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1. INTRODUCTION

In the theory of Lie algebras, algebra of derivations constitutes an essential
tool in the resolution of lots of problems. These problems are the classification
of Lie algebras [3], the description of the first space of cohomology, or the study
of problems linked to physics (e.g the counterexamples to the Gel’'fand-Kirillov
Conjecture [1], [2]).

But, to determine the algebra of derivations associated to a Lie algebra
involved many calculations that can be simplified for using of the software
Mathematica. This software have been used earlier by some authors in order
to solve problems into Lie algebras, (see, e.g., [4], [6], [8])-

For the first time, M. Vergne did a cohomological study of the variety of
nilpotent Lie algebras, to see [10]. In the above paper, the classification of the
filiform Lie algebras “naturally” graded plays a decisive role. In some sense,
these algebras are the basic structure of the filiform Lie algebras (those of
maximal nilindex, n—1). Thus, knowledge of the naturally graded algebras of
a some class of Lie algebras give an important information about the structure
of all the class of algebras [7]. This allows easily to determine the algebra of
derivations, and so some different geometric elements as, for example, the
description of the first space of cohomology or as the determination of the
dimensions of the orbits.
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Gémez and Jiménez-Merchan [5], [9] give the classification of naturally
graded algebras of quasi-filiform Lie algebras (those of nilindex n — 2). This
authors extend the results obtained by Vergne. And thus, our goal is to show
a cohomological study of the naturally graded quasi-filiform Lie algebras by
determining the corresponding algebra of derivations.

2. PRELIMINARY

Let g be a Lie algebra over K. A linear endomorphism d of g is called a
derivation of g if it satisfies

d([X,Y]) =[d(X), Y]+ [X,d(Y)], VX,Y €g. (1)

It is easy to see that the set Der(g) of all derivations of g is a Lie algebra
over K for the bracket [d',d*] = d' o d*> — d® o d".

If X € g, the endomorphism of g defined by ¥ — [X,Y] is denoted
ad(X). The Jacobi identity implies that ad(X) is a derivation of g for all
X € g. This derivations are called inner derivation. The set Ad(g) of inner
derivations of g is an ideal of Der(g). Next, we show a theorem that permits
to express easily the space of derivations of any Lie algebra as a direct sum of
others Lie algebras.

THEOREM 2.1. ([8]) If g is a direct sum g = @}, g; of Lie algebras over
K, then

k
Der(g) = (G}’Der(gi)> @ <€B’D(gi,gj)> :
i=1 i
and D(g;,9;) denote the set of all derivations d;; of g satisfying d;;(g,) = 0 if
p # 14, dij(9:) C Z(g;) and di;([g:, 8:]) = 0.

Let g be a complex Lie algebra. Then, g is naturally filtered by the de-
scending central sequence

Clg)=g, i<0, C'(g) =[g,C"(g)], i>1.

This allows us to naturally associate with any nilpotent Lie algebra with
nilindex £ = inf{s € N: C’(g) = {0}} a graded Lie algebra, denoted by gr g,
with the same nilindex, defined by

grg=Pg, 8:.=C""(g)/Ca).

i€Z



COHOMOLOGY OF SOME NILPOTENT LIE ALGEBRAS 157

Because of the nilpotence, the graduation is finite, i.e.,

grg=0:.09:@ - Do

with [g;, 9;] C @iy, for i + 5 < k, verifying that dim(g,) > 2 and dim(g;) > 1,
for 2 <4 < k. Lie algebra g is said to be naturally graded if gr g is isomorphic
to g, which from now on will be noted by gr g = g. Examples of these algebras
are as follows.

Let be L,, the Lie algebra defined in the basis { Xy, X;,...,X,, 1} by
Lo {[Xo, Xi] = X0  1<i<n-—2.

Let be Q, the Lie algebra defined in the basis {X,, Xi,..., X1}, with
n = 2q, by

[X03Xi]:Xi+1 ISZSH—2
[XiaXn—l—i] = (_l)iian—l 1 S [ S q— L.

In [10], M. Vergne proves that if g is naturally graded filiform Lie algebra
with dimension n is either isomorphic to L,,, if n is odd, or isomorphic to L,
or Q,, if n is even.

In a recent work [5], Gémez and Jiménez-Merchén show that any naturally
graded quasi-filiform Lie algebra is isomorphic to one of the following

Ln—lea(ca Qn—l@ca

c (X0, Xi] = Xi1 1<i1<n-3
(n,r) I:Xi,Xr_i] — (—1)7‘71Y 1 S ’L S ,',.T_l
withn > 5,3 <r <n-—2and r odd,
[Xo, Xi] = Xina 1<¢1<n—-3
Qi =13 X X,_i]=(-1)""Y 1<i<rst
(X Xpomi]) = (1)1 X, 1<3< 8

withn >7,nodd, 3 <r<n-—4and r odd,

[Xo, Xi] = Xipa 1<i<n-—3
T _ ) X=X,
Y [Xi, Xn—s—i] = (=1)"' (Xns +Y) 1<q<nt
[XiaXn—Q—i] = %(—l)iian_Q 1< < "T_‘l
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with n > 6, n even,

( [XOaXi]—Xi-i-l 1<i<n-3
[V, Xi] = 252 Xy 1<1<2
Tonm-a =19 [Xi, Xpouei] = (1) Xy +Y) 1<i<nb
(X, Xposi] = 222171 X, 1<i<n?
L (X, X o] = 22 (1) — 1) X 2<i< 22

with n > 7, n odd.

For convenience, the adapted basis for 2-filiform Lie algebras will be de-
noted by {X,, X1, ..., X0, Y}

The space H'(g, g) can be interpreted as the space of the “outer” deriva-
tions of the Lie algebra g. Thus, the quotient space Der(g)/.Ad(g) is the space
H'(g,g). In this way, the dimension of the orbit O(g) can be given by

dim(O(g)) = n? — dim(Der(g)) .

In the next section, we give the above cohomological elements for the
naturally graded quasi-filiform Lie algebras by determining the algebra of
derivations of those algebras.

In the last section, we show a program using the language of symbolic cal-
culus Mathematica. This software allows us to compute the space of deriva-
tions for the mentioned algebras in concrete dimensions. These results lead
to conjecture the structure of such space of derivations in generic dimension,
which is our first goal in this paper.

3. COHOMOLOGY OF QUASI-FILIFORM LIE ALGEBRAS

If g is a graded quasi-filiform algebra of dimension n, we have the following
decomposition
tr:gleagQ@"'@gT@"'@gn—Q
with g = (XOaX1>a g9 = <Xz> for 2 S [ S n—2 and 4 7é r, and gr = <X1‘aY>a
verifying that [g;,g;] C @iy, for i +j <n—2.

THEOREM 3.1. Let (,ld(XZ), 0<1 < n—3, hg, h5, ey h»,-_4, h»,-_g, h»,-_l, PPN
B4y B3, to, t1, to, 9o 1, fr1 (and ts, only for n = 5) be the endomorphisms
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of L, defined by

or (k<r—3and k+#2);
to(Xo) = Xo, to(X)=0@—-1)X; (1<i<n-—-2), +t(Y)=(r-2)Y;

t1(Xo) = X1, t(X,) =Y

(X)) =X; (1<i<n-—2), ta(Y) =2V

tg(Xl) :Xo, tg(Y) :Xg, On]y fOI'n:5;
gr1(Xo) = X5
frfl(XO) =Y.
Then, the above endomorphisms form a basis of Der(L,,)). Thus,

intlor ifn>5
dim(Der(Ln)) = 2
m(Der (L)) {10 ifn=5.

Proof. 1t is an easy calculation verifying that the above endomorphisms
are independent and belong to Der(L,,,)). Remain to prove that these deriva-
tions span to the whole space.

Any derivation d € Der(L,,) can be expressed by d = SP 2 d;, with
di(g;) C Giyj, 1 <5 < n—2.

Note that the ideals C'(L(,,,) are conserved by the derivations; these ideals
are characteristic. Thus, in the formal decomposition of d, d = @,.; d;, we
have d, =0 for k< —-1. Sod=dy+dy + -+ +dp_3.

We are going to determine, recursively, the subspaces of derivations dg, d;,

ey dp_s.

e Consider dy € Der(L,,)). It obvious that

CkaO + ﬁle if ke {0, 1}
dO(Xk) = .
ap Xy + 0.6, f2<k<n-2
dO(Y) - anler + ﬂnfly
for some «y, ... ,an_1.00, Bi, Br, Bn1 € K. It follows from the equality
dola, b] — [do(a),b] — [a,dy (b)] = 0

for (a,b) = (Xo, X;) with 1 <k <n—3, that 8, = By and oz = kag + 5.
This same equation, with (a,b) = (X1, X, 1), (a,b) = (X;, X, ;) for 2 <i <
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(r—1)/2, yields a,, 1 = vy, By = (r—2)ag + 26, and ay = 0if n > 5
and oy free if n = 5.

Considering the values (1,0,0), (0,1,0) and (0,0,1) for the triple
(o, Bo, 1), we arrive at to, t; and ¢, respectively, if n > 5 and (g, a1, By, £1)
if n = 5. Thus, we have

dy = toog + 150 + 1281 + 5Zt301

so dim(dy) = 3 if n > 5 and dim(dy) =4 if n = 5.
e In the same way, we can obtain dy, 1 < k<n—3and k #r — 1. The
generic expression for the values non null of dj, can be given by

X ifi € {0,1
dk(Xz) = S r—k . { }

a; Xy + 0,76 1Y f2<i<n—-2—-k
di(Y) = a1 Xois if 1<k<n—-2-r.

Using the equality (1) for the pairs (Xo, X;) with 1 <i <n—2—k, and
(X1, X,_1) we obtain that

;= oy 2<i<n—2-—k
/Br—k:(_l)kao
Qp_q =
o = if k=2 andk<r—3
ap, free if k#£2 and k<r—3ork>r—3.

Considering the values (1, 0) and (0, 1) for the vector (ap, 1), we arrive at
ad(Xo) and ad(X,) for k =1, and ad(Xy), and hy for k # 2 and k <r —3 or
kE>r—3.1f k=2and k <r — 3 we only obtain ad(Xy). So,

dim(dy) = 1 if k=2 andk<r—3
T 2 it k#£2 and k<r—3ork>r—3

withl <k<n-—-4,k#r—1.
¢ Finally, we obtain d,._;. In this case we have the following non null values
for the subspace of derivations d,_;

wX, + Y  ifie{0,1}
aiXi—i-'r'—l lf2§’b§n—'f‘—1

d, (Xz) = {

dr—l(Y) = a,_1 X9, if3<r< nT_l
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As the pairs (Xo, X;) with 1 <7 <n—1—r and (X;, X,_;) have to verify
(1), then we have that

Qp_1 = 0

a; = oy 2<i1<n—1-r.

Now, if we consider the values (1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1)
for the vector («g, i, By, /1) we get ad(X,_1), hy_1, g.—1 and f,_;, respec-
tively. Thus, dim(d, ;) = 4.

e Computation of d,_3. From d,_3 € Der(L,,)) and d,_3(g;) C Gitn—3,
we obtain that

aXn o ifi=0
dos(X;) ={ a1Xps ifi=1

0 if2<i<n-—2
d,_s(Y) = 0.

Substituting the vector («g, ;) by the values (1,0) and (0,1) we lead to
ad(X, _3) and h,,_3. Thus dim(d,_3) = 2.

All precedents results lead to determine the dimension and a basis of
Der(Ln,r), being

dim(Der (L) = S dim(ay = { 51
1m er nor — mm(d;) =

)] L 10 if n = 5. I
And thus, the knowing of the space Der(L,,)) lead to determine the

dimensions of the spaces H' (L), L(n,r)) and O(Ln,)-

COROLLARY 3.2. (i) The linear maps hs,..., hp_s, hp_oy ho_1, ...,
hn74a hn737t07 t17t2a grflafrfl (and t3 ifn = 5) module Ad(ﬁ(n,r));
form a basis of H' (L sy, L(n,m). Thus,

2n_rts ifn>35

dim(H (Lnry, Linry)) = ?
(H (Linrys Linry)) {7 P

(i)

dim(O(£ ) 2’ —dntr—1 ifn>5
lm n,r =
() 15 ifn=5.
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Proof. In fact

H'(g,9) = Z'(g.9)/ B (g.9) = Der(g)/ Ad(g),
dim(Hl (ﬁ(n’r), ,C(n’r )) = dim(Der(ﬁ(n’r)) - dim(.Ad(,C(n’r))) y
() = n® — dim(Der (L, ) -

)
)
dim(O(L,

In the same manner, we obtain a basis for the space Der(Qn,y)-

THEOREM 3.3. Let ad(Xl), 0<1<n— 3, hg, h5, ey hn—47 hn—37 to, t1,
9r—1, fro1 (and h,_y if 1 = 252 or h,_5_, if r < %52) be the endomorphisms
of Q) defined by

h(Xi) =Xps (1<i<n-—2-k, 3<k<n-—4, k#2)

and (k=n—3);
10(Xo) = Xo,  to(X) =iX; (1<i<n—2), to(Y)=rY;
H(Xo) =X, hX)=X, 1<i<n—3), #H(X)=X +Y,
B(Xn o) =2X0 o,  h(Y)=2Y;
gr-1(Xo) = X, Gr—1(Xn12p) = Xno;
fro1(Xo) =Y
he (X)) =X,y (1<i<n—1-—r1),
n—1

h'r'—l(Y) = 2Xn_2 (Only fOT T = T) ;

hn727r(Xi) = Xi+n72fr (]- S i S 71) ’

hp_o (YY) =2X,_5 (only for r < 712;3) .

Then, the above endomorphisms form a basis of Der(Q ). Thus,

ndd ifr <

Bl fp s ad

dim(Der(Qn,»)) = {

S
¥ o]
—

Proof. Any derivation d € Der(Q,,) can be expressed in the form d =
do+di+---+d,_3 with dy € Der(Qn,)), 0<k<n—3 and di(g;) C girs-
From the computation of the subspace of derivations dy and tacking into
account the pairs (X, X;) with 1 <i <n-3, (X1, X3), (Xo,Y) and (X;, X,_;)
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with 2 <4 < 54 (X, X,,—3) and (X;, X, »;) with 1 <4 < 222 for (1), we
obtain the following restrictions

a; = iag + Gy 2<i<n-—3
o = (n—2)ag + 20
o, 1=0

Br = oo + o

Br = Bo

Bn-1 =T+ 20

and then, by considering the values (1,0) and (0, 1) for the pair (ag,3y), we
lead to t, and t; respectively, and so dim(d,) = 2.

By computation of dy, for 1 < k < n—3; k # r — 1, and as precedent
reasonings, we have

;= oy 2<i<n—3-k
Anap=(—DFag+ o
/8’)“7]6 = (—1)kao
(-D*a; + a1 =0 r—k>3

> ”TH a; =0

k=n—-2-r
r < "T“ a; free.

Now, if k # 2 or k = n—2—7 with r > = we assign the values (ag, a;) =

(1,0) and (g, aq) = (0,1) for the parameters oy and «; obtaining a basis for
the subspace of derivations dy, that is, ad(X}) and h; with h; = ad(X,). For
k=2ork=n—2—rwithr < % there is only one parameter (cg) obtaining
in this case the derivation ad(X}). So, we arrive at

1 ifk=2ork=n—2—r, withr> 2

dim(d;) = .
(i) {2 ifk£%0ork=n—2—r withr< 2

withl <k<n—4andk#r—1.
In this way, we can consider at a basis for the subspace d,_; as
{ (ad(erl)agrfla frfl) if r 7é nT_l
(ad(Xr—l)agr—lafr—lahr—l) if r = nT_l
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Thus dim(d, ;) = 3ifr # 25+ and dim(d, ) = 4 if r = 25+, and similarly,
we obtain a basis of the space of derivations d,,_; forms by, ad(X,_3) and h,,_s.
Thus, dim(d,, 3) = 2.

From all the precedent results, we conclude that

{ 3n2+3 lf’l” S n—1

n—3
dim(Der(Qm,n)) = Z dim(d;) =
i=0

bl g nol N

And thus, the knowing of the space Der(Q,,)) lead to determine the
dimensions of the spaces H'(Q,.), Qn,r)) and O(Q,. ) respectively.

COROLLARY 3.4. (l) The linear maps hg, h5, Cey hn—47 hn—3a to, t1,
9r—15 fro1 (and h,_ ifr = an orh, o, ifr < ”T*S), module Ad(Q,,r))
form a basis of H'(Q(5.), Qn,r))- S0,

im (nr): L)) =9 . .
e ifr >t
(i) 2
) 2n 7237173 1fr S anl
dim(O(Q(n.)) = on? 31 ) et
- 1fr > -5 -

By continuing with the precedent reasoning, next we study the derivations
of the Lie algebra 7(,,,,_3) that let us to determine dim(H" (7(,,n—3), T(n.n—3)))
and dim(O(7(n,n—3)) respectively. From now on, we omit some proofs because
of they are similar to Theorem 3.1.

THEOREM 3.5. (l) Let (,ld(Xz), 0 < ) <n-— 3, ad(Y), hn—4a to, tl, On—4
and f,_4 be the endomorphisms of T(, ,—3) defined by
to(Xo) = Xo, to(X;) =1X; 1<i<n—-2), t(Y)=(n-3)Y;

-2
t(Xo) = X1, tl(Xz-)zn2 X, 1<i<n-—4),

n
t(Xn_3) = §Xn—3 +Y, 1 (Xp—2) =(n—2)X,_o,

4
t(Y) = "2 X, 3+ (n—3)Y;

n—4

gn—4(X0) = Xn—37 gn—4(X2) = -

fnoa(Xo) =Y, Sn—a(X3) = nT_Zan—Q-

Xn—? ;
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Then, the above endomorphisms form a basis of Der(T(,,,n—3)). Thus,

dim(Der(T(nn-3))) =n+4.

(ii) The endomorphisms to,t1, hy_4, gn—sa and f,_4, module Ad(T(nn_3))
form a basis of the space H'(T(,,n-3), T(n,n—3)) and

dll’l’l(I{1 (7-(n,n—3)a ﬁn,n—iﬁ))) =5.

(iif)
dim(O(T(nn-3)) =n* —n—4.

THEOREM 3.6. (i) Let ad(X;), 0 <i<n—3,ad(Y), to, t1, hn_3, L,,_5,
and f,_5 be the endomorphisms of T(;, n—s) With n > 9 defined by

hn73(X1) - Xn72 a
n—3

n—1
t(Xpos) = ——Xpnu+Y, t1(Xp—3) = (n—3)X,_3,

2
n—2>5
tl (Xn_g) = (n — 3)Xn—2 ) tl (Y) = TXn_4 + (n — 4)Y,

ln75(X1) - Xn74 + Y7 ln75(X2) - Xn73 3 ln75(X3) - Xn72 ;

n—2>
fn—s(Xo) =Y, fn—s(X2) = TXn—3a fn—s(X3) = (n - 5)Xn—3-
Then, the above endomorphisms form a basis of the space Der (T (,,n—1))-
Thus, we have
dim(Der(T(nn-1))) =n+4.
(i) A basis of H'(T(nn—1), T(n,n—a)) can be defined by to, t1, hy_3, l,_5 and
fn—s, module Ad(T(,n—a)). So, we have

dim(H (T(nn—1): Tinn—1))) = 5.

(i)
dim(O(T(nn-1))) =n* —n—4.
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Remark 3.7. The case n = 7 needs a special treatment because of the
restrictions obtained by impose that ds be a space of derivations are different
at the other dimensions. Thus, we have the following theorem

THEOREM 3.8. (l) Let ad(Xl), 0 < ) < 4, ad(Y), to, tl, h4, lg, g2 and
f> be the endomorphisms of T(z3), with to, 1, hs, fo as the precedent
theorem, and -, g» defined by

l2(X1) = X3, 12(X2) = Xy, l2(X3) = X;, l2(Y) = —2X5;
92(X0) = X3, 92(X2) =—-Xy, 92(X3) =—-2X5, 92(Y) =2X;.

Then, the above endomorphisms form a basis of the space Der(7(z3)),

and
dim(Der(T(z3))) = 12.

(i) A basis of H'(T(73), T(r.3)) can be given by ha, to, t1, lo, g» and fs,
module Ad(7(z3)) . So, we have

dim(H" (Tz,3), Tir,3))) = 6.

(iii)
At this point, now we are going to study the algebra of derivations of the
quasi-filiform naturally graded Lie algebras that are trivial extensions of the

filiform naturally graded algebras obtained by Vergne, that is £,,_; @ C and
9,_1 6 C. We first consider the algebra L£,_; @ C in the following theorem.

THEOREM 3.9. (i) Let ad(X,), 0 S 1 S n—23 to, tla tQ, hQ, ey hn737 Jo,
g1, 92, and Idc be the endomorphisms of L, @ C defined by

to(Xo) = Xo, to(Xy) = (@ —-1X; (2<i<n—2);
t1(Xo) = X1 ;

(X)) =X; (1<i<n-—2);

hi(Xs) =Xy (1<i<n—2—-k 2<k<n-3);
9o(Xo) =Y;

a(X1) =Y;

9:(Y) = X,
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Then, the above endomorphisms form a basis of Der(L,, 1 @ C). And,

thus, we have
dim(Der(L,_ PC)) =2n+1.

(ii) A basis of the space H (L, 1 @® C, L, 1 @ C) can be given by to, t,, ta,
90> 915 G25 by k € {2,...,n—3}, Idc, module Ad(L,,_, @ C). Therefore,
we have that

dim(H' (L,_1 P C, L, PCT)) =n+3.

(iii)
dim(O(L, 4 EB C))=n*—2n—1.

Proof. Using Theorem 2.1 we have

Der(L,_1 @ C) = Der(Ln-1) ® Der(C) ® D(Ln-1,C) @ D(C, L,—1) ;
if d € Der(L,—1 @ C), then there exist

dy € Der(L,_1), dy € Der(C), dyy € D(L,_1,C), dyy € D(C,L,_,)

such that d = d; + dy + d15 + do1, verifying the conditions of Theorem 2.1.

(a) Computation of Der(L,,1): This space has been already studied by
Goze and Khakimdjanov [8], obtaining a basis of Der(L,_;) compose by the
linear mappings tg, %1, t2, ho,..., h, 3 together to the inner derivations.

(b) Computation of Der(C): Trivial.

(c) Computation of D(L,, ;,C): The linear mappings g, and g¢;, above
described form a basis of the space D(L,_1,C). In fact, if d € D(L,_;,C)
then it verifies that

d(C) =0, d(L, 1) C Z2(C), d([Ln-1, L, 4]) =0
leading to

d(X(]) = Oéoy
d(Xl) = Oély .

Now, without no more than substituting the values (1,0) and (0, 1) for the
vector (ag, ;) we arrive at go and g;, respectively.
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(d) Computation of D(C, L,,_1): Using the precedent reasoning, we obtain
that a basis of the space D(C, L,_;) can be given by the endomorphism g,,
which is defined in the enunciate. Thus,

dim(Der(L,_1 @ C)=2n+1
then, we obtain (ii) and (iii) in the same way to the precedents. 1

Secondly, we consider the Lie algebra Q,,_ @ C.

THEOREM 3.10. (i) Let ad(X;), 0 < i < n —3, to, t1, hs, hs, hry...,
hp_a, hn_s, 9o, 91, go and Id¢c be the endomorphisms of Q,,_1 @ C defined

t1(Xo) = X1, t(Xn2) =2X, 5, H(X)=X; (1<i<n-—3);

and (k=n—-3);
90(Xo) =Y ;
91(X1) =Y
9:(Y)=X,_».

Then, the above endomorphisms form a basis of Der(Q,, 1 @ C). There-

fore,
In+5

dim(Der(Q,,_; EB C)) = 5

(i1) A basis of the space H'(Q,_1 P C, Q,_1 P C) can be given by to, t;,
h37 hSa h7a tee ahn747 hn737 Id(Ca Jo; 01 and g2, module Ad(anl @ (C)

Thus,
n+9

dim(H'(Q,-:1 P C, 0,1 P C)) = T

(i)
n?—3n—->5

dim(0(Q,_, P C)) = 2 :

In [9], Gémez and Jiménez-Merchan prove that in low dimensions only
appear those algebras of the family that have sense in each case, except for
the dimensions 7 and 9, where also appear the algebras &7 3), £y 5 and & 5,
respectively. These new algebras are defined by
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( [Xo,Xi] = Xz‘+1
£y = [Y, Xi] = X514
’ (X, X] = X5 +V
L X1, Xo] = X
( [XOaXz] - Xi+1
Y, X, = 2X5..,
(X1, X4 =X;+Y
o _ ] -
(8:5) (X, Xq] = 3X;
[Xo, X3]=—-X5-Y
[Xz,XzL] =—Xs
[ [Xo, X5] = — X7,
([ X0, X;] =
[Y, Xz] =2X54,
[X1, X4 =
(X1, X5] =
5(29,5) = (X1, Xe] =
[X2, X3] =
[X2, X4 =
[X2, X5] =
[ [ X5, X4] = —2X.

1<i<
1<i<?2

169

The results obtained from calculate the space of derivations for these algebras

are summarized as follows.

THEOREM 3.11. (1) Let ad(Xl), 0 < 1 < 4, ad(Y), to, hQ, h4, [} and fg

be the endomorphisms of £(7 3y defined by

to(Xo) = Xo, to(X;) = 1X;
92(Xo) = X3, 9:(X) = =Xy,
fQ(XO):Ya f2(X2):X47

(1 <i<5),

to(Y) =

92(X3) =—X5;
f2(X3) =2X5,
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Then, the above endomorphism form a basis of the space of derivations

Der(Ez,3)). Therefore, we have that
dim(Der(5(7’3))) =11.

(ii) A basis of the space H'((.3),Er.3)), can be given by to, h, hy, g, and
f2, module Ad(3)). So,
dim(H" (Eq73),Er.3))) = 5.

(iii)
dim(O(&r,3))) = 43.

THEOREM 3.12. (i) Let ad(X;), 0 <i <6, ad(Y), to, hy, he, and f, be
the endomorphisms of £, 5, defined by

(1<i<T),  t(Y)=5Y;

to(Xo) = Xo, to(X;) = iX;

h4(X1) :X5—2Y, h4(Xl) :X4+i (2SZ §3),

hb‘(Xl) = Xr;

f4(X0) =Y, f4(X1) =-3Y, f4(X2) =2Xs, f4(X3) =4X;.

Then, the above endomorphisms form a basis of Der(E, 5)), and
dim(Der(Ej 5))) = 12.
(ii) A basis for the first cohomological space H'(E(y 5, E(y5)) is formed by
to, ha, he and fy, module Ad(E(, ;). So, we have,
diIl’l(_lY1 (5(1975) s 5(1975))) — 4 .

(iii)
dim(O(E}, 5,)) = 69.

THEOREM 3.13. (i) Let ad(X;), 0 <1 <6, ad(Y), to, ha, he and f, the
endomorphisms of £, ;) defined by

to(Xo) = Xo to(X;) =iX; (1<:1<7), to(Y) =5Y;
ha(Xy) = X5 — 2V, ha(X) = Xaps (1<i<3);

he(X1) = X7;

filXo) =Y,  fulXy)=-Y, [fu(Xp)=2X, fi(X3)=4X;.



COHOMOLOGY OF SOME NILPOTENT LIE ALGEBRAS 171

Then, the above endomorphisms form a basis of Der(5(29’5)). And thus,

we have that
dim(Der(E(Qg’s))) =12.

ii) A basis of the space H'(E?, .,,E2 is formed by tq, hy, heg and f,
(9,5)7%(9,5)
module Ad(EF, ;). Thus,

dim(Hl (5(29,5) ) 5(29,5) )) =4.

(iii)
dim(O(E% 5))) = 69

4. COHOMOLOGICAL CALCULUS WITH Mathematica

In this section, we present a program with Mathematica, that allows us
to calculate the space of derivations in concrete dimensions for any algebra
that admits a graduation of the type t,.. This fact, permits to conjecture the
structure of a basis of the mentioned space and its dimension in the case of
generic dimension, case that has been already solved in the previous section.

The program is structured in the following way.

1. Generation of the subspaces of derivations d; (0 < k < n — 3) that
permit to express easily the algebra of derivations.

2. Determination and resolution of the equation that result by impose
that every one of the above subspaces d;, is constituted by derivations of the
algebra.

3. Substitution of the solutions obtained in the above step, in the initial
expression of the subspace d, obtaining in this way, the dimensions for each
one of them.

4. Dimension and a basis of the whole algebra of derivations through the
sum of the dimensions and the union of the basis of the preceding subspaces
of derivations.

The three first steps are implemented by the function dimder [k_,n_,r_]
that gives the dimension and a basis for the subspace d; subject to the grad-
uation t,, providing n is the dimension of the algebra.

dimder[k_,n_,r_] :=Module[{i,j,1,m,p,q,t,s},dim=n;der=k;grad=r;
Clear[ec,sol,al,bl,dl,parder,d] ;Lec={};

we introduce the linearity of the subspace dj
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d[0]:=0; dla_ =x_]:=a d[x]; dlx_+y_]1:= dlx]+d[y]; d[x[i_]]:=0;
if K = 0 we generate the subspace dg

If[der==0,d[x[0]1=al0]x[0]+b[0] x[1];d[x[1]]1=al1]1x[0]+b[1]1x[1];

For[p=2,p<=dim-2,p++,If [p!=grad,d[x[pl]l=alplx[p]l ,{}11;

d[x[grad]l]l=algrad]lx[grad]+bl[grad]lx[dim-1];
d[x[dim-1]]=al[dim-1]x[grad]+b[dim-1]x[dim-1];,

for k > 0 it is generated the corresponding subspace d;,

If [grad==(der+1) ,d[x[0]]=al0]x[der+1]1+b[0]x[dim-1];
d[x[1]]=al1]lx[der+1]+b[1]x[dim-1],d[x[0]]=a[0]x[der+1];
dlx[1]]=al[1l]lx[der+1]];

For [p=2,p<=dim-2-der,p++,
If [p!=grad-der,d[x[pll=alplx[p+der] ,{}1];
If [2<=(grad-der)&&(grad-der)<=dim-2-der,
d[x[grad-der]]=algrad-der]x[grad]l+b[grad-der]x[dim-1],{}];
If [2<=grad && grad<=dim-2-der,d[x[dim-1]]=aldim-1]x[grad+der],
{311;

Now, we make through the function ec, the equations that result by impose
to dj that be a space of derivations, and the union of these equations is given
in the list Lec.

ecli_,j_,1_J:=ecl[i,j,l]=Coefficient[Expand[Plus[
—d[mulx[i],x[j11] ,muld[x[i]1],x[j1] ,mulx[i],d[x[31111],x[11];
For[i=0,i<dim-1,i++,For [j=i+1,j<dim, j++,For[1=0,1<dim ,1++,
Lec= Union[Lec,{ec[i,j,11}111];

Thanks to an adequate use of the instruction Solve [11], we can solve the
preceding equations without to indicate the variables to eliminate. Of all the
possible solutions, that is, selection of free parameters, is enough to choose
one in particular (the first) to obtain a basis of the space of derivations.

Note that all the solutions have the same number of free parameters be-
cause of this number is an invariant of the algebra.

sol[m_]:=Join[Table[a[i],{i,0,m-1}],Table[b[j],{j,0,m-1}1]1 /.
Solve[Lec==0];

al[i_J:=sol[dim] [[1,i+1]] ;

bil[j_]:=sol[dim] [[1,j+1+dim]];

di[x[i_]1]:=d[x[i]] /. {alil-> ai1l[i]l, bl[il->b1[il};



COHOMOLOGY OF SOME NILPOTENT LIE ALGEBRAS 173

We calculate the dimension of the space by tacking into account the number
of parameters (parder) that appear in the solution. This allows us to obtain
a certain basis for each subspace.

parder [m_,der] :=Select[Variables[Table[d1[x[i]],{i,0,m-1}1],
FreeQ[#,x]&];
d2[i_,t_,s_]:=d1[x[i]]/. Dispatch[Join[{parder[dim,s]
[[t]]->1},Table[al[1]->0,{1,0,dim-1}]1,
Table[b[j]1->0,{j,0,dim-1}11]1;
Length[parder [dim,der]]];

The step 4, is implemented with the functions DimDer[n_,r_] and
BaseDer [n_,r_] that give the dimension and a basis for the whole algebra of
derivations.

DimDer [n_,r_] :=Module[{k}, dim=n;
grad=r; Sum[dimder[k,dim,grad],{k,0,dim-3}]]

BaseDer[n_,r_]:=Modulel[{k,q,i},dim=n;grad=r;For [k=0,k<=dim-3,
k++,For[gq=1,9<dimder[k,dim,grad]+1,q++,Do[
If[d2[i,q,k]===0,{},Print["d[x[",i,"]1]:=",d2[i,q,k]]]

,{i,0,dim-1}1; Do[Print[" "11]11]
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