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Abstract

In this paper, the stability problem of impulsive functibdéferential equations with infinite
delays is considered. By using Lyapunov functions and theuRékhin technique, some new
theorems on the uniform stability and uniform asymptotabgity are obtained. The obtained
results are milder and more general than several recentswoiwo examples are given to
demonstrate the advantages of the results.
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1. Introduction

As a popular and important topic, the stability problem opirtsive functional differential
equations has generated a considerable interest in rezars, y\and a number of papers dealing
with the stability problem of impulsive functional differgal equations have appeared, see
[1-12] and the references cited therein. In particulahibtg of impulsive functional differen-
tial equations with infinite delays has recently receivephgicant attention, see [13-21]. For
example, Luo and Shen [13-15] studied the uniform asynggaébility of impulsive func-
tional differential equations with infinite delays by usibgapunov functionals or/and Lya-
punov functions and Razumikhin technique. In [16], Zhand San extended the technique
developed in [17] to impulsive systems and derived some mswlts on uniform stability of
impulsive functional differential equations with infiniteelays. Quite recently, Faria et al.[18]

studied the existence and global stability for a class ofaaonomous impulsive functional

*Corresponding Author. Email address : caraball@us.esdiatizllo)

1



Stability of IFDEs with infinite delays

differential equations with infinite delays via some anayschniques. Our research group
[19-21] also studied the stability problem of impulsive ¢tional differential equations with
infinite delays from impulsive perturbation and impulsiwatrol point of view, respectively.

In the present paper, we will further investigate the siigbroblem of impulsive func-
tional differential equations with infinite delays. By ugihyapunov functions and Razu-
mikhin technique, some new results to guarantee unifortilgyeand the uniformly asymp-
totic stability are obtained. One of the most remarkableaathges of the results in this paper
is that the Razumikhin condition is independent of impuksed enables one to deal with im-
pulsive infinite delay differential equations with largeguisive perturbations. The methods
developed in this paper extend and improve the results r1]339,20]. Moreover, they can
be applied to the some cases not covered by the results ih[2,16,18].

The paper is organized as follows. In Section 2, we introdusee definitions and nota-
tions. In Section 3, we present some new theorems on uniftaibilisy and uniform asymp-
totic stability for impulsive functional differential eqtions with infinite delays. Two exam-
ples are given to illustrate the advantages of the resulgeation 4. In Section 5, we draw a

conclusion.

2. Preliminaries

Let R denote the set of real numbgRs the set of positive real numbers aid the n-
dimensional real space equipped with the Euclidean nefni.et Z, denote the set of positive
integers, i.e.Z, = {1,2,...}. For any intervall C R, any subse® ¢ R*(1 < k < n),C(J,S) =
{¢ 1 J » Siscontinuou$ andPC(J S) = {¢ : J —» S is continuous everywhere except
at finite number of points, at whiche(t*), ¢(t7) exist andg(t™) = ¢(t)}. The impulse times
t satisfy O< top <ty < ... <ty <..., lim_, .ty = +c0. Denote bya a constant satisfying
—oco < a < 0. In the case when = —oo, the interval f + a, t] is understood to be replaced by
(—oo0,1].

Consider the impulsive functional differential equatiafshe form

X (1) = f(t, %), t> o, t# b
AXle=t, = X(t) — X(t) = le(te, X(t)), ke Z., Q)
Xr = #(9), @ <s<0,
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whereo > tp, ¢ € C, f € C([ty_1, t) XC, R"), f(t,0) = 0, C is some open set iRC([«, 0], R").
Given a functionx(:) : [a,+o0) — S, for eacht > t;, we denote by is the element irC
defined byx(s) = x(t + s), s€ [«, 0]. DefinePCB = {p € C : ¢ is bounded and fory € PCB,
the norm ofy is defined byllg|l = sup,., l¢(0)l. DefinePCBs = {¢ € PCB : [l¢|| < 6}.
l(t,X) € C([0, ) x R",R") andI(t,0) = 0,k € Z,. Moreover, for any givem > 0, there
exists go; € (0, p) such thatx € S(p,) implies thatx + I(tx, X) € S(p), whereS(p) = {X: |X| <
p,X€ R
In this paper, we assume thhaiand |y satisfy certain conditions such that the solution of

(1) exists on §r, +o0) and is unique, see [3, 20] for detailed information. We deroy x(t) =
X(t, o, ¢) the solution of (1) with initial valued, ¢). Sincef(t,0) = 0, Ix(t,0) = 0,k € Z,,

thenx(t) = 0 is a solution of (1), which is called the trivial solution.
We introduce some definitions (see [3]) as follows:

Definition 2.1. The functionV : [a, ) x C — R, is said to belong to clasg if

(i) V is continuous on each of the setis {, t) X C and limy)«_4) V(t, 9) = V(1 , ¥) exists;

(i) V(t, x) is locally Lipschitzian inx andV(t, 0) = 0.

Definition 2.2. Given a functionV e v, for any ¢,¢) € [tc1, t) x C, the upper right-hand

Dini derivative ofV along the solution of (1) is defined by

D*V(t, (0)) = lim supiV(t + h, (0) + hf (t. ¥)) — V(t. y(O))} /h.
h—0*

Definition 2.3. The trivial solutionx = 0 of (1) is said to be

(P,) stable, if for anyo- > to ande > 0, there exists @ = 6(¢, ) > 0 such thapp € PCB;

implies|x(t, o, ¢)| < &,t > 7
(P2) uniformly stable, if thes in (P,) is independent onr;

(P3) uniformly asymptotically stable, ifR;) holds and there exists some- 0 such that for
anye > 0 there exists som€& = T(g, ) > 0 such thatp € PCB; implies|x(t, o, ¢)| <

et>oc+T.

In addition, we define the following classes of functionsl&ier use:
3
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K; ={ae C(R,,RR,)la(0) = 0 anda(s) > 0 for s > 0};

K, = {ae€ C(R,,R,)la € K; andais non-decreasing is}.

3. Stability results

Now we can state our main stability result.
Theorem 3.1.Assume that there exist some functionsW;, W, € K,, P,G € K1, g € C(R,,R,),
g e PC(R,,R,), V(t, X) € vo and constants Bx > 0, k € Z, such that

(1) Wa(Ix)) < V(t, X) < Wa(Ix]), (t, X) € [to, o) x S(p);
(if) For any (t, ¥) € R, x PC([a, 0], S(p1)),
V(tk, ¥(0) + I(ti, ) = V(& ¥(0)) < BV (&, ¥(0)).

where 2, B = B < oo,
(iii) For any o > toand ¢ € PC([e, 0], S(p)), if P(V(t, ¥(0))) > V(t+6, y(6)) for maxa, —q(V(t))} <

6 <0, then

D*V(t, ¢(0)) < —g)G(V(t, ¥(0))), t € [tk-1,t), k€ Zy,
where P(s) > sfor s> 0;

(iv) For any given &, > &1 > 0, there existsan = n(ey, &) > 0 such that for any A > 0

AT (1 + B)Wa(er)
fA oty > AV,

where M = info 5w, (e;)<s<wi(ez) G(9)-

implies that

Then the trivial solution of (1) is uniformly asymptotically stable.

Proof. We first show that the trivial solution of (1) is uniformly bia.

For anye € (0,p,), one may choosé > 0 such that,(s) < B* ‘Wi (e), wherep* =
[T, (1+Bk) + 1. Foranyo > to andg € PCBg, let x(t) = X(t, o, ¢) be a solution of (1) through
(0. 9).

Note thatp € PCB;, it is obvious that

Wi (X)) < V(t, X(1)) < Wa(5) < B "Wi(e) < Wi(e), o +a <t <o,

4
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which implies thatx(t)| < p1,t € [0 + @, 0].

Suppose that € [ty_1, t) for somem e Z,, then we can prove fdre [o, ty)
V(E X(1) < B Wale). (2)

If this is not true, then there exists some [o,, t,) such that/(t, x(t)) > B* "W, (e).
Define

t* = inf{t € [0, tw), V(t, X(1)) > B* "Wy (e)},

then it is obvious that* > o, V(t*, x(t*)) = 8* *Wi(g) andV(t, x(t)) < B* Wi(e), t € [0, t*].
Meanwhile, we know

D*V(t*. (t*)) = O. (3)
In this case, it holds
P(V(t*, x(t*))) > V(t*, x(t)) = ﬁ*‘lwl(s) > V(s X(9), t*+a<s<th.

By condition {ii), g € PC(R,,R,), andG € K;, we obtain

DV(t*, X(t")) < ~g(t)G(V(t*, X(t))) = —g(t")G(8* "Wi(#)) < O,

which is a contradiction with (3). Thus (2) holds. It impligstx(t;) € S(o1), X(tm) € S(p).

Then note that

V(tm, X(tm) < (L + BV (tr X(t) < B (L + B Wa(e).
We next can prove that fdre [tm, tm1)
V(L x(1)) < B (1 + Bm)Wi(s).
Suppose that this is not true, then we can define

t* = inf{t € [tm, tmer), V(E X)) > B (L + Bu)Wa(e)).

Thus, we can obtain a contradiction by the same argumentsegsrovof of (2), and we will
therefore omit the details.

By induction hypothesis, we may prove that fat [0, tr) U [ty, tei1), K = m,

V(t, X(1) < B L+ Bm)(L + Bimer) - (1 + B)Wi(e),
5
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which yields
Wa(IM) < VEx@) <7 | | (@ +B9WaCe) < Wace). t2 o
o<tg<t
Hence,|x(t)] < &, t > o. In view of the choice ob, the trivial solution of (1) is uniformly
stable.

Next we show the uniformly asymptotic stability.

Since the trivial solution of (1) is uniformly stable, foryagivene, € (0, 1), o > to, we
can find a corresponding)= §(e,) > 0 such that for any € PCB; implies that|x(t)| < &, <
p1,t > o andV(t, x(t)) < Wu(ey),t > o. In the sequel, we assume without loss of generality
thato € [tml—l,tml), m € Z,.

For anye € (0, &;), choose constantd anda as follows:

M = M(ep, &) = inf G(s),

0.5W1 (g)<ssWa(e2)

a=aleye) = min{ [P(s) — 5], 0.5Wi(e) }

0. 5W1(€)<S<W2(82)
Then it is obvious thaM > 0,a > 0. Also, from condition i), we know that there exists

n = n(e, &2) > 0 such that for anyA > 0 implies that
A+n
f g(t)dt > M (4)
A M

Now we chooséN € Z, such that
05W1(8) + (N - 1)a < W2(82) < 05W1(8) + Na.

Since} . Bk < oo, there exists a large enough inted&r> m, such that

a
DA< Sy O Sy <> ®

i=Np
Suppose that, = o + An, whereA is a constant. Then we show that there exlsts ty, such
that
V(T1, X(Ty)) < 0.5Wy(e) + (N - 1)a. (6)

Suppose on the contrary, then for alb ty,

V(t, x(t) = 0.5Wa(e) + (N — 1)a > 0.5W,(s).
6
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In view of the definition ofa, we have

P(V(t, x(1)) > V(L x()+a

%

0.5Wi(e) + (N-1)a+a

0.5Wi(e) + Na

\%

Wao(e2) > V(S X(9), t+a<s<t, t>ty,.
By assumptioni(i), we obtain that the inequalitp*V(t, x(t)) < —g(t)G(V(t, x(t))) holds for
all't > ty,, t # tx. Integrating above inequality frotq, to ty, + 77, by (4) we get

V(tNo +7, X(tNo + 77)) < V(tNo’ X(tNo)) - e g(S)G(V(S))dS

tng

> V) - V)]

tNO <t<tN0 +n

IA

V(tny. X)) — M f " y(9ds

tng

+ Z BV ()

tNO <t<tN0 +n

Wote) - M [ " y(eds

N

IA

+ Z BiWa(e)

g <t<tng+77

Weea)1+f) - M [ " (9

tNg

IA

< 0,

which is a contradiction. Thus (6) holds. One may chobse ty, + 7 =0 + (4 + 1)3.

We next show that for atl > T,

V(t, X(1)) < 0.5W;(e) + (N — 1)a + g @)

Suppose this is not true, then there exists T; such that

V(12 X(12)) = 0.5Wi(e) + (N — 1)a+ g ®)
and
V(t, X(t)) < 0.5Wy(e) + (N — D)a + g for all T, <t < 1. @)

7
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Suppose that; € [ty tmi1), M > No,m € Z,, then we claim that, > t,,;. Otherwise, then

7, € [T, tme1). Since (6) holds, it is clear that there exis{s= [Ty, 72) such that
V(r1, X(11)) = 0.5W,(e) + (N — 1)a

and
V(Tl, X(Tl)) < V(t, X(t)) < V(Tz, X(Tz)), T1 < 1< To.

Then we have fot € [14, 75]

P(V(t x(1)

\%

V(t, x(t)) + a

\%

0.5Wi(e) + Na

\%

Wa(e2) = V(s X(9)), t+a<s<t.

Using condition {ji), we have
DTV(t, x(1)) < —g()G(V(1)) <0, 1 <t <7,

which implies
V(72 X(12)) < V(71, X(72))-

This is a contradiction in view of (8). Then we have provert tha> t..;. Without loss of
generality, we may suppose that € [tm.q, tmig1), 4 > 1. Next we shall claim that there exists

7, € (T1, 72) such that
0.5Wi(s) + (N — 1)a < V(£ X(x,)) < 0.5Wa(e) + (N - L)a + g (10)

By virtue of (9), we only need to prove the left-hand ineqtyadif (10). Suppose this inequality
does not hold, then for alle (T4, 72),

V(t, X(t)) < 0.5W;(e) + (N — 1)a.
Then by (8), we know that there must be= ty,.q. It follows that
V(tmeqs X(tmeg) > 0.5Wa(e) + (N — L)a+ g,V(t,}Hq, X(t,q) < 05Wa(e) + (N — 1)a,
which together with conditioni( yields

2 < BV X)) < P
8
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Thus, it leads to

Bmiq 2 Wolea)’

This contradicts the first inequality of (5) and thus (10)dsol
Defining now

71 = SUft € [Ty, 2], V(t, X(t)) < 0.5W;(e) + (N — 1)a},

then
V(r1, X(117)) < 0.5Wy(e) + (N - 1)a,
(11)
V(T (@) = VE® XGE) = 05Wy(e) + (N - 1)a
and
0.5Wi(e) + (N — 1)a < V(t, x(t)) < 0.5W;(e) + (N — 1)a + g te[mr).  (12)

By virtue of (10), we know that; < 7. Note thatr, € [tm.q, tnige1), We further show that
T1 < tmgq. Suppose on the contrary that € [tm.q, 72), then there is no impulse poimt
betweenr; andr,.

From (12), we have

P(V(t, x(t))) > V(t,x())+a

\%

0.5Wi(e) + Na

\%

Wa(gn) > V(S X(9), t+a<s<t, 71 <t<T,

By assumption (iii), we obtain
DV(t, X)) < —g(G(V() <0, T1<t<,

which implies that

V(72 X(12)) < V(71, X(71)).

This is a contradiction with the definition @f. Consequently, we have that < tm.q.
Suppose that; € [tk tmiki1), 1 < K < g, then we now consider the following two possible
cases:

Case 1: If 11 >ty I.€.,71 € (tmek tmike1), then considering the definition of, we have
V(71 X(71)) = 0.5Wy(e) + (N - 1)a.

9
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From (12), we can deduce that, fioe [T1, 7],

P(V(t, x(1)) > V(t, x(t)) +a> V(s,x(9), t+a<s<t.

By (iii), the inequalityD*V(t, x(t)) < —g(t)G(V(t)) < 0 holds fort € [71, 75]. Thus we arrive at

0.5Wi(e) + (N — 1)a + g < V(12 X(12))
m+q
< VEXE)+ D, IVE) - VE)]
i=m+k+1
m+q
< 05Wy(e)+ (N-Da+ > BV(L)
i:rr?::laﬂ
< 05Wie) +(N-Dja+ » BWa(er).
i=m+k+1
which yields
a m+q
5= i:%;ﬂﬁiwz(gz)-

This is a contradiction with the first inequality of (5). Hen€ase 1 could not happen.

Case 2: If 11 =tk then by (11), we know

V(0 X)) < 0.5Wi(e) + (N — 1)a.

m+k>
Therefore,

V(71 X(71)) = V(tmk X(tmek))

IA

(1 + ,8m+k)v(tr:q+k, X(tr_n+k))

(1 + Bmii)[0.5Wa(e) + (N — 1)a].

IA

From (12), it still holds thaP(V(t, X(t))) > V(s X(9), t+a < s<t, 71 <t < 15 Using

assumptioni(i) again, we obtain that the inequali®/ V(t, x(t)) < —g(t)G(V(t)) < 0 holds for

t € [T1, T2]. Hence, in this case we derive

0.5Wi(e) + (N — L)a+ g

IA

V(12, X(12))
m+q

VELX@E) + ) V() - V()]

i=m+k+1

IA

A

(1 + Bm)[0.5Wy(e) + (N — 1)a]

Mg
+ ) BVE),

i=m+k+1

10
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which, together with the latter inequality of (5) and thetfdata < 0.5W;(¢) yields

IA

m+q
Brneil05Wa(e) + (N - 1)al + > AWi(e2)

i=m+k+1

a
2

m+q
PrmkNOBW(e) + > BiWi(e)

i=m+k+1

IA

m+q

- NO.5W, (&) + Z BiWs(e2).

i=m+k+1

a
<
N 3NW1(8)

That is,

m+q

gﬁ Z BiWa(e2),

i=m+k+1
which is a contradiction with (5). Therefore, Case 2 coultmeppen either. Therefore, we

have proven that (7) holds for dlb T;.

By now, we have the following assertion by (6) and (7):

V(Ty, X(T1)) < 0.5Wy(e) + (N - 1)a,
. (13)
V(t, X(t)) < 0.5Wy(e) + (N - 1)a+ > t> Ty,

whereT,; = o + (1 + 1)n.
Define a constarg as follows:
q= Sup{ q(S)l 05W1(8) <s< W2(82) }

Then it can be deduced that there exigts> T; + q such that

V(T X(T2)) < 0.5Wi(e) + (N — 2)a+ g

whose proof is similar to the proof of (6) under the help of)(E%d we only need to note the

following Razumikhin condition :

P(V(t, x(1)))

\%

V(t, x(t)) + a

0.5Wi(e) + (N — L)a+ g

%

> V(s (), maxt+a,t—qV({t)} <s<t t>T;+q.

Choosel, =Ty +q+n =0 + (1 + 1)y + g. Then applying the same argument as (7), we can

show that for alkt > T,

V(t, x(t)) < 0.5Wy(e) + (N - 1)a, t > To.
11
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In this way, we can prove that fqre Z,,

V(T;. X(T})) < 0.5Wi(e) + (N — 1)a— j_Tla,

V(t, x(t)) < 0.5Wy(e) + (N —1)a— j_TZa, t>T,
whereT; = o+ (1+1)n+(q+n)(j—1). In particular, letj = 2N, then we obtain tha¥/ (t, x(t)) <
0.5Wi(e) < Wy(e),t > Ton. Itimplies thatix(t)| < &, t > Toy. Note that @+1)n+(q+7)(2N-1)
is independent of, then we obtain that the trivial solution of (1) is uniformdgymptotically

stable. The proof of Theorem 3.1 is therefore complete.

If we only consider the uniform stability of (1), then thelfming result can be obtained.

Corollary 3.1. The trivial solution of (1) is uniformly stable if there exist some functions
Wi, W, € Ko, PG € Ky, g € PC(R,,R,),V(t, X) € v and constants B¢ > 0,k € Z, such that

conditions (i),(ii) (iv) in Theorem 3.1 and (V) hold, where

(v) For any & > to and & € PC([a, 0], S(p)), if P(V(t, ¥(0))) > V(t + 6, ¥(6)) for a < 6 < O,

then
D*V(t, ¢(0)) < —g()G(V(t, ¥(0))). t € [tk-1.t), k€ Z,,
where P(s) > sfor s> 0.

On the other hand, if functiog(t) satisfies infg, g(t) = x > 0, then by Theorem 3.1 and

Corollary 3.1, we have the following results, respectively

Corollary 3.2. Thetrivial solution of (1) is uniformly asymptotically stable if there exist some
functions Wi, W, € Ky, PG € Ky, V(t, X) € vg and constantsu > 0,8¢ > 0,k € Z, such that
conditions (i),(ii) in Theorem 3.1 and (vi) hold, where

(vi) For any o > toand ¢ € PC([«, 0], S(p)), if P(V(t, ¥(0))) > V(t+6, y(0)) for maXa, —q(V(t))} <

6 < 0, then
DV(t,¢(0)) < —uG(V(t,(0))), t € [tk-a, k), k€ Z,,

where P(s) > sfor s> 0.

Corollary 3.3. The trivial solution of (1) is uniformly stable if there exist some functions
Wi, W, € Ky, P,G € Ky, V(t, X) € vg and constantsu > 0, 8x > 0,k € Z, such that conditions
(1),(i1) in Theorem 3.1 and (vii) hold, where

12
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(vii) For any o > to and ¢ € PC([a, 0], S(p)), if P(V(t, 4(0))) > V(t + 6, w(6)) for @ < 6 < O,

then
DV(t,¢(0)) < —uG(V(t,¥(0))), t € [tk-1, k), k€ Zy,

where P(s) > sfor s> 0.

(A+A)Wo(e2)

Proof. For any givere, > ¢; > 0, one can choosg= PR

whereM = infgsw, (1)<scwb(er) G(S)-

Then, we can obtain the above results easily.

4. Examples

In this section, we present two examples to illustrate osults.

Example 4.1. Consider the impulsive functional differential equatiovith infinite delay (see

[16])
X, (t) = —arxa(t) + axo(t) + agxa(t — 7(1)), t>to, t # ti,

X,(t) = byxa(t) — bpXa(t) + baXo(t — 7(1)), t>to, t # ti,
X1(t) = Bixa(ty), keZ,,

Xo(tk) = yiXa(ty), keZ,,

(14)

where 0< 7(t) < t, @ > 0, b; > 0,] = 1,2,3, the impulse pointg, satisfy 0 < t; <
tp <...<t<... lim_eoty = o, Bx, vk K € Z, are some positive constants which satisfy

[Tr2, maxB, vk} < oo.

Property 4.1. Assume that the following condition holds:
maxas, b3} < min{2a1 —dp —ag — bl, 2b2 —ady — b3 - b]_}, (15)

then the zero solution of (14) is uniformly asymptotically stable.
Proof. Since (15) holds, one may chodBgs) = As, where

. min{2a; —a,—az—by,2bb—a,—bz—-by} 1

2 maxag, bs) 2

Then itis obvious thaP(s) > sfor s> 0.
Let V(t, X) = X§(t) + X5(t), Wi(S) = Wax(s) = <%, then conditioni( in Theorem 3.1 holds. In
addition, wherP(V(t, ¥(0))) > V(t+6,¥(6)), @ < 6 < 0,i.e., A0E(t) + X3(t)) > X2(S) + X3(9), t+
13
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a < s<t, we have

D*V/(14) 2x1 () {—ar Xy (t) + axXo(t) + azxa(t — 7(1))} + 2x2{by Xy (1)

—boXo(t) + beXa(t — 7(1))}

IA

—2a1X5(t) + 28Xy (t)%a(t) + 2agXe (t)Xa (t — 7(t))

+2b1 X3 () %o(t) — 2b2x§(t) + 2b3xo () Xo(t — 7(t))

IA

—2a; X3 (1) + @ (4(t) + X3(t)) + az(X(t) + X5(t — 7(t)))

—2b35(t) + b (X(t) + 35(1)) + bs(OG(1) + X5(t — 7(1)))

IA

(—2ay + @ + ag + by)X5(t) + (—2by + @ + b + by)X5(t)

+ maxas, b DGt - 7(0) + (L - ()]

IA

ma)({—zal +ady +ag+ bl, —2b2 + ap + b3 + bl}(X%(t) + Xg(t))
+max{ag, bs} A(XE(t) + X5(t))
= { max—2a; + a, + az + by, —2b, + a, + by + by}

+ maxas, bz}l }V(t, X(t))

= —% { min{2a; —a, —az — by, 2b, —a, — bz — by}
— maxag, bs) }V(t, X(t))
= —uG(V(t, x(1)),
whereu = min{2a; — a; — ag — by, 2b, — a, — bs — by} — maxag, bz}, G(s) = %s.

Clearly,u andG satisfy the conditioni{i) in Corollary 3.3.

On the other hand, we note that

V(t, X(t)) = Xe(te) + X5(t) BEXE(t) + vaxa(ty)

< (MaxBi vi)?V(te, X(4))-

Then condition i) in Corollary 3.3 is satisfied. Therefore, the zero soluwdr{14) is uni-

formly stable ]
14
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Remark 4.1.In [16], the authors obtained some conditions to guarafie@miform stability
of (14). Here we point out that the development result in Brgp4.1 has wider adaptive range
than that in [16]. For example, chooae= 1.7%, b, = 0.250, a, = a3 = bz = p, b, = 2p,
wherep > 0 is any given constant, then we get+ az = 2p > a;, which implies the criteria
in [16] is invalid. However, note that = 0.25 > 0, then we obtain that the zero solution of

(4.1) with above parameters is uniformly stable.

Example 4.2.

Consider the following impulsive infinite delay differealtiequations:
t

X (t) = —a(t)x(t) + b(t) tanh(t — 7)) + f c(t — 9X(9ds, t > O,t # t,

—00

X(t) = (X)), ke Z,, (16)
X(8) = ¢(9), s€ (-o0,0],
wherea, b, ¢ € C([0, ), R), 7 > O, [l (X)| < (1 + By)IX,Bx = 0 and}’ Bk < .

Property 4.2. Assume that there exists constant A > 1 such that for any given &, > ¢; > 0,

there exists n = n(ey, €2) > 0 such that for any A > 0 impliesthat

fm { a(t) - a[ b1+ [ ety ] }dt _ 24P
A ) -

where = 3 Bk < oo.
Then the trivial solution of (16) is uniformly asymptotically stable .

Proof. In fact, letV(t) = |x(t)|, then it is easy to obtain Property 4.2 by Theorem 3.1. Thefproo

procedure is repetitive and omitted helré.

Remark 4.2. Here we point out that Property 4.2 can be applied to the gasesovered in
[9,11,12,19] even for the case of finite delay. For instateteg(t) = 3| sint|, b(t) = sint and
c(t) = O, then it is clear that all results in [9,11,12,19] failed. hstcase, one may choose

A = 2. Then in view of the fact that

é+2n
f |sint/dt > 2 for any constant > 0.
é
For giveng, > g, > 0, we let

=

(1+pP)ex ]* 1 }

15
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It is easy to check that the condition in Property 4.2 is fiatis Hence, the trivial solution of

(11) with above parameters is uniformly asymptoticallyoita

Remark 4.3. Note that that functiotb(t)| can be unbounded and the impulse conshédnt
[1(1 + B«) can be large enough. Thus our results have wider range angecapplied to some

cases not covered by the results in [13-15,18-21].

5. Conclusion

In this paper, we further investigated the stability prablef impulsive functional dif-
ferential equations with infinite delays. By using Lyapurfanctions and the Razumikhin
technique, some new theorems on the uniform stability amfdum asymptotic stability were
obtained. Our results are milder and more general thanagweaviously known results. But
the results in this paper were only given from the impulsiggyrbation point of view. How to
obtain the different results, from impulsive control paifitview, would be a difficult problem

and need further consideration in the future.
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