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Abstract

We present a model for hyperpycnal plumes or turbidity currents that takes into account
the interaction between the turbidity current and the bottom, considering deposition and erosion
effects as well as solid transport of particles at the bed load due to the current. Water entrainment
from the ambient water in which the turbidity current plunges is also considered. Motion of
ambient water is neglected and the rigid lid assumption is considered. The model is obtained as a
depth-average system of equations under the shallow water hypothesis describing the balance of
fluid mass, sediment mass and mean flow. The character of the system is analyzed and numerical
simulations are carried out using finite volume schemes and path-conservative Roe schemes.
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1 Introduction

When a river contains an elevated concentration of suspended sediment, to the extent that the river
density is greater than that of the receiving water body, the river can plunge and create a hyperpycnal
plume or turbidity current. This hyperpycnal plume can travel significant distances until it loses its
identity by entraining surrounding ambient water and dropping its sediment load. A sketch of a turbid
underflow is presented in Figure 1.
There is great interest in turbidity currents because of their profound impact on the morphology of
the continental shelves and ocean basins of the world. It is commonly accepted that they are one
of the potential processes through which sediments can be transferred to the deep sea environments.
These bottom currents influence the sea bed morphology by depositing, eroding and dispersing large
quantities of sediment particles. The resultant deposit often form porous layer of rocks which are
potential sources of hydrocarbon. Therefore, understanding and predicting the geometry of these
deposits is crucial for effectively exploring and exploiting these reservoirs.
An additional concern is the destructive effect that turbidity currents have on underwater structures,
such as cables, pipelines and foundations.
Large-scale hyperpycnal flow or turbidity currents in the natural environment are difficult to monitor
because of the unpredictable nature of the events. As a result, most of our knowledge about these
flows is derived from small scale laboratory experiments like the ones described in [19], [11],[1], [17]
and [16].
In this paper, we present a numerical model of hyperpycnal flow generated by the plunging of a river.
It incorporates the interaction between the turbidity current and bottom, considering eroding and
deposit effects as well as solid transport due to the velocity of the current. Here, the along-shore
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Figure 1: Sketch of hyperpycnal flow

current has been neglected. The equations are obtained as a layer-averaged system from the two-
dimensional equations under the shallow water hypothesis, namely the hydrostatic distribution of
pressure.
A number of studies have attempted to predict the distribution of turbidities, mainly based on small-
scale tank experiments of particle-driven density currents (see [8], [23], [15], [17], [16]). Numerical
models have been developed as well, and some of them applied to the tank experiments (e.g. [3], [5],
[14]).
The organization of this paper is as follows:
In Section 2 we describe the model presented here and in particular the empirical relations and physical
constants taken into account.
In Section 3 the model is obtained from the two dimensional equations under the shallow water
hypothesis and hydrostatic distribution of pressure.
The character of the system as well as its eigenstructure is studied in Section 4. An entropy inequality
is also obtain under some hypothesis.
The theory presented in [22] and [21] is adapted in Section 5 in order to define a Roe scheme for the
model considered here.
Finally, numerical results and comparisons to experimental data are shown in Section 7.

2 Model description

We introduce a layer-averaged model in which equations for conservation of fluid mass, sediment
mass and fluid momentum are solved simultaneously. Vast applicability, low computational cost and
conceptual simplicity are the main reasons that justify the option for layer averaged model in a one-
dimensional framework. This type of model has been widely used in the simulation of turbidity
currents (e.g., [8], [23], [5], [17]) and some layer-averaged models have already been proposed in [23],
[16], [17], [5] and [14]. In the framework proposed by these authors, ns ≥ 1 species of sediments are
considered with constant density ρj , for j = 1, . . . , ns. These sediment species are transported by a
river with freshwater of constant density ρ0. The river plunges into an ambient fluid (in general the
ocean) of density ρw generating a turbidity current. The models presented by the cited authors may
be written under the following general formulation:
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



∂th+ ∂x(hu) = φη,

∂t(hu) + ∂x

(
hu2 + gRc

h2

2

)
= g (R0 +Rc)h∂xH + τ,

∂t(hcj) + ∂x(hu cj) = φjb, for j = 1, . . . , ns

∂tH = ξφb.

(2.1)

where h is the current thickness; u is the depth-averaged velocity; cj for j = 1, . . . , ns represents the
vertically averaged volume concentration of the jth sediment; and H is the bottom depth from a fixed
level. Finally,

Rj =
ρj − ρ0

ρ0
, for j = 1, . . . , ns; and Rc =

ns∑

j=1

Rjcj . (2.2)

The source term φη represents the amount of ocean water entrained and mixed by turbulence to the
plume.
The sediment flux at the bed of the jth specie is determined from the rates of deposition (F jd ) and
erosion (F je ),

φjb = F je − F jd , φb =
ns∑

j=1

φjb. (2.3)

We denote ξ = 1/(1− γ), being γ the porosity of the sediment layer.
Finally, τ represents the friction term.
While there are some discrepancies in the physical laws that describe the source terms φη and φb, we
shall use here the expressions that are the most extended. In particular, following [23], [17] and [14],
the amount of ocean water entrained and mixed by turbulence to the plume, φη, may be described as
Ewu, where the water entrainment coefficient, Ew, is determined from the empirical relationship

Ew =
0.00153

0.0204 + Ri
, (2.4)

where the Richardson number, Ri is defined as

Ri =
Rcgh

u2
. (2.5)

The rate of deposition is described as the product of the settling velocity of sediment, vsj
, and the

fractional concentration of suspension near by the bed, cbj
. For multiple grain sizes, the sum of this

product for each size population is used as the net rate of deposition

F jd = vsjcbj . (2.6)

This definition is found for example in [23], [5] and [14] while other formulation is presented in [16].
The near bed concentration of sediment, cbj

, can be related to the layer averaged concentration, cj ,
by a factor 2, as it is the case in [12] and [2], or by the more extended expression used in [14] and [5].

cbj

cj
= 0.4

(
Dj

Dsg

)1.64

+ 1.64, (2.7)

where Dj is the characteristic grain size and Dsg denotes the geometric mean size of the suspended
sediment mixture.
The rate of sediment entrainment from the bed is described as

F je = vsjpjEsj , (2.8)

where the sediment entrainment coefficient, Esj
, is given by the expression developed by Garcia and

Parker [11],

Esj
=

1.3 · 10−7Z5
j

1 + 4.3 · 10−7Z5
j

, (2.9)
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where

Zj = α1

√
cD|u|
vsj

R α2
pj
, (2.10)

and

Rpj
=

√
RjgDjDj

ν
(2.11)

is the particle Reynolds number, with ν the kinematic viscosity. The parameters (α1, α2) take respec-
tive values (1, 0.6) for Rpj

> 2.36 and (0.586, 1.23) for Rpj
≤ 2.36. We remark again that this is not

the only expression used in models describing the physics of the problem. Some variants can be found
in [5], [17] and [16].
In (2.8), pj represents the volume fraction of the jth sediment in the bed. It could be described as a
function of time as it is the case in [5].
The friction term τ is described as a function of the velocity,

τ = −(1 + α)cD|u|u. (2.12)

cD is the bed drag coefficient which ranges from 0.002 to 0.05 depending on the flow type and α is
the ratio of the drag force at the upper flow surface to that at the bed.
Finally, the fall velocity vsj

is calculated using the empirical relationship introduced by Dietrich [10].
We remark that there are some difficulties with system (2.1). First, let us denote by c0 the freshwater
concentration present in the plume and by c the summation of all of the sediment fractions. The
relation c0 = 1− c is satisfied and from (2.1) one gets

∂t(c0h) + ∂x(c0hu) = φη − φb. (2.13)

This means that erosion and deposition effects modify the freshwater mass while it is clear that in the
case that there is no water entrainment from above, φη = 0, freshwater mass should be preserved.
Another point is that deposition/erosion and water entrainment are not taken into account for the
momentum equation. We will see in Section 3 that source terms related to deposition/erosion and
water entrainment appear naturally in the momentum equation.
We would also like to take into account the ambient fluid considered and in particular its density ρw,
so that we could model a plume that plunges into the ocean as well as a current flowing over a given
bottom.
Finally, we would like to include into the model the sediment transport of bed-load particles due to
the velocity of the current.
Taking into account these considerations, we are going to introduce the following model for hyperpy-
cnal plumes:





∂th+ ∂x(hu) = φη + φb,

∂t(hu) + ∂x

(
hu2 + g (R0 +Rc)

h2

2

)
= g (R0 +Rc)h∂xH + uφη +

u

2
φb + τ,

∂t(hcj) + ∂x(hu cj) = φjb, for j = 1, . . . , ns

∂tH − ξ∂xqb = ξφb.

(2.14)

Here,

R0 =
ρ0 − ρw
ρ0

. (2.15)

Remark 2.1. In the general case we consider a river with a mixture of sediments that plunges into the
ocean: ρw (saltwater density) is slightly greater than ρ0 (freshwater density) and R0 < 0. The case
where ambient fluid is air can also be considered: in that case ρw ≈ 0 and R0 ≈ 1.

Remark 2.2. The system (2.17) presents some major differences with respect to the model presented
in [23],[5], and [14].
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• From (2.17) one gets
∂t(c0h) + ∂x(c0hu) = φη, (2.16)

with c0 = 1− c the freshwater concentration. Thus, if there is no ocean water entrainment, the
total freshwater mass is preserved.

• The pressure term gR0h
2/2 in the second equation allows to consider a turbid current that

plunges into the ocean (R0 ≈ 0) as well as currents flowing over a given bottom (R0 ≈ 1).

• The effects of deposition/erosion and water entrainment on the momentum equation are taken
into account.

• Solid transport of particles at the bottom is allowed via a solid transport flux qb.

Taking into account the empirical relations described before, (2.14) reads





∂th+ ∂x(hu) = Ewu+
ns∑

j=1

vsj (pjEsj − cbj ),

∂t(hu) + ∂x

(
hu2 + g (R0 +Rc)

h2

2

)
= g (R0 +Rc)h∂xH

+Ewu2 +
u

2

ns∑

j=1

vsj
(pjEsj

− cbj
)− (1 + α)cD|u|u,

∂t(hcj) + ∂x(hu cj) = vsj
(pjEsj

− cbj
),

∂tH − ξ∂xqb = ξ

ns∑

j=1

vsj
(pjEsj

− cbj
).

(2.17)
Sediment transport of bed-load particles due to the velocity of the current is represented by ξqb where
ξ = 1/(1− γ), being γ the porosity of the sediment layer and qb the solid transport flux, that depends
on the fluid velocity u, qb = qb(h, hu).
Several formulae for solid transport flux have been proposed, see [13], [18], [20], etc. Here, we shall
consider the simplest one, which is the Grass model. According to it, the solid transport fluid equation
is

qb = Agu|u|mg−1, 1 ≤ mg ≤ 4, (2.18)

where Ag is a constant that represents the effects due to grain size and kinematic viscosity and is
usually determined by experimental data. Usually, the constant mg is set to mg = 3.
One could also consider other expression for the solid transport flux and most of what is going to
be said remains valid. The election of Grass model will only play an essential role in Lemma 4.3,
where the explicit expresion of the corresponding eigenvalues can be given, as well as in the explicit
definition of a Roe matrix in Section 5.

3 Derivation of the layer-averaged equations

3.1 Governing equations for a dilute suspension

We consider the situation described in Section 1 and, in particular, in Figure 1. We shall assume the
rigid lid hypothesis for the ambient fluid in order to simulate just the turbidity current. The width
of the plume is assumed to be small compared to the typical length phenomena in the horizontal
direction so that the shallow water hypothesis can be made.
The equations of motion for a suspension are considered. The suspension is assumed to be sufficiently
dilute to justify the use of the Boussinesq approximation, and the assumption of a kinematic viscosity
ν equal to the value for clear water. The equation of momentum conservation is

∂~u

∂t
+ div(~u⊗ ~u) = − 1

ρ0
∇p+

1
ρ0
∇ · T + (1 +Rc)~g, (3.1)
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where ~u(~x, t) represents the instantaneous velocity of the mixture, p(~x, t) denotes the instantaneous
pressure and ~g = (0, 0,−g) is the gravity and

T = µ(∇~u+ (∇~u)t) (3.2)

is the stress tensor. We denote c =
∑ns

j=1 cj , R0 = 1 − ρw/ρ0, and Rc =
∑ns

j=1Rjcj , where Rj =
ρj/ρ0 − 1 and cj(x, t), for j = 1, . . . , ns denotes the instantaneous volumetric concentration of the jth
suspended sediment.
The fluid is assumed to be incompressible and the continuity equation is also considered:

div~u = 0, (3.3)
∂tρ+ div(ρ~u) = 0, (3.4)

where ρ is the density of the turbidity current.
Following the notation of Section 2, we may rewrite the density of the current as

ρ =
ns∑

j=0

(ρjcj) = ρ0

(
1 +

ns∑

j=1

Rjcj
)

(3.5)

where c0(~x, t) denotes the portion of water in the turbidity current.
Now, as

∑ns

j=0 cj = 1, from equations (3.3) and (3.4) we get

0 = ∂t(c0ρ0 +
ns∑

j=1

ρjcj) + div((c0ρ0 +
ns∑

j=1

cjρj)~u) = ∂t(
ns∑

j=1

cj(ρj − ρ0)) + div(
ns∑

j=1

cj(ρj − ρ0)~u).

(3.6)

In order to satisfy (3.6), we shall assume that the volume fraction of each sediment specie satisfies the
equation

∂cj
∂t

+ div(cj~u) = 0, for j = 1, . . . , ns. (3.7)

As a consequence, this relation is also satisfied by the volume fraction of fresh water and the equations
of mass conservation are thus

∂cj
∂t

+ div(cj~u) = 0, for j = 0, 1, . . . , ns. (3.8)

3.2 Vertically integrated equations

Henceforth ~x = (x, y, z) and ~u = (u, v, w). Variations in the horizontal y direction are neglected and
we suppose v = 0. It is assumed that the thickness of the turbidity current is small compared to
the typical length phenomena in the horizontal direction so that the shallow water hypothesis can be
made.
As the current is essentially two-dimensional, the domain considered is

{
(t, x, z) ∈ R+ × R2/ b(x, t) < z < b(x, t) + h(x, t)

}
, (3.9)

where b(x, t) is the bottom elevation from a defined reference level and h(x, t) is the length of the
turbidity layer.
As it has been said, perturbations of the free surface due to the turbidity current are neglected, so
that the water surface is considered to be constant and equal to z = H0.
It will be useful to define the bottom depth from the surface

H(x, t) = H0 − b(x, t), (3.10)
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and the interface between the turbidity current and the ambient water

η(x, t) = b(x, t) + h(x, t). (3.11)

Some kinematic conditions should be imposed at the bottom and at the interface. The turbidity
current lies between an upper non-material interface, F s = z − η(x, t) = 0, and a basal interface,
F b = b(x, t) − z = 0. These curves are defined so that their unit normals ns = ∇F s/|∇F s| and
nb = ∇F b/|∇F b| point outwards from the turbidity current. Assuming that these interfaces have
velocities ~vs and ~vb, the kinematic boundary conditions are

F s(x, z, t) = 0 : ∂tF
s + ~vs · ∇F s = 0, (3.12)

F b(x, z, t) = 0 : ∂tF
b + ~vb · ∇F b = 0. (3.13)

The upper and basal interfaces are modified by entrainment of water from the above and deposi-
tion/erosion of sediment at the bottom. Let the normal entrainment rate, ds, be the equivalent
volume of ambient water entrained to the turbid current at the upper interface per unit area per unit
time. Then the velocity of the interface is ~vs = ~us + ds ~ns. Similarly, if the normal deposition/erosion
rate, db, is the equivalent volume of granular material deposited/eroded at the bottom per unit area
per unit time, the velocity of the basal interface is ~vb = ~ub + db~nb. It follows that the kinematic
conditions (3.12)-(3.13) are

z = η(x, t) : ∂tη + us∂xη − ws = (1 + (∂xη)2)1/2ds, (3.14)

z = b(x, t) : ∂tb+ ub∂xb− wb = −(1 + (∂xb)2)1/2db. (3.15)

Thus, we shall consider the kinematic equations

∂tη + u|z=η∂xη − w|z=η = φ̃η, (3.16)

∂tb+ u|z=b∂xb− w|z=b = −φ̃b, (3.17)

where ~u = (u,w), φ̃η = (1 + (∂xη)2)1/2ds, and φ̃b = (1 + (∂xb)2)1/2db.
Under these hypothesis, mass conservation equations yield

∂t

∫ η

b

cjdz + ∂x

∫ η

b

cjudz = cj |z=ηφ̃η + cj |z=bφ̃b, for j = 0, 1, . . . , ns. (3.18)

We shall only retain the vertical components of the stress tensor and assume that the other terms
may be neglected. Let us denote by

τ̃ =
µ

ρ0

(
∂u

∂z
+
∂w

∂x

)
(3.19)

the (1, 2) component of the stress tensor T . Let us also suppose that the pressure p reduces to
hydrostatic effects,

p(x, z, t) =
∫ η

z

ns∑

j=0

(ρjcj)gdz′ + gρw(H0 − h− b). (3.20)

By integrating the momentum equation, we obtain:

∂t

∫ η

b

udz + ∂x

∫ η

b

u2dz +
g

ρ0

∫ η

b

∂xpdz − g
ρw
ρ0
h∂xη = τ̃ |z=η − τ̃ |z=b + u|z=ηφ̃η + u|z=bφ̃b. (3.21)

Definition 3.1. For any function f(x, z, t) we define the mean of the function as

f =
1
h

∫ η

b

fdz, (3.22)

The fluctuating part of f relative to the mean is defined by

f̂ = f − f. (3.23)
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Using this notation, it is clear now that for any functions f1, f2 one has

hf1 f2 +
∫ η

b

f̂1f̂2dz =
∫ η

b

f1f2dz. (3.24)

Thus, equation (3.18) writes as follows:

∂t(hcj) + ∂x(hcj u) + ∂x

(∫ η

b

ĉj ûjdz

)
= cj |z=ηφ̃η + cj |z=bφ̃b, for j = 0, 1, . . . , ns. (3.25)

From equation (3.20) we get

p(x, z, t) = g

ns∑

j=0

(ρjcj(η − z)) + gρw(H0 − h− b) + g

∫ η

z

ns∑

j=0

(ρj ĉj)dz′, (3.26)

and

∫ η

b

1
ρ0
∂xpdz − g

∫ η

b

∂x





∫ η

z

ns∑

j=0

(ρj ĉj)dz′



 dz

=
g

ρ0

∫ η

b

∂x




ns∑

j=0

(ρjcj)(η − z)


 dz − g ρw

ρ0
h∂x(h+ b)

=
g

ρ0
∂x



∫ η

b

ns∑

j=0

(ρjcj(η − z))dz


+

g

ρ0

ns∑

j=0

ρjcjh∂xb− g
ρw
ρ0
h∂x(h+ b)

= g∂x


R0 +

ns∑

j=1

Rjcj
h2

2


+ g


R0 +

ns∑

j=1

Rjcj


h∂xb.

(3.27)

(3.21) can be thus written as follows:

∂t(hu) + ∂x


hu2 + g


R0 +

ns∑

j=1

Rjcj


 h2

2


+ g


R0 +

ns∑

j=1

Rjcj


h∂xb

+
∫ η

b

û2dz + g

∫ η

b

∂x

∫ η

z

ns∑

j=0

(ρj ĉj)dz′dz = τ̃ |z=η − τ̃ |z=b + u|z=ηφ̃η + u|z=bφ̃b.
(3.28)

3.3 Similarity assumptions

In this point, it is necessary to make some assumptions in order to write the integrated equations
in terms of mean variables. We will suppose that the variables cj maintain approximately similar
profiles in the z-direction so that the terms ĉj may be neglected. The term

∫ η
b
û2dz corresponds to the

kinematic Reynolds stress. We shall assume that this term and the tensor stress may be expressed in
terms of u so that we write

τ̃ |z=η − τ̃ |z=b −
∫ η

b

û2dz = τ(u). (3.29)

Let us consider the approximations

φjη ' cj |z=ηφ̃η, φjb ' cj |z=bφ̃b, j = 0, 1, . . . , ns, (3.30)

and

φη =
ns∑

j=0

φjη ' φ̃η, φb =
ns∑

j=0

φjb ' φ̃b. (3.31)

8



In particular, as there is no water entrainment at the bottom, we shall assume φ0
b = 0, and φjb for

j = 1, . . . , ns will be given by the empirical relations described in Section 2. In the same way, there
is no sediment transfer at the interface z = η and we shall suppose φjη = 0, for j = 1, . . . , ns and
φ0
η ≡ φη described in Section 2.

Following [4], we shall assume u|z=η = u and u|z=b = 1
2u.

Thus, using the fact that c0 = 1− c and ∂xb = −∂xH we arrive to the final model




∂th+ ∂x(hu) = φη + φb,
∂t(hc) + ∂x(hu c) = φb,

∂t(hu) + ∂x

(
hu2 + g (R0 +Rc) h

2

2

)
= g (R0 +Rc)h∂xH + uφη + u

2φb + τ.
(3.32)

The second equation will be replaced by one equation for each sediment specie,

∂t(hcj) + ∂x(hu cj) = φjb, for j = 1, . . . , ns, (3.33)

where
∑ns

j=1 φ
j
b = φb.

3.4 Evolution of the topography

Sediment and erosion of the bottom as well as sediment transport due to the velocity of the current
are considered here. The bed-sediment conservation equation has the form

∂tb+ ξ∂xqb = −ξφb, (3.34)

where qb = qb(h, hu) denotes the solid transport flow and ξ = 1
1−γ , where γ is the porosity of the bed.

4 Reformulation and properties of the model

The system may be rewritten in the form:

∂tW + ∂xF̃ (W ) = B(W )∂xW + S(W ), (4.1)

where W = (h, hu, hc1, . . . , hcns
, H)t, F̃ (W ) = (hu, hu2 + g/2(R0 + Rc)h2, hc1u, . . . , hcns

u,−ξqb)t,
B(W ) = g(R0 +Rc)he2,ns+3 and

S(W ) =




Ewu+
∑ns

j=1 vsj (pjEsj − cbj )
Ewu

2 + u
2

∑ns

j=1 vsj
(pjEsj

− cbj
)− (1 + α)cD|u|u

vs1(p1Es1 − cb1)
. . .

vsns
(pnsEsns

− cbns
)

ξ
∑ns

j=1 vsj
(pjEsj

− cbj
)




(4.2)

Here er,s = (δirδjs)
ns+3,ns+3
i=1,j=1 is the canonical basis of square matrices of order ns + 3.

We will also use the notation U = (h, hu, hc1, . . . , hcns)t, F (U) = (hu, hu2+g/2(R0+Rc)h2, hc1u, . . . , hcnsu)t.
The problem may also be written in the more general form

∂tW +A(W )∂xW = S(W ), (4.3)

where A = ∇F̃ (W )−B(W ). More explicitly,

A(W ) =




0 1 0 0 . . . 0 0
gh(R0 + 1

2Rc)− u2 2u g
2R1h

g
2R2h . . . g

2Rns
h −g(R0 +Rc)h

−c1u c1 u 0 . . . 0 0
−c2u c2 0 u . . . 0 0
. . . . . . . . . . . . . . . . . . . . .
−cns

u cns
0 0 . . . u . . .

−ξ ∂qb

∂h −ξ ∂qb

∂(hu) 0 0 . . . 0 0




(4.4)
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Theorem 4.1. Suppose R0h+Rch > 0 and ∇qb sufficiently small. Then, the system (4.3) is hyper-
bolic. Moreover, even though it is not strictly hyperbolic for ns > 1, one can always find a complete
set of eigenvector for A in Rns+3.

Proof.

This is a consequence of the following lemma.

Lemma 4.2. Consider the matrix

A =




0 1 0 0 . . . 0 0
g(R0h+ 1

2γ)− u2 2u g
2R1h

g
2R2h . . . g

2Rns
h −g(R0h+ γ)

−c1u c1 u 0 . . . 0 0
−c2u c2 0 u . . . 0 0
. . . . . . . . . . . . . . . . . . . . .
−cns cns 0 0 . . . u 0
α β 0 0 . . . 0 0




(4.5)

and suppose R0h+ γ
2 + 1

2Rch > 0. There exists ε > 0 such that if α2 + β2 < ε, then the the matrix A
has ns + 3 real eigenvalues, being λ = u an eigenvalue of multiplicity at least ns. Moreover, if there
are four different eigenvalues, a basis of eigenvectors can be found.

Proof.

Some easy calculations show that the characteristic polynomial of A is

p(λ) = −(u− λ)nsq(λ), (4.6)

where

q(λ) = λ3 + a2λ
2 + a1λ+ a0, (4.7)

a2 = −2u, (4.8)

a1 = u2 − g(R0h+
γ

2
+

1
2
Rch) + g(R0h+ γ)β, (4.9)

a0 = g(R0h+ γ)α. (4.10)

Thus, u is an eigenvalue of multiplicity at least ns.
In the particular case α = β = 0, the eigenvalues are

λ1 = u−
√
g(R0h+

γ

2
+

1
2
Rch), (4.11)

λ2 = u+

√
g(R0h+

γ

2
+

1
2
Rch), (4.12)

λ2+j = u, j = 1, . . . , ns, (4.13)
λns+3 = 0. (4.14)

By continuity, the matrix has ns + 3 real eigenvalues for α2 + β2 sufficiently small.
Now, denote by λ1, λ2, λ3 the roots of the polynomial q(λ) and assume they are different real numbers
not equal to u.
If r = (x, y, w1, . . . , wn, z)t is an eigenvector of A corresponding to the eigenvalue λ, then





y = λx,
(λ2 + u2 − g(R0h+ γ

2 )− 2uλ)x =
∑ns

j=1
g
2Rjwjh− g(R0h+ γ)z,

cj(λ− u)x = (λ− u)wj , for j = 1, . . . , ns,
(α+ βλ)x = λz.

(4.15)

We shall consider some different cases:
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A) Case λ ∈ {λ1, λ2, λ3}

A.1) Case λ 6= 0
As λ is a root of the polynomial q, one has

(λ− u)2 − g(R0h+
γ

2
+

1
2
Rch) = −g(R0h+ γ)(α+ βλ)λ−1. (4.16)

Thus, the system (4.15) reduces to




y = λx,
(R0h+ γ)(α+ βλ)λ−1x = (R0h+ γ)z,
cjx = wj , for j = 1, . . . , ns,
(α+ βλ)x = λz,

(4.17)

and one can easily check that

r = (λ, λ2, λc1, . . . , λcn, α+ βλ)t. (4.18)

is an eigenvector.

A.2) Case λ = 0
In this case, we have a0 = g(R0h+ γ)α = 0 and system (4.15) reduces to





y = 0,
(u2 − g(R0h+ γ

2 + 1
2Rch))x = −g(R0h+ γ)z,

cjx = wj , for j = 1, . . . , ns,
αx = 0.

(4.19)

We set

r =





(0, 0, . . . , 0, 1)t, if α 6= 0,
(−g(R0h+ γ), 0,−g(R0h+ γ)c1, . . . ,−g(R0h+ γ)cn, u2 − g(R0h+ γ/2 +Rch/2))t,

if α = 0 and u2 − g(R0h+ γ/2 +Rch/2) 6= 0,
(1, 0, c1, . . . , cn, 0), if α = 0 and u2 − g(R0h+ γ/2 +Rch/2) = 0,

(4.20)
which defines an eigenvector for λ = 0.

B) Case λ = u

Any eigenvector associated to u should verify




y = ux,
−(R0h+ γ

2 )x = 1
2

∑ns

j=1Rjwjh− (R0h+ γ)z,
(α+ βu)x = uz.

(4.21)

Thus, define for j = 1, . . . , ns

rj =
1
2
Rjh(u, u2, 0, . . . , 0, α+ βu) +

(
(α+ βu)(R0h+ γ)− u(R0h+

γ

2
)
)
ej+2, (4.22)

where ei, i = 1, . . . , ns+3 represents the ith element of the canonical basis in Rns+3. They form a
set of ns independent eigenvectors corresponding to u as long as (α+βu)(R0h+γ)−u(R0h+ γ

2 ) 6= 0.

Now, if (α+ βu)(R0h+ γ) = u(R0h+ γ
2 ), then u 6= 0 (otherwise, we would have a0 = 0 and u = 0

of multiplicity at least ns+ 1 so there are only 3 different eigenvalues). Thus, system (4.15) writes




y = ux,∑ns

j=1Rjwjh = 0,
(α+ βu)x = uz,

(4.23)
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and we may define a set of ns independent eigenvectors by

r1 = (u, u2, 0, . . . , 0, α+ βu), (4.24)

and
rj = r1 −Rjej+1 +Rj−1ej+2, for j = 2, . . . , ns. (4.25)

�

Lemma 4.3. Suppose that the solid transport flux qb is given by the Grass model (2.18). Then if
R0 +Rc > 0 all the eigenvalues of (4.4) are real.

Proof.

In this particular case, the coefficients of the polynomial (4.7) are

a2 = −2u, (4.26)

a1 = u2 − gch(1 + d), (4.27)
a0 = gchud, (4.28)

where gc = g(R0 +Rc) and d = ξ ∂qb

∂(hu) = ξ 1
hAgmg|u|mg−1.

According to the Cardano-Vieta relations, the roots of q(λ) are real if Q3 +R2 < 0, where

Q =
3a1 − a2

2

9
, R =

9a1a2 − 27a0 − 2a3
2

54
. (4.29)

In that case, the eigenvalues are given by

λi = 2
√
−Q cos

(
θ + 2i−1π

3

)
− a2

3
, i = 1, 2, 3, (4.30)

with

θ = arccos

(
R√
−Q3

)
(4.31)

Some simple calculations show that

Q =
−1
9

(u2 + 3gch(d+ 1)), (4.32)

R =
u

54
(9gch(2− d)− 2u2), (4.33)

Q3 = − 1
36

(u6 + 32u4gch(d+ 1) + 33u2g2
ch

2(d+ 1)2 + 33g3
ch

3(d+ 1)3, (4.34)

R2 =
u2

22 · 36
(34g2

ch
2(2− d)2 + 22u4 − 22 · 32u2gch(2− d)). (4.35)

Thus, Q3 +R2 < 0 as long as

34g2
ch

2u2(2− d)2 − 32 · 22u4gch(2− d)

< 32 · 22u4gch(d+ 1) + 33 · 22u2h2g2
c (d+ 1)2 + 33 · 22g3

ch
3(d+ 1)3, (4.36)

which is equivalent to

8g2
ch

2u2 < 22gchu
4 + g2

ch
2u2d(14 + d) + 22g3

ch
3(d+ 1)3. (4.37)
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By hypothesis gc > 0. Thus, (4.37) is equivalent to

0 < −8gch2u2 + 22hu4 + gch
2u2d(14 + d) + 22g2

ch
3(d+ 1)3

= 4h(u2 − gch)2 + gchd(14 + d) + 4g2
ch

3(d3 + 3d2 + 3d) (4.38)

and the result follows.

�

Proposition 4.4. Consider the system

∂th+ ∂x(hu) = φη + φb, (4.39a)

∂t(hu) + ∂x

(
hu2 + g (R0 +Rc)

h2

2

)
= g (R0 +Rc)h∂xH + uφη +

u

2
φb + τ, (4.39b)

∂t(hcj) + ∂x(hu cj) = φjb, for j = 1, . . . , ns, (4.39c)
∂tH = φb. (4.39d)

Any smooth solution of (4.39) satisfies the equation

∂t(η(W )) + ∂x(G(W )) =
(
u2

2
+ g

(
R0(h−H) +

Rch

2

))
φη − g

Rch

2
φb + g

(
h

2
−H

) ns∑

j=1

Rjφ
j
b + uτ, (4.40)

with

η(W ) = h
u2

2
+ g(R0 +Rc)

h2

2
− g(R0 +Rc)hH + gR0

H2

2
(4.41)

and

G(W ) = hu

(
u2

2
+ g(R0 + gRc)(h−H)

)
. (4.42)

Proof.

First, from equations (4.39a) and (4.39b) we get:

∂tu+ ∂x

(
u2

2

)
+

1
h
∂x

(
g(R0 +Rc)

h2

2

)
= g(R0 +Rc)∂xH −

1
2
u

h
φb +

τ

h
. (4.43)

Now, multiplying equation (4.39a) by u2

2 + gR0(h − H) and equation (4.43) by hu and adding the
results we get

∂t

(
h
u2

2
+ gR0(

h2

2
−Hh)

)
+ ∂x

(
hu

(
u2

2
+ gR0(h−H)

))
+ u∂x

(
gRc

h2

2

)

= ghuRc∂xH −
u2

2
φb +

(
u2

2
+ gR0(h−H)

)
(φη + φb)− gR0h∂tH + uτ. (4.44)

The third term of the right hand side can be rewritten as follows:
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u∂x

(
gRc

h2

2

)
= ∂x

(
gRc

h2

2
u

)
− gRc

h

2
∂x(hu) + gRc

h

2
u∂xh

= ∂x

(
gRc

h2

2
u

)
+ gRc

h

2
(∂th− (φη + φb)) + gRc

h

2
u∂xh+ g

h

2

ns∑

j=1

Rj(∂t(cjh) + ∂x(hcju)− φjb)

= ∂t

(
gRc

h2

2

)
+ ∂x

(
gRcuh

2
)
− g

2
Rch(φη + φb)−

g

2
h

ns∑

j=1

Rjφ
j
b. (4.45)

Using this expression in (4.44) we get

∂t

(
h
u2

2
+ g(R0 +Rc)

h2

2
− gR0Hh

)
+ ∂x

(
hu

(
u2

2
+ g(R0 +Rc)h− gR0H

))

= gRchu∂xH − gR0h∂tH + gR0(h−H)(φη + φb)

+
(
u2

2
+ gRc

h

2

)
φη +

g

2
Rchφb +

g

2
h

ns∑

j=1

Rjφ
j
b + uτ. (4.46)

Now, we remark

gRchu∂xH − gR0h∂tH + gR0(h−H)(φη + φb)

= gRchu∂xH + gR0h(φb − ∂tH)− gR0H(φη + φb) + gR0hφη + gH

ns∑

j=1

Rj(∂t(hcj) + ∂x(hcju)− φjb)

= ∂t(gRchH) + ∂x(gRchuH)− gRch∂tH − gR0H(φη + φb) + gR0hφη − gH
ns∑

j=1

Rjφ
j
b. (4.47)

Using this result in (4.46) we obtain (4.40).

�

Corollary 4.5. Consider the system (4.39) and suppose that the following assumptions are satisfied:

(i) φη = 0,

(ii) φb ≤ 0,

(iii) uτ ≤ 0,

(iv) Rj = R̄ for j = 1, . . . , ns.

Then, any smooth solution of (4.39) satisfies the entropy inequality

∂t(η̄(W ) +
g

2
R̄H2) + ∂xG(W ) ≤ 0, (4.48)

where η and G are given by (4.41) and (4.42) respectively.

Proof.

The following equality can be easily verified by using (iv).

−g
2
hRcφb +

g

2
h

ns∑

j=1

Rjφ
j
b − gH

ns∑

j=1

Rjφ
j
b =

g

2
hR̄(1− c)φb − gHR̄φb. (4.49)
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Using this equality and 4.39d we may write (4.40) in the form

∂t

(
η(W ) + gR̄

H2

2

)
+∂x(G(W )) =

(
u2

2
+ g

(
R0(h−H) +

Rch

2

))
φη +

g

2
hR̄(1− c)φb +uτ, (4.50)

and the result follows.

�

Remark 4.1. As the source term φb is given by

φb =
ns∑

j=1

vsj
(pjEsj

− cbj
), (4.51)

φb ≤ 0 as long as cbj ≥ pjEsj i.e., if the deposition predominates over erosion.
Given the particular definition of Esj

in (2.9), this is the case in many physical situations.

5 Numerical scheme

As usual, we consider a set of computing cells Ii = [xi−1/2, xi+1/2], i ∈ Z. For the sake of simplicity,
we assume that these cells have a constant size 4x and that xi+1/2 = i4x. xi = (i − 1/2)4x is the
center of the cell Ii. Let 4t be the time step and tn = n4t.
We denote by Wn

i the approximation of the cell averages of the exact solution

Wn
i
∼= 1
4x

∫ xi+1/2

xi−1/2

W (x, tn)dx. (5.1)

Given the approximations (Wn
i ) at time tn, we compute the approximations at time tn+1 using a

two-step algorithm.
First we solve

{
∂tW + ∂xF̃ (W ) = B(W )∂xH,
W (x, t = tn) = Wn

i for x ∈ Ii.
(5.2)

Let Wn+1/2
i be the approximations of the cell averages of the solution of this problem. We define

Wn+1
i = W

n+1/2
i +4tS(Wn

i ). (5.3)

In order to solve (5.2), we introduce the theory described in [22], [21]. We briefly describe thereafter
the application of the theory to the system considered here.

5.1 Roe scheme adapted to system (5.2)

System (5.2) may be written under the form

∂W

∂t
+A(W )

∂W

∂x
= 0, x ∈ R, t > 0. (5.4)

with A(W ) defined by (4.4). This matrix has the following block structure

A(W ) =
[
J (U) −b(U)
−ξ∇qb 0

]
(5.5)

where U = (h, hu, hc1, . . . , hcns
)t, J (U) = ∇UF, F (U) = (hu, hu2 +g/2(R0 +Rc)h2, hc1u, . . . , hcns

u)t

and b(U) = (0,−g(R0h+Rch), 0, . . . , 0)t.
Only the cases qb = 0 or qb given by Grass model will be considered here.
Observe that system (5.4) contains a non-conservative product A(W ) ·Wx which, in general, does
not make sense within the framework of the theory of distributions. After the theory developed by
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Dal Masso, LeFloch, and Murat [9], a rigorous definition of weak solutions can be performed using a
family of paths. We refer to [9], [22] and [21] for further details.
In [24] a generalization of Roe methods to systems of the form (5.4) was introduced. These methods
are based on the following general definition of a Roe linearization:

Definition 5.1. Given a family of paths Ψ, a matrix function AΨ : Ω×Ω→MN (R) is called a Roe
linearization if it satisfies:

• for any WL,WR ∈ Ω, AΨ(WL,WR) has N real eigenvalues;

• AΨ(W,W ) = A(W ), for all W ∈ Ω;

• for any WL,WR ∈ Ω:

AΨ(WL,WR) · (WR −WL) =
∫ 1

0

A
(
Ψ(s;WL,WR)

)∂Ψ
∂s

(s;WL,WR) ds. (5.6)

A family of paths is a Lipschitz continuous function Ψ : [0, 1] × Ω × Ω → Ω which must satisfy
some regularity conditions, (see [9] for the details) and Ψ(0,Wl,Wr) = Wl, Ψ(1,Wl,Wr) = Wr),
Ψ(s,W,W ) = W.
Once a Roe linearization is given, Roe schemes can be generalized for systems of the form (5.4). We
refer to [22] for further details. The scheme can be written in the form

Wn+1
i = Wn

i −
∆t
∆x

(
A+
i−1/2 · (Wn

i −Wn
i−1) +A−i+1/2 · (Wn

i+1 −Wn
i )
)
, (5.7)

where

L±i+1/2 =




(λi+1/2
1 )± 0

. . .
0 (λi+1/2

N )±


 , A±i+1/2 = Ki+1/2L±i+1/2K−1

i+1/2, (5.8)

λ
i+1/2
1 , . . . , λ

i+1/2
N being the eigenvalues of Ai+1/2 and Ki+1/2 a matrix whose columns form a basis

of associated eigenvectors.
We consider here the canonical choice of the family of paths

Ψ(s;WL,WR) = WL + s(WR −WL). (5.9)

In order to build a Roe linearization based on the family of paths (5.9), it is natural to look for
matrices with the same structure of A(W ):

Ai+1/2 =
[
Ji+1/2 −bi+1/2

−ξqi+1/2 0

]
. (5.10)

For Roe matrices with this structure, (5.6) can be rewritten as follows:

Ji+1/2(Ui+1 − Ui)− (Hi+1 −Hi)bi+1/2 = F (Ui+1)− F (Ui)− bΨ(Wi,Wi+1) (5.11)
qi+1/2(Ui+1 − Ui) = qb(Ui+1)− qb(Ui), (5.12)

where

bΨ(Wi,Wi+1) = (0,
∫ 1

0

g


R0Ψ1(s,Wi,Wi+1) +

ns∑

j=1

RjΨj+2(s,Wi,Wi+1)


 ∂Ψ2

∂s
ds, 0, . . . , 0)t.

(5.13)
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In the particular case that qb is given by Grass model, properties (5.11)-(5.12) are satisfied if we define:

Ji+1/2 =




0 1 0 . . . 0
g(R0hi+1/2 + 1

2γi+1/2)− (ui+1/2)2 2ui+1/2
g
2R1hi+1/2 . . . g

2Rns
hi+1/2

−(c1)i+1/2ui+1/2 (c1)i+1/2 ui+1/2

. . . 0
. . . . . . . . . . . . . . .

−(cns
)i+1/2 (cns

)i+1/2 0 . . . ui+1/2



, (5.14)

−ξqi+1/2 =
(
ui+1/2di+1/2 −di+1/2 0 . . . 0

)
, (5.15)

bi+1/2 =




0
g(R0hi+1/2 + γi+1/2)

0
. . .
0



, (5.16)

where

hi+1/2 =
hi + hi+1

2
, ui+1/2 =

√
hiui +

√
hi+1ui+1√

hi +
√
hi+1

, (5.17)

(cj)i+1/2 =
√
hi(cj)i +

√
hi+1(cj)i+1√

hi +
√
hi+1

, γi+1/2 =

∑ns

j=1Rj((hcj)i + (hcj)i+1)
2

, (5.18)

di+1/2 =
Agξ(

√
hi +

√
hi+1)√

hihi+1 +
√
hi+1hi

mg−1∑

k=0

(ui+1)k(ui)mg−(k+1). (5.19)

The eigenstructure of matrices (5.10) is given by lemma 4.2, and thus Ai+1/2 is a Roe matrix.

Remark 5.1. If we neglect the solid transport flow (qb = 0), the system reduces to a system of conser-
vation laws with a source term. Thus, following [22], we have

A±i+1/2 =
[ J±i+1/2 −J±i+1/2J−1

i+1/2bi+1/2

0 0

]
(5.20)

and the scheme (5.7) may be rewritten under the form

Un+1
i = Uni −

4t
4x

[
P+
i−1/2

(
Ji−1/2(Ui − Ui−1)− bi−1/2(Hi −Hi−1)

)

+ P−i+1/2

(
Ji+1/2(Ui+1 − Ui)− bi+1/2(Hi+1 −Hi)

)]
,

(5.21)

where
P±i+1/2 =

1
2

(
Id± |Ji+1/2|J−1

i+1/2

)
. (5.22)

5.2 The non-hyperbolic case

From Lemma 4.2, if R0hi+1/2+ 1
2γi+1/2+ 1

2

∑ns

j=1(Rjcj)i+1/2hi+1/2 > 0 and di+1/2 is sufficiently small,
Ai+1/2 has ns + 3 real eigenvalues that can be approached by

λ1 ' ui+1/2 −
√
g(R0hi+1/2 +

γi+1/2

2
+

1
2

(Rc)i+1/2hi+1/2), (5.23)

λ2 ' ui+1/2 +

√
g(R0hi+1/2 +

γi+1/2

2
+

1
2

(Rc)i+1/2hi+1/2), (5.24)

λ2+j = ui+1/2, j = 1, . . . , ns (multiplicity ns), (5.25)
λns+3 ' 0. (5.26)
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As R0 < 0, λ1 and λ2 may become complex when 1
2γi+1/2 + 1

2 (Rc)i+1/2hi+1/2 is small. Indeed, this
situation may arise near the plume front or when most of the sediment has been deposited. In this
situations the density of the turbidity current is lower than that of the ambient water an thus it
should go upwards. Therefore, the model is no longer valid in such situations. Nevertheless, one
would like to compute, for example, numerical simulations of dam-break type, where eigenvalues may
become complex near the front but the model makes sense far from the front. One way to do so is
to set ρ0 = ρw if Ai+1/2 has complex eigenvalues and to neglect the pressure terms. Thus, whenever
Ai+1/2 given by (5.10), (5.14)-(5.16) has complex eigenvalues, we replace locally the scheme by an
up-winding method for the flux F̃ without pressure terms. More explicitly, if the Roe matrix has
complex eigenvalues at the inter-cell xi0+1/2, then the terms A±i0+1/2(Wi0+1 − Wi0) in the scheme
(5.7) are replaced by D±i0+1/2 where

D−i0+1/2 = 0, D+
i0+1/2 = F̃ ∗(Wi0+1)− F̃ ∗(Wi0) if ui0+1/2 > 0, (5.27)

D−i0+1/2 = F̃ ∗(Wi0+1)− F̃ ∗(Wi0), D+
i0+1/2 = 0 if ui0+1/2 < 0, (5.28)

and
F̃ ∗(W ) = (hu, hu2, hc1u, . . . , hcns

u,−ξqb)t. (5.29)

5.3 Addition of a non-erodible bed

Usually, the bottom is formed by a thin layer of sediments that may be eroded or transported by the
plume that lays over a rigid bottom which is not erodible. In that case, an initial function M0(x) must
be given that establishes the depth for the non-erodible bottom (see Figure 2). Moreover, in some
cases a fraction of the deposited sediment may solidify and become part of the non-erodible bottom
so that M0 could depend on time.
In this cases, the source terms (φjb)

n = vsj (pnjE
n
sj
− cnbj

) have to be limited so that the amount of
eroded sediment do not exceed the total mass of the erodible layer. Thus, for each cell Ii whenever
(φjb)

n > 0, this source term is replaced by the modified expression

(φ̂jb)
n =

{
(φjb)

n, if pnj (M0 −Hn)− ξ4t(φjb)n ≥ 0,
pnj (M0 −Hn)(ξ4t)−1, otherwise.

(5.30)

The volume fraction of sediments at the bottom, pn+1
i is given by

pn+1
j (M0 −Hn+1) = pnj (M0 −Hn)− ξ4t(φ̂jb)n ≥ 0, (5.31)

for each cell Ii. Note that (5.30) assures the positivity of pn+1
j .

6 Extension to 2D

The model (2.17) can be easily extended to the 2D case. Following the same procedure of Section 3
adapted to the 2D case, one can obtain





∂th+ ∂x(hu) + ∂y(hv) = φη + φb,

∂t(hu) + ∂x

(
hu2 + g (R0 +Rc)

h2

2

)
+ ∂y(huv) = g (R0 +Rc)h∂xH + uφη +

u

2
φb + τu,

∂t(hv) + ∂x(huv) + ∂y

(
hv2 + g (R0 +Rc)

h2

2

)
= g (R0 +Rc)h∂yH + vφη +

v

2
φb + τv,

∂t(hcj) + ∂x(hu cj) + ∂y(hv cj) = φjb, for j = 1, . . . , ns

∂tH − ξ∂xqxb − ξ∂yqyb = ξφb,

(6.1)
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Free surface
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H(t, x)

h(t, x)

Figure 2: Sketch of hyperpycnal flow over a non erodible bed

where h is the current thickness; ~u = (u, v) is the depth-averaged velocity; cj for j = 1, . . . , ns
represents the vertically averaged volume concentration of the jth sediment; and H is the bottom
depth from a fixed level.
We shall adopt the same notation as in Section 2 adapting the source terms to the 2D framework. So,
the expression of φη is replaced by

φη = Ew ‖~u‖ , (6.2)

while the definition of φjb remains essentially the same but replacing |u| by ‖~u‖ in (2.10). We shall
denote

τu = −(1 + α)cDu ‖~u‖ , τv = −(1 + α)cDv ‖~u‖ . (6.3)

(qxb , q
y
b ) is the corresponding 2D solid transport flux which, in the case of Grass model, corresponds to

qxb = Agu ‖~u‖mg−1
, qyb = Agv ‖~u‖mg−1

, 1 ≤ mg ≤ 4, (6.4)

The system may be rewritten in the form:

∂tW + ∂xF̃1(W ) + ∂yF̃2(W ) = B1(W )∂xW +B2(W )∂yW + S(W ), (6.5)

where W = (h, hu, hv, hc1, . . . , hcns
, H)t and

F̃1(W ) = (hu, hu2 + g/2(R0 +Rc)h2, huv, hc1u, . . . , hcns
u,−ξqxb )t, (6.6)

F̃2(W ) = (hv, huv, hv2 + g/2(R0 +Rc)h2, hc1v, . . . , hcns
v,−ξqyb )t, (6.7)

B1(W ) = g(R0 +Rc)he2,ns+4, (6.8)
B2(W ) = g(R0 +Rc)he3,ns+4 (6.9)

and

S(W ) =




Ew ‖~u‖+
∑ns

j=1 vsj (pjEsj − cbj )
Ewu ‖~u‖+ u

2

∑ns

j=1 vsj
(pjEsj

− cbj
)− (1 + α)cDu ‖~u‖

Ewv ‖~u‖+ v
2

∑ns

j=1 vsj
(pjEsj

− cbj
)− (1 + α)cDv ‖~u‖

vs1(p1Es1 − cb1)
. . .

vsns
(pns

Esns
− cbns

)
ξ
∑ns

j=1 vsj
(pjEsj

− cbj
)




(6.10)

Here er,s = (δirδjs)
ns+4,ns+4
i=1,j=1 is the canonical basis of square matrices of order ns + 4.

The problem may also be written in the more general form
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∂tW +A1(W )∂xW +A2(W )∂yW = S(W ), (6.11)

where Ak = ∇F̃k(W )−Bk(W ), k = 1, 2.
Some easy calculations allow us to prove the following property:

Lemma 6.1. System (6.1) is invariant under rotations. More explicitly, suppose any unitary vector
~n = (nx, ny) and define

R~n =




1 0 0 0
0 nx ny 0
0 −ny nx 0
0 0 0 Id


 . (6.12)

Then the following relations hold

F̃~n(W ) := nxF̃1(W ) + nyF̃2(W ) = R−1
~n F̃1(R~nW ), (6.13)

B~n(W ) := nxB1(W ) + nyB2(W ) = R−1
~n B1(R~nW )R~n, (6.14)

A~n(W ) := nxA1 + nyA2 = R−1
~n A1(R~nW )R~n. (6.15)

In order to solve (6.11), the computational domain is divided into discretization cells or finite volumes,
Vi and we proceed as it was done in Section 5 by solving first

{
∂tW + ∂xF̃1(W ) + ∂yF̃2(W ) = B1(W )∂xH +B2(W )∂yH,
W (x, y, t = tn) = Wn

i for (x, y) ∈ Vi.
(6.16)

Then, let Wn+1/2
i be the approximations of the cell averages of the solution of this problem. We define

Wn+1
i = W

n+1/2
i +4tS(Wn

i ). (6.17)

The following notation is considered: given a finite volume Vi, Ni is the set of indexes j such that Vj
is a neighbor of Vi; Eij is the common edge to two neighbor cells Vi and Vj , and |Eij | represents its
length; ~nij = (nij,x, nij,y) is the normal unit vector of the edge Eij pointing towards the cell Vj .
Following [7], [6], system (6.16) will be solved using a path-conservative Roe scheme which can be
written under the form

Wn+1
i = Wn

i −
4t
|Vi|

∑

j∈Ni

|Eij |A−ij(Wn
j −Wn

i ), (6.18)

where Ai,j = A(Wi,Wj , ~nij) in now a Roe linearization of nxA1(W ) + nyA2(W ). We refer to [7] and
[6] for further details.
Thanks to Lemma 6.1, the definition of Roe matrix is an easy task by using the expression given in
the 1D case. The eigenstructure of Roe matrix is also straightforward from Lemma 4.2.

7 Numerical simulations

7.1 Comparison with laboratory experiments

First, we compare the model with the data presented in [16] corresponding to a laboratory experiment
using a 10-m-long, 0.2-m-wide and 0.5-m-deep flume with a 0.5-m-long gate box at the upstream end.
Lock exchange experiments where studied with different bottom topographies and different sediment
concentration at the gate box. For the experiment shown here, the initial water depth is 0.2 m at the
gate box. The topography in the flume is given by Figure 3.
Particle-driven density currents were generated by releasing suspensions, which were composed by
siliceous, non-cohesive, sand to silt sized particles (density 2650 kg/m3). The initial volume fraction
of the particles was 2% and the solid transport of the bottom is neglected (qb = 0). The sediments
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Figure 3: Comparison with laboratory experiments: Hump topography

are represented by a mixture of 20% of fine sand (vs = 0.01m/s, φ = 3.0), 50% very fine sand
(vs = 0.005m/s, φ = 3.5) and 30% of coarse silt (vs = 0.003m/s, φ = 4.0).
We show the simulations corresponding to experiments B5, B9, B11, C5, C7 and C13 in [16]. The
corresponding parameters for each experiment are given in Table 1.

Experiment
Ramp
height

Ramp
length

Number
of humps

Hump
height

Hump
length

B5 0.1 1 0 - -
B9 0.1 2 0 - -
B11 0.05 1 0 - -
C5 0.1 1 3 0.036 1
C7 0 1 3 0.036 1
C13 0.1 1 3 0.036 2

Table 1: Experiment description

In general, the model predictions are comparable to the experimental results. In some cases, we
remark that some disagreements arise, specially in the proximal area, where the model predicts less
deposition than found in experimental results. This behaviour was also observed in the simulations
shown in [16]. This is more likely due to the fact that the motion of the upper ambient layer has
been neglected. When a turbidity current intrudes shallow water, an opposing current is generated in
the ambient fluid, which reduces its forward momentum. In Figures 4, 5 and 6 we see that deposits
decrease from a maximum at the beginning of the flume with a slight increase downstream of the
slope break. This increase is sensible to the slope of the ramp. In the case of Figures 7, 8 and 9, the
topography influence can be seen as an increase on upslope of the humps.
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Figure 4: Comparison with laboratory experiments: Deposit distribution for experiment B5
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Figure 5: Comparison with laboratory experiments: Deposit distribution for experiment B9
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Figure 6: Comparison with laboratory experiments: Deposit distribution for experiment B11

7.2 Successive turbidity currents over an initial flat bottom

Inspired by the experiments shown in [17], we intend now to simulate spillover turbidity currents on
submarine channel levees, that is a succession over a long time period of several turbidity currents.
Following this idea, we generate successive turbidity currents over an initial 25m long flat bottom.
Each turbidity current is generated by supplying a suspension of sediments at the upstream end of
the flow field. The mixture is composed by three sediment species with the same characteristics as
the ones used on experiments given by Table 1. The height is fixed to 0.5m and the flux is 0.001m2/s.
The supply duration is set at 4s and the turbidity is let to evolve for 100s before the next supply
arrives. The volume of deposits is then converted to bed thickness so that the final bed after each
supply is considered as the initial topography for the following and is supposed to solidify and to be
non-erodible when the next plume arrives. In Figure 10 we represent the bottom evolution for this
successive flow events. Each layer represents the resulting bottom after 500 flow events. We remark
the appearance of wavy structures by repeated deposition of turbidities over a flat bottom as it would
be expected in physical situations.
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Figure 7: Comparison with laboratory experiments: Deposit distribution for experiment C5
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Figure 8: Comparison with laboratory experiments: Deposit distribution for experiment C7

7.3 Solid transport of topography

We shall now show the influence of solid transport on the topography. We consider the case of a river
(assume R0 = 0) over an initial topography given by

H(x, t = 0) =

{
0.1− 0.04 sin2(π(x− 3)/2), for 2 ≤ x ≤ 5,
0.1, elsewhere.

(7.1)

This initial topography is assumed to be erodible up to the depth level 0.102. The initial height is
set to h(x, t = 0) = H(x, 0) and the initial velocity is such that hu(x, t = 0) = 0.01. We suppose
that there is a suspension of siliceous particles (density 2650 kg/m3 and vs = 0.002m/s) with initial
volume fraction of 1%. At the upstream end, we set a supply with concentration 1% for the first 100s.
Solid transport is considered using Grass model with Ag = 0.005.
First, assume that there is no erosion of the topography and no deposition of particles, so that only
solid transport is considered. Figure 11 shows the topography evolution.
Now, let us consider the same situation but adding erosion and deposition effects. The results are
shown on Figure 12.
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Figure 9: Comparison with laboratory experiments: Deposit distribution for experiment C13
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Figure 10: Successive turbidity currents over an initial flat bottom: Topography evolution. Each layer
corresponds to 500 turbidity beds

7.4 A 2D example

As it has been said in Section 6, the model and numerical schemes can be easily extended to 2D
turbidity currents. Here we shall show a test case related to experiment C5 in Section 7.1. We
consider the domain given by Figure 13. A 0.5-m-long by 1-m-wide gate box has been placed at the
upstream end with a mixture of sediments with same characteristics as the ones used in Section 7.1.
The initial height of the mixture is set to 0.2m and we consider a hump topography like the one on
Figure 14 with ramp and hump height and length corresponding to experiment C5 in Section 7.1.
Figures 16-17 show the deposit density along the longitudinal and transversal sections on Figure 13.
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Figure 15: A 2D example: Evolution of turbidity current after release from the gate box. Color levels
correspond to the modulus of velocity
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Figure 16: A 2D example: Deposit density. Longitudinal section
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Figure 17: A 2D example: Deposit density. Transversal section
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