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Abstract

The goal of this article is to design a new approximate Riemann solver for
the two-layer shallow water system which is fast compared to Roe schemes
and accurate compared to Lax-Friedrichs, FORCE, or GFORCE schemes (see
[14]). This Riemann solver is based on a suitable decomposition of a Roe ma-
trix (see [27]) by means of a parabolic viscosity matrix (see [16]) that captures
some information concerning the intermediate characteristic fields. The cor-
responding first order numerical scheme, which is called IFCP (Intermediate
Field Capturing Parabola) is linearly L

∞-stable, well-balanced, and it doesn’t
require an entropy-fix technique. Some numerical experiments are presented
to compare the behavior of this new scheme with Roe and GFORCE methods.

Short title : IFCP solver for the the two-layer SWS.

Keywords : Finite Volume Method, path-conservative, two-layer shallow wa-
ter.
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1 Introduction

We consider the system of partial differential equations governing the one-dimensional
flow of two superposed immiscible layers of shallow water fluids studied in [12]:
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(1.1)

In these equations, index 1 makes reference to the upper layer and index 2 to
the lower one. The fluid is assumed to occupy a straight channel with constant
rectangular cross-section and constant width. The coordinate x refers to the axis
of the channel, t is time, and g is the gravity acceleration. H(x) represents the
depth function measured from a fixed level of reference (see Figure 1). Each layer
is assumed to have a constant density, ρi, i = 1, 2 (ρ1 < ρ2). The unknowns qi(x, t)
and hi(x, t) represent respectively the mass-flow and the thickness of the ith layer
at the section of coordinate x at time t.

H

h

h

2

1

Figure 1: Two-layer sketch: unknowns h1, h2 and bathimetry function H .

The numerical resolution of two-layer or multilayer shallow water systems has
been object of an intense research during the last years: see for instance [1], [3], [5],
[6], [7], [8], [9], [10], [11], [12], [13], [14], [17], [22], [24] . . . This interest is due, on the
one hand, to the applicability of these models to the simulation of stratified geophys-
ical flows. On the other hand, they can be considered as a prototype of P.D.E. sys-
tems involving flux terms, source terms, nonconservative products, wet/dry fronts,
appearance of regions of hyperbolicity loss, etc. Therefore, any significant progress
in the design of good numerical schemes for these models is potentially interesting
for other models sharing some of these difficulties.

Before presenting the goal of this article, let us mention some mathematical
aspects of system (1.1). Notice first that it can be written in the following form:

wt + F (w)x + B(w) · wx = S(w)Hx, (1.2)
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where

w(x, t) =
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


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, S(w) =





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gh1
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,

B(w) =







0 0 0 0
0 0 gh1 0
0 0 0 0

grh2 0 0 0







,

and r = ρ1/ρ2. The vector w takes values in the set:

O = {[h1, q1, h2, q2]
T ∈ R

4, h1 ≥ 0, h2 ≥ 0},

as the thickness of the layers may vanish in practical applications when one or the
two layers disappear in part of the domain.

By adding to (1.2) the equation

Ht = 0, (1.3)

the system can be rewritten in the form:

Wt + A(W ) · Wx = 0, (1.4)

where W is the augmented vector

W =

[
w
H

]

∈ Ω = O × R,

and A(W ) is the 5 × 5 matrix whose block structure is given by:

A(W ) =

[
A(w) −S(w)

0 0

]

,

where

A(w) = J(w) + B(w), being J(w) =
∂F

∂w
(w).

The stationary solutions of (1.1) can be obtained by parameterizing with x the
integral curves of the characteristic field of A(W ) associated to the null eigenvalue,
which are given by:

q1 = constant,
u2

1

2
−

u2
2

2
+ g′h1 = constant,
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q2 = constant,
u2

1

2
+ g(h1 + h2 − H) = constant,

where ui = qi/hi represents the averaged velocity of the ith layer, i = 1, 2 and
g′ = (1 − r)g is the reduced gravity . In particular, if q1 = 0, q2 = 0, we obtain the
solutions:

q1 = 0, h1(x) = constant, q2 = 0, h2(x) − H(x) = constant, (1.5)

corresponding to water at rest. Another steady state solution corresponding to
vacuum is given by:

hi = 0, qi = 0, i = 1, 2. (1.6)

The characteristic equation of A(w) is:
(
λ2 − 2u1λ + u2

1 − gh1

)(
λ2 − 2u2λ + u2

2 − gh2

)
= rg2h1h2. (1.7)

It is easy to check that the condition under which one of the eigenvalues vanishes is:

G2 = F 2
1 + F 2

2 − (1 − r)F 2
1 F 2

2 = 1, (1.8)

where G is the so-called composite Froude number, and Fi for i = 1, 2 are the

internal Froude numbers (F 2
i =

u2

i

g′hi

). When this condition is achieved at a section
of coordinate x, the flow is said to be critical at this point and the section x is called
a control. When G2 < 1, the flow is subcritical. Finally, when G2 > 1, the flow is
supercritical.

Observe that, when r = 0, the eigenvalues are those corresponding to each layer
separately. Therefore, when r ∼= 0, the coupling terms do not affect the nature of
the system in an essential manner.

The eigenvalues of A can be classified in two external and two internal ones. The
external eigenvalues, λ±

ext, are related to the propagation speed of barotropic pertur-
bations and the internal ones λ±

int, to the propagation of baroclinic perturbations.
In the case r ∼= 1 and u1

∼= u2 (which is the situation arising in many geophysical
flows), a first-order approximation of the eigenvalues was given in [26]:

λ±

ext
∼=

u1h1 + u2h2

h1 + h2

±
(
g(h1 + h2)

) 1

2 , (1.9)

λ±

int
∼=

u1h2 + u2h1

h1 + h2

±

(

g′
h1h2

(h1 + h2)

[

1 −
(u1 − u2)

2

g′(h1 + h2)

])
1

2

. (1.10)

Notice that the approximation of λ±

int become complex when

(u1 − u2)
2

g′(h1 + h2)
> 1. (1.11)

Therefore, the hyperbolicity of the system is expected to be lost when (1.11) is
satisfied, provided that r ∼= 1 and u1

∼= u2. This hyperbolicity loss is related to the
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appearance of shear instabilities that may lead, in real flows, to intense mixing of the
two layers. In this work, the numerical treatment of this situation is not considered:
the system will be assumed to be strictly hyperbolic.

In most applications to geophysical flows, one has λ−

ext < 0 and λ+
ext > 0. More-

over, the internal eigenvalues depend on the reduced gravity g′ and g′ ≪ 1. As a
consequence the absolute value of internal eigenvalues are significantly smaller than
those of external ones, that is

|λ±

int| < |λ−

ext|, |λ±

int| < |λ+
ext|.

Accordingly, the following ordering of the eigenvalues will be considered on the
sequel:

λ1 = λ−

ext, λ2 = λ−

int, λ3 = λ+
int, λ4 = λ+

ext.

The fact that the internal eigenvalues are usually much smaller than the external
ones implies that first order numerical schemes that only use information concerning
the 1st and 4th characteristic fields are in general too diffusive for the simulation
of internal waves (see the numerical tests of Section 4). On the other hand, meth-
ods that use explicitly the eigenstructure of A, as it is the case for Roe methods,
are computationally expensive, as there is not an easy explicit expression of the
eigenvalues and eigenvectors of this system. In this work, we present an approxi-
mate Riemann solver that uses some information concerning the internal eigenvalues
without requiring the computation of the complete eigenstructure. The definition of
the method, which is based on a suitable decomposition of a Roe matrix (see [27]) by
means of a parabolic viscosity matrix (see [16]) is presented in the next section. The
well-balanced properties of the numerical scheme are studied in Section 3. Finally,
a set of numerical tests are shown in Section 4. The CPU time and the accuracy of
the numerical results for the proposed solver are tested. The numerical results are
also compared with those given by the Roe (see [24]) and the GFORCE (see [14])
methods.

2 Numerical schemes

The solutions of (1.4) may develop discontinuities and, due to the non-divergence
form of the equations, the notion of weak solution in the sense of distributions
cannot be used. The theory introduced by Dal Maso, LeFloch, and Murat [15] is
followed here to define weak solutions of (1.4). This theory allows one to define
the nonconservative product A(W ) · Wx as a bounded measure provided a family
of Lipschitz continuous paths Φ : [0, 1] × Ω × Ω → Ω is prescribed, which must
satisfy certain natural regularity conditions. Here, the family of straight segments
is considered:

Φ(s; WL, WR) = WL + s(WR − WL).
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We consider here path-conservative numerical schemes in the sense defined in
[23], that is, numerical schemes of the general form:

W n+1
i = W n

i −
∆t

∆x

(
D

+
i−1/2 + D

−

i+1/2

)
, (2.1)

where ∆x and ∆t are, for simplicity, assumed to be constant; W n
i is the approxima-

tion provided by the numerical scheme of the cell average of the exact solution at
the ith cell, Ii = [xi−1/2, xi+1/2] at the n-th time level tn = n∆t, and

D
±

i+1/2 = D
±
(
W n

i , W n
i+1

)
,

where D
− and D

+ are two Lipschitz continuous functions from Ω×Ω to Ω satisfying:

D
±(W, W ) = 0, ∀W ∈ Ω, (2.2)

and for every WL, WR ∈ Ω,

D
−(WL, WR) + D

+(WL, WR) =

∫ 1

0

A
(
Φ(s; WL, WR)

)∂Φ

∂s
(s; WL, WR) ds.

These conditions provide a generalization of the concept of conservative scheme in-
troduced by Lax for systems of conservation laws. In particular, in the case of the
two-layer shallow water system, a path-conservative numerical scheme is conserva-
tive in the sense of Lax for the mass conservation equations.

An important difficulty related to the convergence of the numerical solutions
appears: even if the correct family of paths is chosen, the limits of the numerical
solutions may be weak solutions corresponding to a definition different from the
one corresponding to the prescribed family. In fact, whenever a numerical scheme
having some numerical viscosity is applied to a nonconservative system, the shocks
appearing at the limits of the numerical solutions are limits of the viscous profiles
of the modified equation whose viscous terms are different in general to the physical
one and may lead thus to different jump conditions. This fact, which is strongly
related to the difficulties of convergence appearing when a nonconservative method
is applied to a system of conservation laws (see [21]) has been analyzed in [11] for
nonconservative systems when a path-conservative mehtod is applied. Recently, a
new example illustrating the difficulties discussed in [21] has been studied in [2]:
the authors show that the difficulties of convergence are still present when a system
of conservation laws is discretized by means of a nonconservative method which is
path-conservative for a nonconservative reformulation of the system.

The numerical schemes considered in this work are based on a generalized Roe
matrix for (1.4) as defined by Toumi in [27]: given a family of paths Φ, a function
AΦ : Ω × Ω 7→ M5×5(R) is called a Roe linearization if it satisfies the following
properties:

• for any WL, WR ∈ Ω, AΦ(WL, WR) has 5 distinct real eigenvalues,
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• for every W ∈ Ω,
AΦ(W, W ) = A(W ); (2.3)

• for any WL, WR ∈ Ω,

AΦ(WL, WR) · (WR − WL) =

∫ 1

0

A(Φ(s; WL, WR))
∂Φ

∂s
(s; WL, WR) ds. (2.4)

Following [24], we consider Roe linearizations AΦ(WL, WR) of the form:

AΦ(WL, WR) =

[
AΦ(wL, wR) −SΦ(wL, wR)

0 0

]

, (2.5)

where
AΦ(wL, wR) = J(wL, wR) + BΦ(wL, wR). (2.6)

Here, J(wL, wR) is a Roe linearization of the Jacobian of the flux F in the usual
sense:

J(wL, wR) · (wR − wL) = F (wR) − F (wL); (2.7)

BΦ(wL, wR) is a matrix satisfying:

BΦ(wL, wR) · (wR − wL) =

∫ 1

0

B(Φ(s; WL, WR))
∂Φ[1,··· ,4]

∂s
(s; WL, WR) ds; (2.8)

and SΦ(wL, wR) is a vector satisfying:

SΦ(wL, wR)(HR − HL) =

∫ 1

0

S(Φ(s; WL, WR))
∂Φ5

∂s
(s; WL, WR) ds. (2.9)

It can be easily shown that, if (2.7)-(2.9) are satisfied, then the matrix defined by
(2.5)-(2.6) is a Roe linearization provided it has 5 different real eigenvalues.

The Roe linearization considered here is the following: given two states

WL =









hL
1

qL
1

hL
2

qL
2

HL









, WR =









hR
1

qR
1

hR
2

qR
2

HR









the matrices J(wL, wR), BΦ(wL, wR), and the vector SΦ(wL, wR) are defined by:

J(wL, wR) =







0 1 0 0
−(û1)

2 + (ĉ1)
2 2û1 0 0

0 0 0 1
0 0 −(û2)

2 + (ĉ2)
2 2û2







, (2.10)
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BΦ(wL, wR) =







0 0 0 0
0 0 (ĉ1)

2 0
0 0 0 0

r(ĉ2)
2 0 0 0







(2.11)

SΦ(wL, wR) =







0
(ĉ1)

2

0
(ĉ2)

2







, (2.12)

where

ûk =

√

hL
k uL

k +
√

hR
k uR

k
√

hL
k +

√

hR
k

, ĉk =

√

g
hL

k + hR
k

2
, k = 1, 2,

with

uL
k =

qL
k

hL
k

, uR
k =

qR
k

hR
k

, k = 1, 2.

Once the linearization has been chosen, the Roe scheme is given by (2.1) with:

D
±

i+1/2 = A
±

Φ(W n
i , W n

i+1) · (W
n
i+1 − W n

i ), (2.13)

where
A

±

Φ(WL, WR) = KΦ(WL, WR)L±

Φ(WL, WR)K−1
Φ (WL, WR).

Here, L
±

Φ(WL, WR) represents the diagonal matrix whose coefficients are the posi-
tive/negative part of the eigenvalues of AΦ(WL, WR), and KΦ(WL, WR) is the matrix
whose ith column is an eigenvector associated to the ith eigenvalue.

It can be shown (see [24]) that the numerical scheme can be written in the
variables w as follows:

wn+1
i = wn

i −
∆t

∆x

(
D+

i−1/2 + D−

i+1/2

)
, (2.14)

being

D±

i+1/2 =
1

2

(
F (wn

i+1) − F (wn
i ) + Bi+1/2(w

n
i+1 − wn

i )

−Si+1/2(Hi+1 − Hi)
±|Ai+1/2|(w

n
i+1 − wn

i − A−1
i+1/2Si+1/2(Hi+1 − Hi))

)
,

(2.15)

and Bi+1/2 = BΦ(wn
i , wn

i+1), Si+1/2 = SΦ(wn
i , wn

i+1), Ai+1/2 = AΦ(wn
i , wn

i+1). Here
|AΦ(wL, wR)| = KΦ(wL, wR)|LΦ(wL, wR)|K−1

Φ (wL, wR), where |LΦ(wL, wR)| repre-
sents the diagonal matrix whose coefficients are the absolute values of the eigenval-
ues of AΦ(wL, wR), and KΦ(wL, wR) is the matrix whose ith column is an eigenvector
associated to the ith eigenvalue.
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This expression of the Roe scheme suggests the following generalization

D±

i+1/2 =
1

2

(
F (wn

i+1) − F (wn
i ) + Bi+1/2(w

n
i+1 − wn

i )

−Si+1/2(Hi+1 − Hi)
±Qi+1/2(w

n
i+1 − wn

i − A−1
i+1/2Si+1/2(Hi+1 − Hi))

)
,

(2.16)

where Qi+1/2 = QΦ(wn
i , wn

i+1) is any numerical viscosity matrix. For instance, the
choice:

QΦ(wL, wR) = (1 − ω)
∆x

∆t
Id + ω

∆t

∆x
A2

Φ(wL, wR), (2.17)

corresponds to the family of numerical schemes introduced in [14]. This family
contains, as particular cases, a well-balanced extension of the Lax-Friedrichs (ω = 0),
Lax-Wendroff (ω = 1), FORCE (ω = 1

2
), and GFORCE (ω = 1

1+CFL
) methods,

where:

CFL =

(

max
{∣
∣λl,i+1/2

∣
∣ , 1 ≤ l ≤ 4, i ∈ Z

} ∆t

∆x

)

∈ (0, 1], (2.18)

being λl,i+1/2 for l = 1, . . . , 4 the eigenvalues of Roe matrix Ai+1/2.
The goal of this work is to introduce a new viscosity matrix leading to a numerical

scheme whose accuracy is close to that of the Roe scheme and whose computational
cost is similar to the FORCE o GFORCE methods. In order to introduce such as
viscosity matrix, let us first observe that the matrix |AΦ(wL, wR)| can be rewritten
as follows (see [16]):

|AΦ(wL, wR)| =

3∑

j=0

αjA
j
Φ(wL, wR), (2.19)

where αj , j = 0, · · · , 3 are defined in terms of the eigenvalues λj, j = 1, · · · , 4 of
AΦ(wL, wR), by solving the linear system:







1 λ1 λ2
1 λ3

1

1 λ2 λ2
2 λ3

2

1 λ3 λ2
3 λ3

3

1 λ4 λ2
4 λ3

4













α0

α1

α2

α3







=







|λ1|
|λ2|
|λ3|
|λ4|







. (2.20)

Note that (2.20) has an unique solution provided that λi 6= λj , i 6= j, i, j = 1, · · · , 4.
Observe that the explicit knowledge of the eigenvectors of AΦ(wL, wR) is not needed
to compute |AΦ(wL, wR)| by using (2.19). Nevertheless, the CPU time required
to compute it in this way is similar to the one needed to compute the complete
eigenstructure of AΦ(wL, wR).

We can extend this expression and consider the family of numerical schemes
given by (2.16) with a parabolic viscosity matrix (see [16]) of the form:

QΦ(wL, wR) = α0Id + α1AΦ(wL, wR) + α2A
2
Φ(wL, wR), (2.21)
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where αj , j = 0, 1, 2 are defined in terms of the eigenvalues of AΦ(wL, wR). In fact,
the numerical scheme defined by (2.16)-(2.17) is the particular case corresponding
to α0 = (1 − ω)∆x

∆t
, α1 = 0, and α2 = ω ∆t

∆x

Let us consider the viscosity matrix (2.21), where αj , j = 0, 1, 2 are defined by:





1 λ1 λ2
1

1 λ4 λ2
4

1 χint χ2
int









α0

α1

α2



 =





|λ1|
|λ4|
|χint|



 , (2.22)

where
χint = Sext max(|λ2|, |λ3|), (2.23)

with

Sext =

{
sgn(λ2 + λ3), if (λ2 + λ3) 6= 0,
1, otherwise.

(2.24)

The expression of the coefficients αj, j = 0, 1, 2 can be explicitly computed by
solving (2.22):

α0 = δ1 λ4 χint + δ4 λ1χint + δint λ1 λ4,

α1 = −λ1(δ4 + δint) − λ4(δ1 + δint) − χint(δ1 + δ4),

α2 = δ1 + δ4 + δint,

(2.25)

where

δ1 =
|λ1|

(λ1 − λ4)(λ1 − χint)
, δ4 =

|λ4|

(λ4 − λ1)(λ4 − χint)
, δint =

|χint|

(χint − λ1)(χint − λ4)
.

It can be proved that the numerical scheme defined by (2.14)-(2.16), where QΦ(wL, wR)
is given by (2.21)-(2.25) is linearly L∞-stable under the usual CFL condition (2.18)
(see Appendix).

Remark 1. 1. Although it has been assumed that Roe matrices have 5 distinct
real eigenvalues, notice that in practice the numerical scheme can be applied if
the two following requirements are satisfied: (a) λ1, λ4, χint have to be different
so that αi, i = 0, 1, 2 are well defined, and (b) λi 6= 0, i = 1, · · · , 4 so that
A−1

i+1+2 is also well defined. Concerning (a), this property is always satisfied by
the geophysical flows to be simulated and concerning (b), some techniques will
be introduced in the next section to avoid this requirement. On the other hand,
when the system loses its hyperbolic character, complex eigenvalues can appear
in the Roe matrices. Although the numerical scheme can be easily adapted
to be applied even in these situations, it is no more linearly L∞-stable: an
additional strategy must be considered to stabilize the computations, as for
example introducing some interface friction term or an intermediate layer.
Some works in these directions are being carried out.
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2. Even if the L∞-stability of the previous numerical scheme is only theoreti-
cally ensured if the exact eigenvalues of AΦ(wL, wR) are used, no instabilities
are observed in practice when their first order approximations (1.9)-(1.10) are
used instead. This is what makes this numerical scheme computationally fast
when compared to the Roe method, while it is more accurate compared to the
schemes defined by (2.17) as it uses some information concerning the internal
eigenvalues.

3. Observe that, if one of internal eigenvalues vanishes, the viscosity matrix
(2.21) does not have a null eigenvalue, as it happens with the viscosity ma-
trix of the Roe scheme. Due to this, this new scheme does not require an
entropy-fix technique to avoid the appearance of ‘dog-leg’ effects in transonic
rarefactions, as it happens with the Roe method.

4. Although the numerical scheme (2.14)-(2.16), where QΦ(wL, wR) is given by
(2.21)-(2.25) has been derived here for the two-layer shallow water system, its
extension to some other nonconservative hyperbolic systems is straightforward.
This is the case for instance of some two-phase fluid systems like the Pitman
and Le model [25], or the submarine avalanches model proposed in [19].

3 Well-balancing

All the numerical schemes given by (2.14)-(2.16) are well-balanced for water at rest
solutions. To see this notice that (2.16) can be written as follows:

D±

i+1/2 =
1

2

(
Ai+1/2(w

n
i+1 − wn

i ) − Si+1/2(Hi+1 − Hi)

± Qi+1/2A
−1
i+1/2

(
Ai+1/2(w

n
i+1 − wn

i ) − Si+1/2(Hi+1 − Hi)
))

and the chosen Roe matrix satisfies the equality

Ai+1/2(w
n
i+1 − wn

i ) = Si+1/2(Hi+1 − Hi),

whenever [wn
i , Hi]

T , [wn
i+1, Hi+1]

T are two water at rest states with the same free
surface and interface locations (see [24]).

Nevertheless, note that in the definition of (2.16) the term

C = Qi+1/2A
−1
i+1/2Si+1/2(Hi+1 − Hi),

that can be interpreted as the upwinding part of the source term discretization,
makes no sense if one of the eigenvalues of Ai+1/2 vanishes. In this case two eigen-
values of AΦ(W n

i , W n
i+1) vanish and the problem is said to be resonant. Resonant

problems exhibit an additional difficulty, as weak solutions may not be uniquely de-
termined by their initial data, and the limits of the numerical solutions may depend
both on the family of paths and the numerical scheme itself. The analysis of this
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difficulty is beyond the scope of this article. According to our general purpose here,
we would like to introduce some easy modifications of the schemes which avoid the
difficulty related to the presence of A−1

i+1/2.
In the case of Roe scheme, the following definition of C may be used

C = sgn(Ai+1/2)Si+1/2(Hi+1 − Hi),

where sgn(Ai+1/2) = Ki+1/2sgn(Li+1/2)K
−1
i+1/2, being, sgn(Li+1/2) the diagonal ma-

trix whose coefficients are the signs of the eigenvalues of Ai+1/2, and Ki+1/2 =
KΦ(wn

i , wn
i+1).

If QΦ(wL, wR) is given by (2.21)-(2.25), C reduces to

C = α0A
−1
i+1/2Si+1/2(Hi+1 − Hi)

︸ ︷︷ ︸

C0

+α1Si+1/2(Hi+1 − Hi) + α2Ai+1/2Si+1/2(Hi+1 − Hi).

Observe that C0 is the only term which is meaningless when Ai+1/2 is singular. We
propose here two different techniques to get rid of this difficulty. The first one, fol-
lowing [14], consists in replacing A−1

i+1/2 = A−1
Φ (wn

i+1, w
n
1 ) by A−1

Φ (w∗,n
i , w∗,n

i+1), where

w∗

i = [h1,i, 0, h2,i, 0]T . The resulting numerical scheme is exactly well-balanced for
the water at rest solutions (1.5) and it is always well-defined. Numerical difficulties
also appear when wet/dry fronts develop. Nevertheless, the techniques introduced
for the Roe scheme in [10] can be easily extended to this new scheme. The resulting
numerical scheme will be named IFCP hereafter.

The second strategy to deal with the difficulty related to resonant problems
consists in using the generalized hydrostatic reconstruction introduced in [13] which
is an extension of the technique introduced in [4] for the numerical treatment of the
source term in the shallow water system. In the case of the two-layer shallow water
system, the resulting numerical scheme reads as follows (see [13] for details):

wn+1
i = wi −

∆t

∆x

(
E+

i−1/2 + E−

i+1/2

)
, (3.1)

where

E−

i+1/2 = F (wn,−
i+1/2) − F (wn

i ) + D−

i+1/2

+







0
ghn

i,1(h
n,−
i+1/2,2 − hn

i,2 − (H̄n,−
i+1/2 − Hi))

0
0







−









0
g

2
(hn,−

i+1/2,1)
2 −

g

2
(hn

i,1)
2

0
g

2
(hn,−

i+1/2,2)
2 −

g

2
(hn

i,2)
2








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and

E+
i+1/2 = F (wn

i+1) − F (wn,+
i+1/2) + D+

i+1/2

+







0
ghn

i+1,1(h
n
i+1,2 − hn,+

i+1/2,2 − (Hi+1 − H̄n,+
i+1/2))

0
0







−









0
g

2
(hn

i+1,1)
2 −

g

2
(hn,+

i+1/2,1)
2

0
g

2
(hn

i+1,2)
2 −

g

2
(hn,+

i+1/2,2)
2









,

where Hi+1/2 = min(Hi, Hi+1), H̄n,+
i+1/2 = max(Hi+1 − hn

i+1,2, Hi+1/2), H̄n,−
i+1/2 =

max(Hi − hn
i,2, Hi+1/2), and

wn,+
i+1/2 =














hn,+
i+1/2,1

qn,+
i+1/2,1

hn,+
i+1/2,2

qn,+
i+1/2,2














=














(hn
i+1,1 + hn

i+1,2 − Hi+1 − (hn,+
i+1/2,2 − Hi+1/2))+

un
i+1,1h

n,+
i+1/2,1

(hn
i+1,2 − Hi+1 + Hi+1/2)+

un
i+1,2h

n,+
i+1/2,2














,

(3.2)

wn,−
1/2 =














hn,−
i+1/2,1

qn,−
i+1/2,1

hn,−
i+1/2,2

qn,−
i+1/2,2














=














(hn
i,1 + hn

i,2 − Hi − (hn,−
i+1/2,2 − Hi+1/2))+

un
i,1h

n,−
i+1/2,1

(hi,2 − Hi + Hi+1/2)+

un
i,2h

n,−
i+1/2,2














. (3.3)

In the expressions above, the superindex + makes reference to the hydrostatic re-
construction to the right of an intercell and the index + represents the positive part
of an expression.

The numerical scheme (3.1) is exactly well-balanced for the water at rest or
vacuum solutions and it is able to deal with wet/dry zones. This numerical scheme
will be named HR-IFCP hereafter.

4 Numerical tests

In this Section, the well-balanced properties, accuracy and efficiency of the numerical
schemes IFCP and HR-IFCP are tested and compared with ROE and GFORCE
schemes for the two layer shallow water system. Here, Roe scheme is used together
with the Harten-Hyman entropy-fix technique (see [20]).

The following general facts have been observed:
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• GFORCE scheme is the most diffusive one.

• No significant differences can be found between IFCP and HR-IFCP, but IFCP
gives in general slightly better results. Nevertheless, HR-IFCP has better
positivity properties: in some cases as in Test 3, a significant reduction of
the CFL parameter is required for IFCP in order to avoid the appearance of
negative values of the thickness while this is not the case for HR-IFCP. The
same conclusions are valid for ROE and HR-ROE who is the numerical scheme
obtained by combining the Roe method with the hydrostatic reconstruction
technique.

• No significant differences can be found between ROE and IFCP, but ROE is
a bit less diffusive.

• IFCP and GFORCE are about 3 and 3.2 times faster than ROE respectively.

4.1 Test 1: An internal dam-break problem

This test is designed to evaluate the accuracy of the schemes for non-regular time-
dependent solutions over a flat bottom. The axis of the channel is the interval
[0, 10].

The initial condition is q1(x, 0) = q2(x, 0) = 0,

h1(x, 0) =







0.2, if x < 5,

0.8, otherwise,

and

h2(x, 0) =







0.8, if x < 5,

0.2, otherwise.

Free boundary conditions are considered. The CFL parameter is set to 0.9 and
r = 0.98. A reference solution is computed with ROE using a mesh of 3200 points.

Figure 2 shows the comparison of the numerical results obtained with ROE,
GFORCE, and IFCP with the reference solution at time t = 10 s taking ∆x = 1/20.
Note that no significant differences can be observed between ROE and IFCP scheme,
while GFORCE is very diffusive.

The numerical results of this test seem to show that the numerical solutions
provided by the different numerical schemes converge to the same solution, but this
is not true: there are slight differences between the speed and the limit states of
the shocks for the limits of the solutions obtained with the different schemes as ∆x
tends to 0. Nevertheless, a finer analysis is required to notice this fact (see [11]).
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Figure 2: Test 1: Comparison of ROE, GFORCE and IFCP with the reference
solution at t = 10 s with ∆x = 1/20.
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4.2 Test 2: A Riemann problem with flat bottom

We consider the test case introduced in [12] consisting of a two-layer flow through a
rectangular channel with flat bottom topography whose axis is the interval [0, 100].
The initial condition is given by:

h1(x, 0) =







0.5, if x < 50,

0.55, otherwise,
h2(x, 0) =







0.5, if x < 5,

0.45, otherwise,

q1(x, 0) =







1.25, if x < 50,

1.375, otherwise,
h2(x, 0) =







1.25, if x < 5,

1.125, otherwise,

Free boundary conditions are considered. The CFL parameter is set to 0.9 and
r = 0.98. A reference solution is computed with ROE using a mesh of 6400 points.

Figure 3 shows the comparison of the numerical results obtained with ROE,
GFORCE, and IFCP with the reference solution at time t = 5 s taking ∆x = 0.125.
Note that no significant differences can be observed between ROE and IFCP scheme,
while GFORCE is a bit more diffusive. In fact, GFORCE behaves better in this
test case than in the previous one due to the fact that the differences between the
external and the internal eigenvalues are lower.

4.3 Test3: A Riemann problem with a bottom step

Let us consider a rectangular channel with discontinuous topography. The axis of
the channel is the interval [0, 10] and the bottom topography is given by

H(x) = h1(x, 0) =







1.0, if x < 5,

1.5, otherwise.

The initial condition is q1(x, 0) = 0,

h2(x, 0) =







0.2, if x < 5,

0.1, otherwise,
h1(x, 0) = H(x) − h2(x, 0)

and

q2(x, 0) =







0.02, if x < 5,

0.01, otherwise.

Free boundary conditions are considered. The ratio of densities is set to r = 0.98
and the CFL parameter is set to 0.9 for HR-IFCP scheme and HR-ROE, and 0.3
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Figure 3: Test 2: Comparison of ROE, GFORCE and IFCP with the reference
solution at t = 5 s with ∆x = 0.125.
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for the IFCP scheme. This CFL reduction is needed to avoid the appearance of
negative values of h2.

A reference solution is computed with HR-ROE using a mesh of 3200 points.
Figure 4 shows the comparison of the numerical results obtained with IFCP and
HR-IFCP with the reference solution at time t = 2 s taking ∆x = 0.05.
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Figure 4: Test 3: Comparison of IFCP and HR-IFCP with the reference solution at
t = 2 s with ∆x = 0.05.

4.4 Test 4: Well-balanced property for a non-smooth solu-

tion

In this test the axis of the channel is again the interval [0, 10]. The bottom topog-
raphy is given by the function

H(x) = 1.0 − e−(x−5.0)2 .

The initial condition is q1(x, 0) = q2(x, 0) = 0,

h1(x, 0) =

{
1.0 if x < 5,
0.0 otherwise,

and

h2(x, 0) =

{
1.0 − e−(x−5)2 if x < 5,

2.0 − e−(x−5)2 otherwise.

As boundary conditions, the relation q1(·, t) = −q2(·, t) is imposed at x = 0, and
the free surface is fixed to z = 1 at x = 10, that is h1(10, t)+h2(10, t)−H(x) = 1.0.
The CFL parameter is set to 0.9 and r = 0.98.
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Table 1: Test 4: CPU time (in seconds).

N. Cells ROE GFORCE IFCP HR-IFCP

50 15.46 5.09 5.28 5.45
100 61.79 19.39 20.35 21.04
200 245.36 77.21 81.00 83.75
400 990.70 309.60 324.82 335.83

A reference solution is computed with a high order Roe scheme using a mesh of
800 points. Figure 5 shows the comparison of ROE, GFORCE, IFCP, and HR-IFCP
with the reference solution (only the interface and the discharge of the first layer
are shown) at time t = 300 taking ∆x = 1/20. Note that while GFORCE is very
diffusive, IFCP captures quite well the internal stationary bore.

Observe that the results obtained with IFCP are slightly better than those ob-
tained with HR-IFCP. The same conclusion is drawn if the numeric results obtained
with Roe are compared with those obtained by combining the Roe method with
the hydrostatic reconstruction technique (HR-ROE hereafter): compare the results
obtained with HR-ROE and HR-IFCP shown in the Figure 6 with those obtained
with ROE and IFCP in Figure 5.

Table 1 summarises the CPU time (in seconds) for the different numerical schemes.
Note that GFORCE is about 3.2 times faster than ROE scheme, nevertheless, the
result obtained by GFORCE is poor in comparison with IFCP, being the CPU cost
of the same order. Observe that HR-IFCP is 5% more expensive than IFCP, while
IFCP is a bit more accurate than HR-IFCP.

The stationary solution of this test problem exhibits a transonic rarefaction lo-
cated at the point of minimal depth. Observe that both the IFCP or HR-IFCP
methods capture correctly this rarefaction, even though no entropy-fix technique is
added.

4.5 Test 5: Lock-exchange solution

In [18] Farmer & Army (F&A hereafter) computed some approximated exchange
flows through channels with rectangular cross-sections and a single bump by means
of a simplified rigid-lid stationary model in which the density ratio is supposed to be
close to 1. The aim of this test is to compare the results provided by ROE and ICFP
schemes against these approximated stationary solutions. To do this, the classical
lock exchange experiment is considered: the two layer of fluids are initially at rest
and put apart by an artificial dam located at the crest of the bump (see Figure
7(a)). The dam is removed at time t = 0 and the layer are let to evolve until a
stationary state is reached. In this particular test case, the bottom topography is
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Figure 5: Test 4: Comparison of ROE, GFORCE, IFCP and HR-IFCP with the
reference solution at time t = 300 with ∆x = 1/20.
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defined by the function H(x) = 2− e−x2

, x ∈ [−3, 3]. As boundary conditions, only
the condition q1 = −q2 is imposed at both ends. The ratio of densities is set to 0.98,
the CFL parameter is set to 0.9, and ∆x = 0.03. Figure 7(b) shows the interface
corresponding to the stationary solutions reached with both schemes and they are
compared with the corresponding to the F&A solution. Note that ROE and IFCP
schemes give similar results which are also close to the F&A solution. In fact, only
some small differences appear in the right end of the channel which are due mainly
to the rigid lid approximation in the F&A model. The exchange flux computed are
q1 = −q2 = 9.366 · 10−2 m3/s for the ROE scheme, q1 = −q2 = 9.406 · 10−2 m3/s for
the IFCP scheme, while F&A model gives q1 = −q2 = 9.213 · 10−2 m3/s.
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Figure 7: Test 5: Initial condition and comparison of ROE and IFCP scheme with
F&A stationary solution with ∆x = 0.03.

4.6 Test 6: Wet/dry front over an irregular bottom topog-

raphy

In this test, the axis of the channel is again the interval [0, 10]. The bottom topo-
graphy is given by the function

H(x) =

{
0.5 if x < 4,
1.0 otherwise,

The initial condition is q1(x, 0) = q2(x, 0) = 0,

h2(x, 0) =







0.0 if x < 4,
0.8 if 4.5 < x < 5.0
0.2 otherwise,
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and
h1(x, 0) = H(x) − h2(x, 0) + 0.5.

Free boundary conditions are imposed. The CFL parameter is set to 0.8 and
r = 0.99.

Figure 8 shows the evolution of the free surface computed with ROE and IFCP.
We compare the solutions given by both schemes with a reference solution computed
with ROE with a mesh of 3200 points. Note that both schemes provide solutions of
the same quality, being IFCP more precise in the area located at the top of the step
(see Figures 8(c)-8(f)). Figure 9 shows the evolution of the discharge of the second
layer for both schemes at the same times. Again, both schemes give solutions of a
similar quality. ROE is a bit less diffusive than IFCP (see Figures 9(e)-9(f)), but
IFCP is more accurate in the area located at the top of the step. The robustness of
IFCP scheme is assessed with this very difficult numerical test.

4.7 Test 7: Wet/dry front over a smooth bottom topogra-
phy

In this test, the axis of the channel is again the interval [0, 10]. The bottom topog-
raphy is given by the function

H(x) =

{
1 if x ≤ 5,
1 − x−5

10
otherwise.

The initial condition is q1(x, 0) = q2(x, 0) = 0,

h2(x, 0) =







H(x) − 0.4 if 4.5 < x < 5.0,
0.0 if x > 7,
H(x) − 0.8 otherwise,

and
h1(x, 0) = H(x) − h2(x, 0).

Free boundary conditions are imposed. The CFL parameter is set to 0.8 and r =
0.99.

Figure 10 shows the evolution of the free surface computed with ROE and IFCP.
We compare the solutions given for both schemes with a reference solution computed
with ROE scheme using a mesh with 3200 cells. Observe that again both schemes
provide solutions of the same quality, being ROE a bit more precise.

5 Conclusions

In this article the new first order numerical scheme ICFP for solving the two-layer
shallow water system has been introduced. This method is based on a suitable
decomposition of a Roe matrix AΦ(wL, wR) that uses a viscosity matrix which is
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Figure 8: Test 6 (interface): Comparison of ROE and IFCP with the reference
solution at different times with ∆x = 1/20.
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Figure 9: Test 6 (discharge of the second layer): Comparison of ROE and IFCP
with the reference solution at different times with ∆x = 1/20.
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Figure 10: Test 7 (interface): Comparison of ROE and IFCP with the reference
solution at different times with ∆x = 1/20.
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a linear combination of the identity matrix, AΦ(wL, wR), and A2
Φ(wL, wR) whose

coefficients are computed in terms of the eigenvalues of AΦ(wL, wR). The resulting
numerical scheme is linearly L∞-stable for the two-layer shallow water system. In
practice, some known first order approximations of the eigenvalues can be used to
define the coefficients of the viscosity matrix what reduces dramatically the com-
putational cost. The well-balanced property of the numerical scheme has been also
studied. Finally, some numerical tests have been performed to check the efficiency
and the good properties of the numerical scheme. The numerical tests show that
the results obtained with IFCP are close to those obtained with ROE scheme and
much better than GFORCE scheme. Concerning the CPU time, IFCP is similar
to GFORCE and about 3 times faster than ROE scheme. Moreover, no entropy-fix
technique is required.

The extension to high order and to two-dimensional problems is straightforward
following [8] and [9].

Even though IFCP is designed for the two-layer shallow water system, it can
be easily extended to some other nonconservative hyperbolic systems, like the two-
phase fluid model proposed in [25] or the submarine avalanches model proposed in
[19] for example.
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Appendix

Let us prove that the numerical scheme defined by (2.14)-(2.16), where QΦ(wL, wR) is
given by (2.21)-(2.25) is linearly L∞-stable for the two-layer shallow water equations
under the usual CFL condition. We suppose that

λ1 < 0, λ4 > 0, |λl| < |λ1|, |λl| < |λ4|, l = 2, 3, (5.1)

being λj, j = 1, · · · , 4, the eigenvalues of the matrix AΦ. These conditions over the
eigenvalues are commonly satisfied for two-layer geophysical flows. Let us denote
by λQ,j, j = 1, · · · , 4, the four eigenvalues of the matrix QΦ defined by (2.21). Note
that

λQ,j = p(λj) = α0 + α1λj + α2λ
2
j , j = 1, . . . , 4.

Let us prove that λQ,j ≥ |λj|. It is clear for construction that λQ,j = |λj|, j = 1, 4.
Thus, we must prove that λQ,j ≥ |λj|, j = 2, 3. As λj ∈ [−|χint|, |χint|], j = 2, 3,
then, it is enough to prove that p(λ) ≥ |λ| for λ ∈ [−|χint|, |χint|].

Let us prove first that α2 > 0. To do that, let us rewrite α2 as α2 = βγ2 with

β =
1

(λ1 − χint)(λ1 − λ4)(χint − λ4)
, (5.2)

γ2 = |λ1|(χint − λ4) + |χint|(λ4 − λ1) + |λ4|(λ1 − χint).

Taking into account the definition of χint and (5.1), it is clear that (λ1 − χint) < 0
and (χint − λ4) < 0, |χint| < |λ1| and |χint| < |λ4|. Then, β < 0. Moreover,

|χint|(λ1 − λ4) = |χint|(λ1 − χint) + |χint|(χint − λ4),

therefore,
|χint|(λ1 − λ4) > |λ1|(λ1 − χint) + |λ4|(χint − λ4).

Therefore γ2 < 0 and then α2 > 0.
Let us now prove that sgn(α1) = −Sext, where α1 is defined by (2.25). As in the

previous case, α1 = −β γ1, where β < 0 is defined by (5.2) and

γ1 = (|λ1| − |λ4|)(|λ1| − |χint|)(|λ4| − |χint|).

Taking into account (5.1) and the definition of Sext (2.24), we obtain sgn(α1) =
−Sext.

The key point in the definition of χint is Sext, as the sign of α1 depends on the
definition of Sext.

Let us suppose that |λ1| > |λ4| (otherwise the proof is analogous), then Sext = −1
and consequently α1 > 0. Then, p(λ) ≥ p(−λ) for λ > 0. So, it is enoguh to prove
that

p(λ) ≥ −λ ∀λ ∈ [−|χint|, 0] = [χint, 0]. (5.3)
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Let us now define λv = (−α1)/(2α2), the point where p(λ) achieves its minimum
value. Note that λv < 0. Two possibilities can be distinguished:

• Case A: λv ≤ χint. In this case

p(λ) − p(χint) = (λ − χint)(α1 + 2α2χint) + α2(λ − χint)
2 ≥ 0,

as λ ≥ χint. Therefore, p(λ) ≥ p(χint) = |χint| ≥ |λ|, ∀λ ∈ [χint, 0].

• Case B: λv > χint. Note that p(λ1) = −λ1, p(χint) = −χint and, λ1 < χint < 0.
Therefore, there is not any other value λ < 0 such us p(λ) = −λ. Noting that α2 > 0
and λv > χint then p(λ) > −λ, ∀ 0 ≥ λ > χint.

The L∞-stability of the scheme can be proved even if the property (5.1) fails,
but the proof is not included here for the sake of shortness. �
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