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ABSTRACT

We extend to thesetting of Toeplitz decompositionsof
a locally convex space E into subspaces (Ek) a result about
Schauder decompositions due to Kalton that links the com­
pleteness of E to the completeness of both the decomposi­
tion and the pieces (Ek). The proof is simplified by the
application of a double limit technique. Then we study
what we call the Garling topology of a space with a
Toeplitz decomposition with respect to a matrix T in the
framework of the .Brduality of sequence spaces.

RESUMEN

En este trabajo extendemos al marco de las descom­
posiciones de Toeplitz de un espacio localmente convexo
E en subespacios (Ek ) un resultado sobre descomposiciones
de Schauder debido a Kalton que liga la completitud de E
con la completitud de la decomposición y las de las piezas
(Ek); el uso de una técnica de límite doble nos permite
simplificar la prueba original. Posteriormente estudiamos
lo que llamamos topología de Garling de un espacio con
una descomposición de Toeplitz con respecto a una matriz
T en el marco de la .BT-dualidad de espacios de sucesiones.

INTRODUCTION

Up to what point can one substitute ordinary summa­
bility by a matrix summability method in the definition of
a Schauder decomposition and, still, obtain nice results
about the locally convex structure of the space in terms of
the locally convex structure of its pieces? Our purpose
here is to extend the characterization of the completeness
of a Schauder decomposition obtained by Kalton (9), (10)
to the setting of decompositions defined in terms of more

general matrix summability methods. The proof is simpli­
fied by the application of a double limit technique.

Given an infinite matrix Tone can consider its conver­
gence field cT and define, for a sequence space A, its cor­
responding .BT -dual APT. This dual pair has been studied by
Buntinas (2), (3), Meyers (12) and Noll (14) as a contin­
uation of the~-duality theory of Garling (5), (6). Rere we
use the theorem about completeness to study what we call
the Garling topology, because it is a natural extension of
the <Jy-topology defined in (5), of a space with a T-decom­
position and, in particular, we give sorne applications to
the dual pair (A, APT).

Terminology and Notation. Although our notation
and terminology will be most1y standard, e.g. <p is the space
of finitely nonzero sequences, C is the space of convergent
sequences, e[k] stands for the k-th unit sequence (we refer
the reader to (16), (17), (19) and (21», let us recall a few
facts from summability theory. Let T =Und be an infinite
matrix of scalars from the field K of real or complex num­
bers. The matrix T is said to be: row-finite if each row of
T is in <p, an Sp¡-matrix if each column of T is convergent
to 1, and reversible if for every sequence y E c the infinite
system of linear equations T . x == y has uniquesolution.
It is well-known (21, 5.4.5-5.4.9) that each row-finite and
reversible T has a unique two-sided inverse matrix TI such
that each row of 1 1 is in II and for each y E c the unique
solution of T . x = y is 1 1

• y.

Let E be a locally convex space. The convergence field
of T in E is the space cT (E) of all sequences (xk) fram E
such that the product T . (xk ) is a convergent sequence in
E. For (xk) E cr (E) the limit of the sequence T . (xk) is
called the T-limit of (xk) and will be denoted by T-lim . xk,

in other words
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We simply denote by cT the convergence field of T in
JK. If T isa row-finite and reversible matrix then the norm
IIxll r := liT· xlL makes CT a Banach space (isomorphic to c).

Definitions. Let T = [t"d be a row-finite infinite
matrix of scalars. A sequence (Pk) of non-trivial, mutually
orthogonal and continuous linear projections defined on a
locally convex space E is said to be a Toeplitz decompo­
sition of E with respect to the matrix T or, shortIy, a T­
decomposition of E, if

x = T -lim Jtx for every x E E.

Alternatively, if we define the sequence of operators

T" : x E E -7 T,,(x):= .~,>"kPkX E E,
k

then (Pk) is a T-decomposition of E whenever lim" T~ =
x for every x E E.

It is important to note that the operators T,,'s are not
projections in general (they are increasing projections in
the case of a Schauder decomposition), however we do
have T"Pk = PkT" = t"k Pk for all n, k E N. Note also that
the sequence of operators (T,,) is precisely the product T .
(Pk) hence saying that lim" T" x = x is the same as saying
that the sequence T· (P0) converges to x. Call Ek := PiE).
Since Ek does not reduces to the zero subspace and for
every xk E Ek we have xk = lim" T,h =lim" t,,0k' it follows
that lim" tnk = 1, i.e., T is an SPrmatrix.

Still another way of lookingat a Toeplitz decomposi­
tion is the following: Every Ek is a complemented sub­
space of E and we can identify every x E E with the vec-
tor-valued sequence (pkx) E I1Ek , so that E becomes a

linear subspace of I1Ek that, with the topology translated
from E, has the set of all finite sequences as a dense sub­
space because lim" T"x = x for every x E E and T is row"
finite.

A T-decomposition (Pk) of a locally convex space E is
said to be: finite-dimensional if every Ek is finite-dimen­
sional; equicontinuous if the sequence of operators (Tn) is
equicontinuous; and complete if for each squence (xk )

E I1Ek such thar the product T . (Xk) is a Cauchy se­
quence in E there exists x E E such that xk = P0 for every
k E N and, a fortiori, T· (xk) converges to x.

Example 1. Every Schauder decomposition is a
Toeplitz decomposition with respect to the ordinary sum-
mability matrix L = IO'"d, where 0"k = 1 if n ::; k and 0 nk
:::: O otherWise.

Example 2. A Cesaro basis induces a one-dimension­
al Toeplitz decomposition with respect to el . L, where el
= [c,~d is the Cesaro matrix of order 1 defined by C/~k :::: n-l

if n ::; k and C],k = o otherwise. (The matrix el . L is

sometimes called the series-to-sequence Cesaro matríx.)
Decompositions of Banach spaces with respect to Cesaro
matrices Were firstly considered by Butzer and his collab­
orators in Aachen (see (19, pp. 785 and 801 of vol. I1)).

Example 3. A K-space is a locally convex sequence
space }¡,::J cp such that the k-th projection defined by

í'rk((x,,)J := xke[k] is continuous for every k E N. A K­

spaceA is said to have property T-AK if x = T-lim xke[k]
for every sequence x = (xk) E A. Thus, a sequence space
A has property T-AK if and only if the sequence (Jrk) is a
(one-dimensional) T-decomposition of Aor, in other words,

the sequence of operators defined by"" := L../"kí'rk, i.e.

(",,) := T . (í'rk), satisfies x = limn ",,(Xk) for every sequence
x = (xk) E A (see (2), (3) or (12)). (When dealing with
scalar sequences, we shall keep the notations (1tk ) and (1:k )

throughout the paper). In particular, A has property L-AK
means precisely that (e1kJ) is a Schauder basis of A.

We shall be interested in matrices T such that CT has
property T-AK. These matrices were characterized by Bun­
tinas (3, Thms. 8-10).

Buntinas's Theorem. Let T be row-finite and revers­
ible SPI-matrix. Then the following conditions are equiva­
lent:

(1) The sequence of coordinate projections (Jrk) is a
T-decomposition of cp

(2) The sequence of operators (fn) is equicontinuous
on cp

(3) Jf we denote Ti by[t/~i] then

sup {~I~tmkt"ktijII : m, n E N} < oo.

(4) The dual (cT)' can be identified with the multipli­
er space (cT -7 cT) formed by the sequences y such that the
coordinatewise product xy is in cTfor every x E cT and, in
this case, the bilinear form of the dual pair is given by

The first non-trivial examples of matrices T such that
cT has property T-AK are the series-to-sequence Cesaro
matrices of order a ~ O; this was proved by Zeller (22).
Therefore, to avoid c1umsy repetitions, a row-finiteand
reversible Sp¡-matrix T such that cT has property T-AK will
be called a Zeller-Buntinas matrix. For such a matrix T we
define b(T) := sup" 11"" 11, where 11",,11 is the norm of 1:n as a
bounded operator from the Banach space cT into itself.
Note also that if T is a Zeller-Buntinas matrix then cT is a
sum space in the sense of Ruckle (17).

Example 4. Let Q be an open, bounded and balanced
subset of cm and let A(Q) be the space of all functions that
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are holomorphic on Q and can be extended continuosly to
the c10sure of Q endowed with the topology of uniform
convergence on Q. It is mentioned without proof in (15)
that A(Q) has the bounded approximation property. As a
matter of fact, what happens is that A(Q) has an equicon­
tinuous and a finite-dimensional Toeplitz decomposition
with respect to the series-to-sequence Cesaro matrix C l

.

L. This decomposition is the natural one given by the
Taylor series: Each f E A(Q) can be uniquely written as

fO = L~=OPk(J)O (pointwise convergence), where each
Pif) is a k-homogeneous polynomia1. Now, the set of aH
homogeneous polynomials is dense in A(Q) (for a proof
see (1), the method utilized in Section 1 of that paper can
easi1y be adapted to show the present result). On the other
hand, the corresponding sequence of operators (Tn) is equi­
continuous by (1, Lemma 1.1) or (13, 5.2 Proposition),

where it is shown that ITII(J)(z)1 ~ 11ft for aH z E Q.
Finally, a standard argument about equicontinuous sets (11,
§39.4.(1) shows that f = T-lim Pif) for all f E A(Q).

COMPLETENESS OF SPACES WITH TOEPLITZ
DECOMPOSITIONS

Our first purpose is to extend to the setting of Toeplitz
decompositions a result due to Kalton (10) that links the
completeness of E to the completeness of both the decom­
position and the pieces Ek . We shall make use of a double
limit technique that lies behind the proof given by Kalton
for Schauder decompositions. The Double Limit Lemma is
certainly well-known for double sequences but we need a
reformulation in terms of a double net that can be proven
analogously.

Double Limit Lemma. Let E be a locally convex
space and {xij : (i, j) E J x J} be a double net in E such
that for each i E J there exists the limit y¡ = limj xij and for
each j E J there exists the limit Zj = lim i Xii' Jf the conver­
gence of (xij)j to y¡ is uniform in J then the three nets (Xi)'
(y) and (z) are Cauchy nets. If, in addition, E is complete
then the three nets aboye are convergent to the same limito

Theorem 1. Let (Pk) be an equicontinuous T-decom­
position ofa locally convex space E. Then the following
are equivalent:

(1) E is complete (resp. quasi-complete or sequen­
tially complete).

(2) (Pk) is complete and each Ek is complete (resp.
quasi-complete or sequentially complete).

Proo! It is c1ear that (1) implies (2), so we have to
show that (2) implies (1). We shall deal only with the
completeness case because the proofs for the threecases
are essentially the same. Let (z);,=/ be a Cauchy net in E.
For each k E N there exists xk E Ek such that (Pk Z)¡E/
converges to xk because Pk is continuous and Ek is com­
plete. Since T is row-finite, for every n E N we have

On the other hand, limnTnZ¡ =Z¡ for every i E I. To see
that we can apply the Double Limit Lemma to the double .
net {Tnzi : (i, n) E J x N} , let us check that the conver­
gence of (TnZ)iE/ is uniform in N. Given a continuous sem­
inorm q/ on E, there exists a continuous seminorm q2 such
that

because (Pk) is an equicontinuous T-decomposition. Since
(Z)¡E/ is a Cauchy net, it follows that there exists sorne
index io E J such that q2(Zi ~ z) ::; 1 whenever i, j ~ io'
Therefore, ql(TnZ¡ - Tnzj) ~ 1 for all n E N and i, j ~ io.
Take limits in j to obtain

This shows that the convergence of (TnZ)¡E/ is uniform
in N. The Double Limit Lemma tells us that the product

T· (xk) = (LktllkXk) is a Cauchy sequence. Since (Pk)/leN
is a complete T-decomposition, there exists X E E such that
xk = P~ for every kE N and T . (xk) converges to X.

Finally, since the net (Z)¡E/ is convergent in the completion
of E, the Double Limit Lemma tells us now that (z¡hE/ must
converge to x as well.•

Corollary 1. Let (Pk) be an equicontinuous and fi­
nite-dimensional Toeplitz decomposition of a locally con­
vex space E. Then the following are equivalent:

(1) E is complete.

(2) E is quasi-complete.

(3) E is sequentially complete.

(4) . (Pk) is complete.

Corollary 2. Jf a barrelled and sequentially complete
locally convex space has a finite-dimensional Toeplitz de­
composition then it is complete.

Remark. An extended Schauder basis of a locally
convex space E is a family (X)iE/ with the property that for
every x E E there is a unique family (a;(x))¡E/ of scalars

such that x can be writtenas x = L¡a¡(x)x¡ and the
functionals x ~ a¡{x) are continuous. Webb (20) proved
that a separable, non-complete, Montel locally convex
space cannot have any extended Schauder basis; our Cor­
ollary 2 shows that it cannot have any finite-dimensional
Toeplitz decomposition neither.

THE GARLING TOPOLOGY OF A SPACE WITH
A TOEPLITZ DECOMPOSITION

Let E be a locally convex space with a T-decomposi­
tion (Pk). In this section we will see that there exists a
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coarsest E'-polar topology on E for which (Pk) is anequi­
continuous Toeplitz decomposition. This topology turns out
to be a natural generalization of the ay-topology intro­
duced by Garling in his deep study of the ~-duality be­
tween sequence spaces (5), (6) and, accordingly, will be
called here the Garling topology of E. In the case of
Schauder decompositions this topology has been studied
by Kalton (9).

Using primes to denote adjoint operators, for every x E

E and every u E E' we can write

(x, u) = lim(T"x, u) = lim L,f"k(llx, u) =
1I . II . k

This shows that (p~) is also a T-decomposition of El
endowed with the weak topology arE', E). If we call Ek
:= PiE) and E~ := P~(E') then the dual of Ekcan be iden­
tified with E~. The computation aboye also shows that the

sequence (T;,u) is a(E', E)-bounded.

Definition. Let (Pk) be a T-decomposition of a local­
ly convex space E. The Garling topology of E is the polar
topology yy{E, El) of uniform convergence on the family

{(T;,u) : u E E}. Alternatively, yy{E, El) is generated by
the family of seminorms

x E E ~ supl(T"x, u)l, (u E E).
"

The Garling and the weak topology coincide on each
Ek because for all xk E Ek and u E El we have

we shall make use of this fact a couple of times.

The properties of the Garling topology depend heavily
on the T-AK property of the convergence field associated
to the matrix T. Note that this is given for free in the case

of a Schauder decomposition: (e[k l) is a Schauder basis of
the space cs (= cL) of all summable sequences. To see how
to connect the Garling topology with the properties of c1'
let F be the vector-valued sequence space defined by

As we noted aboye, E can be identified with a sub­
space of F. Note that, using the terminology given in the
previous section, E equals F if and only if (Pk) is a com­
plete T-decomposition of E[a (E, E')]; in this case, (Pk) is
said to be ~rcomplete by analogy with the Schauder de"
composition case (lO).

For each u E E' we define the operator

It is easy to see that /::""satisfies the following proper"
ties

(i) For every n E N and (Xk) E F we have that the
sequence (T"xkh is also in F and /::""(T,,Xk)k = 'l"1l/::",,(Xk)k'
In particular, /::""(T,,PkX)k = 'l"1l/::",,(PkX)k for each x E E.

(ii) Jf IT . (xk)]" stands for the n-th element of the
sequence T . (xk ), then

and, in particular, 11/::",,(Pkx)IIT = sup" I(T"x, u)1 for each x E

E so that the Garling topology is generated by the family

of seminorms x ~ 11/::,." (Pkx)IIT as u E E'.

Proposition 1. Let T be a Zeller-Buntinas matrix and
(Pk) be a T-decomposition of a locally convex space E.
Then yy{E, E') is the coarsest El-polar topology such that
(Pk) is an equicontinuous T-decomposition of E.

Proo! Using that the projections (Pk) are weakly
continuous on E, that the Garling topology is stronger than
the weak topology and that the Garling topology induces
on each subspace Ek its own weak topology 0"(Ek , E~), it
follows that the projections (Pk) are continuous on E for
the Garling topology. We now show that (Pk) is an equi­
continuous T-decomposition of E endowed with yy{E, E').
For all x E E, u E E', and m E N we have, using (i) and
(ii) aboye,

11/::,."(IlT,,,x)kIIT = 11/::,."(T,,,!tX)kIIT =

= 11'l"IA,(llx)kIIT :,; b(T)II/::,.,,(llx)IIT

so that (Tn) is a Yrequicontinuous sequence. (A remark is
in order here: although yy{E, El) is generated by the family

ofseminors sUPn I(T"x, u)l, since the T;s are not increasing
projections -as it is the case of a Schauder decomposi­
tion- we cannot conclude directly that sUPIII(T"Tmx, u)1 :,;
:,; sup"I(T"x, u)I·)

The following computation shows that x = yy{E, E ')­
limn TII x for all x E E:

where, in the latter step, we have used that cT has property
T-AK. Now, let v be an E'-polar topology such that (Pk) is
an equicontinuous T-decomposition of E endowed with v.
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Fix u E E', then there is a v-equicontinuous set D e E'
such that

sup 1(T"x, u)1 ~ sup I{x, v)l·
II . veD

This shows that y.JE, E') is coarser than v. •

Example 5. If T is a Zeller-Buntinas matrix then the
Garling topology on CT coincides with the IHIT -topology.
To see this, consider the squence e= (1, 1,... ) E (CT)'. Then
for every x = (Xk) E cT, we have

This shows that the norrn topology is coarser than the
Garling topology. The converse follows from Proposition
1. (For the case of the Cesaro series to sequence summu­
bility matrix el. 2, this fact was proved by Florencio (4),
using different techniques.)

The dual of E[rT(E, E')] can be bigger than E' (see
Remark 2 below), but we can characterize it in the follow­
ing way: Given u E E' and a E (cT)' we may define a linear
functional au on E by

If T is a Zeller-Buntinas matrix, so that (cT)' is also a
sequence space and we write a = (ak) then we have

We denote by (cT)' • E' the space of all linear function­
als thus obtained.

Proposition 2. Let T be a Zeller-Buntinas matrix and
let (Pk) be a T-decomposition 01 a locally convex space E.
Then the dual space 01 E endowed with its Garling topol­
ogy is (CT)'· E'. In particular, yy(E, E') is compatible with
the dual pair if and only if E' = (cT)' . E'.

Proo! Given u E E' and a E (CT)' we have

Therefore, au is YT (E, E')-continuous. Conversely, let
Z be a YT (E, E')-continuous linear functional on E. Then

there exists u E E' such that!(x, z)1 ~ IIAII (Pkx)IIT for all x
E E. Identify E with its image in F via the injection x -4

(P0). This enables us to define a linear functional a by

a: ((Pkx, u)) E A/I(E) -4 (((Pkx, u)), a) := (x, z)

which, obiously, is well-defined and!HIT -continuous. By
using that the subspaces (Ek) are non-trivial, it is easy to

see that qJ e A" (E) so that this is a dense subspace of cT
Finally, extend a to all of cT by continuity to obtain

and the proof is finished. •

Remarks. (1) If BT stands for the unit ball of (cT) "

the equality E' = (CT)' . E' is equivulent to E' = BT . E', and
if this equality holds then E' is said to be Brinvariant, as
in the sequence space case (5), (9).

(2) If E' is BT-invariant then the Garling topology is
compatible with the dual pair (E, E') and so the sequence
of functionals (uTn)n is .~ (E', E)-bounded in E', in which
case the T-decomposition is said to be simple. As there are
non-simple Schauder basis (see the remarks following Def.
2.3 in (9», it follows that not all Garling topologies are
compatible.

(3) It is easy to see that a Toeplitz decomposition is
simple if and only if the weak and the Garling topologies
have the same family of bounded sets.

We study now when is EIYT(E, E')] a complete space.

Proposition 3. Let T be a Zeller-Buntinas matrix and
let (Pk) be a T-decomposition 01 a locally convex space E.
Then E[yy(E, E')] is complete (resp. quasi-complete or
sequentially complete) if and only if (Pk ) is f3rcomplete

and each Ek [ 0"(Ek , E~)] is complete (resp. quasi-complete
or sequentially complete).

Proo! As we pointed out above, the Garling and the
weak topology coincide on each El<' Hence,according to
Theorem 1, we have to prove that (PJ is a complete T­
decomposition of E[yy(E, E')] if and only if it is a complete
T-decomposition of E endowed with its weak topology;
Le., ~T"complete. The «if» part follows easily from the fact
that the weak topology is coarser than the Garling topolo"
gy.

So, assume that (Pk) is a complete T-decomposition of
E[YT (E, E')] and let (xk) E TI Ek be such that T· (xk) is a
weakly-Cauchy sequence in E, it suffices to show that T .
(xk) is also a YT (E, E')-Cauchy sequence. Denote by zn the

n-th element of T . (xk), that is Z/I = L.k tnkxk' It is clear that
Pkz/I = t/lkXk for all n, k E N so, using (i) above, we have

Finally, using the Yrcontinuous seminorrns as given in
(ii), we obtain

and this latter expresion goes to zero as m, n -4 00 because
A" (xk) is in cT and this space has property T-AK. •
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'CoroIlary. Let T be a Zeller-Buntinas matrix and let
(Pk) be a T-decomposition ofa Banach space E. Then riE,
E') is a complete topology (resp. quasi-complete) if and
only if (Pk) is f3rcomplete and each Ek is finite-dimension­
al (resp. reflexive).

Example 6. Let T be a Zeller-Buntinas matrix and E
be a locally convex space with an equicontinuous T-de­
composition (Pk ). If v stands for the topology of E, then
Proposition I tells us that

a(E, E') :;; rT(E, E') :;; v.

Example 5 shows that for E = cT the first inequality is
strict, but the second is an equality.

On the other hand, if E is an infinite dimensional Ba­
nach space, then the space co(E) formed by the null se­
quences in E is a Banach space with a natural infinite­
dimensional Schauder decomposition (7) and its Garling
topology, which cannot be complete, does not coincide
with its norm topology so that both inequalities are strict.

APPLICATION TO THE ~T-DUALITYOF
SEQUENCE SPACES

In what follows, T is a Zeller-Buntinas matrix and A
stands for a sequence space containing <p. The ~T-dual of
A is the space Af>T of aH sequences y such that the coordi­
natewise product xy is T-convergent for every x E A.

If A is a K-space with property T-AK then it is cIear
that A' e APr . If, in addition, A is sequentially barrelled
then A' = ?J3r (see (2), (3), (12) and (14)). On the other
hand, if A has property T-AK then A e (A't and, by

Proposition 3, the equality holds if and only if A[rT(A, A')]
is sequentially complete.

Assume now that no topology is defined a priori on A.
The natural bilinear form (x, y) ~ T-lim XkYk malees (A,

Af>T) a separated dual pair and, cIearly, both A[a(A' APr )]

and APr[a(APr , A)] have property T-AK. We may ask if
there is a stronger topology on Ahavin¡ property T-AK and
stilI compatible with the duality (A, A r). We shall charac"
terize this topology by extending and combining resu1ts
given by Garling (5) and Schaefer (18) for the ~-duality

(the duality defined in terms of ordinary summability).

Lemma. Let T be a Zeller-Buntinas matrix and A be a
sequence space containing ([J. Then the space
A/3r [rT(APr , A)] is complete andfor a set Ce APr the fol­
lowing conditions are equivalent

(1) C is rT(APr , A)-relatively compacto

(2) Cis rT(APr , A)-bounded and the convergence of

the sequence ('rny) to y in the Garling topology rT(APr , A)
is uniform with respect to y E C.

(3) e is rT (APr , A) -bounded and for every x € Athe
convergence ofthe sequence rlY) to xy in the ¡HIT-topology
is uniform with respect to y E C.

Proo! According toProposition 3, to prove that

APr [Yr (APr , A)] is complete we have to show that (1tk) is a

complete T-decomposition of APTfa(APr , A)]. but this fol­
lows from the very definition of PT-duaI.

By Proposition 1, (~) is an equicontinuous T-decompo­
sition of APr[rT(APr , A)j; i.e., (rn) is a rT(APr , A)-equicon­
tinuous sequence of operators that converges pointwise to
the identity on APr hence, by using (11, §39.4(1)), we have
that ('en) converges uniformly on rT(APr , A)-compact sets.
Since r ll (APr ) is finite-dimensional for every n E N, it
follows that for every n E N, the set rll ( C) is relatively
compact provided that C is rT(APr , A)-bounded. Then Ma­
zur's Theorem (8, Thm. 1) implies thatconditions (1)
and (2) areequivalent. The equivalence of (2) and (3) is
cIear. •

Theorem 2. Let T be a Zeller-Buntinas matrix and A
be a sequence space containing <p. Then the stronger to­
pology on A that has property T-AK and is compatible
with the duality (A, APr ) is the topology kT(A, APr ) of
uniform convergence on the absolutely convex and
rT~APr, A) "compact subsets of APr .

Proo! That the dual of A[kT(A, APr )] equals ?J3r fol­
lows from the Mackey-Arens's Theorem and the fact that
the Garling topology is stronger than the weak topology.

That AIkT(A, APT )] has property T-AK follows from the
previous lemma by simply noting that
(x ~ r,,(x), Y) = (x, y ~ r,,(y)) for all x E A, y E APT and
n E N. Finally, if C e APr is an absolutely convex and
a(APr , A) -compact set such that

[im sup i(x ~ r,,(x), y)1 = O fo all x E A,
Il )'EC

then, again by the lemma, C is Yr (APT , A) -compacto This
implies that kT ( A, APr ) is the stronger topology satisfying
the desired properties.•

CoroIlary 1. Let A be a sequence space containing
([J. Then the stronger topology on A that has property AK
and is compatible with the duality (A, }j) is the topology
kT (A, Af» of uniform convergence on the absolutely convex
and aJ{AfJ, A)-compact subsets of }jo

This corollary can also be obtained by combining (5,
Prop. 11) with (18, remarks following Prop. 4).

CoroIlary 2. Let T be a Zeller-Buntinas matrix and A

be a sequence space containing ([J. Then A[13(A, APr )] has
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property T-AK if and only if every O'(.~,flT, }..)-bounded set

is Yr(}../ir,}.. )-relatively compacto

Proo! Use the theorem plus the faet that if A, is a K­
spaee having property T-AK then its topological dual is
eontained in its ~T-dual.
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