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Abstract

In this paper we present a new two-layer model of Savage-Hutter type to study submarine
avalanches. A layer composed of fluidized granular material is assumed to flow within an
upper layer composed of an inviscid fluid (e. g. water). The model is derived in a system of
local coordinates following a non-erodible bottom and takes into account its curvature. We
prove that the model verifies an entropy inequality, preserves water at rest for a sediment
layer and their solutions can be seen as particular solutions of incompressible Euler equations
under hydrostatic assumptions. Buoyancy effects and the centripetal acceleration of the grain
movement due to the curvature of the bottom are considered in the definition of the Coulomb
term. We propose a two-step Roe type solver to discretize the presented model. It exactly
preserves water at rest and no movement of the sediment layer, when its angle is smaller than
the angle of repose, and up to second order all stationary solutions. Finally, some numerical
tests are performed by simulating submarine and sub-aerial avalanches as well as the generated
tsunami.

1 Introduction

Recent improvements in seabed and sub-surface mapping techniques as bathymetry measurements
and seismic imagery, have revealed a large amount of slide scars and a wide diversity of related
deposits on many of the world’s continental margins [e. g. Locat and Mienert, 2003, Vanneste
et al., 2006]. Submarine avalanches or landslides are poorly studied compared to their subaerial
counterparts. This is however a key issue in geophysics. Indeed, submarine granular flows driven
by gravity participate in the evolution of the sea floor and in particular of the continental margins.
They also represent a threat to the submarine infrastructures, especially for the oil or port industry
as well as to many sea shore inhabitants due to the potential tsunamis that can be triggered by such
landslides. In this paper we present a new two-layer Savage-Hutter type model, with application
to sub-aerial/submarine avalanches over variable topography and generated tsunami. The first
layer is filled with a homogenous inviscid fluid with constant density and the second layer is made
of a fluidized granular mass. The two fluids (i. e. water and fluidized debris) are assumed to be
immiscible. Important questions are (i) the rheological behavior of the fluidized granular mass on
a complex topography and (ii) the interaction between the two layers.
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Numerical modeling of sub-aerial debris or snow avalanches has been extensively investigated
during this last decade with application to both laboratory experiments dealing with granular
flows and geological events (see e. g. [32], [29], [39], [49], [21], [2], [3], [27], [5], [1]). Most of
the models devoted to gravitational granular flows describe the behavior of dry granular material
following the pioneer work of Savage and Hutter (see [45]): a shallow-water type model (i. e.
thin layer approximation for a continuum medium) is derived to describe granular flows over a
slopping plane based on Mohr-Coulomb considerations: a Coulomb friction is assumed to reflect
the avalanche/bottom interaction and the normal stress tensor is defined by a constitutive law
relating the longitudinal and the normal stresses through a proportionality factor K.

New Savage-Hutter models over a general bottom have been proposed by Bouchut et al. in [6],
that take into account the curvature of the bottom. The authors introduce two new models: the
first one is deduced under the hypothesis of small variation of the curvature and the second one
deals with a general bottom topography. The new curvature terms introduced in the models are
necessary for two reasons: they make it possible to preserve water at rest solutions and to exactly
verify an energy inequality. In this paper we consider the first hypothesis, i. e. a small variation of
the curvature. The equations are derived in a local coordinate system attached to the non-erodible
topography and takes into account its curvature (see [6]), in particular the centripetal acceleration
due to the bottom curvature.

A generalization to 2D aerial avalanches over surfaces with small lateral curvature has been
carried out in [49] and [41]. In [7], Bouchut and Westdickenberg generalize the previous models for
small or for general slope variation in two dimensions. The discretization of 2D aerial avalanches
can be done for example by finite volume by using kinetic schemes [31], by Roe type finite volume
methods [11], or distribution schemes [43].

A two-layer Shallow Water type model with compressible effects has been introduced in [34]
by Morales de Luna. He considers an upper compressible and a lower incompressible layer. The
model is presented in local coordinates, verifies an entropy dissipation inequality and gives an
approximation of the free surface compressible-incompressible Euler equations.

In most industrial applications and real debris flows, the fluid which is present in the granu-
lar material cannot be neglected. Recent attempts have been developed to describe mixtures of
grains and fluids in shallow-water two-phase or mixture models ([26], [40], [37], [42]). Iverson and
Denlinger extend the SH model in [26] to study avalanches of fluidized granular masses where the
pores between the grains are assumed to be filled with a fluid. In [42], Pudasaini, Wang and Hutter
generalized the work [26] for a general channel on local coordinates. In both works a simplified
system is considered, assuming that the velocity of the fluid within the pores is equal to the velocity
of the grains. The same hypothesis is used here: the fluidized mass is assumed to be a porous
medium composed of sand grains, filled with the fluid present in the upper layer (see [26]). The
dissipation within the granular medium is modeled by a Coulomb friction law taking into account
the buoyancy effects over the sand grains. The other key point concerns the definition of the stress
tensor for the fluid and grain phases of the second layer. From the vertical momentum equation
and dimensional analysis, the vertical stress tensor of the complete layer can be derived. However,
it is necessary to know the stress tensor for each phase (i. e. fluid and solid phase) in order to
apply different constitutive relations for the fluid and solid phase separately. Therefore, additional
hypotheses have to be introduced (see [26]).

Finally, very few models have been proposed to deal with the interaction of a fluidized mass and
the surrounding fluid in which the avalanche propagates. One of the outcome of the interaction
between water and debris is the generation of water waves and possible tsunami for particular
configurations of the coastal topography and of the submarine avalanche. Most of the models ded-
icated to the simulation of landslide generated tsunamis reduce the trigger mechanism to a vertical
motion imposed as boundary condition in the water wave propagation model (see for example [20]).
Submarine landslides are actually modeled by partially or totally submerged pistons, rigid bodies
entering the water or initial water displacement (see e. g. [44], [35]). More recently, submarine
avalanche dynamics has been taken into account using depth-averaged or full Navier-Stokes models
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describing the rheological behavior by a Coulomb friction law or by viscous dissipation ([22], [23],
[30], [19]). A similar attempt has been performed by Heinrich et al. in [24] but without taking
into account the effects of the fluid on the landslide dynamics (i. e. the sea-bottom deformation
induced by the landslide is used as input data in the tsunami model). As a result, the momentum
equation for the fluidized granular material does not contain any coupling terms between the two
layers which should appear in the pressure gradient terms. Other systems, named active models,
with a dynamic displacement of sea bed are used with a coupling between a shallow-water system
and visco-elastic equations, see for instance [16], [17]. The interested reader is referred to [15] and
[18] for references around Tsunamis and challenging modeling.

In this paper we present a 1D model for submarine avalanches, which is a generalization of the
Savage Hutter (SH) 1D model [45] for aerial avalanches and the model proposed by Heinrich et al.
in [24].

To discretize the model that we introduce in the paper, we propose a well-balanced finite
volume method. Firstly we begin by rewriting the model obtained in local coordinates to Cartesian
coordinates. We can write the model as a hyperbolic system with conservative terms, source terms
and non-conservative terms. One of the characteristics of the model is that as we consider the
variations of the topography, the physical flux function depends on the variable x measured along
the horizontal coordinate. This dependence of the flux with respect to x makes difficult the
derivation of an exact well-balanced method for water at rest (see [9], [36]). Moreover, for the
proposed model the water at at rest solution should be understood as: no movement of the water
column and no movement of the sediment layer when the angle of the sediment surface is smaller
than the angle of repose. In such situations, it is necessary to discretize properly the source terms
due to the variations of the bottom angle and the derivatives of the flux function with respect to
the angle.

The more specific difficulty related to discretizisation of system comes from the Coulomb fric-
tion term. Its discretization is important, to simulate properly the landslides and to preserve the
stationary solutions corresponding to water at rest and no movement of the sediment layer. We
propose a two-step numerical scheme to treat the Coulomb friction term. In a first step, a dis-
cretization of a term that can be interpreted as a redefinition of the Coulomb term for stationary
solutions is considered. This term is only introduced in the uncentered component of the numer-
ical scheme. In the second step, a semi-implicit treatment of the Coulomb term at each cell is
performed. We proof that the numerical scheme constructed in this way preserves the solutions
corresponding to water at rest and no movement of the sediment layer for angles smaller than the
angle of repose.

The paper is organized as follows: the model is derived in Section 2. Section 3 is devoted to
study the model properties. In Section 4 we present a well-balanced finite volume numerical scheme
to discretize the model. We proof that the numerical scheme exactly preserves water at rest and
no movement of the sediment layer, and up to second order all stationary solutions. Finally, in
Section 5 a series of numerical tests are performed, including the simulation of a tsunami generated
by the motion of a sediment layer, following [24]. In Appendix A we present the details related to
the change of variable used in the incrompressible Euler equations to write the equation in a local
coordinate system attached to the bottom topography.

2 Derivation of the model

In this section, we present the derivation of a two-layer model of Savage-Hutter type to study
submarine avalanches and generated tsunamis. We denote with index 1 the upper layer, composed
of a homogeneous inviscid fluid of constant density ρ1. We also consider a grain layer of density
ρs, and porosity ψ0 (see Figure 1). We consider that the pores in the grain layer are filled with the
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Figure 1: A fluid layer over a grain layer and a non-erodible bottom b

fluid of the upper layer. Then, the density of layer 2 composed of the fluidized mass is defined as

ρ2 = (1 − ψ0)ρs + ψ0ρ1. (1)

First, the system of equations describing the dynamics of the two-layer system is presented. Next,
a change of variables to local coordinates attached to the bottom (see Appendix) is performed and
the boundary and kinematic conditions are set. The final model is derived based on a dimensional
analysis and a vertical integration of the equations.

� Starting system of equations
We consider the incompressible Euler equations. The unknowns are

~Vi =

(
ui

vi

)
, i = 1, 2,

being ui and vi, the horizontal and vertical velocity components of each layer, respectively. Then,
the incompressible Euler equations can be written as

div~Vi = 0, i = 1, 2, (2)

ρi∂t
~Vi + ρi

~Vi∇~Vi = −divPi + ρi∇(~g · ~X), i = 1, 2, (3)

where we denote by Pi, i = 1, 2, the pressure tensor of each layer

Pi =

(
pi,x x pi,x z

pi,z x pi,z z

)
, i = 1, 2,

(with pi,x z = pi,z x), by ρi, i = 1, 2 the densities of each layer, by ~X a point in Cartesian coordinates
~X = (x, z), and ~g = (0,−g).

In order to model the evolution of the granular layer using the Euler equations, following [26]
we suppose that the velocity of the fluid in the pores of the second layer and the grains are the
same and P2 can be decomposed as

P2 = P s
2 + P f

2 ,

where P s
2 and P f

2 are the pressure tensor of the solid phase (grains) and the fluid phase, 1 respec-
tively.

1In a binary mixture model the pressure tensor of the mixture is exactly given by

P = P s + P f −

2
X

α=1

ρα(~Vα − ~Vb) ⊗ (~Vα − ~Vb), where ~Vb =
2

X

α=1

ρα
~Vα

P

2

α=1
ρα

is the barycentric velocity. This reduces to P = P s + P f if the fluid and solid velocities are the same.
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Next, a change of variables is performed to equations (2)-(3). Local variables over a non-
erodible bottom defined by z = b(x) are considered. X denotes the arc’s length of the bottom and
Z is measured orthogonally to the bottom (see Figure 1).

In what follows we denote by h1 and h2 the thickness of the fluid and grain layers, respectively,
measured orthogonally to the bottom (see Figure 1), by S = h1 + h2 the free water surface.

The details of this change of variables is given in the Appendix. The change of variables is
valid when the local radius of curvature of the bed is smaller than h1 + h2. Equations (2)-(3) are
re-written in the new variables as




∂X(Ui) + ∂Z(J Wi) = 0, i = 1, 2,

ρi∂t(J Ui) + ρi∂X(U2
i ) + ρi∂Z(JWiUi) + ρi∂X(~g · ~X) = −∂X(Pi XX ) − ∂Z(JPi ZX)+

+ρiWi(∂X (Ui θ) + ∂Z(JWiθ)) + Pi XZdXθ. i = 1, 2,

ρi∂t(J Wi) + ρi∂X(Ui Wi) + ρi∂Z(JW 2
i ) + ρiJ∂Z(~g ~X) = −∂X(Pi XZ)−

−∂Z(JPi ZZ) − ρiUi(∂X (Ui θ) + ∂Z(JWiθ)) −Pi XXdXθ, i = 1, 2,

(4)

where, we denote by Ui, i = 1, 2, the velocity parallel to the bottom and by Wi, i = 1, 2, the
velocity perpendicular to the bottom, with i referring to layers 1 and 2. The pressure tensor Pi is
defined by

Pi =

(
cosθ sinθ
−sinθ cosθ

)
Pi

(
cosθ −sinθ
sinθ cosθ

)
=

(
Pi,XX Pi,XZ

Pi,ZX Pi,ZZ

)
.

Observe that as pi,xz = pi,xz then Pi,XZ = Pi,ZX .
Moreover, let us recall that ρ1 is the density of the fluid and that ρ2 is defined by (1). θ is the

angle between the tangent vector of the bottom and the horizontal (see Figure 1), and J = 1−ZdXθ
is the Jacobian of the change of variables (note, dXθ = ∂Xθ, for a non-erodible bed, see Appendix).
Observe that J 6= 0 if the local radius of curvature of the bed is smaller than h1 + h2.

� Boundary and kinematic conditions
We denote by ηS the unitary normal vector to the free water surface Z = S (S = h1 + h2)

with positive vertical component, by ηh2 the unitary normal vector to the surface Z = h2 and by
η0 = (0, 1) the corresponding unitary normal vector to the bottom (Z = 0).

The following kinematic conditions are considered

∂tS + U1∂XS −W1 = 0, (5)

∂th2 + Ui∂Xh2 −Wi = 0, i = 1, 2. (6)

Finally, the following boundary conditions are imposed:

• On Z = S:
P1 · η

S = 0. (7)

• On Z = h2:
ηh2 · (P1 −P2)η

h2 = 0 (8)

Pi · η
h2 − ηh2(ηh2 · Piη

h2) =

(
fric(U1, U2)

0

)
i = 1, 2, (9)

where fric(U1, U2) is a friction term between both layers.
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• On Z = 0:

(U,W ) · η0 = 0 ⇒ W = 0, (10)

P2η
0 − η0(η0 · P2η

0) =


 −η0 · (P2 − P1)η

0 U
0
2

|U0
2 |

tan(δ0)

0


 . (11)

Note that the Coulomb friction law in equation (11) takes into account the buoyancy effects
due to the fact that the grains are submerged within a fluid layer.

Remark 1 Equation (9) assumes no water exchange between the two layers. Nevertheless there
is a water exchange between the fluid an the porous avalanche, so equation (9) constitutes a sim-
plification of the problem. This entrainment process has been studied first by Beaves and Joseph in
[4].

Equation (6) assumes that the second layer has constant porosity (volume fraction) since ρ2 is
constant then ψ0 = constant.

� Dimensional analysis
Next, a dimensional analysis of the set of equations (4), the kinematic and boundary conditions

is performed. The non-dimensional variables ( .̃ ) read:

(X,Z, t) = (LX̃,HZ̃, (L/g)1/2t̃),

(Ui,Wi) = (Lg)1/2(Ũi, εW̃i), i = 1, 2,

hi = Hh̃i, i = 1, 2, (Pi XX ,Pi ZZ) = gH(P̃i XX , P̃i ZZ), i = 1, 2,

Pi XZ = gHµiP̃i XZ , i = 1, 2,

(12)

where µ1 = 1, µ2 = tan(δ0), δ0 being the angle of repose in the Coulomb term (see [45]). By L
and H we denote, respectively, the characteristic lengths tangential and normal to a representative
basal direction of the domain. We suppose a shallow domain, so ε = H/L is supposed to be small.
Note that the Savage Hutter model has been shown to reproduce experimental granular collapse
over horizontal plane for aspect ratio ε ≤ 0.5 [32]. Using the above change of variables, the system
of equations (4) are re-written as (we omit the tildes):

∂X(Ui) + ∂Z(J Wi) = 0, i = 1, 2, (13)

J∂t(ρiUi) + ρiUi∂XUi + ρiJWi∂ZUi + ρi∂X(b+ Zcosθ +
Pi XX

ρi
)ε =

= −µi∂Z(JPi XZ) + ρiWiεUidXθ + ∂XθPi XZµiε, i = 1, 2, (14)

ε{J∂t(ρiWi) + ρiUi∂X(Wi) + ρiWi∂Z(Wi) + ∂X (Pi XZ) − ∂XθPi XX −Pi ZZdXθ}+

+ρiJ∂Z(b+ cosθZ) = −J∂Z(Pi ZZ) − ρiU
2
i dXθ, i = 1, 2. (15)

The kinematic conditions (5)-(6) are re-written as:

∂tS + U1∂XS −W1 = 0, ∂th2 + Ui∂Xh2 −Wi = 0, i = 1, 2. (16)

Finally, the boundary conditions (7)-(11) are now given as:
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• Z = S: On Z = S we have, ηS = (−ε∂XS, 1)/ϕS with ϕS =
√

1 + ε2(∂XS)2, then from (7)
we obtain

−ε∂XS P1 XX + µ1P1 ZX = 0, (17)

−ε∂XSµ1P1 XZ + P1 ZZ = 0. (18)

• Z = h2: On Z = h2 we have, ηh2 = (−ε∂Xh2, 1)/ϕh2 with ϕh2 =
√

1 + ε2(∂Xh2)2, then from
(8) and (9) we obtain

P1 ZZ = P2 ZZ + O(ε), (19)

−εPi XX∂Xh2 + µiPi XZ = −(ηh2Piη
h2)(ε∂Xh2) + fric(U1, U2), i = 1, 2, (20)

−εµiPi ZX∂Xh2 + Pi ZZ = (ηh2Piη
h2) i = 1, 2. (21)

• Z = 0: On Z = 0, we have η0 = (0, 1), then from (10) and (11) we obtain

W2 = 0, (22)

µ2P2 XZ = −(P2 ZZ −P1 ZZ)
U0

2

|U0
2 |

tan(δ0). (23)

� Constitutive laws.
We suppose that dXθ = O(ε). Then from (15) we obtain

∂Z(P1 ZZ) = −ρ1cosθ + O(ε), (24)

∂Z(P2 ZZ) = −ρ2cosθ + O(ε). (25)

If we integrate (24) from Z > 0 to S, we have, up to order ε,

P1 ZZ = ρ1(S − Z)cosθ, (26)

therefore, P1 ZZ(h2) = ρ1h1cosθ. Using this last expression, the relations given in (19) and inte-
grating (25) from Z > 0 to S, we have, up to first order

Ps
2 ZZ + Pf

2 ZZ = P2 ZZ = ρ1h1cosθ + ρ2cosθ(h2 − Z). (27)

The last equation defines the total pressure, P2 ZZ , perpendicular to the base. The constitutive
relation for both the grains and the fluid, i. e. Ps

2 ZZ and Pf
2 ZZ , are required to close the model.

The same problem appears if we study a grain-fluid mixture aerial avalanche. See for example
[26] and [41]. In order to obtain an expression for the normal stress of both phases, they suppose
that both are linear in Z. Moreover, they suppose that the component of the stress tensor of the
fluid phase normal to the basal surface is proportional to the pressure of a fluid layer, without the
solid phase.

We adapt this hypothesis to our case, taking account of the fact that the fluidized layer has an
upper layer of fluid. Concretely, we suppose

Pf
2 ZZ(Z) = λ1ρ1h1cosθ + λ2ρ1h2cosθ(h2 − Z), (28)

where λ1 and λ2 are two parameters. Moreover, by (27), we have

Ps
2 ZZ(Z) = ρ1h1cosθ(1 − λ1) + cosθ(h2 − Z)(ρ2 − λ2ρ1) (29)

The study of the stress transition conditions at a singular surface between two mixtures which do
not have the same number of components, is a very difficult subject. Hypothesis (28) can be seen
as a fist trial, in the context of this paper. Some earlier papers looking at the problem of interfacial
transition conditions with different number of constituents have been included in the references.
For example in [25] Hutter et al. study the transition conditions, with application to glaciers where
the upper layer is ice and the under layer is a sediment-ice mixture (see also [47], [50], [51]).
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Remark 2 Comparisons with experiments are necessary to define λ1 and λ2. Nevertheless we can
make some possible choices.

The first simplification is to consider λ1 = λ2. In this case the component of the stress tensor
of the fluid phase normal to the base is proportional to the pressure of a fluid, without the solid
phase in the second layer.

Nevertheless, we prefer at this moment to retain two different parameters. Because the role of
λ1 could be different of that of λ2. Observe that if we evaluate (28) and (29) for Z = h2 we obtain

Pf
2 ZZ(h2) = λ1ρ1h1cosθ, Ps

2 ZZ(h2) = ρ1h1cosθ(1 − λ1);

Note that λ1 controls the distribution of the pressure at the interface into the two phases of the
second layer.

We have imposed continuity of the component of the stress tensor normal to the base across the
interface of the first and second layer (equation (8)), and we observe that it is verified independently
of the definition of λ1. If we want to include an additional condition, for example the continuity
of the pressure of the fluid phase of the second layer with the first layer of fluid, then we obtain
that λ1 = 1. Depending on the material of the second layer, we can also suppose that the fluid that
fills the pores of the second layer is nearly isolated of the fluid of the first layer, in this case we can
consider λ1 ≈ 0.

Independently of the additional hypothesis that we can use to set the distribution of the pressure
at the interface between the solid and fluid phase, we have still the parameter λ2 at our disposal,
in order to impose a similar hypothesis to that introduced by Iverson and Delinger, but only for the
second layer.

Another possible choise is to fix λ1 = λ2 = ψ0, where ψ0 is the porosity of the second layer.
We obtain in this case

Ps
2 ZZ = (1 − ψ0)(ρ1h1 + ρs(h2 − Z))cosθ, Pf

2 ZZ = ψ0ρ1(h1 + h2 − Z)cosθ.

An interesting property of this choice is that P2 ZZ at height Z = h2 is proportional to the pressure
that is obtained in absence of the fluid phase (with proportional constant (1 − ψ0)). Observe that
Ps

2 ZZ depends on ρs, the density of the solid phase, and not ρ2, the density of the mixture defined

by (1). Analogously, Pf
2 ZZ is proportional to the pressure (with proportional constant ψ0) that is

obtained in the absence of the solid phase. Moreover, if the porosity of the second layer is zero,
then P2 = Ps

2 , which is automatically deduced from this definition.

Finally, the following relations are also considered (see for example [26] and [41]):

P1 XX = P1 ZZ , Ps
2 XX = K Ps

2 ZZ , Pf
2 XX = P f

2 ZZ ,

where K measures the anisotropy or normal stress effects in the solid phase. The definition of K
can be done in different ways. For example Heinrich et al. in [24] consider K = 1, other definitions
of K can be found in [26]. The effects related to the definition of K in numerical modelling of
experimental and natural flows is studied in [41] and [38].

Remark 3 The value K = 1 corresponds to isotropic conditions, K 6= 1 makes ‘overburden pres-
sures’ different from the normal stresses parallel to the basal surface. In soil mechanics, K cor-
responds to the earth pressure coefficient, see [41]. For non-Neutonian rheology K may also be
different from unity.

Using the previous relations, the following expression for P2 XX is derived:

P2 XX = K Ps
2 ZZ + Pf

2 ZZ =

= h1cosθρ1(λ1 +K(1 − λ1)) + (h2 − Z)cosθ(λ2ρ1 +K(ρ2 − λ2ρ1)). (30)
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Now, replacing (26) and (30) in (14), and using the incompressibility equation (13), we obtain up
to second order

∂t(ρ1U1) + ρ1∂XU
2
1 + ρ1∂Z(U1W1) + ρ1∂X (b+ Scosθ)ε = −µ1∂Z(P1 XZ), (31)

and

∂t(ρ2U2) + ρ2∂XU
2
2 + ρ2∂Z(U2W2) + ρ2∂X

(
b+ Zcosθ +

1

ρ2
[h1cosθρ1(λ1 +K(1 − λ1))+

+(h2 − Z)cosθ(λ2ρ1 +K(ρ2 − λ2ρ1))]

)
ε = −µ2∂Z(P2 XZ). (32)

� Integration process
In this section, equations (31), (32) and (13) are depth-averaged in the direction normal to the

topography. Let us introduce the following notation: we denote by Ūi, i = 1, 2 the velocities of
each layer averaged perpendicular to the basal surface:

Ū1 =
1

h1

∫ S

h2

U1(X,Z)dZ, Ū2 =
1

h2

∫ h2

0

U2(X,Z)dZ.

We also denote

U2
1 =

1

h1

∫ S

h2

U2
1 (X,Z)dZ, U2

2 =
1

h2

∫ h2

0

U2
2 (X,Z)dZ.

Assuming that dXθ = O(ε), then J = 1 − ZdXθ is reduced to J = 1 up to second order.
Therefore, (13) reduces to

∂X(U1) + ∂Z(W1) = 0, (33)

∂X(U2) + ∂Z(W2) = 0. (34)

I.1) If equation (33) is integrated from Z = h2 to Z = S, we obtain

0 = ∂X(h1Ū1) − U1(S)∂XS +W1(S) + U1(h2)∂Xh2 −W1(h2).

Now, using the kinematic conditions (16), the following equation is derived:

∂th1 + ∂X(h1Ū1) = 0.

I.2) Analogously, by integrating (34) between Z = 0 and Z = h2 we obtain

0 = ∂X(h2Ū2) − U2(h2)∂Xh2 +W2(h2) −W2(0),

and, using the kinematic condition (16) and the boundary condition (22), the following equation
is derived:

∂th2 + ∂X(h2Ū2) = 0.

I.3) Let us now proceed with equation (31), integrating it from Z = h2 to Z = S. We obtain

ρ1∂t(h1Ū1) + ρ1∂X (h1U2
1 ) − ρ1U1(S)[∂t(S) + U1(S)∂XS −W1(S)]+

+ρ1U1(h2)[∂th2 + U1(h2)∂Xh2 −W1(h2)] + ρ1

(∫ S

h2

(
∂X (b+ Scosθ)

)
dZ

)
ε =

= −µ1(P1 XZ(S) −P1 XZ(h2)). (35)

The expressions of P1 XZ(S) and P1 XZ(h2) are now derived using the boundary conditions and
the constitutive laws.

9



• Using (17) and (26) and the relation P1 XX = P1 ZZ the following expression is obtained:

µ1P1 ZX(S) = −εP1XX (S)∂XS = −εP1 ZZ(S)∂XS = 0 + O(ε2). (36)

• Using (20), we have,

µ1P1 XZ(h2) + ε∂Xh2(P1 ZZ −P1 XX) = fric(U1, U2) + O(ε2).

Therefore, applying the constitutive law for the fluid layer, that is, P1 XX = P1 ZZ , the
following equality is derived:

µ1P1 XZ(h2) = fric(U1, U2) + O(ε2). (37)

Using the kinematic conditions (16), equation (35) and the expressions obtained for µ1P1 XZ(S)
(36) and for µ1P1 XZ(h2) (37), we obtain

ρ1∂t(h1Ū1) + ρ1∂X(h1U2
1 ) + ρ1

(∫ S

h2

∂X (b+ Scosθ)dZ

)
ε = fric(U1, U2) + O(ε2).

Now, evaluating the integral, we obtain

∫ S

h2

∂X (b+ Scosθ)dZ = h1dXb+ ∂X

(
h2

1

2
cosθ

)
+ h1∂X(cosθh2) −

h2
1

2
sinθdXθ.

Finally, we obtain the equation

ρ1∂t(h1Ū1) + ρ1∂X

(
h1U2

1 + ε
h2

1

2
cosθ

)
= ερ1

(
− h1dXb+ sinθdXθ

h2
1

2
−

−h1∂X(cosθh2)

)
+ fric(U1, U2) + O(ε2).

I.4) Let us now integrate equation (32) from Z = 0 to Z = h2. As in the previous case, we use
the kinematic conditions (16) to obtain

ρ2∂t(h2Ū2) + ρ2∂X(h2U2
2 ) + ρ2

(∫ h2

0

∂X

(
b+ Zcosθ +

1

ρ2
[h1cosθρ1(λ1 +K(1− λ1))+

+(h2 − Z)cosθ(λ2ρ1 +K(ρ2 − λ2ρ1))]

)
dZ

)
ε = −µ2(P2 XZ(h2) −P2 XZ(0)). (38)

Let us denote by

r =
ρ1

ρ2

where ρ1 is the density of the fluid and ρ2 is defined by (1).
We obtain ∫ h2

0

∂X

(
b+ Zcosθ +

1

ρ2
[h1cosθρ1(λ1 +K(1 − λ1))+

+(h2 − Z)cosθ(λ2ρ1 +K(ρ2 − λ2ρ1))]

)
dZ = h2dXb+

+rh2(K(1 − λ1) + λ1)∂X (h1cosθ)+

+∂X

(
h2

2

2
cosθ(rλ2 +K(1 − rλ2))

)
−
h2

2

2
sinθdXθ.

10



Replacing the last expression in (38), and dividing by ρ2 and we obtain the equation

∂t(h2Ū2) + ∂X

(
h2U2

2 + ε
h2

2

2
cosθ(rλ2 +K(1− rλ2))

)
= −εh2dXb−

−εrh2(λ1 +K(1 − λ1))∂X (h1cosθ) + ε
h2

2

2
sinθdXθ −

µ2

ρ2
(P2 XZ(h2) −P2 XZ(0)). (39)

Just as in the previous case, the boundary conditions and the constitutive laws are used to derive
µ2 P2 XZ(h2) and µ2 P2 XZ(0).

• Using (20), and Ps
2 XX = KPs

2 ZZ , Pf
2 XX = Pf

2 XX we have

µ2P2 XZ(h2) = fric(U1, U2) + µ2ε∂Xh2P
s
2 ZZ(K − 1).

In [21] Gray introduce the assumption that the Coulomb term is of order γ for some γ ∈ (0, 1).
That is, µ2 = tan(δ0) = O(εγ). Under this assumption, we have

µ2P2 XZ(h2) = fric(U1, U2) + O(ε1+γ). (40)

• Using equation (23), we obtain

µ2P2 XZ(0) = −(P2 ZZ(0) −P1 ZZ(0))
U0

2

|U0
2 |

tan(δ0).

Now, using (26) and (27) we have

(P2 ZZ(0) −P1 ZZ(0)) = h2cosθ(ρ2 − ρ1) + O(ε).

Therefore, assuming tan(δ0) = O(εγ), we have

µ2P2 XZ(0) = −(ρ2 − ρ1)h2cosθ
U0

2

|U0
2 |

tan(δ0) + O(ε1+γ).

Nevertheless, it is possible to give another expression of the Coulomb term, by including the
centripetal acceleration corresponding to the curvature of the bottom (see [26]).

This effect can be easily included and it comes from the derivation of P2 ZZ in (15), by
including a term of order ε. From (15) we obtain up to order ε

∂Z(P2 ZZ) = −ρ2cosθ − ρ2U
2
2 dXθ.

Then, integrating from Z = 0 to Z = h2, and taking into account that P2 ZZ(h2) =
P1 ZZ(h2) = ρ1h1cosθ, we have

P2 ZZ(0) = ρ1h1cosθ + ρ2h2cosθ + ρ2h2U2
2 dXθ.

Finally, the following expression is derived for the Coulomb term

µ2P2 XZ(0) = −(P2 ZZ(0) − P1 ZZ(0))
U0

2

|U0
2 |

tan(δ0) =

= −((ρ2 − ρ1)h2cosθ + ρ2h2U2
2 dXθ)

U0
2

|U0
2 |

tan(δ0) + O(ε1+γ). (41)

11



Finally, substituting (40) and (41) in (39), we derive the conservation of momentum equation
for the second layer

∂t(h2Ū2) + ∂X

(
h2U2

2 + ε
h2

2

2
cosθ(rλ2 +K(1− rλ2))

)
=

= −εh2dXb− ε rh2(λ1 +K(1 − λ1))∂X(h1cosθ)−

−
1

ρ2
fric(U1, U2) − ((1 − r)h2cosθ + h2Ū

2
2 dXθ)

U0
2

|U0
2 |

tan(δ0) + ε
h2

2

2
sinθdXθ + O(ε1+γ).

Remark 4 Another expression of the Coulomb friction term can be obtained including new terms
from equation (15). Concretely, in (15) there is another term depending on P2,ZZ . If we include
this term we have, up to order ε

∂Z(P2 ZZ) = −ρ2cosθ + (εP2 ZZ − ρ2U
2
2 )dXθ. (42)

and we also have, up to order ε,

P2 ZZ(h2) = P1 ZZ(h2) = ρ1h1cosθ. (43)

Then, a new expression for P2 ZZ , up to order ε, can be obtained integrating the ordinary differential
equation (42) with the initial condition (43):

P2 ZZ(Z) =

(∫ h2

Z

(ρ2cosθ − ρ2∂XθU
2
i (ξ))exp(−εdXθξ)dξ

)
exp(εdXθZ) + ρ1h1cosθ.

By supposing a constant profile of the velocity we obtain

P2 ZZ(Z) = (ρ2cosθ + ρ2dXθŪ
2
2 )

exp((−h2 + Z)εdXθ) − 1

−εdXθ
+ ρ1h1cosθ.

Using the Taylor expansion of the exponential we have

P2 ZZ(0) = ρ1h1cosθ + ρ2h2cosθ + ρ2h2dXθ(Ū
2
2 − ε

h2cosθ

2
) + O((εdXθ)

2).

Finally, coming to the original variables the following expression is derived for the Coulomb
term

µ2P2 XZ(0) = −(P2 ZZ(0) −P1 ZZ(0))
U0

2

|U0
2 |

tan(δ0) =

= −(g(ρ2 − ρ1)h2cosθ + ρ2h2dXθ(Ū
2
2 −

gh2cosθ

2
))
U0

2

|U0
2 |

tan(δ0). (44)

� Final system of equations
Reverting to the original non-stretched variables, see (12), neglecting the terms of order ε1+γ ,

and by supposing a constant profile of the velocities we obtain the following system:





∂th1 + ∂X(h1Ū1) = 0,

∂t(h1Ū1) + ∂X(h1Ū
2
1 + g

h2
1

2
cosθ) = −gh1dXb+ gsinθdXθ

h2
1

2
−

−gh1∂X(cosθh2) +
1

ρ1
fric(U1, U2),

∂th2 + ∂X(h2Ū2) = 0,

∂t(h2Ū2) + ∂X

(
h2Ū

2
2 + g

h2
2

2
cosθ(rλ2 +K(1 − rλ2))

)
= −gh2dXb−

−rgh2(λ1 +K(1 − λ1))∂X(h1cosθ) −−
1

ρ2
fric(U1, U2) + g

h2
2

2
sinθdXθ + T ,

(45)
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where by T , we denote the Coulomb friction term. We observe that this term must be understood
as:

If |T | ≥ σc ⇒ T = −(g(1 − r)h2cosθ + h2Ū
2
2 dXθ)

Ū2

|Ū2|
tan(δ0), (46)

If |T | < σc ⇒ Ū2 = 0, (47)

where σc = g((1 − r)h2cosθ. Recall that

r =
ρ1

ρ2
,

where ρ1 is the density of the fluid and ρ2 is defined in (1).

Remark 5 Heinrich et al. propose in [24] a two layer model to study some type of tsunami
produced by submarine avalanches. One of the characteristics of this model is that the equations
for the first and second layers are described in different coordinates.

The equations corresponding to the sediment layer are defined in local coordinates over a bot-
tom with constant slope. The equations corresponding to the fluid layer are defined in Cartesian
coordinates.

Moreover they consider an uncoupled model, in the sense that the equations for the sediment
layer do not depend on the height nor on the velocity of the fluid layer.

Concretely, if x is the Cartesian horizontal coordinate and X(x) the corresponding local coordi-
nate over a non erodible bottom, we denote by H1(x) and H2(x) the heights of the fluid and the sed-
iment layer in the vertical direction H1(x) = h1(X(x))cosθ(X(x)), H2(x) = h2(X(x))cosθ(X(x))),
and if the horizontal velocity for the fluid layer is denoted by u1, the model proposed by Heinrich
et al. can be written as





∂tH1 + ∂x(H1u1) = 0,

∂t(H1u1) + ∂x(H1ū2
1 + g

H
2
1

2 ) = −gH1dx(b+ H2)
∂th2 + ∂X(h2Ū2) = 0,

∂t(h2Ū2) + ∂X(h2Ū2
2 + g(1 − r)

h2
2

2 cosθ) = −g(1− r)h2dXb+ T

(48)

They proposed to solve this system in the following way: Firstly the height of the sediment layer
is computed in local coordinates by using the third and fourth equations of (48). Then, the bot-
tom, obtained as the sum of the fixed bottom plus the sediment layer, is recalculated in Cartesian
coordinates. And finally, the evolution of the fluid layer is computed by using the first and second
equations of (48).

Therefore, the main difference with the model proposed here is that, in our case, the complete
model is described in local coordinates and the two layers are fully coupled by the pressure terms.

It is easy to see, that the model proposed by Heinrich et al. could be obtained from the one pre-
sented here by assuming the rigid lid hypothesis in the derivation of the equations for the sediment
layer. Indeed, rewriting the term

−rgh2(λ1 +K(1− λ1))∂X (h1cosθ)

in the last equation (45), under the rigid lid assumption

b+ (h1 + h2)cosθ = cst,

the following equation for the momentum conservation of the second layer is obtained

∂t(h2Ū2) + ∂X

(
h2Ū2

2 + g
h2

2

2
cosθ(λ2r +K(1− λ2r) − r(λ1 +K(1 − λ1)))

)
=

−gh2(1 − r(λ1 +K(1− λ1)))dXb−
1

ρ2
fric(U1, U2)+
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+g
h2

2

2
sinθdXθ(1 − r(λ1 +K(1 − λ1))) + T , (49)

where actually the coupled term disappears. Compare (49) with the last equation of (48).

3 Properties of the model

In this section we study the properties of the proposed model. We fix the friction term between
the layers fric(U1, U2) to

fric(U1, U2) = −Kin · (Ū1 − Ū2), with Kin = ρ1Kin|Ū1 − Ū2|,

being Kin a positive constant. In this case, the model reduces to





∂th1 + ∂X(h1Ū1) = 0,

∂t(h1U1) + ∂X(h1Ū2
1 + gcosθ

h2
1

2 ) =

= −gh1dXb+ gsinθdXθ
h2
1

2 − gh1∂X(cosθh2) −Kin|Ū1 − Ū2|(Ū1 − Ū2)
∂th2 + ∂X(h2Ū2) = 0,

∂t(h2Ū2) + ∂X(h2Ū
2
2 + gcosθ

h2
2

2 Λ2) = −gh2dXb− rgh2Λ1∂X (h1cosθ)−

−rKin|Ū1 − Ū2|(Ū2 − Ū1) + g
h2
2

2 sinθdXθ + T .

(50)

where we denoted
Λ1 = λ1 +K (1 − λ1), Λ2 = r λ2 +K (1 − r λ2).

Remark 6 Observe that for K = 1 we obtain Λ1 = 1 and Λ2 = 1. Then, in this case the system
is independent of the parameters λ1 and λ2.

The coefficient K is defined according to the motion of the second layer (see [41]):

K =

{
Kact if ∂X Ū2 > 0,
Kpas if ∂X Ū2 < 0,

with

Kact/pas = 2sec2φ

(
1 ∓ (1 − cos2 φ sec2δ0)

1/2

)
− 1,

being φ the internal friction angle.

The following result can be proved

Theorem 1 System (50) has the following properties

i) it admits an entropy dissipation inequality,

∂t

(
rΛ1h1Ū

2
1 + h2Ū

2
2

2
+ gb(rΛ1h1 + h2) + gcosθ

rΛ1h
2
1 + Λ2h

2
2

2
+ gcosθrΛ1h1h2

)
+

+∂X

(
rΛ1h1Ū1

(
Ū2

1

2
+ gb+ cosθ(h1 + h2)

)
+ h2Ū2

(
Ū2

2

2
+ gb+ gcosθ(rΛh1 + Λ2h2)

))
≤

≤ −rKin|Ū1−Ū2|(U2−U1)(U2−Λ1U1)−g((1−r)h2cosθ+h2dXθ(Ū
2
2 −

gh2cosθ

2
))|Ū2|tan(δ0)+

+g
h2

2

2
U2(1 − Λ2)sinθ∂Xθ. (51)
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ii) it preserves the steady state corresponding to water at rest over a stationary sediment, that
is a stationary solution verifying:

Ū1 = 0, Ū2 = 0, (52)

b+ (h1 + h2)cosθ = cst, (53)

|(Λ2 − rΛ1)∂x(b+ h2cosθ) + (1 − Λ2)(∂xb−
h2

2
sinθ∂xθ)| ≤ (1 − r)tan(δ0), (54)

iii) for constant slope dXθ = 0 and K = 1, the system (50) gives an exact solution to the free
surface Euler system with hydrostatic assumption.

PROOF.

To prove i) we first obtain an equation for Ū1 by combining the first and second of equations
(50):

∂t(Ū1) + ∂X

(
Ū1

2

2
+ gb+ gcosθ(h1 + h2)

)
= −

Kin

h1
|Ū1 − Ū2|(Ū1 − Ū2). (55)

Also using the third and fourth of equations (50), we obtain

∂t(Ū2)+∂X

(
Ū2

2
+gcosθ(rΛ1h1+Λ2h2)+gb

)
= −g(cosθ(1−r)+∂Xθ(Ū

2
2 −

gh2cosθ

2
))
Ū2

|Ū2|
tan(δ0)−

−r
Kin

h2
|Ū1 − Ū2|(Ū2 − Ū1) − g

h2

2
(1 − Λ2)∂Xcosθ. (56)

Now, by multiplying the equation on (50) by Ū1
2

2 +gb+gcosθ(h1 +h2) and (55) by h1Ū1 we obtain

∂t

(
h1Ū1

2

2
+ gbh1 + gcosθ

h2
1

2

)
+ ∂X

(
h1Ū1

(
Ū1

2

2
+ gb+ gcosθ(h1 + h2)

))
=

= −Kin|Ū1 − Ū2|Ū1(Ū1 − Ū2) − gcosθh2∂th1. (57)

Analogously, multiplying the third equation on (50) by Ū2

2 + gcosθ(rΛ1h1 + Λ2h2) + gb and (56)
by h2Ū2 we obtain

∂t

(
h2Ū2

2

2
+ gbh2 + gcosθΛ2

h2
2

2

)
+ ∂X

(
h2Ū2

(
Ū2

2
+ gcosθ(rΛ1h1 + Λ2h2) + gb

))
=

= −gcosθrΛ1h1∂t(h2) − rKin|Ū1 − Ū2|Ū2(Ū2 − Ū1)−

−g((1 − r)h2cosθ + h2∂Xθ(Ū
2
2 −

gh2cosθ

2
))|Ū2|tan(δ0) − g

h2
2

2
(1 − Λ2)U2∂Xcosθ. (58)

Finally, if equation (57) is multiplied by rΛ1 and added to (58), we obtain (51).

To proof ii), it is easy to verify that the three first equations are trivially satisfied. To verify
the last equation, taking into account (53), we deduce

T = gh2cosθ

(
(Λ2 − rΛ1)∂x(b+ h2cosθ) + (1 − Λ2)(∂xb−

h2

2
sinθ∂xθ)

)
(59)

and applying (54), we have
|T | ≤ gh2(1 − r)cosθtan(δ0) = σc,

and then Ū2 = 0.
The proof of iv) is easy, taking into account that P = (h1(t,X) + h2(t,X) − Z)gcosθ.

�
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Remark 7 The inequality (51) is just the energy conservation for smooth solutions, supposing
Kin = 0, δ0 = 0 and (1 − Λ2)∂xθ = 0 (that is, Λ2 = 1 or θ constant).

Remark 8 Observe that the inequality (54) is independent of λ1, λ2 and ∂xθ when K = 1. For
K = 1 (54) reduces to

|∂x(b+ h2cosθ)| ≤ tan(δ0).

As the equation of the interface between the fluid and the sediment material is defined by b+h2cosθ,
the previous condition implies that the slope of the interface is smaller than δ0.

In the case K 6= 1, (54) relates the values of K to the curvature of the bottom, the parameters
λ1, λ2 and the ratio between the densities of the fluid and the granular material, r (see 2).

Observe that for stationary solutions verifying U2 = 0 then ∂XU2 = 0. Then, if we consider for
this case K = (Kact +Kpas)/2, we have

K = 1 + tan2 φ. (60)

By another way, we can study the profiles verifying the equality in (54). We consider a domain
[0, L] and we impose the value of the interface at x = L, then for δ0, K, λ1, λ2 and r fixed we have
the equation

{
α cos θ∂xh2 + ((α + β

2 )∂x cos θ)h2 = (1 − r) tan(δ0) − (α+ β)∂xb
(h2 cos θ + b)|x=L = A

with α = Λ2 − rΛ1, β = 1 − Λ2. The solution is

h2(x) =

(
I(x) − I(L) + cos θβ/(2α)(A− b(L))

)
cos θ−1+β/(2α)

where

I(x) =

∫ x

0

(
(1 − r) tan(δ0)

α
cos θβ/(2α) − (1 +

β

α
) sin θ cos θ−1−β/(2α)

)
dx.

In Figure 2 we present two examples of the profiles that we obtain for two different bottom topogra-
phies for different values of K. From K = 1 to K = 2 they correspond to the definition (60) with
φ from 0 to 45 degrees. In both examples we have set λ1 = λ2 = ψ0, ψ0 = 0.2, δ0 = 28 degrees and
r = 0.2.

Figure 2(a) corresponds to a bottom with constant slope equal to 15 degrees, where L = 2 meters
and the interface at x = L is A = 2. In this example we observe that the interfaces obtained for
K > 1 are over the interface corresponding to K = 1.

The bottom of Figure 2(b) is defined by b(x) = −ln(cos(x)), moreover L = 1.5 and A = 3.5.
In this example we observe that by the influence of the curvature of the bottom the interfaces
corresoponding to K > 1 are under the interface obtained for K = 1.

4 Numerical scheme: rewriting the model

In this section we describe the numerical scheme that we propose to discretize model (45). We
propose a well-balanced finite volume method that exactly preserves the solutions corresponding
to water at rest and no movement of the sediment layer verifying (52), (53), (54); and up to second
order all stationary solutions. In Subsection 4.1 we introduce the numerical scheme, and we study
its properties.

However, before defining the numerical scheme we begin by rewriting the proposed model in
Cartesian coordinates.

We remark that model (45) is written in local coordinates over a non-erodible bottom. In order
to solve the problem of defining a proper mesh for an arbitrary topography, we propose to rewrite
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Figure 2: Stationary interface profiles depending on the values of K

the model (45) in Cartesian coordinates. To do this, the following rule is used: for a given function
f(X(x)),

as ∂x = cosθ ∂X ⇒
∂f

∂X
= cosθ

∂f

∂x
. (61)

Introducing the notation

Hi =
hi

cosθ
, Qi = HiŪi, i = 1, 2,

equations (45) can be written as





∂tH1 + ∂x(Q1 cosθ) = 0,

∂t(Q1) + ∂x(H1Ū2
1 cosθ + g

H2
1

2
cos3θ) = −gH1 cosθ dxb+

+g
H2

1

2
sinθ cos2θ dxθ − g H1 cosθ ∂x(H2 cos2θ) +

fric(U1, U2)

cosθρ1
,

∂tH2 + ∂x(Q2 cosθ) = 0,

∂t(Q2) + ∂x

(
H2Ū2

2 cosθ + gΛ2
H2

2

2
cos3θ

)
= −gH2 cosθ dxb+

+g
H2

2

2
sinθcos2θ∂xθ − rΛ1 g H2 cosθ∂x(H1 cos2θ) −

fric(U1, U2)

cosθρ2
+

T

cosθ
,

(62)

where T is defined by

If |T | ≥ σc ⇒ T = −(g(1− r)H2cos2θ +H2cosθŪ2
2 dx(sinθ))

Q2

|Q2|
tan δ0, (63)

If |T | < σc ⇒ Q2 = 0, (64)

where σc = g(1 − r)H2cos2θtan(δ0).

4.1 Well-balanced finite volume method

In this subsection we present the finite volume method that we use to discretize system (62). There
are several difficulties related to the discretization of this system: As we describe below, we can
rewrite (62) under the structure of a hyperbolic system with a conservative term, a non-conservative
product and two types of source terms (see equation (65) below), where
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i) the flux function does not only depend on the vector of unknowns, but also on θ(x);

ii) the coupling term is a non-conservative product B(W )∂xW . In general, it is not well defined
nor as a distribution and the choice of a family of paths is necessary (see [14]);

iii) the source terms G1 and G2, are defined as functions of the fixed topography. Their numerical
discretization can be treated by following the ideas given in [12] or [13] in the framework of
a system of balance laws or by rewriting the system for an extended variable and an extra
equation in such a way that the source terms are written in the form of non-conservative
products (see [36]);

iv) the source term corresponding to the Coulomb term presents a different difficulty. We pro-
pose a two step method combining a well-balanced discretization of the Coulomb term and
the numerical treatment introduced by Mangeney et al. in [31]. The numerical method con-
structed in this way is exactly well balanced for the solutions corresponding to water at rest
and no movement of the sediment layer given by (52), (53) and (54).

We can rewrite model (62) under the form of a hyperbolic system with a conservative product,
a non-conservative term and source terms:

∂tW + ∂xF (θ,W ) = G1(x,W ) +G2(x,W ) +B(W )∂xW + T, (65)

where

W =




H1

Q1

H2

Q2


 , F (θ,W ) =




Q1cosθ
Q2

1

H1
cosθ + g

H2
1

2
cos3θ

Q2cosθ
Q2

2

H2
cosθ + gΛ2

H2
2

2
cos3θ



,

G1 =




0
−gH1 cosθ dxb

0
−gH2 cosθ dxb


 , G2 =




0

−g
H1

2
(
H1

2
+ 2H2) cosθ ∂x(cos2θ)

0

−g
H2

2
(
H2

2
+ 2 rΛ1H1) cosθ ∂x(cos2θ)



,

B(W ) =




0 0 0 0
0 0 −gH1cos3θ 0
0 0 0 0

−rΛ1gH2cos3θ 0 0 0


 , T =




0
0
0

T /cosθ


 .

Note that the terms ∂x(H2cos2θ) and ∂x(H1cos2θ) of the second and fourth equations on (62)
contributes to (65) in the definition of the non-conservative term B(W )∂xW and in the definition
of G2.

Remark 9 Observe also that G2 can be written in terms of ∂x(cos3θ), nevertheless we propose to
define G2 in terms of cosθ∂x(cos2θ), motivated by the discretization that we proposed. The purpose
is that we want to obtain an exactly well-balanced numerical scheme for water at rest:

Ū1 = Ū2 = 0, b+H2cos
2θ = cst, H1cos

2θ = cst,

that is defined in terms of cos2θ.

Remark 10 System (65) can be written in nonconservative form,

∂tW + A(θ,W )∂xW = S(θ,W )
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where S(θ,W ) = G1 + G2 − ∂θF + T . And where A(θ,W ) defines the transport matrix of the
system:

A(θ,W ) =




0 cosθ 0 0
−U2

1 cosθ + gH1 cos3 θ 2U1cosθ gH1 cos3 θ 0
0 0 0 cosθ

rΛ1gH2 cos3 θ 0 −U2
2 cosθ + Λ2gH2 cos3 θ 2U2cosθ


 , (66)

where Ui = Qi/Hi represents the averaged velocity of the i-th layer, and r = ρ1

ρ2
.

This matrix is similar to the one obtained in the well-known two-layer Shallow Water system
(see [36] for example). Unfortunally no explicit expressions of the eigenvectors of the system can
be obtained. The characeristic equation of the system is:

(
λ2 − 2U1λ+ U2

1 − gH1cos
2θ
)(
λ2 − 2U2 λ+ U2

2 − gΛ2H2cos
2θ
)

= rΛ1 g
2H1H2 cos4 θ. (67)

It is not easy to verify the genuinely nonlinear character of the 4 characteristic fields, as the
eigenvalues and eigenvectors can not be written explicitely in a simple manner. Nevertheless, this
fact is easily proved in the case r = 0 as, in this case, the system reduces to a decoupled system of
Shallow Water and Savage-Hutter equations. In this case the eigenvalues are those corresponding
to each layer separately. Then, a continuity argument ensures the genuinely nonlinear character
of the 4 characteristic fields when r is close to zero.

In the case r ≈ 1, in [46] authors gives an approximation of the eiganvalues for the two-layer
Shallow Water equations. The case r ≈ 1 is the situation arising for two fluid with different
densities in many oceanographical flows. In the context of submarine avalanches we suppose two
different materials, then we are closer to the case r ≈ 0.

Although, following [46], we can also give a approximation of the eiganvalues for r ≈ 1. We
obtain:

λ±
ext

≈
U1H1 + U2H2

H1 + Λ2H2
±
(
g(H1 + Λ2H2)

) 1
2 cosθ, (68)

λ±
int

≈
U1Λ2H2 + U2H1

H1 + Λ2H2
±

(
g(1− r

Λ1

Λ2
)
H1H2Λ2cos

2θ

(H1 + Λ2H2)

[
1 −

(U1 − U2)
2

g(1− rΛ1

Λ2
)(H1 + Λ2H2)cos2θ

]) 1
2

.

(69)
From equation (69) we can observe that the internal eigenvalues may become complex. This

situation occurs when they verify, approximately, the following inequality:

(U1 − U2)
2

g(1 − rΛ1

Λ2
)(H1 + Λ2H2)cos2θ

> 1. (70)

In this case, the system loses its hyperbolic character. These situations are related with the appear-
ance of shear instabilities that may lead, in real flows, to intense mixing of the two layers. While,
in practice, this mixture partially dissipates the energy, in numerical experiments these interface
disturbances grow and overwhelm the solution. Clearly, we cannot expect to simulate these phe-
nomena with a two-immiscible-layer model. Therefore, the inequality (70) in fact gives the range
of validity of a model based on the equations (65). In this work only the case where the matrix
A(θ,W ) has real eigenvalues is considered, i.e. the system is supposed to be strictly hyperbolic.

As the source terms modeling the friction between the two layers are discretized semi-implicitly,
they do not appear in the finite volume discretization, therefore, they are supposed to be zero in
this section.

For the discretization of the system, computing cells Ii = [xi−1/2, xi+1/2] are considered. For
simplicity, we suppose that these cells have constant size ∆x. Let us define xi+ 1

2
= i∆x and by

xi = (i− 1/2)∆x, the center of the cell Ii. Let ∆t be the constant time step and define tn = n∆t.
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We denote by W n
i the approximation of the cell averages of the exact solution provided by the

numerical scheme:

Wn
i
∼=

1

∆x

∫ xi+1/2

xi−1/2

W (x, tn) dx. (71)

The source terms G1 and G2 are discretized following the ideas introduced in [13] and [36]. The
discretization of B(W )∂xW firstly requires to interpret this term as a Borel measure (see [14]),
depending on the choice of a family of paths linking given states. Here the family of segments are
considered as in [36].

The dependence of the flux function on θ(x), makes it difficult to obtain the desired exact
well-balanced property for water at rest (see [9]). Following the same ideas that have been exposed
in Remark 9, we propose to consider the flux function F (θ,W ) as a function of cosθ and cos2θ.
More precisely,

F (θ,W ) = F(cosθ, cos2θ,W ), with F(α, β,W ) =




Q1α

Q2
1

H1
α+ g

H2
1

2
α β

Q2α

Q2
2

H2
α+ gΛ2

H2
2

2
αβ




.

Finally, as mentioned before, the discretization of the source term T (W ) corresponding to the
Coulomb friction term is critical to simulate properly the landslides and to preserve the stationary
solutions corresponding to water at rest and no movement of the sediment layer verifying (52),
(53) and (54). We propose a two-step numerical scheme to treat the Coulomb friction term.

Let us suppose that the values W n
i are known. In order to advance in time we proceed as

follows:

• First Step. We define W ∗
i = [H∗

1,i Q
∗
1,i H

∗
2,i Q

∗
2,i]

T as

W ∗
i = Wn

i −
∆t

∆x

(
DFn,+

i−1/2 + DFn,−
i+1/2

)
, (72)

where DFn,±
i+1/2 = DF±

i+1/2(W
n
i ,W

n
i+1) are the generalized Roe flux difference computed us-

ing the family of segments.

DF±

i+1/2(Wi,Wi+1) =
1

2

{(
F(cosθi+1/2, (cos2θ)i+1/2,Wi+1)

− F(cosθi+1/2, (cos2θ)i+1/2,Wi) + S3,i+1/2(cos2θi+1 − cos2θi)

+ S4,i+1/2(cosθi+1 − cosθi) − S1,i+1/2(bi+1 − bi)

− S2,i+1/2(cos2θi+1 − cos2θi) −Bi+1/2(Wi+1 −Wi)
)

(73)

± Pi+1/2

(
Ai+1/2(Wi+1 −Wi) − S1,i+1/2(bi+1 − bi)

+(S3,i+1/2 − S2,i+1/2)(cos2θi+1 − cos2θi) +

+ S4,i+1/2(cosθi+1 − cosθi) − Ti+1/2∆x
)}
.

The matrices appearing in the definition of the numerical scheme can be written as follows:
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Ai+1/2 =




J1
i+1/2 −B1,2

i+1/2

−B2,1
i+1/2 J2

i+1/2




, Bi+1/2 =




0 B1,2
i+1/2

B2,1
i+1/2 0




, (74)

where

J1
i+1/2 =

[
0 cosθi+1/2

−Ū2
1,i+1/2 cosθi+1/2 + c21,i+1/2(cos2θ)i+1/2 2Ū1,i+1/2cosθi+1/2

]
,

J2
i+1/2 =

[
0 cosθi+1/2

−Ū2
2,i+1/2 cosθi+1/2 + Λ2 c

2
2,i+1/2(cos2θ)i+1/2 2Ū2,i+1/2cosθi+1/2

]
,

B1,2
i+1/2 =

[
0 0

−c21,i+1/2 (cos2θ)i+1/2 0

]
, B2,1

i+1/2 =

[
0 0

−rΛ1c
2
2,i+1/2 (cos2θ)i+1/2 0

]
,

S1,i+1/2 =




0
−gH1,i+1/2 cosθi+1/2

0
−gH2,i+1/2 cosθi+1/2


 , (75)

S2,i+1/2 =




0

−g
H1,i+1/2

2
(
H1,i+1/2

2
+ 2H2,i+1/2)cosθi+1/2

0

−g
H2,i+1/2

2
(
H2,i+1/2

2
+ 2 rΛ1H1,i+1/2)cosθi+1/2



, (76)

S3,i+1/2 =




0
3 g

4
H2

1,i+1/2cosθi+1/2

0
3 g

4
Λ2H

2
2,i+1/2 cosθi+1/2



, S4,i+1/2 =




Q1,i+1/2

Q2
1,i+1/2/H1,i+1/2

Q2,i+1/2

Q2
2,i+1/2/H2,i+1/2


 , (77)

Ti+1/2 =




0
0
0

Ti+1/2/cosθi+1/2


 , (78)

where

Ti+1/2 =





T1,i+1/2 + T2,i+1/2 if |Q2,i+1/2| >
∆tσc,i+1/2

cosθi+1/2

τcrit,i+1/2 otherwise
(79)

with
T1,i+1/2 = −c22,i+1/2 cosθi+1/2 (1 − r) SGN(Ū2,i+1/2) tan(δ0),

T2,i+1/2 = −H2,i+1/2 Ū
2
2,i+1/2

sinθi+1 − sinθi

∆x
SGN(Ū2,i+1/2) tan(δ0),

σc,i+1/2 = (1 − r)c22,i+1/2cosθi+1/2 tan(δ0),
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τcrit,i+1/2 = c22,i+1/2cosθi+1/2

(
(Λ2 − rΛ1)

bi+1 − bi +H2,i+1cos2θi+1 −H2,icos2θi

∆x
+

+(1 − Λ2)(
bi+1 − bi

∆x
+
H2,i+1/2

4

cos2 θi+1 − cos2 θi

∆x
)

)
. (80)

In (73)-(80), we use the definitions

ck,1+1/2 =
√
gHk,i+1/2cosθi+1/2, (81)

Ūk,i+1/2 =

√
Hk,iŪk,i +

√
Hk,i+1Ūk,i+1√

Hk,i +
√
Hk,i+1

, (82)

and

Hk,i+1/2 =
Hk,i +Hk,i+1

2
, k = 1, 2, cosθi+1/2 =

cosθi + cosθi+1

2
,

(cos2θ)i+1/2 =
cos2θi + cos2θi+1

2
,

as well as the upwinded matrices

Pi+1/2 = Ki+1/2(SGN(Di+1/2))K
−1
i+1/2. (83)

Here, if Di+1/2 is a diagonal matrix defined by the eigenvalues of the matrix Ai+1/2, Ki+1/2

is the matrix whose columns are the associated eigenvectors. Let us denote by λj,i+1/2,
j = 1, .., 4, the eigenvalues of matrix Ai+1/2, then

SGN(Di+1/2) =




sgn(λ1,i+1/2)
sgn(λ2,i+1/2)

sgn(λ3,i+1/2)
sgn(λ4,i+1/2)




• Second step.

We define
Wn+1

i = [H∗
1,i Q

∗
1,i H

∗
2,i Q

n+1
2,i ]T

and

Qn+1
2,i =





Q∗
2,i + (T ∗

1,i + T ∗
2,i) ∆t if |Q∗

2,i| >
σ∗

c,i∆t

cosθi
,

0 otherwhise,

(84)

with

T ∗
1,i = −(1 − r)

(c∗2,i−1/2)
2 + (c∗2,i+1/2)

2

2
cosθi SGN(Q∗

2,i) tan(δ0),

T ∗
2,i = −

H∗

2,i−1/2 +H∗

2,i+1/2

2
(Ū∗

2,i)
2 sinθi+1/2 − sinθi−1/2

∆x
SGN(Q∗

2,i) tan(δ0),

in which

σ∗
c,i = (1 − r)

(c∗2,i−1/2)
2 + (c∗2,i+1/2)

2

2
cosθi tan(δ0). (85)

with

c∗2,i+1/2 =

√
g
H∗

2,i +H∗
2,i+1

2
cosθi+1/2.
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The definition of Qn+1
2,i proposed in equation (84), is based on the numerical treatment of Coulomb

friction term introduced by Mangeney et al. in [31]. Observe that the definition of the Coulomb
term, implies that if |T | < σc then Q2 = 0. A way to impose implicitely this definition in the
numerical scheme is the one proposed by equation (84).

Remark 11 Observe that

S3,i+1/2(cos
2θi+1 − cos2θi) + S4,i+1/2(cosθi+1 − cosθi)

∆x

is a second order approximation of ∂θF dxθ|x=xi+1/2
.

This numerical scheme could be seen as a predictor-corrector numerical scheme for the Coulomb
friction term. In the first step, the term Ti+1/2 is only considered in the uncentered part of the
numerical scheme. Note that in the definition of Ti+1/2 (see (79)) a second order approximation

of the Coulomb friction term is considered if |Q2,i+1/2| >
∆tσc,i+1/2

cosθi+1/2
. Otherwise, we set Ti+1/2 =

τcrit,i+1/2, that is also a second order approximation of the value of the Coulomb friction term in
order that all terms in the last equation of system (65) are balanced taking into account U2 = 0.
This relation is critical in order to obtain a well-balanced numerical scheme for the solutions
corresponding to water at rest and no movement of the sediment in the model.

After this first step, a predicted value Q∗
2,i is computed and then, following [31], the final value

Qn+1
2,i is computed using (84).

Concerning the stability requirements, we use the following CFL-condition

max{‖Di+1/2‖∞, 0 ≤ i ≤M}
∆t

∆x
≤ γ,

where 0 < γ ≤ 1, and M is the number of cells into which the space domain is decomposed.
We have the following result:

Theorem 2 The previous numerical scheme verifies the following properties:

i) The numerical scheme preserves all the stationary solutions satisfying

Ū1 = Ū2 = 0,

b+ (H1 +H2)cos
2θ = cst,

and

|(Λ2 − rΛ1)∂x(b+H2cos
2θ) + (1 − Λ2)(∂xb+

H2

4
∂x cos2 θ)| ≤ (1 − r) tan(δ0),

such as
∣∣∣∣(Λ2 − rΛ1)

(
b(xi+1) − b(xi) +H2(xi+1) cos2(θ(xi+1)) −H2(xi) cos(θ(xi))

)
+

+(1 − Λ2)

(
b(xi+1) − b(xi) +

H2(xi+1) +H2(xi)

4
(cos2(θ(xi+1)) − cos2(θ(xi)))

)∣∣∣∣ ≤

≤ (1 − r) tan(δ0)∆x. (86)

ii) The numerical scheme preserves all stationary solutions up to order 2.
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PROOF.-

Using the definition of the Roe matrix Ai+1/2 it is easy to prove that

Ai+1/2(Wi+1 −Wi) = F(cosθi+1/2, (cos2θ)i+1/2,Wi+1) − F(cosθi+1/2, (cos2θ)i+1/2,Wi)−

−Bi+1/2(Wi+1 −Wi). (87)

Observe that the terms that are multiplied with Pi+1/2 in (73) are equal to the centered components

of DF±

i+1/2 defined by (88) except the Coulomb friction term Ti+1/2 ∆x. That is, using (87), we

could rewrite the numerical fluxes as

DF±

i+1/2 =
1

2

{
R1,i+1/2 ± Pi+1/2R2,i+1/2

}
,

where,
R2,i+1/2 = R1,i+1/2 − Ti+1/2 ∆x,

and R1,i+1/2 is defined by

R1,i+1/2 = F(cosθi+1/2, (cos2θ)i+1/2,Wi+1) −F(cosθi+1/2, (cos2θ)i+1/2,Wi)+

+S3,i+1/2(cos2θi+1 − cos2θi) + S4,i+1/2(cosθi+1 − cosθi)−

−S1,i+1/2(bi+1 − bi) − S2,i+1/2(cos2θi+1 − cos2θi) −Bi+1/2(Wi+1 −Wi). (88)

Let us prove i). Observe that in this case the first and third components of R1,i+1/2 are equal to
zero. The second component of R1,i+1/2 is equal to

[R1,i+1/2]2 = g
H2

1,i+1

2
cosθi+1/2(cos2θ)i+1/2 − g

H2
1,i

2
cosθi+1/2(cos2θ)i+1/2+

+
3

4
gH2

1,i+1/2cosθi+1/2(cos2θi+1 − cos2θi) + gH1,i+1/2cosθi+1/2(bi+1 − bi)+

+g
H1,i+1/2

2
(
H1,i+1/2

2
+ 2H2,i+1/2)cosθi+1/2(cos2θi+1 − cos2θi)+

+gH1,i+1/2cosθi+1/2(cos2θ)i+1/2(H2,i+1 −H2,i).

We can write

g
H2

1,i+1

2
cosθi+1/2(cos2θ)i+1/2 − g

H2
1,i

2
cosθi+1/2(cos2θ)i+1/2 =

= gcosθi+1/2H1,i+1/2(cos2θ)i+1/2(H1,i+1 −H1,i),

and then obtain

[R1,i+1/2]2 = gcosθi+1/2H1,i+1/2

{
(cos2θ)i+1/2(H2,i+1 +H1,i+1 − (H2,i +H1,i))+

+g(H1,i+1/2 +H2,i+1/2)(cos2θi+1 − cos2θi) + bi+1 − bi
}
.

Thanks to the definition of (cos2θ)i+1/2 = (cos2θi+cos2θi+1)/2, we can use in the previous equation
the following rule (discrete version of the derivative of a product),

a b− c d =
a+ c

2
(b− d) + (a− c)

b+ d

2
, ∀a, b, c, d ∈ R, (89)

to obtain

[R1,i+1/2]2 = gcosθi+1/2H1,i+1/2

{
(bi+1 +H1,i+1cos2θi+1 +H2,i+1cos2θi+1)−
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−(bi +H1,icos2θi +H2,icos2θi)
}
.

For i) we have constant free surface, b+H1cos2θ +H2cos2θ = cst, then the second component of
R1,i+1/2 is equal to zero.

The fourth component of R1,i+1/2 is equal to

[R1,i+1/2]4 = gcosθi+1/2H2,i+1/2

(
Λ2(bi+1 − bi) + Λ2(cos2 θ)i+1/2(H2,i+1 −H2,i)+

+Λ2H2,i+1/2(cos2 θi+1−cos2 θi)+rΛ1(H1,i+1/2(cos2 θi+1−cos2 θi)+(cos2 θ)i+1/2(H1,i+1−H1,i))

)
+

+(1− Λ2)

(
g
H2

2,i+1/2

4
cosθi+1/2(cos2θi+1 − cos2θi) + gH2,i+1/2cosθi+1/2(bi+1 − bi)

)
.

Using (89) and b+H2cos2θ +H1cos2θ = cst we obtain

[R1,i+1/2]4 = gcosθi+1/2H2,i+1/2(Λ2 − rΛ1)

(
bi+1 − bi +H2,i+1cos2θi+1 −H2,icos2θi

)
+

+(1− Λ2)gcosθi+1/2H2,i+1/2

(
H2,i+1/2

4
(cos2θi+1 − cos2θi) + bi+1 − bi

)
. (90)

Finally, we conclude that the three first components of R1,i+1/2 are zero.
For the fourth component observe that [R1,i+1/2]4 exactly coincides with (Tcrit,i+1/2 ∆x/cosθi+1/2)

where Tcrit,i+1/2 is defined by (80). Moreover, by hypothesis the given stationary solution verifies
Qn

2,i = 0, and by (79) we obtain

[Ti+1/2]4 =
Tcrit,i+1/2

cosθi+1/2
,

Then,
[R2,i+1/2]4 = [R1,i+1/2]4 − [Ti+1/2]4∆x = 0, ⇒ R2,i+1/2 = 0.

So, DF±

i+1/2 = R1,i+1/2. Additionally, in the second step we have Hn+1
1,i = Hn

1,i, Q
n+1
1,i = Qn

1,i,

Hn+1
2,i = Hn

2,i. Moreover, by (72) we deduce

Q∗
2,i = −

∆t

∆x

R1,i+1/2 +R1,i−1/2

2
=

= −
∆t

2 ∆x

(
(Λ2 − rΛ1)gH2,i+1/2cosθi+1/2

{
(bi+1 +H2,i+1cos2θi+1) − (bi +H2,icos2θi)

}
+

+(Λ2 − Λ1r)gH2,i−1/2cosθi−1/2

{
(bi +H2,icos2θi) − (bi−1 +H2,i−1cos2θi−1)

})
+

+(1 − Λ2)gcosθi+1/2H2,i+1/2

(
H2,i+1/2

4
(cos2θi+1 − cos2θi) + bi+1 − bi

)
+

+(1 − Λ2)gcosθi−1/2H2,i−1/2

(
H2,i−1/2

4
(cos2θi − cos2θi−1) + bi − bi−1

)

Then, by (86)

|Q∗
2,i| ≤ ∆t(1 − r)g

H2,i+1/2cosθi+1/2 +H2,i−1/2cosθi−1/2

2
tan(δ0) =

σ∗
c,i∆t

cosθi
,

where σ∗
c,i is defined by (85). Then, by (84) we obtain Qn+1

2,i = 0. Finally, we conclude that the
stationary solutions verifying (52), (53), (54) satisfying (86) are exactly preserved.
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To prove ii) it is enough to observe that any stationary solution verifies

∂WF∂xW + ∂θF∂xθ −G1 −G2 −B(W )∂xW − T = 0. (91)

Moreover, DF±

i+1/2 = 1
2

{
R1,i+1/2 ± Pi+1/2R2,i+1/2

}
and R2,i+1/2 is a second order approximation

of (91). Finally, in the second step a second order approximation of T is added to R1; so finally we
have another second order approximation of (91) and we can conclude that W n+1

i = Wn
i +O(∆x2).

�

5 Numerical tests

In the following numerical tests the parameters are set to: K = 1, Kin = 0, and the ratio of
densities r = 0.2.

Different situations of wet/dry fronts appear in the numerical tests. We use here the numerical
treatment proposed by Castro et al. in [10]. It basically consists in a local redefinition of the
topography in the inter-cells corresponding to wet/dry transitions in order to avoid the generation
of spurious pressure forces.

5.1 Submarine landslide

The numerical test presented here is devoted to the simulation of a submarine landslide into a
rectangular channel of 10 m length. The topography is given by a strait line whose slope is set
equal to 0.2 (i. e. slope angle θ = 11.31o). The Coulomb friction angle is set equal to δ0 = 25o.
Finally, the CFL parameter is set to 0.8.

As initial conditions we set Ū1(x) = Ū2(x) = 0, η1(x) = b(x)+(H1(x)+H2(x))cos2θ is constant
and equals 2.7 (see Figure 3(a)) and

H2(x) =

{
1/cosθ, if 7 ≤ x ≤ 8,
0, otherwise.

Free boundary conditions are imposed at both channel ends.
Figure 3 shows the evolution of the submarine landslide from the initial condition until the

mass stops on the slope and forms a deposit (see Figure 3(f)) for ∆x = 0.05.
As consequence of the submarine landslide, some water waves are generated at the free surface

(see Figures 3(b) and 3(c)). They travel along the channel and go away as shown in Figures
3(d)-3(f).

In Figure 5.1 we compare the final stationary interface that we obtain for four different meshes
with ∆x = 1/20, ∆x = 1/40, ∆x = 1/80 and ∆x = 1/320. Only some small differences near the
”wet/dry” fronts can be observed, due to the numerical treatment of the wet/dry fronts. This
effect is also present if we study for example the bilayer Shallow Water equations (see [10]).

5.2 Landslide impinging a lake

In this subsection two numerical experiments are presented. They simulate the waves caused in a
lake by an avalanche of a granular material that slides along a plane of constant slope and that
falls on it.

In both of them, a rectangular channel of 10 m length long is considered. The topography is
given by

b(x) =

{
1 −

x

5
, if 0 ≤ x ≤ 5,

0, otherwise.

With this definition the bed curvature is infinite at x = 5, because the slopes are discontinuous.
In this point the change of variables is not justified. Nevertheless, the resulting integrated system
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Figure 3: Submarine landslide (∆x = 0.05): water surface and landslide evolution (Horizontal
x(m), Vertical z(m) )
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Figure 4: Submarine landslide: stationary landslide configuration for ∆x = 1/20, ∆x = 1/40,
∆x = 1/80 and ∆x = 1/320

has a solution, that can be approximated numerically. The solution of the system is the limit of
the solutions obtained using a regularization of the bottom.

From a numerical point of view, the bed at this point can be seen as approximated by a
parabola, because we use the middle point formula to approximate the derivatives (See Remark
11).

The CFL parameter is set equal to 0.8, and ∆x = 0.05. As initial condition we set

Ū1(x) = 0, Ū2(x) = 0,

H1(x) =

{
(0.7 − b(x))/cos2θ, if 1.5 ≤ x ≤ 2.5,
0, otherwise,

and

H2(x) =

{
(0.4 − b(x))/cos2θ, if 3 ≤ x ≤ 5,
0.4, otherwise.

This initial condition simulates that, initially, the granular material is not submerged, and it is
placed at [1.5, 2.5], while the water layer is placed at x ≥ 4 (see Figures 5(a) and 7(a)). Free
boundary conditions are imposed at both channel ends.

In the first experiment considered here, the Coulomb friction angle is set equal to δ0 = 10o,
while the angle of the plane is equal to 11.31o. Therefore, all the granular material will slide
down the plane and will deposit at the basin of the lake as it is shown in Figures 5(b)-5(e). The
stationary state for the granular layer is shown (see Figure 5(f)). When the landslide contacts the
water, a wave at the free surface of the lake is generated and propagates in the same direction of
the landslide as it is shown in Figures 5(b) and 5(c). Figures 5(d) and 5(e) show the generation
and propagation of a shock at the interface of the granular material and the water, traveling in
the opposite direction of the landslide propagation. Observe that the granular deposit is located
at the bottom of the lake forming a smooth pile whose form is determined by the Coulomb angle
and the flow history (see Figure 5(f)).

In Figure 5.2 we compare the stationary interface that we obtain for ∆x = 1/20, ∆x = 1/40,
∆x = 1/80 and ∆x = 1/320. As in previous test the convergence to a stationary profile is achieved.

In the second experiment, the Coulomb angle is set equal to δ0 = 25o. The evolution of the
landslide is different from the previous one. The main difference is the length of the avalanche: in
this case, the granular material is not deposited in the basin of the lake as it is shown in Figures
7(b)-7(f). As in the previous case, when the landslide contacts the water, a wave at the free surface
of the lake is generated and propagated in the same direction of the landslide as it is shown in
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Figure 5: Landslide impinging a lake (experiment 1): Water surface and landslide evolution.
(Horizontal x(m), Vertical z(m))
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Figure 6: Landslide impinging a lake (experiment 1): stationary landslide configuration for ∆x =
1/20, ∆x = 1/40, ∆x = 1/80 and ∆x = 1/320

Figures 7(b)- 7(d), with a wave amplitude that is smaller than in the previous experiment. Finally,
the steady state for the granular material is shown in Figure 7(f).

In Figure 8 we show the stationary profiles of the landslide for different values of δ0. In Figure
8(a) the results correspond to δ0 equals to 10, 11.31 (the angle of the bottom in [0,5]), 12 and 13
degrees. In the case of 13 degrees we obtain that the rock layer is not completely submerged. For
previous values we always obtain that this layer is completely submerged.

In Figure 8(b) we show the stationary profiles of the landslide for δ0 equals to 15, 20 and 25
degrees. In all cases we have a profile that is partially submerged.

Using the friction angle δ = 15o, a layer of quasi-constant thickness of material remains on the
subaerial as well as on the submarine part of the plane once the flow stops. This deposit seems
to be in agreement with the experimental results of ([8], Figure 3). Indeed, they show that the
minimum deposit thickness for which a flow is possible commonly called hstop is unchanged when
the flow occurs either in water or in air.

5.3 Tsunami generation experiment

This numerical example is inspired by that presented in the paper of Heinrich et al. (see [24]), and
the objective is to understand the main mechanisms of water wave generation and propagation
produced by submarine landslides. To do that, a 30 km long domain is considered, where a
simplified topography is considered given by b(x) = 2500−H(x) where:

H(x) =

{
10 + 490 exp(−6.1429 · 10−4(10000− x)), if x ≤ 10000,
2500− 2000 exp(−1.5050 · 10−4(x − 10000)), otherwise.

As initial condition we imposed Ūi(x) = 0, i = 1, 2,

H2(x) =
1

cos2θ
max(H(x) − (500 +

(x− 10000)2

1.8 · 104
), 0), and H1(x) =

H(x)

cos2θ
−H2(x).

Figure 9(a) shows the initial condition. The Coulomb friction angle is set to δ0 = 12o (as in [24]).
The CFL condition is equal to 0.8. We use a mesh composed of 500 cells. Free free boundary
conditions are imposed at x = 0 and x = 30000. With this data the experiment evolves during 600
s.

Figure 10 shows the generation and propagation of the tsunami wave. Observe that, water
ahead of the front face of the slide is pushed away, creating a positive wave in the slide direction
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Figure 7: Landslide impinging a lake (experiment 2): Water surface and landslide evolution.
(Horizontal x(m), Vertical z(m))
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Figure 9: Tsunami experiment. (Horizontal x(m), Vertical z(m))
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that represents most of the tsunami energy. Over the landslide water is sucked, which creates a large
trough splitting into two waves, one wave propagating shorewards and the other offshore. Later,
the shoreward-propagating wave is followed by a positive wave, responsible for coastal inundation
to which attention will be focused. Note that the second positive wave is of about 10m height
when approaching the coastal line (see Figure 10(f)).

Finally, Figure 9(b) shows the final position of the landslide. The results that we obtain are
similar to those descrived by Heinrich et al. in [24].

Conclusions

In this paper we have introduced a new model to study submarine avalanches and generated
tsunamis. The presented model is a two-layer shallow water model including a Coulomb friction
type term for the grain layer (Savage-Hutter model for the second layer). It is presented in local
coordinates, by taking into account the curvature of a non-erodible bottom over which the avalanche
and the tsunami flow. Some of the properties of the model are: the rank of the stationary solutions
verifies exactly a dissipation entropy inequality, and the solutions of the model are solutions of Euler
equations with hydrostatic pressure. The final system can be rewritten as a hyperbolic system with
non-conservative products. We compare the model with that proposed by Heinrich et al., which
is an uncoupled model, that mixes local coordinates for the evolution of the grain layer with non
local coordinates for the evolution of the fluid layer. We see how the momentum equation for the
grain layer of the Heinrich model is obtained under the assumption that the water surface is flat
(rigid lid assumption). This model does not verify the properties of our model.

We also present a numerical solver of finite volume type, based on a Roe method for hyperbolic
systems with non-conservative products. With a special treatment of the Coulomb term, splitting
the discretization of this term into an upwind explicit treatment and a second step to introduce an
implicit centered discretization. This allows us to obtain a well-balanced solver for a wide rank of
stationary solutions, when the angle of the slope of the grain layer is smaller than the corresponding
angle of repose.

The resulting model has been able to simulate sub-aerial and submarine avalanches and the
generated tsunami by taking into account the interaction between the flowing mass and the sur-
rounding water.

Appendix: Change of variable

In this Appendix, we perform the change of variable of Euler equations, from Cartesian coordinates
~X = (x, z) to local coordinates (X,Z) (see Figure 11). We consider that the coordinate Z gives

the position of an interior point ~X to the bed, measured in the normal direction to the bed. Thus

0 < Z < S(t, x), with S(t, x) = h1(t,X) + h2(t,X). (92)

Then, the relation between the Cartesian coordinates ~X and the coordinates (x, Z) related to the
bed is

~X =

(
x− Zsinθ(x), b(x) + Zcosθ(x)

)
, (93)

where (x, b(x)) is a point of the bed. x̄ is the x-Cartesian coordinate of the point (X, 0) (see Figure
11). We also consider a local variable X(x) measuring the arc length along the bed. We will denote
by ∇ ~X and div ~X the gradient and divergence operators in Cartesian coordinates.

We consider the equations of conservation of mass and momentum in (x, z) Cartesian coordi-
nates as follows

~V =

(
u
v

)
, ∇ · ~V = 0, (94)
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Figure 10: Tsunami evolution (zoom). (Horizontal x(m), Vertical z(m))
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Figure 11: Local coordinates.

∂t(ρ~V ) + ρ~V∇ ~X
~V = −∇ · P + ρ∇ ~X(~g · ~X), (95)

where ~g = (0,−g), g being the constant acceleration of gravity. Moreover by P we denote the
matrix of constraints,

P =

(
px x px z

pz x pz z

)
,

(with px z = pz x).
From (93) we have

∇(X,Z)
~X =

(
Jcosθ −sinθ
Jsinθ cosθ

)
, J = 1 − ZdXθ.

Therefore,

∇ ~X(X,Z) =
1

J

(
cosθ sinθ

−Jsinθ Jcosθ

)
.

The following result will be used in this Appendix:

Lemma: Using the classical chain rule we have

div(X,Z)(J∇ ~X (X,Z)~V ) = Jdiv ~X
~V , J = det(∇(X,Z)

~X), (96)

and
∇ ~XP = (∇ ~X(X,Z))T∇(X,Z) P or (∇ ~XP )T = (∇(X,Z)P )T∇ ~X(X,Z). (97)

�

We will also use the following definitions:
(

U
W

)
=

(
cosθ sinθ
−sinθ cosθ

)
~V .

and

P =

(
cosθ sinθ
−sinθ cosθ

)
P

(
cosθ −sinθ
sinθ cosθ

)
=

(
PXX PXZ

PZX PZZ

)
.

As pxz = pxz then PXZ = PZX .
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Continuity equation (conservation of mass)

In an incompressible material the velocity field ~V is solenoidal; so (94) holds. Multiplying (94) by
J and using (96) we have

0 = Jdiv ~X
~V = div(X,Z)

(
J∇ ~X(X,Z)~V

)
=

= div(X,Z)

((
cosθ sinθ

−J sinθ J cosθ

)
~V

)
= div(X,Z)

(
U
J W

)
.

Thus, we have the equation,
∂X(U) + ∂Z(J W ) = 0. (98)

This correspond to the first equation of (4)

Conservation of momentum

In this section, we first find the equation for U and then for W .

Equation for U. We add the first component of equation (95) multiplied by cosθ to the second
component of equation (95) multiplied by sinθ. Then, we obtain

ρ∂tU + ρdiv ~X(U ~V ) + ρ(∇ ~X(~g · ~X))T

(
cosθ
sinθ

)
=

−div ~X

(
P

(
cosθ
sinθ

))
+ ρWdiv ~X(θ~V ) + (∇ ~Xθ)

T

(
P

(
−sinθ
cosθ

))
.

In order to apply the rules (96) and (97) we rewrite this last equation as

ρJ∂tU + ρJdiv ~X

(
Uu
Uv

)
+ Jρ(∇ ~X(~g · ~X))T

(
cosθ
sinθ

)
=

−Jdiv ~X

(
P

(
cosθ
sinθ

))
+ ρJ Wdiv ~X

(
θ~V
)

+ J(∇ ~X · θ)TP

(
−sinθ
cosθ

)
.

Then, using the rules (96) and (97), we obtain

ρ∂t(JU) + ρdiv(X,Z)

(
U2

JUW

)
+ ρ(∇X,Z(~g · ~X))T

(
1
0

)
=

= −div(X,Z)

((
1 0
0 J

)(
cosθ sinθ
−sinθ cosθ

)
P

(
cosθ
sinθ

))
+

+ρWdiv(X,Z)

(
θU
JθW

)
+

+(∇(X,Z)θ)
T

(
1 0
0 J

)(
cosθ sinθ
−sinθ cosθ

)
P

(
−sinθ
cosθ

)
.

This correspond to the second equation of (4).

Equation for W: Now, multiplying the first equation of (95) by (−sinθ) and the second one by
(cosθ) and adding them, we obtain

ρ∂tW + ρdiv ~X (W ~V ) + ρ(∇ ~X (~g · ~X))T

(
−sinθ
cosθ

)
=
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−div ~X

(
P

(
−sinθ
cosθ

))
− ρUdiv ~X(θ~V ) − (∇ ~Xθ)

T

(
P

(
cosθ
sinθ

))
.

In order to apply the rules (96) and (97), we rewrite this last equation as

ρ∂t(JW ) + Jρdiv ~X

(
Wu
Wv

)
+ Jρ(∇ ~X (~g · ~X))T

(
−sinθ
cosθ

)
=

−Jdiv ~X

(
P

(
−sinθ
cosθ

))
− ρJ Udiv ~X

(
θ~V
)
− J(∇ ~Xθ)

TP

(
cosθ
sinθ

)
.

Then, using the rules (96) and (97), we obtain

ρ∂t(JW ) + ρdiv(X,Z)

(
W U
JW 2

)
+ ρ(∇X,Z(~g · ~X))T

(
0
J

)
=

= −div(X,Z)

((
1 0
0 J

)(
cosθ sinθ
−sinθ cosθ

)
P

(
−sinθ
cosθ

))
−

−ρUdiv(X,Z)

(
θU
JθW

)
−

−(∇(X,Z)θ)
T

(
1 0
0 J

)(
cosθ sinθ
−sinθ cosθ

)
P

(
cosθ
sinθ

)
.

This correspond to the third equation of (4).
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