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Abstract. A genetic algorithm for finding cocyclic Hadamard matrices
is described. Though we focus on the case of dihedral groups, the algo-
rithm may be easily extended to cover any group. Some executions and
examples are also included, with aid of Mathematica 4.0.

1 Introduction

Over the past decade considerable effort has been devoted to computations of
cocycles and (Hadamard) cocyclic matrices. On one hand, using classical meth-
ods involving the Universal Coefficient Theorem, Schur multipliers, inflation and
transgression, two algorithms for finding 2-cocycles representing 2-dimensional
cohomology classes and their correspondent cocyclic matrices have been worked
out. The first one constitutes the foundational work on the subject [6, 7], and
is applied over abelian groups. The second one [8] is applied over groups G for
which the word problem is solvable.

On the other hand, Homological Perturbation Theory [12, 13, 16] provides
computational short-cuts in a straightforward manner, by means of the so-called
(co)homological models. This technique has been exploited in [11] from a coho-
mological point of view and more recently in [1, 2, 3] from a homological point
of view.

From past literature it is evident that the search of Hadamard (cocyclic)
matrices inherits high computational difficulty. In fact, though the use of the
cocyclic construction of Hadamard matrices has permitted cut-downs in the
search time, the search space still grows exponentially.

The work in [4] attempts to make an adaptation of image-processing tech-
niques for the restoration of damaged images for the purpose of sampling the
search space systematically. As a matter of fact, this approximation reveals to
work whenever enough Hadamard cocyclic matrices are already known, from
which the performance is then feasible.

Our aim is to provide a tool for generating Hadamard cocyclic matrices in an
easy and (hopefully) fast way, which will complement in turn the work in [4]. Here
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we look at an adaptation of classical Genetic Algorithms [14, 15] for this purpose.
Though it actually works on any group, we will focus on an improved version
running on dihedral groups. Both of the genetic algorithms and all the executions
and examples of the last section have been worked out with aid of Mathematica

4.0, running on a Pentium IV 2.400 Mhz DIMM DDR266 512 MB. It is a
remarkable fact that, as far as we know, none of the algorithms already known
has produced some Hadamard cocyclic matrices of large order (say 4t ≥ 40).
The examples in Section 6 include some Hadamard cocyclic matrices of order
52. This way, our method seems to provide some cocyclic Hadamard matrices of
larger order than those previously obtained with other algorithms.

We organize the paper as follows. Section 2 summarizes the classical meth-
ods already known for finding (Hadamard) cocyclic matrices. Section 3 is a
brief introduction to Genetic Algorithms. The genetic algorithm itself for find-
ing Hadamard cocyclic matrices is described in Section 4. The following section
includes an improved version of the algorithm for the case of dihedral groups.
As a matter of fact, both the search time and the search space are substantially
optimized thanks to the work of the authors in [2, 3]. The last section is devoted
to some examples.

2 Generating Cocyclic Matrices

The foundational work on cocyclic matrices is [6, 7], where a basis for 2-cocycles
is codified in terms of a development table. Horadam and de Launey’s method
is based on an explicit version of the well-known Universal Coefficient Theorem,
which provides a decomposition of the second cohomology group of G into the
direct sum of two summands,

H2(G, C) ∼= Ext(G/[G, G], C) ⊕ Hom(H2(G), C).

The Ext(G/[G, G], C) factor is referred as the symmetric part, and is completely
determined from a presentation of G and the primary invariant decomposition
of the abelianization G/[G, G]. The Hom(H2(G), C) factor is referred as the
commutator part and turns out to be the difficult one to compute. The case
of abelian groups is described in [6, 7]. Once a set of generators for both the
symmetric and commutator parts is determined, it suffices to add a basis for
2-coboundaries of G, so that a basis for 2-cocycles is finally achieved.

Another method is described in [8], whenever the word problem is solvable
in G. This method has already been implemented in [10], using the symbolic
computational system MAGMA. Flannery calculates H2(G; C) ∼= I ⊕ T as
the images of certain embeddings (called inflation, I, and transgression, T )
which are complementary. Calculation of representative 2-cocycles associated
to Ext(G/[G, G], C) (inflation) is again canonical. However, calculation of a
complement of the image by the embeddings of inflation I in H2(G, C) as the
image of transgression is usually not canonical. As a matter of fact, it depends on
the choice of a Schur complement of I in H2(G; C). If |I| and |T | are not coprime,
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there will be more than one complement of I in H2(G; C). This is a potential
source of difficulties in computation of representative 2-cocycles associated with
elements of Hom(H2(G), C). The case of dihedral groups and central extensions
is described in [8, 9, 10].

Using the proper techniques of Homological Perturbation Theory [12, 13, 16],
Grabmeier and Lambe present in [11] alternate methods for calculating repre-
sentative 2-cocycles for all finite p–groups. They compute H2(G; C) straightfor-
wardly from a cohomological model K of G. That is, a structure K such that
H2(G; C) ∼= H2(K; C) and the computation of H2(K; C) is much simpler than
that of H2(G; C).

One more approximation to this question, the so-called homological reduction
method, is developed in another work of the authors [1, 2, 3]. Here homological
models K for G are determined instead of cohomological models, in the sense
that H∗(K) ∼= H∗(G) and H∗(K) is computed substantially more easily than
H∗(G). The method developed in these papers covers any iterated product of
central extensions and semidirect product of groups, so that dihedral groups D4t

are included. The genetic algorithm to be described in Section 4 is performed
upon the calculations that the homological reduction method provides when it
is applied over D4t.

3 Preliminaries in Genetic Algorithms

Genetic algorithms (more briefly, GAs in the sequel) are appropriate for search-
ing through large spaces, where exhaustive methods cannot be employed.

The father of the original Genetic Algorithm was John Holland who invented
it in the early 1970’s [14]. We next include a brief introduction to the subject.
The interested reader is referred to [15] for more extensive background on GAs.

The aim of GAs is to mimic the principle of evolution in order to find an opti-
mum solution for solving a given optimization problem. More concretely, starting
from an initial “population” of potential solutions to the problem (traditionally
termed chromosomes), some transformations are applied (may be just to some
individuals or even to the whole population), as images of the “mutation” and
“crossover” mechanisms in natural evolution. Mutation consists in modifying a
“gene” of a chromosome. Crossover interchanges the information of some genes
of two chromosomes.

Only some of these individuals will move on to the next generation (the more
fit individuals, according to the optimization problem, in terms of the measure of
an “evaluation function”). Here “generation” is a synonymous of iteration. The
mutation and crossover transformations are applied generation through genera-
tion, and individuals go on striving for survival. After some number of iterations,
the evaluation function is expected to measure an optimum solution, which solves
the given problem. Although no bounds are known on the number of iterations
which are needed to produce the fittest individual, it is a remarkable fact that
GAs usually converge to an optimum solution significantly faster than exhaustive
methods do. Indeed, GAs need not to explore the whole space.
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4 Finding Hadamard Cocyclic Matrices by Means of GAs

We now set the directives for a genetic algorithm looking for Hadamard cocyclic
matrices over a group G. In the following section we improve the design of the
algorithm in the particular case of the dihedral group D4t.

Let G be a group and B = {δ1, . . . , δc, β1, . . . , βs, γ1, . . . , γt} a basis for 2-
cocycles (according to the Hadamard pointwise product • of matrices). Here δi

denote 2-coboundaries, βi denote representative symmetric 2-cocycles (coming
from inflation, i.e. factor Ext(G/[G, G], ZZ2)) and γi denote representative not
symmetric 2-cocycles (coming from transgression, i.e. factor Hom(H2(G), ZZ2)).
Notice that in these circumstances the whole space of 2-cocycles consists of
2c+s+t elements, and precisely 2c of them are 2-coboundaries. Moreover, every 2-
cocycle f may be uniquely expressed as a binary (c+s+t)-tuple (f1, . . . , fc+s+t)B
such that

f = δf1
1 • . . . • δfc

c • β
fc+1
1 • . . . • βfc+s

s • γ
fc+s+1
1 • . . . • γft

t

A genetic algorithm for finding Hadamard cocyclic matrices may be designed
as follows.

The population consists of the whole space of normalized cocyclic matri-
ces over G, Mf = (f(gi, gj)), f being a 2-cocycle. The term “normalized”
means that the first row is formed all by 1. Each of the individuals f of the
population (i.e. potential solutions to the problem) is identified to a binary
(c + s + t)-tuple (f1, . . . , fc+s+t)B, the coordinates of the 2-cocycle f with re-
gards to the basis B. This way, the coordinates fk are the genes of the individual
f = (f1, . . . , fc+s+t)B.

The initial population P0 is formed by some binary (c+s+t)-tuples randomly
generated. Assuming that |G| = 4t (remember that only 2×2 Hadamard matrices
exist whose sizes are not multiple of 4), we consider 4t individuals for instance.
Special care must be taken in generating the population, so that the population
space does not grow exponentially with the order of the group G.

The population is expected to evolve generation through generation until
an optimum individual (i.e. a Hadamard cocyclic matrix) is located. We now
describe how to form a new generation Pi+1 from an old one Pi:

1. Firstly, we must evaluate the fitness of every individual (i.e. 2-cocycle f)
of Pi. It is common-knowledge that a computationally cheap test exists [7]
to check if f gives rise to a Hadamard cocyclic matrix Mf . Concretely, it
suffices to check whether the sum of every row in Mf but the first is zero.
Define a Hadamard row to be a row whose summation is zero.

From the property above an evaluation function for individuals is derived
immediately: the fitness of Mf grows with the number of its Hadamard rows.
Thus, the more fit an individual is, the more Hadamard rows it possess, and
vice versa. The optimum is reached when all the rows but the first (i.e. rows
from 2 to 4t) are Hadamard rows. That is, whenever Mf reveals to be a
Hadamard cocyclic matrix itself.
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2. Once the evaluation is finished, the crossover comes into play. All individuals
are paired at random, so that crossover combines the features of two par-
ent chromosomes to form two similar offspring by swapping corresponding
segments of the parents. Each time, the break point n is chosen at random,
so that two couples of different parents are swapped with possibly different
break points.

jth-individual
n

︷ ︸︸ ︷

• • • · · · • ••
4t−n

︷ ︸︸ ︷

• · · · •

(j + 1)th-individual
n

︷ ︸︸ ︷

◦ ◦ ◦ · · · ◦ ◦◦
4t−n

︷ ︸︸ ︷

◦ · · · ◦

⎫

⎪
⎬

⎪
⎭

⇒

children⇒

⎧

⎪
⎨

⎪
⎩

n
︷ ︸︸ ︷

• • • · · · • ••
4t−n

︷ ︸︸ ︷

◦ · · · ◦
n

︷ ︸︸ ︷

◦ ◦ ◦ · · · ◦ ◦◦
4t−n

︷ ︸︸ ︷

• · · · •
3. Next we apply the mutation operator. Mutation arbitrarily alters just one

gene of a selected individual (i.e. just one coordinate of the corresponding
(c + s + t)-tuple, swapping 0 to 1 or 1 to 0, as it is the case), by a random
change with a probability equal to the mutation rate (for instance, 1%).

4. Now individuals strive for survival: a selection scheme, biased towards fitter
individuals (according to the number of their hadamard rows), selects the
next generation. In case that an optimum individual exists, the algorithm
stops. Otherwise the population Pi+1 is constructed from a selection of 4t
of the fittest individuals, in the following sense. Assume that nk indicates
the number of individuals in Pi which consists of exactly k Hadamard rows.
Furthermore, assume that the fittest individuals in Pi consist of precisely r
Hadamard rows (so that every individual in Pi possess at most r Hadamard
rows, possibly less). The selection scheme firstly selects the nr individuals
with r Hadamard rows. If nr < 4t, then all nr−1 individuals with exactly
r − 1 Hadamard rows are selected. And so on. This process continues un-
til at least 4t individuals have been selected. Eventually, if the number of
selected individuals exceeds from 4t, some of the last individuals to be incor-
porated must be randomly deleted, in order to keep exactly 4t individuals
in generation Pi+1.

The process goes on generation through generation until an optimum is
reached. In spite of its simplicity, the method has surprisingly shown to work
over several groups, though the number of required generations grows signifi-
cantly with the size of the matrices. We next discuss the case of dihedral groups,
where some significant improvements are introduced.

5 Genetic Algorithm on Dihedral Groups

Denote by D4t the dihedral group ZZ2t ×χ ZZ2 of order 4t, t ≥ 1, given by the
presentation

< a, b|a2t = b2 = (ab)2 = 1 >
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and ordering

{1 = (0, 0), a = (1, 0), . . . , a2t−1 = (2t − 1, 0), b = (0, 1), . . . , a2t−1b = (2t − 1, 1)}

In [9] a representative 2-cocycle f of [f ] ∈ H2(D4t, ZZ2) ∼= ZZ3
2 is written inter-

changeably as a triple (A, B, K), where A and B are the inflation variables and
K is the transgression variable. All variables take values ±1. Explicitly,

f(ai, ajbk) =
{

Aij , i + j < 2t,
AijK, i + j ≥ 2t,

f(aib, ajbk) =
{

AijBk, i ≥ j,
AijBkK, i < j,

Let β1, β2 and γ denote the representative 2-cocycles related to (A, B, K) =
(1, −1, 1), (−1, 1, 1), (1, 1, −1) respectively.

A basis for 2-coboundaries is described in [3]. Let ∂x : D4t → IF2 denote
the characteristic set map associated to x, such that ∂x(y) = 1 for y �= x
and ∂x(x) = −1. Let δx denote the 2-coboundary naturally associated to ∂x,
such that δx(s, t) = ∂x(s)∂x(t)∂x(s · t). According to the ordering above, a ba-
sis for 2-coboundaries may be constructed straightforwardly. It suffices to drop
coboundaries δ1, δa2t−2b, δa2t−1b from the whole set of coboundaries naturally as-
sociated to the elements in D4t, as it is shown in [3]. Consequently, there are
24t−3 different 2-coboundaries. Furthermore, there are 24t different 2-cocycles,
and B = {δa, . . . , δa2t−3b, β1, β2, γ} is a basis for 2-cocycles.

Once a basis for 2-cocycles over D4t has been determined, we turn towards
cocyclic Hadamard matrices.

A condition for the existence of a cocyclic Hadamard matrix over D4t is
detailed in [9]. Cocyclic Hadamard matrices developed over D4t can exist only
in the cases (A, B, K) = (1, 1, 1), (1, −1, 1), (1, −1, −1), (−1, 1, 1) for t odd. We
focus in the case (A, B, K) = (1, −1, −1), since computational results in [9, 3]
suggest that this case contains a large density of cocyclic Hadamard matrices.
Anyway, the techniques presented in this paper can be adapted easily for other
cases of (A, B, K), or even other finite groups rather than D4t, as the examples
in Section 6 illustrate.

At this time, we may assume that individuals of our population consists of
binary (4t − 3)-tuples (better than 4t-tuples), corresponding to generators from
the basis for 2-coboundaries. Furthermore, computational results in [3] suggest
that tuples formed from 2t − 1 to 2t + 1 ones gives rise to a significantly large
density of cocyclic Hadamard matrices.

So that we may assume that individuals of our initial population consists
of tuples that meet these bounds. That is, tuples of length 4t − 3 which con-
sists of k ones and 4t − 3 − k zeros, for 2t− 1 ≤ k ≤ 2t + 1. Consequently, the

search space reduces in turn, from 24t−3 =
4t−3
∑

i=0

(

4t − 3
i

)

individuals to pre-

cisely
(

4t − 3
2t − 1

)

+
(

4t − 3
2t

)

+
(

4t − 3
2t + 1

)

individuals. We do not care about
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missing many potential solutions (from among those tuples which do not meet
the impossed bounds). Computational evidences of this fact are discussed in
[3]. Anyway, crossover and mutation operators will eventually introduce indi-
viduals out from the impossed bounds, which will also strive for survival, so
that good behaviuors outside the reduced search space may be ocassionally
incorporated.

In these circumstances, the evaluation function for fitness may be
redesigned to check precisely rows from 2 to t. This is a straightforward conse-

quence of a result in [3]: a cocyclic matrix over D4t of the type

(

∏

i∈I

δi

)

β1γ is

Hadamard if and only if rows from 2 to t are Hadamard rows. Consequently,
the Hadamard test runs 4 times faster each time. This way, when the genetic
algorithm runs on D4t we are able to reduce not only the search space but
also the search time.

6 Examples

Both of the genetic algorithms and all the executions and examples of this section
have been worked out with aid of Mathematica 4.0, running on a Pentium IV
2.400 Mhz DIMM DDR266 512 MB. We include here some Hadamard cocyclic
matrices of order 4t for 6 ≤ t ≤ 13. Apparently, our method seems to provide
some cocyclic Hadamard matrices of larger order than those previously obtained
with other algorithms.

Calculations in [5, 9, 2] suggest that Gt
1 = ZZt × ZZ2

2 and Gt
2 = D4t give rise

to a large number of Hadamard cocyclic matrices.
This behavior has also been observed on a third family of groups [2],

Gt
3 = (ZZt ×f ZZ2) ×χ ZZ2

Here f denotes the normalized 2-cocycle f : ZZ2 × ZZ2 → ZZt such that

f(−1, −1) = 
 t

2
� + 1

And χ : ZZ2 × (ZZt ×f ZZ2) → ZZt ×f ZZ2 denotes the dihedral action, such that
χ(−1, x) = −x. Notice that Gt

3 is a slight modification of Gt
2 = D4t, since f

becomes a 2-coboundary precisely for odd t = 2k + 1. Thus G2k+1
3 = G2k+1

2 and
G2k

3 �= G2k
2 .

However the search space for cocyclic Hadamard matrices over the families
Gt

i above grows exponentially with t (according to the dimensions of the basis
Bi for 2-cocycles), so that exhaustive search is only possible in low orders (up
to t = 5). Each of the matrices is represented as a tuple with regards to some
basis Bi = {δk|βj |γn} for 2-cocycles over Gt

i. At this point, we only indicate how
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many generators of each type (coboundaries, inflation and transgression) appear
in Bi (see [2, 3] for details):

– For odd t, B1 consists of 4t − 3 coboundaries δk, 2 cocycles βj coming from
inflation and 1 cocycle γ coming from transgression. For even t, B1 consists
of 4t−4 coboundaries δk, 3 cocycles βj coming from inflation and 3 cocycles
γn coming from transgression.

– B2 is the basis B described at Section 5, which consists of 4t − 3 cobound-
aries δk, 2 cocycles βj coming from inflation and 1 cocycle γ coming from
transgression.

– B3 coincides with B2 for odd t. We have not identified a general behavior for
even t, so we analyze the cases t = 2, 4, 6, 8 independently:

• If t = 2, B3 consists of 4 coboundaries δk, 3 cocycles βj coming from
inflation and 3 cocycles γn coming from transgression.

• If t = 4, B3 consists of 13 coboundaries δk, 2 cocycles βj coming from
inflation and 1 cocycle γ coming from transgression.

• If t = 6, B3 consists of 20 coboundaries δk, 3 cocycles βj coming from
inflation and 3 cocycles γn coming from transgression.

• If t = 8, B3 consists of 29 coboundaries δk, 2 cocycles βj coming from
inflation and 1 cocycle γ coming from transgression.

Now we show some executions of the genetic algorithm (in its general ver-
sion) running on these families. The tables below show some Hadamard co-
cyclic matrices over Gt

i, and the number of iterations and time required (in
seconds) as well. Notice that the number of generations is not directly related
to the size of the matrices. Do not forget about randomness of the genetic al-
gorithm.

t iter. time product of generators of 2-cocycles over Gt
1

1 0 0′′ (1, 0, 0, 0)
2 0 0′′ (1, 0, 0, 1, 0, 1, 0, 0, 1, 1)
3 1 0.14′′ (0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1)
4 7 1.89′′ (0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1)
5 30 17.08′′ (1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1)
6 3 3.69′′ (0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1)
7 584 21′33′′ (1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1)
8 239 14′33′′ (0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1)

t iter. time product of generators of 2-cocycles over Gt
2

1 0 0′′ (0, 1, 1, 1)
2 0 0′′ (1, 0, 1, 1, 1, 1, 0, 0)
3 3 0.25′′ (1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1)
4 0 0′′ (0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1)
5 3 1.42′′ (0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1)
6 31 34.87′′ (1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1)
7 102 5′17′′ (1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1)
8 98 6′27′′ (0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1)
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t iter. time product of generators of 2-cocycles over Gt
3

1 0 0′′ (0, 1, 1, 1)
2 0 0′′ (1, 1, 0, 0, 0, 0, 1, 0, 0, 0)
3 0 0′′ (0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1)
4 6 1.20′′ (0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0)
5 18 10.33′′ (1, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0)
6 15 19.49′′ (1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1)
7 6 12.39′′ (0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1)
8 153 9′45′′ (1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0)

As it is expected, the improved version of the genetic algorithm for Gt
2 = D4t

provides not only faster outputs but also larger sizes on the matrices.

t iter. time product of generators of 2-cocycles over D4t (improved version)
6 0 0′′ (1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1)
7 4 0.69′′ (0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1)
8 3 1.18′′ (0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1)
9 7 5.09′′ (1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1,

0, 1, 0, 1)
10 43 48.03′′ (0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1,

0, 1, 0, 1, 0, 1, 1, 1, 0, 1)
11 471 13′15′′ (1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1,

1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1)
12 279 11′16′′ (0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1,

0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1)
13 970 53′44′′ (0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1,

1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1)

The authors are convinced that improved versions of the algorithm are still
to be implemented, attending to refinements on the crossover operator. We are
yet to find a systematic way of doing crossover more suitably for our purposes.
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