
h_s+§h5+gThfhs
0 0 0 O
0 0 h 0
Bw=| o o 7 ol H@=b
grhs 0 0 0

Here, we have considered the Roe linearization based of the family of segments:
given two states W, = [h]Lc qj% hL gF b7 and Wi = [hJIZ2 q]}? hE ¢t bR]T the matrices
L(wr,wgr), Be(Wr, Wg), and the vector G (W, Wg) are defined by:

0 1 0 0

_ | @)+ (ep)? 2iy 0 0
L(wr,wr) = 0 0 0 ) . (4.2)

@) 0 —() 4 (@) 4+ 55?2,

0 0 0

0 0 (¢r)* O 5 )2
BeWVe. We) = 5 (66) o | GeWi,Wr) = (Sf) , (43)

T(és)Q 0 0 0 _(éS)Q

where

L, L R, R

A 7\/hk“k+ hiug, L hip +hid L a4 R _

Uk = y Ck = 972 7uk7h_Lv Uk*h—R k=F1,s.
\/ hE+/hE k k

As in the case of two-layer shallow-water system (see [7] for example), a simple
expression of the eigenvalues of matrix Ag (W, Wg) cannot be obtained and the
hyperbolicity of system (4.1) is not always ensured. In [27] some bounds of the
eigenvalues of Ag(Wp,Wg) are obtained and conditions ensuring the hyperbolicity
of system (4.1) are derived. Here, we use the bounds derived in [27] to estimate the
wave speeds to define the PMV schemes. Finally, Roe scheme for system (4.1) is
constructed following [26]. In all the test cases considered here, the CFL parameter
is set to v = 0.9, r = 0.5, and g = 9.8. Concerning the well-balancing properties, all
the numerical schemes considered in this paper (first or high order) are well-balanced
for the water at rest solution.
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4.1. Test 2.1. A 1D Riemann problem. Let us consider a Riemann problem,
for which the initial condition consists in two constant states separated by an interface
located at « = 0. This test has been taken from [27]. The initial condition is defined
in terms of the flow height and the solid volume fraction given by

3 ifx<0 0.7 ifz<0
h(z’o){Q if >0, Z/’(“”3’0){0.4 if 2 >0,

and us = uy = 0. The computation is performed over the interval [—5,5]. Free
boundary conditions are set.

Figure 4.1 shows the results for the flow depth h, the solid fraction v at time
t = 0.5, computed with PVM-1(Syr), I = 0,2,4 and Roe scheme using Az = 0.05. A
reference solution computed with Roe scheme for Az = 1/640 is also obtained. We can
observe that the Riemann solution consists of a 1-rarefaction, 2-shock, 3-rarefaction,
and a 4-shock. It can also be observed that v only varies across the internal waves.
Concerning the quality of the numerical results, all numerical schemes provide the
expected solution, being Roe scheme the less diffusive and Lax-Friedrichs the most
diffusive (see Figure 4.1). Notice that in this test PVM-4(Spr) and PVM-2(SLr)
approximately provide the same results.

0.75

¥ ROE

+ LF

0 FORCE

o PYM4(S,)

— Ref. solution|

0.7%

0.651

0.6

= 0.55¢

0.5r

2171 + ROE : :
0457
+LF o

o FORCE | G
04

0 PVM—4(SO)

S

— Ref. solution

1 -05 0 05 1 15 2 25 3 35 =1 -05 0 05 1 1.5 2 25 3
X X

(a) Flow depth h (zoom) (b) Solid volume fraction 1 (zoom)

Fic. 4.1. Test 2.1: Flow depth h and solid volume fraction v at time t = 0.5. Comparison of
Roe and PVM-I(Spr), 1 =0,2,4 schemes with the reference solution for Az = 0.05.

Figure 4.2 shows the results for flow depth h, the solid fraction ¢ at time ¢t =
0.5, computed with PVM-1U(S, Sg), PVM-2U(S, Si), PVM-4(Sy,S1), and Roe
scheme using Az = 0.05. As expected, Roe scheme is the less diffusive and PVM-
1U(SL, Sg) the most diffusive. Notice that all schemes approximately coincide in
the fastest waves while the major differences appear in the internal ones. Never-
theless, no significant differences can be observed between PVM-2U(Sy;, Sy,) and
PVM-4U (S, Si)-

Let us study in this test the influence in the numerical solutions of small changes
in the family of paths. As in [6], we consider paths ®;, (s;Wr,Wg), k = f,s, such
as hy = @} (8; WL, WR), hs = @, (s; WL, W), s € [0,1] is a parameterization of the
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T T T
* ROE

+ HLL
o PWM-20(8,.S )

¢ PVM-4(3,,S)
—Ref. solution
065
06t
o 23
T
= = 0550
I
£ 202r
d 051
21t * ROE ]
+ HLL @ 045
PVM-2U(S, .S )
o M m’
Al o PM4(s,S) S odt
— Ref. solution
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(a) Flow depth h (b) Flow depth h (zoom)

Fic. 4.2. Test 2.1: Flow depth h and solid volume fraction v at time t = 0.5. Comparison of
Roe, PVM-1U(SL, Sr), PVM-2U(Sarr, Sm) and PVM-4(Sp;,S1) schemes with the reference solution
for Az = 0.05.

curve

L 2 LN\2
ho=nboy (2l +e(hf) — ()" ) hi' —hg (4.4)
= R e '

Observe that these paths can be seen as parabolic perturbations of the family of
segments related to hy and h,. Moreover, the family of segments are recovered for
e=0.

The expresion for Bge can be computed easily and gives:

0 0 0 0
- 0 0 (5?2 0
Ba-We,Wr)=| o o ' o (4.5)
r@e)? 0 0 0
where
@) = (h%)2(3 +4e) +2(3 + 2¢)h Al + (3 + 4e) (h)?
7 g 6(1+ ) (hF + hF) ’

evo | hF((B+4e)hl + (3 +2e)hl) + hf ((3+2e)hl + (3 + 4e)hl)
(&) =y 6(1+ e)(hF + hE) '

Figure 4.3 shows the results for flow depth h at time ¢ = 0.5, computed with
PVM-2(S.r) and PVM-2U(Sy, Sp), for € € {0,0.5,1.0