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Abstract

In this paper we study the numerical approximation of bedload sediment transport due to

shallow layer flows. The hydrodynamical component is modeled by a 2D shallow water system

and the morphodynamical component by a solid transport discharge formula that depends on the

hydrodynamical variables. The coupled system can be written as a nonconservative hyperbolic

system. To discretize it, first we consider a Roe-type first order scheme as well as a variant based

on the use of flux limiters. These first order schemes are then extended to second order accuracy

by means of a new MUSCL-type reconstruction operator on unstructured meshes. Finally, some

numerical tests are presented.
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1 Introduction

In this work we consider the bedload transport caused in a sediment layer by the flow of a shallow
layer of fluid. The model considered here is a coupled model composed by a hydrodynamical and
a morphodynamical component. The hydrodynamical component is given by a 2D shallow water
system and the morphodynamical one by a solid transport discharge formula that depends on the
hydrodynamical variables. Several expressions for this formula has been proposed by different authors:
Grass [14], Meyer-Peter&Müller [25], Nielsen [26], Van Rjin [39], Fowler et al. [13], etc. In general,
these formulae are obtained from empirical considerations.

Both the hydrodynamical and the morphodynamical components define a P.D.E. system with four
unknowns: h(x, t) the thickness of the fluid; q1(x, t), q2(x, t), the discharge of the fluid in the horizontal
directions, and zb(x, t), the thickness of the sediment layer. This kind of systems, which are known as
Saint-Venant-Exner models (see for example [22] and the corresponding references), can be written as
a first order nonconservative system of the form:
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∂W

∂t
+ A1(W )

∂W

∂x1
+ A2(W )

∂W

∂x2
= 0. (1)

The presence of nonconservative products add some important difficulties to both the theoretical
and the numerical analysis of the system. In particular for discontinuous solutions these products do
not make sense in general within the framework of distributions. Here, we follow the theory developed
by Dal Maso, LeFloch and Murat in [24] to give a sense to these products as Borel measures. This
theory, which is based on the choice of a family of paths, not only gives a way to properly define
the concept of weak solutions of nonconservative systems but it also gives a theoretical framework for
the design of finite volume methods for first order nonconservative hyperbolic systems: see [28]. This
framework is based on the concept of path-conservative numerical scheme, which is a generalization
of the usual concept of conservative method for conservation laws.

One of the main difficulties in designing good numerical methods for the particular case of bedload
sediment transport models is related to the fact that the interaction between the fluid and the sediment
layers is usually very weak (see [4]). Due to this, first order numerical schemes are, in general, too
diffusive and numerical methods which are at least second order accurate are thus needed.

The goal of this work is to design a robust second order finite volume numerical scheme for
Saint-Venant-Exner models. We consider unstructured meshes in order to make easier the adaptation
to complex geometries. To design such a method we follow the general framework described in
[5]: first, a Roe-type scheme is obtained based on the notion of Roe linearization introduced by
Toumi in [36]. This notion also depends on the choice of a family of paths: here, the family of
straight segments is considered. We also present some new variants of these Roe schemes based on a
generalized flux limiter technique. Next, the accuracy of the schemes is increased by using a second
order reconstruction operator. The main difficulty to define such an operator on an unstructured mesh
is that, in general, huge complex stencils are needed what increases dramatically the computational
cost. In [17] two high order schemes based on WENO reconstructions for 2D hyperbolic conservative
problems on unstructured meshes composed by triangles have been presented: a third order and a
fourth order operator based, respectively, on a combination of linear and quadratic polynomials. In
[30] a third order non-oscilatory reconstruction for unstructured quadrilateral meshes is proposed
which is based on a bi-hyperbolic reconstruction. In [9], [10] and [11] a family of non-oscillatory
finite volume and discontinuous Galerkin schemes of arbitrary accuracy in space and time for solving
hyperbolic systems on unstructured triangular and tetrahedral grids using the ADER approach has
been introduced. These authors propose a new WENO reconstruction technique that can be easily
evaluated and differentiated at any point. In [34] a discontinuous Galerkin finite element for river
bed evolution has also been presented. In this work, we present a new second order reconstruction
operator for unstructured meshes of MUSCL type (see [1]).

This paper is organized as follows: in Section 2 the system of equations of the Saint-Venant-Exner
models considered here are presented. In Section 3 the main ingredients to design the numerical
schemes are presented: first the general form of a Roe’s scheme for (1) is recalled and a generalized
flux limiter technique is also introduced to reduce the numerical diffusion. Then, the extension to
higher order by means of a reconstruction operator is discussed. Section 4 is devoted to the definition
of the MUSCL type reconstruction used here, achieving second order accuracy. In Section 5 the
numerical schemes are particularized for the considered Saint-Venant-Exner models. In particular,
the Roe matrices for the different models are presented. Finally, several numerical tests are shown in
Section 6 to validate the methods and some conclusions are drawn.

2 Sediment transport models in shallow water

In this section, the equations of the hydrodynamical and the morphodiynamical models are first
presented. Next, the formulation of the coupled system in the form (1) is derived.
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2.1 Hydrodynamical model: shallow-water system

Let us consider the one layer shallow-water system
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∂x1
+

∂q2

∂x2
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∂q1
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+
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2
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∂x2

(q1q2

h

)
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h
+

1

2
gh2
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∂H

∂x2
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(2)

which are the equations governing the flow of a shallow layer of homogeneous inviscid fluid in a two
dimensional domain D ⊂ R2. The points of D will be represented by x = (x1, x2). In the equations,
H(x, t) represents the bottom depth measured from a fixed level of reference AR. Notice that, due
to the motion of the sediment layer, this function may depend on the time. h(x, t) represents the
thickness of the layer; g, the gravity ; and

q(x, t) = (q1(x, t), q2(x, t)),

the mass-flow. These quantities are related to the vertical averaged velocity u = (u1(x, t), u2(x, t)) by
the relations:

qj(x, t) = uj(x, t)h(x, t), j = 1, 2.

Sf = (Sf,1, Sf,2) represents the bed friction forces which are modeled here by the Manning formula:

Sf,1 =
ghn2‖u‖u1

h4/3
, Sf,2 =

ghn2‖u‖u2

h4/3
, (3)

where n is the Manning coefficient. Finally the water surface elevation, which is denoted by η, is given
by the formula η = h − H .

2.2 Morphodynamical model

Let us consider that the bottom is composed by a sediment layer whose thickness is given by zb(x, t)
laying on a non-erodible bottom whose depth measured from the level of reference is given by the
function H̃(x). Therefore the bottom depth function is given by the formula:

H(x, t) = H̃(x) − zb(x, t).

(See Figure 1). Notice that the thickness of the sediment layer may vanish in a part of the bottom.
The sediment layer motion due to bedload transport is modelled here by the formula:

∂zb
∂t

+ ξ
∂qb,1
∂x1

+ ξ
∂qb,2
∂x2

= 0. (4)

where ξ = 1/(1−ρ0) and ρ0 is the porosity of the sediment layer. qb = (qb,1(h,q), qb,2(h,q)) represents
the solid transport discharge, which is assumed to depend on the hydraulic variables.

Let us describe the formulae considered in this work for the solid transport discharge qb for
granular and non-cohesive sediments. Even if these formulae are usually obtained for stationary flux
in rivers, they can also be applied to tidal or coastal currents, as the time of response of the sediment
is very small in comparison with the period of tides or waves. Notice that no pressure terms and nor
deposition effects are included in the formulae listed below.
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Figure 1: A shallow channel with a sediment layer.

1. grass model: Grass (see [14]) proposed the following formula for the solid transport discharge,

qb,1 = Agu1(u
2
1 + u2

2),

qb,2 = Agu2(u
2
1 + u2

2).
(5)

The constant Ag (s2/m), which is usually obtained from experimental data, takes into account
the grain diameter and the kinematic viscosity. This coefficient takes values between 0 and 1:
the closer to 0 the weaker the interaction between the sediment and the fluid. Notice that,
according to Grass formula, the bedload sediment transport begins automatically when the fluid
starts to move.

2. Meyer-Peter&Müller model: the formula proposes by Meyer-Peter&Müller in [25]) – MP&M in
what follows –, which is among the most frequently used, is based on the median grain diameter
d50 (see [33]). Chien in [7] proved that the original formula can be reduced to the following
expression,

qb,1 = 8
√

(G − 1)gd3
i

u1√
u2

1 + u2
2

max (τ∗ − τ∗,c, 0)
3/2

,

qb,2 = 8
√

(G − 1)gd3
i

u2√
u2

1 + u2
2

max (τ∗ − τ∗,c, 0)
3/2

,

(6)

where:

τ∗ =
γn2(u2

1 + u2
2)

3

2

(Ps − P)dih1/3
.

Here P denotes the specific weight of the fluid, P = gρ, ρ being the water density; Ps, the
specific weight of the sediment, Ps = gρs, ρs being the sediment density; di, the sediment
grain size (diameter); n, the Manning coefficient; G, the relative density, G = ρs/ρ; τ∗,c, the
non-dimensional critical shear stress, that for MP&M is equals to 0.047.

According to this formula, the motion of the granular sediment only begins when the non-
dimensional shear stress τ∗ is bigger that the non-dimensional critical shear stress τ∗,c = 0.047.

This formula is usually applied to rivers and channels whose slope is below to 2%, 0.4 ≤ di ≤
29 mm, and 1.25 ≤ G ≤ 4.2.
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2.3 Coupled model

The expression of the complete system is as follows:
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+ ξ
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∂x2
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(7)

If the depth function H is used the system can be rewritten as follows:
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(
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∂H

∂t
− ξ

∂qb,1
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− ξ
∂qb,2
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(8)

or equivalently:

∂W

∂t
+

∂

∂x1
F1(W ) +

∂

∂x2
F2(W ) = B1(W )

∂W

∂x1
+ B2(W )

∂W

∂x2
+ SF , (9)

where,

W =




h
q1

q2

H


 , F1 =




q1

q2
1

h
+

1

2
g h2

q1q2

h

−ξqb,1




, F2 =




q2

q1q2

h

q2
2

h
+

1

2
g h2

−ξqb,2




,

B1(W ) =




0 0 0 0
0 0 0 g h
0 0 0 0
0 0 0 0


 , B2(W ) =




0 0 0 0
0 0 0 0
0 0 0 g h
0 0 0 0


 , SF (W ) =




0
−Sf,1
−Sf,2

0


 . (10)

The friction term SF will be discretized in a semi-implicit manner. For the sake of simplicity, in
the presentation of the numerical schemes this term is supposed to vanish, so that the system reduces
to:

∂W

∂t
+

∂

∂x1
F1(W ) +

∂

∂x2
F2(W ) = B1(W )

∂W

∂x1
+ B2(W )

∂W

∂x2
, (11)

which can be also written in the nonconservative form (1):
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∂W
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where
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.

3 High order finite volume schemes

3.1 Roe methods

Let us consider a 2D nonconservative hyperbolic system

Wt + A1(W )Wx1
+ A2(W )Wx2

= 0, x = (x1, x2) ∈ D ⊂ R2, t ∈ (0, T ), (13)

where W (x, t) takes values on a convex domain Ω of RN and Ai, i = 1, 2 are two smooth and locally
bounded matrix-valued functions from Ω to MN×N(R).

Given an unitary vector η = (η1, η2) ∈ R2, we define the matrix

A(W, η) = A1(W )η1 + A2(W )η2.

We assume that (13) is strictly hyperbolic, i.e. for all W ∈ Ω and ∀ η ∈ R2, the matrix A(W, η) has
N real and distinct eigenvalues

λ1(W, η) < · · · < λN (W, η).

A(W, η) is thus diagonalizable:

A(W, η) = K(W, η) · Λ(W, η) · K(W, η)−1,

where Λ(W, η) is the diagonal matrix whose coefficients are the eigenvalues of A(W, η) and K(W, η)
is a matrix whose j-th column is an eigenvector Rj(W, η) associated to the eigenvalue λj(W, η),
j = 1, . . . , N .

In order to discretize (13), first the computational domain D is decomposed into subsets with a
simple geometry, called cells or finite volumes, Vi ⊂ R2. We assume here that the cells are closed
convex polygons whose intersections are either empty, a complete edge or a vertex. We will denote by
T the mesh, i.e. the set of cells, and by NV the number of cells.

The following notation is considered: given a finite volume Vi, |Vi| represents its area; Ni ∈ R2,
its center; Ni, the set of indexes j such that Vj is a neighbor of Vi; Eij , the common edge to two
neighbor cells Vi and Vj , and |Eij | its length; dij , the distance from Ni to Eij ; ηij = (ηij,1, ηij,2), the
normal unit vector of the edge Eij pointing towards the cell Vj (see Figure 2); ∆, the maximum of
the diameters of the cells; and Wn

i , the constant approximation of the averaged solution in the cell Vi
at time tn provided by the numerical scheme:

Wn
i
∼= 1

|Vi|

∫

Vi

W (x, tn)dx.
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Figure 2: Finite Volumes.

Next, we consider a Roe linearization of (13) based on a family of paths in Ω ⊂ RN , i.e., a locally
Lipschitz map

Ψ: [0, 1] × Ω × Ω × S1 → Ω.

where S1 ⊂ R2 denotes the unit sphere, that satisfies some natural properties (see [5] for details):

1. Ψ(0; WL, WR, η) = WL and Ψ(1; WL, WR, η) = WR, for any WL, WR ∈ Ω, η ∈ S1.

2. Ψ(s; WL, WR, η) = Ψ(1 − s; WR, WL,−η), for any WL, WR ∈ Ω, s ∈ [0, 1], η ∈ S1.

3. Ψ(s, W, W, η) = W , for any W ∈ Ω, s ∈ [0, 1], η ∈ S1.

Once a family of paths has been chosen, a Roe linearization of the system (13) is considered, i.e.,
a function AΨ : Ω × Ω × S1 → MN×N(R) satisfying the following properties:

1. For each WL, WR ∈ Ω and η ∈ S1, AΨ(WL, WR, η) has N distinct real eigenvalues:

λ1(WL, WR, η) < λ2(WL, WR, η) < · · · < λN (WL, WR, η).

2. AΨ(W, W, η) = A(W, η), for every W ∈ Ω, η ∈ S1.

3. For any WL, WR ∈ Ω, η ∈ S1:

AΨ(WL, WR, η) · (WR − WL) =

∫ 1

0

A(Ψ(s; WL, WR, η), η)
∂Ψ

∂s
(s; WL, WR, η)ds. (14)

Let us denote by ΛΨ(WL, WR, η) the diagonal matrix whose coefficients are the eigenvalues λ1(WL, WR, η),
. . . , λN (WL, WR, η) and KΨ(WL, WR, η) a N ×N matrix whose columns are associated eigenvectors.
The following notation will be used:

A−
Ψ(WL, WR, η) = KΨ(WL, WR, η) · Λ−

Ψ(WL, WR, η) · KΨ(WL, WR, η)−1,

|AΨ|(WL, WR, η) = KΨ(WL, WR, η) · |ΛΨ|(WL, WR, η) · KΨ(WL, WR, η)−1,

where Λ−
Ψ(WL, WR, η) and |ΛΨ|(WL, WR, η) are respectively the diagonal matrices whose coefficients

are the negative part and the absolute value of the eigenvalues λ1(WL, WR, η), . . . , λN (WL, WR, η).
The following identity holds:

A−
Ψ =

1

2
(Aψ − |Aψ |). (15)
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Notice that if Ak(W ), k = 1, 2 are the Jacobian matrices of two smooth flux functions Fk(W ),
k = 1, 2, (14) is independent of the family of paths and it reduces to the usual Roe property:

AΨ(WL, WR, η) · (WR − WL) = Fη(WR) − Fη(WL), (16)

for any η = (η1, η2) ∈ S1, where

Fη(W ) = η1F1(W ) + η2F2(W ) (17)

represents the flux along the η direction.
The general expression of a Roe’s scheme in upwind form for (13) is given by (see [5] for details):

Wn+1
i = Wn

i − ∆t

|Vi|
∑

j∈Ni

|Eij |A−
ij · (Wn

j − Wn
i ), (18)

where
A−
ij = A−

Ψ(Wn
i , Wn

j , ηij).

A CLF condition has to be imposed to ensure the stability. We consider here the condition:

max

{ |λij,k|
dij

: i = 1, . . . , NV, j ∈ Ni, k = 1, . . . , N

}
· ∆t = δ, (19)

with 0 < δ ≤ 1.
As in the case of systems of conservation laws, when sonic rarefaction waves appear it is necessary

to modify the numerical scheme in order to obtain entropy-satisfying solutions. The Harten-Hyman
Entropy Fix technique (see [15]), for instance, can be easily adapted to this case.

In [5] some general results concerning the consistency and well-balanced properties of these Roe
schemes have been presented.

3.2 Flux limiters for nonconservative systems

Taking into account (15), the scheme (18) can also be written in the form:

Wn+1
i = Wn

i − ∆t

|Vi|
∑

j∈Ni

|Eij |
(

1

2
Aij · (Wn

j − Wn
i ) − 1

2
|Aij · |(Wn

j − Wn
i )

)
, (20)

where
|Aij | = |AΨ|(Wn

i , Wn
j , ηij).

This expression of the numerical scheme can be interpreted as a viscosity form: the first summand
within the parenthesis in (20) corresponds to the centered part and the second one to the numerical
viscosity.

We propose here to consider the more general family of schemes:

Wn+1
i = Wn

i − ∆t

|Vi|
∑

j∈Ni

|Eij |
(

1

2
Aij · (Wn

j − Wn
i ) − 1

2
Qij · (Wn

j − Wn
i )

)
. (21)

where
Qij = QΨ(Wn

i , Wn
j , ηij) (22)

is a viscosity matrix.
In the particular case of Roe schemes

QΨ = |AΨ| (23)
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but some other choices are possible. For instance, the choice

QΨ = ‖AΨ‖∞I,

where I is the identity matrix gives an extension of the usual Rusanov numerical method to noncon-
servative systems. But this choice of viscosity matrix increases the numerical diffusion and our goal
is to reduce it. To do it, let us consider that the mesh is composed by closed convex polygons with an
even number 2 m of pairwise parallel edges (in the meshes considered here m = 2). We propose here
the numerical scheme (21) with:

Qij = |Aij | − Kij · Lφ,ij · K−1
ij , (24)

where:
Kij = KΨ(Wn

i , Wn
j , ηij)

and

Lφ,ij = diag

{(
sgn (λij,k) − m νij λij,k

)
λij,k φ(rij,k), k = 1, . . . , N

}
,

with λij,k = λk(W
n
i , Wn

j , ηij), νij =
∆t

|Eij |
, φ is a flux-limiter function, and

rij,k =





[K−1
ij (W ∗

j − Wj)]k

[K−1
ij (Wj − Wi)]k

if sgn (λij) < 0,

[K−1
ij (Wi − W ∗

i )]k

[K−1
ij (Wj − Wi)]k

if sgn (λij,k) > 0,

1 if λij,k = 0,

where,
W ∗
i = Wi −∇Wi ·

−−−→
NiNj,

W ∗
j = Wj + ∇Wj ·

−−−→
NiNj .

Here ∇Wi (respectively ∇Wj) represents an approximation of ∇W (x) in the finite volume Vi (respec-
tively Vj). In practice, we use the approximation of gradients defined in Section 4.

Finally, an example of flux-limiter function is

φ(r) = max(0, min(1, βr), min(β, r)),

where if β = 1 we obtain the well-known minmod flux-limiter, while β = 2 corresponds to the superbee
flux-limiter.

Remark 1 Notice that Qij defined by (24) coincides with |Aij | in regions where W (x) is discontinuous
while in regions where W (x) is regular is close to mνijA2

ij , which is the viscosity matrix of a Lax-
Wendroff type method. As a consequence, even if it is also first order, it is more accurate than a Roe
scheme in regions where the solution is smooth.

Finally, concerning the stability of the numerical schemes (21) the following result can be proved
for 2D linear systems ****(see [?])

Theorem 1 Let λij,k and λQ
ij,k, k = 1, · · · , N be the eigenvalues of Aij and Qij, respectively. If Qij

and Aij have the same eigenvectors and their eigenvalues verify:

νi =
∆t |Eij |
|Vi|

, m ν2
i (λij,k)

2 ≤ νi

(
λQ
ij,k

)
≤ 1

m
, k = 1, . . . , N, i ∈ Z, j ∈ Ni, (25)

then the numerical schemes (21) is L2 stable.

It can be easily shown that the CFL condition (19) implies the L2 linear stability of both schemes
(20) and (21)-(24) for meshes composed by regular polygons of 2m edges.
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3.3 Higher order extension

In order to extend to high order the schemes of the form (21) we consider a reconstruction operator,
i.e. an operator that associates to a given family {Wi}NVi=1 of values at the cells two families of functions
defined at the edges:

γ ∈ Eij → W±
ij (γ),

in such a way that, whenever

Wi =
1

|Vi|

∫

Vi

W (x) dx (26)

for some smooth function W , then

W±
ij (γ) = W (γ) + O(∆p), ∀γ ∈ Eij .

We will assume that the reconstructions are calculated as follows: given the family {Wi}NVi=1 of
values at the cells, first an approximation function is constructed at every cell Vi, based on the values
of WJ at some of the cells close to Vi (the stencil):

Pi(x) = Pi (x; {Wj}j∈Bi
) ,

for some set of indexes Bi. If, for instance, the reconstruction only depends on the neighbor cells of Vi,
then Bi = Ni∪{i}. These approximations functions are calculated usually by means of an interpolation
or approximation procedure. Once these functions have been constructed, the reconstructions at
γ ∈ Eij are defined as follows:

W−
ij (γ) = lim

x→γ
Pi(x), W+

ij (γ) = lim
x→γ

Pj(x). (27)

Clearly, for any γ ∈ Eij the following equalities are satisfied:

W−
ij (γ) = W+

ji (γ); W+
ij (γ) = W−

ji (γ).

We suppose that the reconstruction operator satisfies the following properties:

(HP1) It is conservative, i.e. the following equality holds for any cell Vi:

Wi =
1

|Vi|

∫

Vi

Pi(x)dx. (28)

(HP2) It is of order p, verifying W (γ) − W±
ij (γ) = ∆pgij(γ) + O(∆p+1), for any γ ∈ Eij , being gij a

regular function.

(HP3) It is of order q in the interior of the cells, i.e. if the operator is applied to a sequence {Wi}
satisfying (26) for some smooth function W (x), then:

Pi(x) = W (x) + O(∆q), ∀x ∈ int(Vi). (29)

(HP4) The gradient of Pi provides an approximation of order m of the gradient of W :

∇Pi(x) = ∇W (x) + O(∆m), ∀x ∈ int(Vi). (30)

Once the reconstruction operator has been chosen, the general expression of a semi-discrete scheme
extending to higher order a first order scheme of the form (21) is the following:
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W ′
i (t) = − 1

|Vi|



∑

j∈Ni

∫

Eij

1

2
(Aij(γ, t) −Qij(γ, t)) ·

(
W+
ij (γ, t) − W−

ij (γ, t)
)

dγ

+

∫

Vi

(
A1(P

t
i (x))

∂P t
i

∂x1
(x) + A2(P

t
i (x))

∂P t
i

∂x2
(x)

)
dx

]
,

(31)

where P t
i are the approximation functions corresponding to the cell values Wi(t), i.e.

P t
i (x) = Pi (x; {Wj(t)}j∈Bi

) ,

W±
ij (γ, t) are given by

W−
ij (γ, t) = lim

x→γ
P t
i (x), W+

ij (γ, t) = lim
x→γ

P t
j (x), (32)

and

Aij(γ, t) = AΨ

(
W−
ij (γ, t), W+

ij (γ, t), ηij
)
,

Qij(γ, t) = QΨ

(
W−
ij (γ, t), W+

ij (γ, t), ηij
)
.

The following result can be proved (see [5]):

Theorem 1 Let us assume that A1 and A2 are of class C2 with bounded derivatives and AΨ and QΨ

are bounded. Let us also suppose that the reconstruction operator satisfies the hypothesis (HP1)-(HP4).
Then (31) is an approximation of order at least α = min(p, q, m).

Remark 2 This result is rather pessimistic: the order of the observed error is usually α = min(p, q, m+
1): see [5] for more details.

In practice, the integral terms in (31) are numerically approached. In this case, a 1d quadrature
formula of order r̄ has to be chosen to calculate the line integrals:

∫ b

a

f(s)ds = (b − a)




n(r̄)∑

l=1

ωlf(xl)



+ O(∆r̄), (33)

where n(r̄) denotes the number of points, ωl are the weights, and xl = a + sl(b − a) with sl ∈ [0, 1],
represent the quadrature points. A quadrature formula of order s̄ is also needed to calculate the
volume integrals:

∫

Vi

f(x) dx = |Vi|
n(s̄)∑

l=1

αlf(xil) + O(|Vi|s̄). (34)

In order to preserve the order of the numerical scheme, it is necessary to have r̄ ≥ α and s̄ ≥ α.
The numerical scheme writes then as follows:

W
′

i (t) = − 1

|Vi|




∑

j∈Ni

|Eij |
n(r̄)∑

l=1

wl
2

(Aij,l(t) −Qij,l(t)) ·
(
W+
ij,l(t) − W−

ij,l(t)
)

+|Vi|
n(s̄)∑

l=1

αl

(
A1(P

t
i (x

i
l))

∂P t
i

∂x1
(xil) + A2(P

t
i (x

i
l))

∂P t
i

∂x2
(xil)

)
 ,

(35)

where
W±
ij,l(t) = W±

ij (aij + sl(bij − aij), t),
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and

Aij,l(t) = AΨ

(
W−
ij,l(t), W

+
ij,l(t), ηij

)
,

Qij(γ, t) = QΨ

(
W−
ij,l(t), W

+
ij,l(t), ηij

)
.

Remark 3 An interesting technique avoiding the explicit computation of ∇Pi(x) has been introduced
in [27] making thus the expected order of accuracy equal to min(p, q). The extension to 2D problems
of this technique, which is based on the use of the trapezoidal rule and Romberg extrapolation for the
numerical integration is straightforward for structured meshes. For unstructured meshes a Romberg
extrapolation formula for triangles could be used (see [41]).

In [5] the well-balanced properties of the schemes (31) or (35) are analyzed.

3.4 Application to systems of the form (11)

The explicit calculation of Roe matrices for general nonconservative systems may be a difficult task.
Nevertheless, when the system (13) comes from the reformulation of a system of the form (11) this
calculation may if, given the family of paths Ψ, any unit vector η, and two states WL, WR, it is
possible to obtain:

• A matrix J (WL, WR, η) such that:

J (WL, WR, η)(WR − WL) = Fη(WR) − Fη(WL), (36)

i.e. a Roe matrix in the usual sense for the flux function Fη.

• A matrix BΨ(WL, WR, η) satisfying:

BΨ(WL, WR, η)(WR − WL) =

∫ 1

0

B (Ψ(s; WL, WR, η), η)
∂Ψ

∂s
(s; WL, WR, η) ds; (37)

where B(W, η) = B1(W )η1 + B2(W )η2.

Then, it can be easily verified that the matrix:

AΨ(WL, WR, η) = J (WL, WR, η) − BΨ(WL, WR, η), (38)

satisfies (14). Therefore, It is a Roe linearization provided that it has N real different eigenvalues (see
[29] and [5]). In this case, using the divergence theorem, the semi-discrete numerical scheme (31) can
be also rewritten as follows:

W
′

i (t) = − 1

|Vi|




∑

j∈Ni

∫

Eij

1

2
(Aij(γ, t) −Qij(γ, t)) ·

(
W+
ij (γ, t) − W−

ij (γ, t)
)

dγ

+

∫

Eij

Fηij

(
W−
ij (γ, t)

)
ds −

∫

Vi

(
B1(P

t
i (x))

∂P t
i

∂x1
(x) + B2(P

t
i (x))

∂P t
i

∂x2
(x)

)
dx

]
.

(39)

Taking into account the form of the Roe matrix and the Roe property (36) the numerical scheme can
be rewritten in the form:

W
′

i (t) = − 1

|Vi|

[∫

Eij

(
F
(
W−
ij (γ, t), W+

ij (γ, t), ηij
)
− 1

2
Bij(γ, t) · (W+

ij (γ, t) − W−
ij (γ, t))

)
dγ

−
∫

Vi

(
B1(P

t
i (x))

∂P t
i

∂x1
(x) + B2(P

t
i (x))

∂P t
i

∂x2
(x)

)
dx

]
,

(40)
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where

F(W−
ij (γ, t), W+

ij (γ, t), ηij) =
1

2

(
Fηij

(W−
ij (γ, t)) + Fηij

(W+
ij (γ, t))

)

−1

2
Qij(γ, t)(W+

ij (γ, t) − W−
ij (γ, t)),

and
Bij(γ, t) = BΨ(W−

ij (γ, t), W+
ij (γ, t), ηij).

Finally, if the integrals are numerically approached, the expression of the numerical scheme is the
following:

W
′

i (t) = − 1

|Vi|



∑

j∈Ni

|Eij |
n(r̄)∑

l=1

wl

(
(F(W−

ij,l(t), W
+
ij,l(t), ηij) −

1

2
Bij,l(t) · (W+

ij,l(t) − W−
ij,l(t))

)

−|Vi|
n(s̄)∑

l=1

αl

(
B1(P

t
i (x

i
l))

∂P t
i

∂x1
(xil) + B2(P

t
i (x

i
l))

∂P t
i

∂x2
(xil)

)

 ,

(41)
with the obvious notation.

For the time discretization, we consider high order TVD Runge-Kutta method like those described
in [32]. In particular, in this work we use a second order MUSCL reconstruction operator in space
and a second order TVD Runge-Kutta method. The resulting numerical scheme is thus second order
accurate both in space and time.

Observe that if a first order reconstruction operator is chosen and the Euler scheme is applied to
(40), the following Roe-type scheme is obtained:

Wn+1
i = Wn

i − ∆t

|Vi|
∑

j∈Ni

|Eij |
(
F(Wn

i , Wn
j , ηij) −

1

2
Bij · (Wn

j − Wn
i )
)
. (42)

Before concluding this section, let us discuss the difficulties arising when a Roe linearization is not
available. More precisely, let us suppose that, given two states WL, WR, it is not easy to obtain a
matrix J (WL, WR, η) satisfying (36) (which is the case for some of the Saint-Venant-Exner models
considered here) and/or a matrix BΨ(WL, WR, η) satisfying (37). In this case, an intermediate matrix

Aij(γ, t) = Jij(γ, t) + Bij(γ, t)

can always be calculated: for instance, it can be obtained by evaluating A(W, ηij) at some intermediate
state Ŵij(γ, t) between W−

ij (γ, t) and W+
ij (γ, t). The viscosity matrix can be then obtained by applying

(23) or (24) to this intermediate matrix. But if the matrix J (WL, WR, η) does not satisfy (36)
the corresponding numerical scheme (39) has a serious drawback: if the system has a conservative
subsystem (which is the case for Saint-Venant-Exner systems (7)in which the first and the fourth
equations are pure conservation laws) the numerical scheme is not conservative for that subsystem. In
particular, the numerical scheme is not conservative when it is applied to a conservative system, i.e.
when B vanishes. Nevertheless, this drawback may be overcome if the numerical scheme is written
in the form (40) (or (41)). In that case, the numerical scheme is conservative for any conservative
subsystem and it reduces to a conservative scheme when B vanishes. Moreover, it has the same
accuracy than those obtained on the basis of a Roe matrix and the linear stability is the same in both
cases, as the two approaches coincide when the system is linear. Nevertheless, we have observed that,
for nonlinear systems, a reduction of the CFL parameter can be necessary to guarantee the stability
when the intermediate matrix is not a Roe matrix.

13



In order to explain the reason of this phenomenon, let us consider the particular case of the first
order scheme (42). When this scheme is based on a Roe linearization it can be rewritten in the form:

Wn+1
i = Wn

i − ∆t

|Vi|
∑

j∈Ni

|Eij |
2

(Aij −Qij) ·
(
Wn
j − Wn

i

)
. (43)

The matrices Aij and Qij have the same eigenvectors and thus Theorem 1 can be locally applied to
the scheme (provided that the mesh satisfies its hypothesis). Due to this, the CFL condition (25)
is still valid for nonlinear systems. On the other hand, when the intermediate matrix Aij used to
compute Bij and Qij is not a Roe matrix, the numerical scheme can still be written in a form similar
to (43) but replacing Aij by:

A∗
ij = J ∗

ij − Bij ,

where J ∗
ij is any matrix satisfying:

J ∗
ij · (Wn

j − Wn
i ) = Fηij

(Wn
j ) − Fηij

(Wn
j ).

Such a matrix can be theoretically obtained by applying for instance the mean value theorem to every
component. But Notice that in this case A∗

ij and Qij can have different eigenvectors (moreover, A∗
ij

could be not even diagonalizable). As a consequence, Theorem 1 cannot be applied and we have
observed in practice that condition (25) may be not enough to guarantee the stability for nonlinear
systems.

4 A second order reconstruction operator

The definition of reconstruction operators for 2D domains is in general a difficult task. In the case of
structured meshes composed by rectangles whose edges are parallel to the axes, the problem usually
reduces to consider a standard 1D reconstruction in both coordinates such as ENO [31], WENO ([19],
[21]), Hyperbolic Reconstructions [23], etc. Nevertheless the development of a reconstruction operator
on unstructured meshes is a more difficult problem, that may require a higher computational cost (see
[17], for example). In this section we propose a MUSCL-type second order reconstruction operator
for unstructured meshes of edge type (see Figure 3).

Figure 3: Finite volume of edge type.

Let us assume that the finite volume has been constructed on the basis of a Finite Element trian-
gulation of the domain. Then, given an edge Ei of the triangulation, the vertices of the corresponding
finite volume Vi are given by the extremes of Ei and the barycenters of the two triangles containing
Ei (see Figure 3). The middle point of the edge Ei is represented by Ci.
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Let us consider the decomposition Vi = Vi1 ∪ Vi2 ∪ Vi3 ∪ Vi4, where Vij , j = 1, 2, 3, 4, are the
triangles defined by Ci and the four edges of the finite volume Vi (see Figure 4). We also denote by
bij , j = 1, 2, 3, 4, the corresponding barycenters of the triangles Vij .

Figure 4: Subcells Vij (triangles) on Vi.

Given a smooth function W , by applying the quadrature formula of the barycenter, we obtain:

1

|Vij |

∫

Vij

W (x)dx = W (bij) + O(∆2), j = 1, 2, 3, 4,

and thus the following equality holds:

W i =
1

|Vi|

∫

Vi

W (x)dx =

4∑

j=1

|Vij |
|Vi|

W (bij) + O(∆2). (44)

Moreover, using Taylor expansion, it can be easily verified that given a, b, c, d such that a+b+c+d = 1,
on has:

aW (x1) + bW (x2) + cW (x3) + dW (x4) = W (ax1 + bx2 + cx3 + dx4) + O(∆2).

Therefore, the following equality also holds:

W i = W (Ni) + O(∆2), (45)

where

Ni =

4∑

j=1

|Vij |
|Vi|

bij . (46)

In what follows we denote by Ni the point of Vi defined by (46), that is, the center of mass of the cell
Vi. We will look for a linear approximation function in Vi of the form:

Pi(x) = W i + ∇Wi · (x − Ni)
T , (47)

where ∇Wi represents a constant approximation of the gradient of W (x) in Vi.

Remark 4 A reconstruction operator based on approximation functions Pi of the form (47) is con-
servative, i.e. it satisfies:

1

|Vi|

∫

Vi

Pi(x)dx = W i.
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In effect, by using the definition of Ni (46), we obtain:

1

|Vi|

∫

Vi

∇Wi · (x − Ni)
T dx =

∇Wi

|Vi|

(∫

Vi1

xdx +

∫

Vi2

xdx +

∫

Vi3

xdx +

∫

Vi4

xdx − |Vi|Ni

)

=
∇Wi

|Vi|




4∑

j=1

|Vij |bij − |Vi|Ni


 = 0.

In order to prove that the state reconstruction operator (47) provides a second order approxima-
tion, the following result is used:

Theorem 2 Let f , g ∈ Cp(Ω), being Ω ⊂ Rn an open convex set. If there exists a set of p points
{x0, . . . ,xp−1} ⊂ Ω such that ∇k(f −g)(xk) = O(m(Ω)p−k) then (f −g)(x) = O(m(Ω)p), where m(Ω)
is the measure of Ω.

Therefore, taking into account that Pi(Ni) = W i = W (Ni) + O(∆2), it is enough to obtain a first
order approximation ∇Wi of ∇W (x) in Vi.

4.1 Gradient approximation

For the sake of simplicity, let us suppose that Vi is an interior cell and let us denote by Vi,1, . . . , Vi,4 its
four neighbors. Let us consider the points Ni,j , j = 1, . . . , 4, associated to Vi,j , j = 1, . . . 4, respectively,
given by (46). Let us also consider the four triangles T1, . . . , T4 shown in Figure 5: the vertices of Tj ,
j = 1, . . . , 4, are {Ni, Ni,j , Ni,ip(j)}, where ip(1) = 2, ip(2) = 3, ip(3) = 4, and ip(4) = 1. We consider
in Tj a linear approximation of the gradient ∇W|Tj

using the values Wi, Wi,1, . . . , Wi,4 which are
second order approximation of W (Ni), W (Ni,1), . . . , W (Ni,4), respectively. This linear approximation
is given by:

∇W|Tj
= Wi∇λ0

j + Wi,j∇λjj + Wi,ip(j)∇λ
ip(j)
j , (48)

where λ0
j , λjj , λ

ip(j)
j are the barycentric coordinates associated to the vertices.

Figure 5: Triangles T1, T2, T3, T4, used to approximate the gradient of W (x) in Vi.

Finally, the following approximation of ∇W (x) in Vi is considered:

∇W (x)|Vi
≈ ∇Wi =

4∑

j=1

|Tj|∇W|Tj

4∑

j=1

|Tj|
. (49)

The following result holds:
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Theorem 2 For a given regular solution W , (49) is a first order approximation of the gradient of W
in Vi.

The proof is detailed in Appendix A.
Observe that, due to the small size of the stencils and to the easy expression of the coefficients

(49) used to approximate the gradients, the computational cost involved by the calculation of this
reconstruction operator is low.

4.2 MUSCL reconstructions

As it is well known the solutions of nonlinear hyperbolic systems are likely to develop discontinuities
even for very smooth initial conditions. It is thus necessary to modify the reconstruction operator
(47) by introducing a slope limiter in order to avoid spurious oscillations near the discontinuities. We
use the following notation:

Wi =




Wi,1

Wi,2

...
Wi,N


 , ∇Wi =




∇Wi,1

∇Wi,2

...
∇Wi,N


 ,

where ∇Wi is the approximation of the gradient given by (49),
We define here a modified reconstruction operator of the form:

Pi(x) = Wi + ∇̃Wi · (x − Ni)
T , (50)

where ∇̃Wi is given by:

∇̃Wi = ϕi : ∇Wi =




ϕi,1∇Wi,1

ϕi,2∇Wi,2

...
ϕi,N∇Wi,N


 . (51)

where ϕi = (ϕi,1, · · · , ϕi,N ) is a slope limiter function associated to the control volume Vi. An operator
of this type is known as a MUSCL reconstruction. See [1] and [2] for some possible definitions of the
limiter function.

Remark 5 In [38], the following historical remark can be found: "It has been pointed out to me by
Dr. Vladimir Sabelnikov, formerly of TsAGI, the Central Aerodynamical National Laboratory near
Moscow, that a scheme closely resembling MUSCL (including limiting) was developed in this laboratory
by V. P. Kolgan (1972). Kolgan died young; his work apparently received little notice outside TsAGI."

Indeed, although the reference [37] is usually cited for MUSCL reconstructions, the paper of Kolgan
[20] appeared seven years before. We found this remark in [12].

The slope limiter in [1] is defined by:

ϕi,l = min
j∈Ni

{ϕij,l}, l = 1, · · · , N, (52)

where
ϕij,l = max{0, min{β rij,l, 1}, min{rij,l, β}}, β > 0. (53)

Here, rij,l is given by:
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rij,l =





Wmax
i,l − Wi,l

W ∗
ij,l − Wi,l

if W ∗
ij,l − Wi,l > 0,

Wmin
i,l − Wi,l

W ∗
ij,l − Wi,l

if W ∗
ij,l − Wi,l < 0,

1 if W ∗
ij,l = Wi,l,

l = 1, · · · , N, (54)

where
Wmin
i,l = min{[Wi,l, min

j∈Ni

{Wj,l}}, Wmax
i,l = max{Wi,l, max

j∈Ni

{Wj,l}},

and
W ∗
ij = Wi + ∇Wi · (cij − Ni)

T ,

where cij is the middle point of the edge Eij . In the numerical tests we use β = 1 that corresponds
to the minmod limiter.

The slope limiter (53)-(54) is commonly used in MUSCL reconstructions for 2D systems and,
in general, it provides good results. Nevertheless, in the numerical tests we have observed some
oscillations near the shocks in the simulations obtained with the Grass model for medium or high
interactions between the fluid and the sediment, or when the MP&M model is used. In order to avoid
these oscillations, we introduce a new slope limiter using a greater number of slopes in its definition.
The idea is to use the slope limiter which is usually considered in 1D problems along the normal
direction at the middle point of every edge. This increment of the information used to define the
limiter allows us in particular to improve the reconstruction when the sign of some of the derivatives
changes.

The new limiter αi = (αi,1, · · · , αi,N ) is defined as follows:

αi,l = min
j∈Ni

{αij,l}, l = 1, · · · , N (55)

where
αij,l = min{α1

ij,l, α
2
ij,l}, (56)

with
α1
ij,l = max(0, min(1, r1

ij,l)),

α2
ij,l = max(0, min(1, r2

ij,l)),

and r1
ij,l, r2

ij,l, l = 1, · · · , N are defined by,

r1
ij,l =





Wi,l − W ∗
i,l

Wj,l − Wi,l
if Wj,l − Wi,l 6= 0,

1 if Wj,l − Wi,l = 0,

and

r2
ij,l =






W ∗
j,l − Wj,l

Wj,l − Wi,l
if Wj,l − Wi,l 6= 0,

1 if Wj,l − Wi,l = 0;

being,
W ∗
i = Wi −∇Wi ·

−−−→
NiNj,

W ∗
j = Wj + ∇Wj ·

−−−→
NiNj .

Notice that αij,l = αji,l.
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Remark 6 Observe that in the definition of r1
ij,l and r2

ij,l, l = 1, · · · , N three approximations of the

directional derivative along
−−−→
NiNj are used:

Wj − Wi

d(Ni, Nj)
, ∇Wi

Nj − Ni

d(Ni, Nj)
and ∇Wj

Nj − Ni

(dNi,Nj
)
.

Even if this new slope limiter gets rid of the oscillations mentioned above, it is too diffusive
in practice. Therefore we propose to consider a linear combination of both limiters, so that the
approximation functions used in practice are as follows;

Pi(x) = Wi + ∇̂Wi · (x − Ni)
T , (57)

where
∇̂Wi = ϑi : ∇Wi, (58)

and ϑi = (ϑi,1, · · · , ϑi,N ) is given by

ϑi,l = min
j∈Ni

{ϑij,l}, l = 1, · · · , N, (59)

being
ϑij,l = θ ϕij,l + (1 − θ)αij,l, l = 1, · · · , N. (60)

The reconstruction operator (50) is obtained if θ = 1. In practice the choice θ = 1
2 gives good

results. In Section 6.1 a comparison between the reconstruction operators (57) corresponding to θ = 1
and θ = 1

2 is presented.

5 Application to Saint-Venant-Exner models

5.1 Roe matrices

Given a unit vector η, the expressions of W , Fη, and B(W, η) for the particular case of Saint-Venant-
Exner models (8) are the following:

W =

[
U
H

]
, U =




h
q1

q2



 ,

Fη(W ) =

[
F sw
η (U)

F b
η (U)

]
, F sw

η (U) =




q · η
q1

h
q · η +

1

2
g h2η1

q2

h
q · η +

1

2
g h2η2




, F b
η (U) = −ξqb · η, (61)

B(W, η) =




0 0 0 0
0 0 0 g hη1

0 0 0 g hη2

0 0 0 0


 .

In order to construct a Roe linearization, first a family of paths hast to be chosen. Here, we
consider the family of straight segments:

Ψ(s; WL, WR, η) = s WR + (1 − s) WL, s ∈ [0, 1].
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Next, following the indications in Section 3.4, given two states WL and WR whose components are
denoted by:

WL =

[
UL
Hl

]
, UL =




hl
q1,l

q2,l



 ; WR =

[
UR
Hr

]
, UR =




hr
q1,r

q2,r



 ;

we have to look for two matrices J (WL, WR, η) and BΨ(WL, WR, η) satisfying (36) and (37) respec-
tivelly. Due to the linear expression of the coefficients of B and of the family of paths, this latter
matrix can be easily obtained:

BΨ(WL, WR, η) =




0 0 0 0

0 0 0 gh̃η1

0 0 0 gh̃η2

0 0 0 0


 , (62)

where

h̃ =
hr + hl

2
.

On the other hand a Roe matrix is available for the flux function corresponding to the shallow
water model F sw

η :

J sw(UL, UR, η) =




0 η1 η2

−ũ2
1η1 + c̃2η1 − ũ1ũ2η2 2ũ1η1 + ũ2η2 ũ1η2

−ũ2
2η2 + c̃2η2 − ũ1ũ2η1 ũ2η1 ũ1η1 + 2ũ2η2


 (63)

where,

c̃ =

√
gh̃,

ũi =

√
hrui,r +

√
hlui,l√

hr +
√

hl
, ui,l =

qi,l
h

, ui,r =
qi,r
h

, i = 1, 2.

If we find a 1 × 3 vector Jb(UL, UR, η) such that:

Jb(UL, UR, η) · (UR − UL) = F b
η (UR) − F b

η (UL), (64)

then the 4 × 4 matrix whose block structure is given by:

J (WL, WR, η) =



 J sw(UL, UR, η)
0
0

Jb(UL, UR, η) 0



 (65)

trivially satisfies (36). As a consquence, the intermediate matrix:

AΨ(WL, WR, η) = J (WL, WR, η) − BΨ(WL, WR, η) (66)

satisfies (14). It is thus a Roe matrix if it has N different real eigenvalues.
Even if it is always possible to calculate a vector Jb(UL, UR, η) satisfying (64) (by applying for in-

stance the mean value theorem), its explicit calculation may be difficult due to the complex expression
of the solid transport formulae. In the particular case of the Grass model, it can explicitly calculated:

Jb(UL, UR, η) = [ũ1f̃ + ũ2̃i,−f̃ ,−ĩ] (67)
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with

f̃ =
Agξ

(√
hr +

√
hl
) (

u2
1,r + u1,ru1,l + u2

1,l + ũ2
2

)
η1

hr
√

hl + hl
√

hr

+
Agξ

(
2
√

hl
√

hr(u1,ru2,r + u1,lu2,l) + (hlu2,r + hru2,l)(u1,r + u1,l)
)
η2

(hr
√

hl + hl
√

hr)(
√

hl +
√

hr)
.

ĩ =
Agξ

(√
hr

√
hl
) (

u2
2,r + u2,ru2,l + u2

2,l + ũ2
1

)
η2

hr
√

hl + hl
√

hr

+
Agξ

(
2
√

hl
√

hr(u2,ru1,r + u2,lu1,l) + (hlu1,r + hru1,l)(u2,r + u2,l)
)
η1

(hr
√

hl + hl
√

hr)(
√

hl +
√

hr)
.

The expression of corresponding Roe matrix (66) is:

AG
Ψ(WL, WR, η) =




0 η1 η2 0

−ũ2
1η1 + c̃2η1 − ũ1ũ2η2 2ũ1η1 + ũ2η2 ũ1η2 −c̃2η1

−ũ2
2η2 + c̃2η2 − ũ1ũ2η1 ũ2η1 ũ1η1 + 2ũ2η2 −c̃2η2

ũ1f̃ + ũ2̃i −f̃ −ĩ 0




. (68)

In the particular case of η = [0, 1]t or η = [1, 0]t, this matrix coincides with that obtained by
Hudson in [18].

If the MP&M model is used, even if it is possible to obtain the explicit expression of a vector
Jb(UL, UR, η) satisfying (64), due to its very complex expression, it is not easy to check that the
corresponding intermediate matrix has N different real eigenvalues and thus it may be not a Roe
matrix. Instead, the following approximation is proposed here:

Jb(UL, UR, η) = −ξ

[
∂qb

∂h
(h̃, q̃) · η,

∂qb

∂q1
(h̃, q̃) · η,

∂qb

∂q2
(h̃, q̃) · η

]
(69)

where
q̃ = (h̃ũ1, h̃ũ2).

The expression of the corresponding intermediate matrix is the following:

AMPM
Ψ (WR, WR, η) =




0 η1 η2 0

−ũ2
1η1 + c̃2η1 − ũ1ũ2η2 2ũ1η1 + ũ2η2 ũ1η2 −c̃2η1

−ũ2
2η2 + c̃2η2 − ũ1ũ2η1 ũ2η1 ũ1η1 + 2ũ2η2 −c̃2η2

−ξ
∂qb
∂h

(h̃, ũ) −ξ
∂qb
∂q1

(h̃, ũ) −ξ
∂qb
∂q2

(h̃, ũ) 0




. (70)

This is not a Roe matrix, but according to the discussion at the end of Section 3.4, it allows us
to obtain a numerical scheme of the form (40) or (41). Moreover, the possible stability restrictions
discussed in that Section have not been noticed in this particular case.

Let us briefly discuss the eigenstructure of the matrices (68) and (70) (see [18] for more details).
Observe that only the entries (4,1), (4,2), (4,3) of both matrices are different. Let us consider a general
4 × 4 matrix A such that all its entries Ai,j with i 6= 4 or j = 4 coincide with both matrices. The
eigenvalues of such a matrix are

λ1 = ũ1η1 + ũ2η2,
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and the roots λ2, λ3, λ4 of the following polynomial:

P (λ) = λ3 + a1λ
2 + a2λ + a3 (71)

which coefficients are given by:

a1 = −2(ũ1η1 + ũ2η2), a2 = (ũ1η1 + ũ2η2)
2 − c̃2(1 + η2A4,3 + η1A4,2),

a3 = c̃2

(
−A4,1 + A4,2(−ũ1η

2
2 + ũ2η1η2) + A4,3(−ũ2η

2
1 + ũ1η1η2)

)
.

Let us define Q = (3a2 − a2
1)/9, R = (9a1a2 − 27a3− 2a3

1)/54. If Q3 + R2 < 0 all the roots are real
and they can be obtained by the the Cardano-Vieta formula:

λ2 = 2
√
−Q cos(θ/3) − a1/3, (72)

λ3 = 2
√
−Q cos((θ + 2π)/3) − a1/3, (73)

λ4 = 2
√
−Q cos((θ − 2π)/3) − a1/3, (74)

where θ = arc cos(R/
√
−Q3). Moreover, these three eigenvalues are always different.

Concerning the eigenvectors, if λ1 is simple, an associated eigenvector is:

R1 =




1

ũ1η1A4,3 + η2(ũ2A4,3 + ũ1η1 + ũ2η2 + A4,1)

η1A4,3 − η2A4,2

−ũ2η2A4,2 − η1(ũ1A4,2 + ũ2η2 + ũ1η1 + A4,1)

η1A4,3 − η2A4,2

1




;

and otherwise:

R1 =




0

0

−η2

η1




.

The eigenvectors Ri, i = 2, 3, 4 associated to λi, i = 2, 3, 4 are defined by

Ri =




1

λiη1 + ũ1η
2
2 − ũ2η1η2

λiη2 + ũ2η
2
1 − ũ1η1η2

1 − (ũ1η1 + ũ2η2 − λi)
2

c̃2




, i = 2, 3, 4.

While in the case of the matrix (68) it can be proved that the condition Q3 + R2 < 0 is always
satisfied provided that h̃ > 0, we have not been able to check it for the matrix (70) due to its complex
expression. Nevertheless, in all the numerical tests performed the expressions (72)-(74) gave alway
three different real eigenvalues.
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5.2 Approximation of the integrals.

The following criteria must be followed to choose the quadrature formulae used in numerical schemes
(35) or (41):

a) The order of the quadrature formulae must be greater than that of the reconstruction operator
to preserve the accuracy of the scheme.

b) The numerical scheme has to be well-balanced for the stationary solutions corresponding to
water and sediments at rest.

The third order Gauss formula for the line integrals and the barycenter quadrature formula for the
volume integrals satisfy both criteria.

5.3 Implementation of the numerical schemes

In this section we clarify how the numerical schemes are implemented. Let us suppose that the
approximations at time tk, W k

i and ∆tk have been yet calculated. To advance in time, let us consider,
for example, the numerical scheme resulting to combine the second order scheme (41) based on a Roe
scheme with a second order TVD Runge-Kutta method:

W
k+1/2
i = W k

i − ∆tk

|Vi|



∑

j∈Ni

|Eij |
n(r̄)∑

l=1

wl

(
F(W k,−

ij,l , W k,+
ij,l , ηij) −

1

2
Bk
ij,l · (W k,+

ij,l − W k,−
ij,l )

)

−|Vi|
n(s̄)∑

l=1

αl

(
B1(P

k
i (xil))

∂P k
i

∂x1
(xil) + B2(P

k
i (xil))

∂P k
i

∂x2
(xil)

)

 ,

and

W k+1
i =

W k
i + W

k+1/2
i

2
− 1

2

∆tk

|Vi|



∑

j∈Ni

|Eij |
n(r̄)∑

l=1

wl

(
F(W

k+1/2,−
ij,l , W

k+1/2,+
ij,l , ηij)

−1

2
B
k+1/2
ij,l · (W k+1/2,+

ij,l − W
k+1/2,−
ij,l )

)

−|Vi|
n(s̄)∑

l=1

αl

(
B1(P

k+1/2
i (xil))

∂P
k+1/2
i

∂x1
(xil) + B2(P

k+1/2
i (xil))

∂P
k+1/2
i

∂x2
(xil)

)

 ,

where Pα
i (x), x ∈ Vi, α = k, k + 1/2, i = 1, · · · , NV , is the reconstruction operator defined by (57);

Wα,±
ij,l are defined by

Wα,−
ij,l = lim

x→xij,l

Pα
i (x), Wα,+

ij,l = lim
x→xij,l

Pα
j (x), l = 1, · · ·n(r̄),

where xij,l are the quadrature points over the common edge Eij to the volumes Vi and Vj respectively;

F(Wα,−
ij,l , Wα,+

ij,l , ηij) =
1

2

(
Fηij

(Wα,−
ij,l ) + Fηij

(Wα,+
ij,l )

)

−1

2
Qα
ij,l(W

α,+
ij,l − Wα,−

ij,l )
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where Fηij
(·) is defined by (61) and Qα

ij,l = |Aα
ij,l|, being Aα

ij,l = Aβ
Ψ(Wα,−

ij,l , Wα,+
ij,l , ηij), β = G, MPM ,

given by (68) and (70), respectively; Bα
ij,l = BΨ(Wα,−

ij,l , Wα,+
ij,l , ηij) given by (62); finally B1(·) and B2(·)

are given by (10).
Concerning the practical implementation, let us say that in order to obtain Wα

i , α = k, k + 1/2,
the following procedure is followed:

• For each volume Vi, the reconstruction operator Pα
i (x) is computed and stored. Next the term

|Vi|
n(s̄)∑

l=1

αl

(
B1(P

α
i (xil))

∂Pα
i

∂x1
(xil) + B2(P

α
i (xil))

∂Pα
i

∂x2
(xil)

)

is computed.

• For each edge Eij of the finite volume mesh, the term

n(r̄)∑

l=1

wl

(
F(Wα,−

ij,l , Wα,+
ij,l , ηij) −

1

2
Bα
ij,l · (Wα,+

ij,l − Wα,−
ij,l )

)

is computed and stored into the cells Vi and Vj respectively, taking into account that ηji is the
normal unit vector of the edge Eij pointing towards the cell Vi and ηji = −ηij . Note that Wα,±

ij,l

are defined evaluating the reconstruction operator Pα
i (respectively Pα

j ) previously computed at
the quadrature points xij,l.

• Finally, all the contributions are added at each cell and the final expression Wα
i is computed

using the previous formulae. ∆tk+1 is also estimated if α = k + 1/2.

6 Numerical experiments

In this section three numerical tests are presented. The first one was also used in [4] to validate the
1d versions of the numerical schemes presented here. The goal of this test is to validate the ability
of the 2D models to capture solutions which are essentially 1D when using unstructured meshes: for
structured meshes the 2D numerical schemes presented here reduce to their 1d counterparts introduced
and tested in [4]. The second one is a purely 2D test for which only an analytical approach of the
spreading angle of the sediment layer is available. In this case the second order accuracy of the
numerical schemes plays a fundamental role: as it is a large time simulation, first order numerical
schemes are not able to correctly capture the spread angle due to the excess of numerical diffusion.
Finally, we present a simulation of the sediment layer evolution in an L-shaped channel whose non-
erodible bottom is flat. This is a hard test for the numerical schemes as the thickness of the sediment
layer vanishes in parts of the domain. We have designed this test by its similarity with a lot of real
situations in which bends in rivers or channels play an important role in the sediment transport. The
right-angle bend introduces some extra difficulties to the test.

In [4] the numerical results provided by a 1D second order finite volume method have been com-
pared with some experimental data corresponding to an 1D experiment performed by our collaborators
of the ’Escuela Superior de Ingenieros de Caminos, Canales y Puertos‘(A Coruña University) . We
have also compared the 2D numerical solutions with these data. As expected, the results are similar
to those obtained with the 1D versions of the numerical schemes.

Concerning the numerical schemes, four different schemes are compared in this section:

• First order numerical schemes of the form (42) whose viscosity matrix is given by (23) based on
the intermediate matrices defined in Section 5.1. For simplicity these schemes will be referred to
as ROE, even if in the case of the MP&M model they are not Roe schemes in the strict sense.
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• First order numerical schemes of the form (42) whose viscosity matrix if given by (24) also based
on the intermediate matrices defined in Section 5.1. They will be referred to as FL.

• Second order schemes based on a Roe scheme and on the reconstruction operator (57) with
θ = 1/2. They will be referred to as HOS2-Rec1.

• Second order schemes based on a Roe scheme and on the reconstruction operator (57) with
θ = 1. They will be referred to as HOS2-Rec2.

Concerning the computational cost, ROE is the cheapest one. The computational cost of FL is
about 3/2 times greater, as it requires the calculations of the reconstruction operator and the extra
term in the viscosity matrix (which is basically the intermediate matrix to the square). As expectable,
the most expensive schemes are HOS2-Rec1 and HOS2-Rec2, whose computational cost is about three
times that of a ROE: due to the time stepping, two reconstructions have to be calculated at every
time step.

There is a fifth possibility which is not taken into account here: to consider a second order extension
of a flux limiter scheme. We have verified in practice that the numerical results provided by such a
scheme are hardly distinguishable of those given by the second order extension of a Roe scheme while
the computational cost is greater, due to the calculation of the extra term in the viscosity matrix.

6.1 Two-dimensional bedload transport of a sediment layer with lintel form

We consider first an essentially 1D test case and in order to compare ROE, FL, HOS2-Rec1, and
HOS2-Rec1for a Saint-Venant-Exner model based on Grass formula (5) with Ag = 0.01 (median-high
interaction) and sediment porosity ρ0 = 0.4

We consider a rectangular channel D = [0, 1000 m] × [0, 100 m] with a flat non-erodible bottom.
The computational mesh is composed of 12220 finite volumes of edge type. The CFL parameter is set
to 0.8.

(a) Sketch of initial condition.

(b) Visualization of the initial condition.

Figure 6: Bedload transport of a sediment layer with lintel form: Initial condition.

As initial condition we consider (see Figures 6(a) and 6(b)):

h(x1, x2, 0) = 10.1 − zb(x1, x2, 0), q1(x1, x2, 0) = 10, q2(x1, x2, 0) = 0,

zb(x1, x2, 0) =





0.1 + sin2

(
π (x1 − 300)

200

)
if 300 ≤ x1 ≤ 500,

0.1 otherwise.

(75)

The discharge q = (10, 0) and the sediment thickness zb = 0.1 are imposed at x1 = 0 and a free
boundary condition is imposed at x1 = 1000. Finally, slip boundary conditions are imposed at the
lateral walls x2 = 0, x2 = 100.
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Figure 7: Bedload transport of a sediment layer with lintel form: Section used to make the comparison
with 1d solution.

A 1D numerical solution obtained with a second order WENO2-Roe scheme has been also obtained
using a mesh with 200 cells (see [4] for details). Furthermore in [18] an asymptotic solution is proposed.

Figure 8 shows a comparison at time t = 50000 s of the 1D numerical solution (continuous line),
the 1D asymptotic solution (dashed line), the 2D numerical solutions at the section x2 = 50 (see Figure
7) obtained with ROE (continuous line with pentagons), and FL (continuous line with crosses). As
expected, ROE is more diffusive than FL, although both of them have first order accuracy.

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0

1.2

sol

1d Rk2W2

2d Roe

2d Flux Limiter

Figure 8: Bedload transport of a sediment layer with lintel form: the 1D asymptotic solution (dashed
line) is compared with the numerical solutions obtained with the following schemes at time t = 50000 s:
1D WENO2-Roe numerical scheme (continuous line), ROE (continuous line with pentagons), FL
(dashed line with crosses).

Figure 9 shows a comparison at time t = 50000 s of the 1D asymptotic solution (dashed line)
with the numerical solutions given by the 1D second order numerical solution (continuous line), and
the 2D numerical solutions at x2 = 50 obtained with FL (dashed line with crosses) and HOS2-Rec1
(continuous line with circles). It can be observed that the 2D numerical solution obtained using
HOS2-Rec1 is almost equal to the one dimensional one.

Figure 10 shows a comparison at time t = 50000 s of the 1D asymptotic solution (dashed line)
with the 1D second order numerical solution (continuous line), and the 2D numerical solutions at
x2 = 50 obtained with HOS2-Rec1 (continuous line with circles) and HOS2-Rec2 (continuous line
with triangles). It can be observed that the height of the sediment is maximal (even higher than
the 1D second order numerical solution) if HOS2-Rec2 numerical is used. Nevertheless, if a higher
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Figure 9: Bedload transport of a sediment layer with lintel form: the 1D asymptotic solution (dashed
line) is compared with the numerical solutions obtained with the following schemes at time t = 50000 s:
1D WENO2-Roe numerical scheme (continuous line), FL (dashed line with crosses) and HOS2-Rec1
(continuous line with circles).

interaction constant is used, the peak produced by HOS2-Rec2 can degenerate into oscillations.

7 Two-dimensional simulation of the evolution of a conical dune

of sand

In this purely two-dimensional test proposed in [18], the evolution of a conical dune in a channel
with a non-erodible flat bottom, whose dimensions are 1000 m × 1000 m is considered. The initial
conditions are (see Figure 11):

h(x1, x2, 0) = 10.1 − zb(x1, x2, 0), q1(x1, x2, 0) = 10, q2(x1, x2, 0) = 0,

and the initial form of the sediment layer is given by the function:

zb(x1, x2, 0) =






0.1 + sin2

(
π(x1 − 300)

200

)
sin2

(
π(x2 − 400)

200

)
if

300 ≤ x1 ≤ 500,
400 ≤ x2 ≤ 600,

0.1 otherwise.

We consider again Grass formula. In this case, the sediment layer evolves towards a star-shaped
pattern expanding along the time with a given spreading angle. De Vrien obtained in [8] the following
analytical approximation of this angle, assuming that the interaction between the sediment layer and
fluid is small, that is Ag < 0.01:

tan α =
3
√

3(mg − 1)

9mg − 1
.
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Figure 10: Bedload transport of a sediment layer with lintel form: the 1D asymptotic solution (dashed
line) is compared with the numerical solutions obtained with the following schemes at time t = 50000 s:
1D WENO2-Roe numerical scheme (continuous line), HOS2-Rec1 (continuous line with circles), and
HOS2-Rec2 (discontinuous line with triangles).

(a) Up view. (b) Lateral view.

Figure 11: Evolution of a conical dune of sand: Initial condition.
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In particular, for mg = 3 the value of the spreading angle is: α = tan−1

(
3
√

3

13

)
= 21.786789o.

We use ROE and HOS2-Rec1 to solve the model with Ag = 0.001 and ρ0 = 0.4. The CFL is
set to 0.8. We impose the flux q = (10, 0) and the sediment layer height zb = 0.1 at x1 = 0 and
free boundary conditions at x2 = 1000. At the lateral walls we impose the slip condition q · η = 0.
We have considered three unstructured finite volume meshes of edge type with increasing number of
cells: Mesh 1 (1240 volumes); Mesh 2 (4880 volumes) and Mesh 3 (19360 volumes) . All meshes are
symmetric with respect to the axis x2 = 500.

In Table 1 we show the spread angle and the maximum height of the sediment layer obtained for
each mesh using both schemes. It can be observed that as the mesh is refined, the spread angle tends
to the analytical one. Furthermore, note that ROE is more diffusive than HOS2-Rec1, as expected.
In Figure 12 we show the estimates of the spreading angle (comparing different times of the sand dune
evolution) obtained with ROE and HOS2-Rec1 for Mesh 3.

Mesh 1 Mesh 2 Mesh 3
Roe HOS2-Rec1 Roe HOS2-Rec1 Roe HOS2-Rec1

Spread angle 39o 30o 36o 25o 35o 24.5o

max(zb) at t = 100h. 0.368 0.495 0.488 0.714 0.602 0.804

Table 1: Evolution of a conical dune of sand: Spread angle and maximum height of the sediment layer
at t = 100 h, obtained by ROE and HOS2-Rec1 using three meshes.

(a) Roe. Mesh 3: angle of 35o (b) HOS2-Rec2. Mesh 3: angle of 24.5o

Figure 12: Evolution of a conical dune of sand: Estimation of the spreading angle (using 15 iso-levels).
ROE (left). HOS2-Rec1 (righ).

Finally, Figure 13 shows the numerical solution obtained by ROE and HOS2-Rec1 with the finest
mesh at time t = 100h.

7.1 Sediment evolution in a L-shaped channel.

In this test, we study the evolution of the sediments in a L-shaped channel whose non-erodible bottom
is flat, using the MP&M formula (6). A sketch of the channel is shown in Figure (14(a)). The lower
left vertex of the channel is placed at the origin. An unstructured finite volume mesh of edge type
with 20880 volumes has been constructed. As initial condition, we impose
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(a) Roe. Mesh 3. (b) HOS2-Rec1. Mesh 3.

Figure 13: Evolution of a conical dune of sand: Sediment layer after 100 hours.

h(x1, x2, 0) = 1.0 − zb(x1, x2, 0), q1(x1, x2, 0) = 0, q2(x1, x2, 0) = 0,

and
zb(x1, x2, 0) = 0.1 + 0.2e−((x1−2)2+(x2−2)2).

Figure 14(b) shows the initial form of the sediment layer. As boundary conditions, a constant
velocity profile is imposed at ΓU : u1(x1, x2, t) = 0 m/s and u2(x1, x2, t) = −0.5 m/s together with
zb(x1, x2, 0) = 0.1 m. A free boundary condition is imposed at ΓD. At the lateral walls ΓL the slip
boundary condition q · η = 0 is imposed. The water density is ρ = 1000 kg/m3; the sediment density,
ρs = 2600 kg/m3; the sediment grain size, di = 10−3 m; the Manning coefficient, n = 0.0196; the
non-dimensional critical shear stress, τ∗,c = 0.047; and the sediment porosity, ρ0 = 0.4. Finally, the
CFL parameter is set to 0.9. HOS2-Rec1 scheme is used.

Figure 15 shows the evolution of the sediment layer (left column) as well as the velocity field (right
column). As expected, the bedload transport is more intense where the velocities are bigger, and
some regions in which the sediment layer vanishes can be observed. In regions with small velocities
no sediment transport is produced.

(a) Dimension of the L-shapep channel.

(b) Sediment evolution on a L-shaped channel: Detail of the
sediment layer at the initial time

Figure 14: Sediment evolution on L-shaped channel: Dimensions of the channel (left) and initial
sediment layer depth (right).
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(a) 900 s. (b) 900 s.

(c) 2700 s (d) 2700 s

(e) 3600 s (f) 3600 s

Figure 15: Sediment evolution on a L-shaped channel: Sediment layer evolution (left column) , and
water velocity field (right column).
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8 Conclusions

In this paper the numerical approximation of Saint-Venant-Exner models by means of finite volume
methods on unstructured meshes has been considered. The models studied here consist of a hydrody-
namical component that is modeled by a 2D shallow water system and a morphodynamical component
given by a solid transport discharge formula that depends on the hydrodynamical variables. Two dif-
ferent formulae for the solid transport discharge have been taken into account: the Grass and the
MP&M models. A first difficulty involved by the numerical solution of these systems is due to the
presence of nonconservative products. On the one hand, it has been shown in [6] that, even if a
standard numerical flux is chosen to discretize the flux term of the system, the scheme may become
unconditionally unstable if the nonconservative products are not discretized in an adequate manner:
roughly speaking a correct treatment requires to discretize the system as a whole. To deal with this
difficulty we consider first order schemes based on linear approximate Riemann solvers. The key point
is that the linearization of the systems considered at every inter-cell satisfies a generalized Roe prop-
erty based on the choice of a family of paths (see [36], [29], and [5] ). The use of these generalized
Roe schemes presents the following advantages:

1. The family of paths in which the Roe matrices are based allows one to give a precise sense to the
nonconservative products that are ambiguous from the mathematical point of view (see [24]).

2. The generalized Roe property ensures that, if the system has a conservative subsystem (which
is the case for the subsystem composed by the mass conservation equation of the fluid and the
solid transport discharge in Saint-Venant-Exner models) the numerical scheme is conservative
(in the usual sense) for the subsystem.

3. The Roe linearization takes into account the information of the whole system, including the
conservative and the nonconservative terms. This global information is used to correctly upwind
the characteristics variables. As a consequence, the numerical scheme is stable under a standard
CFL condition.

Nevertheless, some difficulties arise in the practical implementation of these Roe schemes. On
the one hand, the choice of the family of paths should be related to the physics of the system: This
notion is based on a family of paths in the phases space, whose selection is important, as it determines
the speed of propagation of the discontinuities: a motivation for the selection of the family of paths
when a physical regularization by diffusion, dispersion, etc. can be found in [16]. Unfortunately,
the calculation of such a family of paths can be very difficult in practice. As a first approximation,
we have considered here the simplest choice which is given by the family of straight segments. On
the other hand, once the family of paths has been chosen, the calculation of intermediate matrices
that satisfy exactly the generalized Roe property can also be difficult. Here, we have presented the
explicit calculation of a Roe matrix for the model corresponding to the Grass formula but not for
the MP&M formula: its complex expression makes difficult this task even for the simple family of
straight segments. To solve this difficulty, we have considered a general family of first order schemes
in viscosity form that contain Roe schemes as a particular case in which the viscosity matrix is given
by the absolute value of the intermediate matrix. The numerical schemes of this more general family
have still the advantages 1 and 2 above but their stability properties can be worse than those of a Roe
method.

A second important difficulty of Saint-Venant-Exner models is related to to the different charac-
teristic speeds of the water and the sediment layers when the interaction is weak. Due to this, first
order numerical schemes are, in general, too diffusive to correctly capture the waves related to the
sediment layer motion. In order to solve this difficulty, we have first derived a first order scheme in
viscosity form in which a flux limiter technique has been used to reduce the numerical diffusion of Roe
methods. Next, second order extensions of the first order schemes have been introduced on the basis
of a reconstruction technique: a new MUSCL type reconstruction operator for unstructured meshes
has been defined. The main advantages of this operator are the small size of the stencils and the
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simplicity of the coefficients of the linear approximation functions at the cells. Two different slope
limiters have been introduced to avoid the appearance of oscillations near a discontinuity: the first
one is frequently used for MUSCL schemes on unstructured meshes and the second one mimics at
every edge the slope limiters that are commonly used for 1D problems. Once the two slope limiters
techniques have been introduced, a more general slope limiter is introduced consisting of a convex
linear combination of both of them: a parameter θ ∈ [0, 1] has to be chosen, the choices θ = 0 and
θ = 1 corresponding to one of the two slope limiters initially considered. A second order TVD-RK
scheme is finally used for the time stepping.

We have presented three test cases, the first two ones using the Grass formula and the third
one using the MP&M formula. First, an essentially 1D test case has been considered in which an
asymptotic solution is known. The numerical schemes have been compared with this solution and with
the numerical solutions provided by a second order 1D numerical schemes. Next, the 2D evolution
of a conical dune of sand has been simulated. In this case, the available analytical approximation of
the spreading angle has been used to validate the schemes. For the 2D model based on the MP&M
model, we do not know any test case in which exact or approximate analytical solutions are available.
To test the schemes, we have simulated the evolution of the sediments in a L-shaped channel whose
non-erodible bottom is flat. This is a hard test as the thickness of the sediment layer vanishes in parts
of the domain.

The numerical tests show that:

• Roe schemes are too diffusive, as expected.

• The second order schemes are able to correctly simulate the sediment layer motion and to
properly capture the shocks. The choice θ = 1/2 gives a good compromise between the numerical
diffusion added by the slope limiter and the elimination of oscillations near the discontinuities.
The computational cost if about three times the corresponding to a Roe scheme.

• In the case of medium-high interaction between the water and the sediment layers, the first order
scheme based on the flux limiter technique is an interesting alternative to second order schemes,
as they provide good numerical results with a significant reduction of the computational cost:
its cost is about 3/2 times the corresponding to a Roe scheme.

This paper represents the first stage of a conjoint work with geologists of the Spanish Institute of
Oceanography (I.E.O.) to study the sediment transport in the continental shelf near the mouth of a
river. The in-situ data will be used in the next future to calibrate and to test the numerical models.
The test cases shown here, specially the third one, shows that the second order numerical schemes
presented here can be used to develop realistic and useful models.

Appendix A

Proof of Theorem 2

In order to avoid an excess of indexes, let us use the notation (x, y) for the coordinates instead of
(x1, x2). Let us prove that, given N̄ = (x̄, ȳ) ∈ Vi, one has ∇Wi = ∇W (N̄ ) + O(∆), where ∇Wi is
given by (49)

Let us consider the following notation: Vi,l, l = 0, · · · , 4 are the cells defining the stencil of the
reconstruction, where by Vi,0 we denote the cell Vi and by Vi,l, l = 1, · · · , 4 its four neighbors. Let us
define W i,l, l = 0, · · · , 4 by

W i,l =
1

|Vi,l|

∫

Vi,l

W (x)dx, l = 0, · · · , 4.

Ni,l = (xi,l, yi,l), l = 0, · · · , 4 represent the centers of mass of Vi,l defined by (46). Let us also define
αi,l = (xi,l − x̄) and βi,l = (yi,l − ȳ), l = 0, · · · , 4.
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A Taylor expansion of W (x) at N̄ = (x̄, ȳ) gives the approximation:

W (x) = W (N̄) + Wx(N̄)(x − x̄) + Wy(N̄)(y − ȳ) + O(∆2).

Then, by averaging the previous expression at cells Vi,l, we obtain

W i,l =
1

|Vi,l|

∫

Vi,l

W (x)dx = W (N̄) + Wx(N̄)(xi,l − x̄) + Wy(N̄)(yi,l − ȳ) + O(∆2).

Taking into account the definition of αi,l and βi,l, the last equation can be rewritten as:

W i,l = W (N̄) + Wx(N̄)αi,l + Wy(N̄)βi,l + O(∆2). (76)

As ∇Wi is a linear combination of W i,l it can be written as follows:

∇Wi =

(
4∑

l=0

µ1
lW i,l,

4∑

l=0

µ2
lW i,l

)
.

Moreover, by using (76), we have:

4∑

l=0

µkl W i,l =

(
4∑

l=0

µkl

)
W (N̄)+Wx(N̄)

(
4∑

l=0

αi,lµ
k
l

)
+Wy(N̄)

(
4∑

l=0

βi,lµ
k
l

)
+

4∑

l=0

µkl O(∆2), k = 1, 2.

(77)
Therefore, if we prove that:

a)

4∑

l=0

µ1
l = 0, b)

4∑

l=0

αi,lµ
1
l = 1, c)

4∑

l=0

βi,lµ
1
l = 0,

d)
4∑

l=0

µ2
l = 0, e)

4∑

l=0

αi,lµ
2
l = 0, f)

4∑

l=0

βi,lµ
2
l = 1,

(78)

and
µkl = O(∆−1),

the proof is finished.
Using the same arguments than in [30], it is easy to prove that µkl = O(∆−1), l = 0, · · · , 4, k = 1, 2.

Let us prove only a), b) and c) (the proof of d), e) and f) is similar).
The proof is divided in three parts:

1) Let us prove that
4∑

l=0

µ1
l = 0.

We consider T = T1 ∪ T2 ∪ T3 ∪ T4 (see Figure 16) . The gradient approximation (49) verifies,

∇Wi =
|T1|
|T |

(
W i,0∇λ0

1 + W i,1∇λ1
1 + W i,2∇λ2

1

)
+

|T2|
|T |

(
W i,0∇λ0

2 + W i,2∇λ2
2 + W i,3∇λ3

2

)

+
|T3|
|T |

(
W i,0∇λ0

3 + W i,3∇λ3
3 + W i,4∇λ4

3

)
+

|T4|
|T |

(
W i,0∇λ0

4 + W i,4∇λ4
4 + W i,1∇λ1

4

)

=
W i,0

|T |
(
|T1|∇λ0

1 + |T2|∇λ0
2 + |T3|∇λ0

3 + |T4|∇λ0
4

)

+

4∑

j=1

W i,ip(j)

|T |
(
|Tip(j)| ∇λ

ip(j)
ip(j) + |Tj | ∇λ

ip(j)
j

)
,
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where ip(j), j = {1, 2, 3, 4} takes values in the ordered set {2, 3, 4, 1}, and λlk is the barycentric
coordinate associated to the node Ni,l in the triangle Tk.

Remark 7 Note that the following equalities hold for a triangle T of vertices v1, v2 and v3

∇λj =
−1

2|T |ηj , j = 1, 2, 3,

where λj is the barycentric coordinate associated to the vertex vj and ηj is the outer normal
vector to the opposite edge whose modulus is equal to the length of that edge.

Taking into account Remark 7 and using the notation introduced in Figure 16, we deduce

µ1
0 =

−1

2|T |(η12 + η23 + η34 + η41)1,

µ1
1 =

−1

2|T |(η02 − η04)1, µ1
2 =

−1

2|T |(η03 − η01)1,

µ1
3 =

−1

2|T |(−η02 + η04)1, µ1
4 =

−1

2|T |(−η03 + η01)1.

(79)

Trivially, µ1
0 = 0, because it is the sum of the outer normals to a closed polygon, and therefore

4∑

l=0

µ1
l = 0.

Figure 16: Building the triangles T1, T2, T3, T4, to approximate the gradient of the solution.

2) Let us prove that
4∑

l=0

αi,lµ
1
l = 1.

Taking into account the definition of αi,l and the previous result, we have

4∑

l=0

αi,lµ
1
l =

∑

l=0

xi,lµ
1
l − x̄

4∑

l=0

µ1
l =

4∑

l=0

xi,lµ
1
l .

Therefore, it is enough to prove that
4∑

l=0

xi,lµ
1
l = 1. Focussing for example on T1, we have that

|T1| =

∫

T1

div(x, 0)dxdy =

(
xi,1 + xi,2

2
η12 +

xi,2 + xi,0
2

η02 −
xi,0 + xi,1

2
η01

)

1

.
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As η12 + η02 − η01 = 0 we can substract (xi,0 +xi,1 + xi,2)(η12 + η02 − η01)1/2 from the previous
expression, obtaining finally:

|T1| =
−1

2
(xi,0η12 + xi,1η02 − xi,2η01)1.

As a consequence:

4∑

l=0

xi,lµ
1
l =

−1

2|T |(xi,0η12 + xi,1η02 − xi,2η01)1 +
−1

2|T |(xi,0η23 − xi,3η02 + xi,2η03)1

+
−1

2|T |(xi,0η34 + xi,3η04 − xi,4η03)1 +
−1

2|T |(xi,0η41 + xi,4η01 − xi,1η04)1

=
1

|T | |T1| +
1

|T | |T2| +
1

|T | |T3| +
1

|T | |T4| = 1.

3) Let us prove that
4∑

l=0

βi,lµ
1
l = 0.

Taking into account again the definition βi,l = yi,l− ȳ and a), it is straightforward to verify that

4∑

l=0

βi,lµ
1
l =

4∑

l=0

(yi,l − ȳ)µ1
l =

4∑

l=0

yi,lµ
1
l −

4∑

l=0

ȳµ1
l =

4∑

l=0

yi,lµ
1
l .

Therefore, it is enough to prove that
4∑

l=0

yi,lµ
1
l = 0:

4∑

l=0

yi,lµ
1
l =

−1

2|T | (yi,1(−(yi,2 − yi,0) + (yi,4 − yi,0)) + yi,2(−(yi,3 − yi,0) + (yi,1 − yi,0))

+yi,3((yi,2 − yi,0) − (yi,4 − yi,0)) + yi,4((yi,3 − yi,0) − (yi,1 − yi,0))) = 0.

We conclude that
4∑

l=0

µ1
lW i,l = Wx(N̄) + O(∆), ∀N̄ ∈ Vi.

Using similar arguments, it is straightforward to prove that the approximation of Wy(N̄) is also
first order accurate and, consequently, the reconstruction (47) is second order accurate in Vi, i ∈ Z.
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