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Abstract. An algorithm for calculating a set of generators of repre-
sentative 2-cocycles on semidirect product of finite abelian groups is
constructed, in light of the theory over cocyclic matrices developed by
Horadam and de Launey in [7,8]. The method involves some homolog-
ical perturbation techniques [3,1], in the homological correspondent to
the work which Grabmeier and Lambe described in [12] from the view-
point of cohomology. Examples of explicit computations over all dihedral
groups D4t are given, with aid of Mathematica.

1 Introduction

Let G be a group, U a trivial G-module. Functions ψ:G×G → U which satisfy
ψ(a, b)ψ(ab, c) = ψ(b, c)ψ(a, bc), a, b, c ∈ G are called 2-cocycles [19]. A cocycle
is a coboundary δα if it is derived from a set mapping α:G → U having α(1) = 1
by δα(a, b) = α(a)−1α(b)−1α(ab). For each G and U , the set of cocycles forms
an abelian group Z2(G,U) under pointwise multiplication, and the coboundaries
form a subgroup B2(G,U). Two cocycles ψ and ψ′ are cohomologous if there
exists a coboundary δα such that ψ′ = ψ · δα. Cohomology is an equivalence
relation and the cohomology class of ψ is denoted [ψ]. It follows that the quo-
tient group Z2(G,U)/B2(G,U) consisting of the cohomology classes, forms an
abelian group H2(G,U), which is known as the second cohomology group of G
with coefficients in U . For each n ≥ 0 one may define the cocycle analogous
in dimension n (n-cocycle). In spite of the important role played by cocycles in
Algebraic Topology, Representation Theory and Quantum Systems, the problem
of explicitly determining a full representative set of n-cocycles for given G and
U does not appear to have been traditionally studied by cohomologists, at least,
till the last decade.

A 2-cocycle ψ is naturally displayed as a cocyclic matrix (associated to ψ,
developed over G); that is, a |G| × |G| square matrix whose rows and columns
are indexed by the elements of G (under some fixed ordering) and whose entry
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in position (g, h) is ψ(g, h). This notion was fruitfully used by Horadam and
de Launey [6,7,15] proving some interesting connections between combinatorial
design theory and 2-cocycles, as well as connections between coding theory and
2-cocycles. It is also apparent that cocyclic matrices, associated with cocycles
with coefficients in K2 = {−1, 1}, account for large classes of so-called Hadamard
matrices [8], and may consequently provide an uniform approach to the famous
Hadamard conjecture.

These facts have yield that over the past decade considerable effort has
been devoted to computations of cocycles and cocyclic matrices. Using clas-
sical methods involving the Universal Coefficient Theorem, Schur multipliers,
inflation and transgression, two algorithms for finding 2-cocycles representing
2-dimensional cohomology classes can be worked out. The first one [7,8] applies
to an abelian group G and the second [10] over groups G for which the word
problem is solvable.

Horadam and de Launey’s method is based on an explicit version of the well-
known Universal Coefficient Theorem, which provides a decomposition of the
second cohomology group into the direct sum of two summands,

H2(G,U) ∼= Ext(G/[G,G], U) ⊕Hom(H2(G), U).

These connections make possible the translation of cocyclic development onto a
(co)homological framework.

This link becomes stronger noting the “Bar construction” [19] related to G.
It is a DG-module, which consists of the Z–modules

M0(G) = Z, Mm(G) =< [g1, . . . , gm] : gi ∈ G, 1 ≤ i ≤ m >,

and differential ∂,

∂1([g1]) = 0, ∂m+1([g1, . . . , gm+1]) = (−1)m+1([g1, . . . gm])+

+([g2, . . . , gm+1]) +
m∑

i=1

(−1)i([g1, . . . , gigi+1, . . . , gm+1]).

The quotient Ker(∂m)/Im(∂m+1) is known to be the mth integral homology
group of G, Hm(G). Let R2(G) denote the quotient M2(G)/Im(∂3) ⊇ H2(G).

Taking into account what ∂3 means, it is readily checked that the map

φ : Z2(G,K2) → Hom(R2(G),K2)
h �→ φ(h)

such that

φ(h)


 ∑

(a,b)∈G×G

λ(a,b)(a, b) + Im(∂2)


 =

∑
(a,b)∈G×G

λ(a,b)h[a, b]

defines an isomorphism between the set of 2-cocycles and Hom(R2(G),K2) [7].
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The problem of computing a set of generators for 2-cocycles hence translates
to the problem of determining a set of coboundary, symmetric and commutator
generators, such that

Z2(G,K2) ∼= B2(G,K2) ⊕ ExtZ(G/[G,G],K2) ⊕Hom(H2(G),K2).

A minimal set for symmetric generators may be calculated from a primary
invariant decomposition of G/[G,G] ∼= H1(G), as a Kronecker product of back
negacyclic matrices [7]. A minimal set for coboundary generators is derived from
the multiplication table of G by means of linear algebra manipulations. But
it is far from clear how to get a minimal set for commutator generators, in
general. One should try to compute the second homology group of G by means
of (M2, ∂2, ∂3). Indeed, ∂2 is not needed for finite groups G, since H2(G) is a
direct sum of finite cyclic groups as it is the case. This procedure is not suitable
in practice, since matrices involved are large in most cases.

On the other hand, Flannery calculates these summands as the images of cer-
tain embeddings which are complementary, called inflation and transgression.
Calculation of representative 2-cocycles associated to Ext(G/[G,G], U) (infla-
tion) is canonical. However, calculation of a complement of the image by the
embeddings of inflation in H2(G,U) as the image of transgression is not canon-
ical, anyway. As a matter of fact, it depends on the choice of a Schur comple-
ment. This is a potential source of difficulties in computation of representative
2-cocycles associated with elements ofHom(H2(G), U). This method has already
been implemented in [11], using the symbolic computational system MAGMA.

Using a far different approach, Grabmeier and Lambe present in [12] alternate
methods for calculating representative 2-cocycles for all finite p–groups from
the point of view of Homological Perturbation Theory [13,14,20]. The computer
algebra system Axiom has been used in order to make calculations in practice.

Here we present a method for explicitly determining a full set of representa-
tive 2-cocycles for the elements of the second cohomology group H2(G,Z) where
G is Zr ×χ Zs. All general statements given in this paper are applicable to any
semidirect product of finite abelian groups, but for simplicity in the exposition,
for this class, only the case Zr ×χ Zs will be presented.

Our method could be seen as a mixture of both the algorithms given by
Flannery in [10] and Grabmeier–Lambe in [12]. Indeed, we compute representa-
tive 2-cocycles proceeding from Hom(H2(Zr ×χ Zs),K2). This alternate method
is based on some Homological Perturbation techniques developed in the work
of authors [3,1] on the determination of “homological models”(those differential
graded modules hG with Hn(G) = Hn(hG), see [4] for instance), for semidirect
products of finite abelian groups with group action. The algorithm is straight-
forward enough to be programmed in any computer algebra system, as we have
done in Mathematica[2].

The main steps are to define functions and F : M2(Zr ×χ Zs) → V2 and
di : Vi → Vi−1, where Vi are certain “perturbed” simple algebras. These will
be defined in such a way that for any representative 2-cycle z in the quotient
ker d2/Im d3, the elevation of z through F will define a representative 2-cocycle.
This is the homology analogous to the work of Grabmeier–Lambe in [12].
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It should be noted that explicit formulae for representative 2-cocycles of
H2(Zr ×χ Zs,Z2) are given in [21]. The approach explained in this paper covers
the more general case of any semidirect product of finite abelian groups.

Similar algorithms may be considered to reach many other settings, progress-
ing from any finite group with known homological model.

2 The Algorithm

Let Zr ×χ Zs be a semidirect product, χ a group action such that

(a1, b1) · (a2, b2) = (a1 + χ(b1, a2), b1 + b2), a1, a2 ∈ Zr, b1, b2 ∈ Zs.

Let consider the following auxiliary sets

V2 = Z[x2, xy, y2], V3 = Z[x3, x2y, xy2, y3],

B2 = {[n,m] ⊗ [ ] : 1 ≤ n,m < r} ∪ {[n] ⊗ [m] : 1 ≤ n < r, 1 ≤ m < s}∪
∪{[ ] ⊗ [n,m] : 1 ≤ n,m < s},

B3 = {[n,m, k]⊗[ ] : 1 ≤ n,m, k < r}∪{[n,m]⊗[k] : 1 ≤ n,m < r, 1 ≤ k < s}∪
∪{[n] ⊗ [m, k] : 1 ≤ n < r, 1 ≤ m, k < s} ∪ {[ ] ⊗ [n,m, k] : 1 ≤ n,m, k < s}.

We will define Z–linear functions g3 : V3 → B3, fi : Bi → Vi for i = 2, 3,
φ2 : B2 → B3, ρ3 : B3 → B2, d3 : V3 → V2 and f∞ : B2 → V2. Let

g3(x3) = ([1, 1, 1] + · · · + [1, r − 1, 1]) ⊗ [ ],
g3(x2y) = ([1, 1] + · · · + [1, r − 1]) ⊗ [1],
g3(xy2) = [1] ⊗ ([1, 1] + · · · + [1, s− 1]),
g3(y3) = [ ] ⊗ ([1, 1, 1] + · · · + [1, r − 1, 1])

f2([n,m] ⊗ [ ]) = x2, if n+m ≥ r,
f2([n] ⊗ [m]) = (nm)xy,
f2([ ] ⊗ [n,m]) = y2, if n+m ≥ s,

f3([n,m, k] ⊗ [ ]) = k x3, if n+m ≥ r,
f3([n,m] ⊗ [k]) = k x2y, if n+m ≥ r,
f3([n] ⊗ [m, k]) = nxy2, if m+ k ≥ s,
f3([ ] ⊗ [n,m, k]) = k y3, if n+m ≥ s,

φ2([n,m] ⊗ [ ]) = −([1, 1,m] + · · · [1, n− 1,m]) ⊗ [ ]
φ2([n] ⊗ [m]) = −([1, 1] + · · · [1, n− 1]) ⊗ [m] + [n] ⊗ ([1, 1] + · · · [1,m− 1]),
φ2([ ] ⊗ [n,m]) = −[ ] ⊗ ([1, 1,m] + · · · [1, n− 1,m])

ρ3([n,m] ⊗ [k]) = [χ(k, n), χ(k,m)] ⊗ [ ] − [n,m] ⊗ [ ],
ρ3([n] ⊗ [m, k]) = [n] ⊗ [k] − [χ(m,n)] ⊗ [k],

D3(x2y) = r xy,
D3(xy2) = −s xy.
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These morphisms are understood to be zero otherwise. Let define

d3 = D3 + f2ρ3g3 − f2ρ3φ2ρ3g3 + f2(ρ3φ2)2ρ3g3 − · · · ,
and f∞ : B2 → V2,

f∞ = f2 − f2ρ3φ2 + f2(ρ3φ2)2 − · · ·
Geometric series of these types converge to define a map, as it is proved in the

more general setting of generalized semidirect products of finite abelian groups
in [1]. The fact is that ρ∗ decreases the dimension on the second component, and
φ∗ either increments the dimension only on the first component or decreases the
value of the element in the second component. Hence the composition φi−1ρi

becomes nilpotent.
Notice that the sets Bi defined above consist of the products

Bi =
⊕
0≤j≤i

(Mj(Zr) ⊗Mi−j(Zs)).

There is a connecting map F2 : M2(Zr ×χ Zs) → B2, so that

F2[(a1, b1), (a2, b2)] = [ ]⊗[b2, b1]+2[χ(b2, a2)]⊗[b1]+2[χ(b2, a2), χ(b2b1, a1)]⊗[ ]−
−[χ(b2b1b2, a2), χ(b2b1b2b1, a1)] ⊗ [ ] − [χ(b2b2, a2)] ⊗ [b1].

Theorem 1. Assume the notation above.

1. H2(Zr ×χ Zs) = H2(V2), which is computed from d3.
2. The map F = f∞ ◦ F2 : M2(Zr ×χ Zs) → V2 induces an isomorphism in

homology, such that for any z ∈ H2(V2) the elevation of z through F defines
a cocyclic matrix over Zr ×χ Zs.

In [1] the authors find a homological model for semidirect products of finite
abelian groups. In particular, attending to the groups Zr ×χ Zs, it is proved that
H2(M2(Zr ×χ Zs) = H2(V2). Moreover F is shown to induce an isomorphism in
homology.

Nevertheless the formula for F is not explicitly given there, since it is compli-
cated to give an explicit formula for f∞ in the general case of semidirect products
of groups.

It is a remarkable fact that for every finite group G, H2(G) is a finite abelian
group [5]. This way, it is only needed d3 in order to compute H2(V2) by means
of Veblen’s algorithm [22].

This process consists in calculating the integer Smith normal form D of
the matrix M representing d3 with regards to basis B = {x3, x2y, xy, y3} and
B′ = {x2, xy, y2}.

Let U = {u1, u2, u3, u4} and V = {v1, v2, v3} define these change basis, such
that DU,V = PMB,B′Q, for appropriated change basis matrices P and Q.

Now we explain what we mean with “elevate z through F”.
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We want to determine all cocyclic matrices over Zr ×χ Zs. That is, all rep-
resentative 2-cocycles of Zr ×χ Zs. Thus it suffices to calculate which x in
M2(Zr ×χ Zs) are shown to give non trivial homological information in H2(V2).

For each generator z in H2(V2), the elevation of z through F relates to the
set of elements in M2(Zr ×χ Zs) which projects onto z with 2-homological in-
formation. This can be achieved in two single elevations: one from V2 to B2, the
other from B2 to M2(Zr ×χ Zs).

¿From the theorem above, an algorithm for calculating representative 2-
cocycles may be derived in a straightforward manner.

Notice that map F should be called the universal 2–cochain, following Grab-
meier–Lambe’s notation in [12].

Algorithm 1 Input Data: a semidirect product Zr ×χ Zs.

Step 1. Compute d3 : V3 → V2, the differential of the homological model of
Zr ×χ Zs in dimension 3.

Step 2. Compute H2(Zr ×χ Zs) and representative cycles from d3.
Step 3. Elevate the representative cycles from H2(Zr ×χ Zs) to M2(Zr ×χ Zs)

via F .

Output Data: Set of commutator generators for a basis of cocyclic matrices
over Zr × Zs.

It should be taken into account that Step 2 often requires to compute the
Smith normal form of the matrix corresponding to d3, which is always of size
4 × 3, independently of indexes r and s of the factors. This is the fundamental
improvement in the calculus of the commutator generators, since the size of
matrices which arises from the complex (M∗, ∂∗) depends on the order of the
group (the matrix corresponding to operator ∂3 is of size (rs)3 × (rs)2 for the
semidirect product Zr ×χ Zs).

It may be possible to extend the Theorem 1 and its associated algorithm
to other certain families of groups, with homological models already known,
such as central extensions [18], finitely generated torsion free nilpotent groups
[16], metacyclic groups [17] and many others. It is only needed to find explicit
formulae for the analogous of maps F2 and F .

3 An Example: Dihedral Groups D2t·2

In this section we apply Algorithm 1 in the particular case of dihedral groups.
A Mathematica program is used, which authors provide in [2].

It should be noted that dihedral groupsDt·2 for odd values of t do not provide
2-homological information, since H2(Dt·2) is known to be zero in this case.

Let D2t·2 = {(0, 0), (1, 0), . . . , (2t− 1, 0), (1, 1), . . . , (2t− 1, 1)},

χ(0, n) = n, χ(1, n) = 2t− n, ∀n ∈ Z2t.
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An explicit formula for F can be worked out for these groups, so that if we
define λ : Zk × Zk → Z2, k ≥ 2, as λ[x, y] = 1 if x+ y ≥ k and 0 otherwise, it is
readily checked that

F [(a1, b1), (a2, b2)] = b1b2y
2 + 2b1χ(b2, a2)xy + 2b1(χ(b2, a2) − 1)x2+

+2λ[χ(b2, a2), χ(b2b1, a1)]x2 − λ[χ(b1, a2), a1]x2 − a2b1xy − b1(a2 − 1)x2.

Let consider the cases t = 1, D2·2 = {(0, 0), (1, 0), (0, 1), (1, 1)},
t = 2, D4·2 = {(0, 0), (1, 0), (2, 0), (3, 0), (0, 1), (1, 1), (2, 1), (3, 1)},
and t = 6, D12·2 = {(0, 0), (1, 0), . . . , (11, 0), (0, 1), (1, 1), . . . , (11, 1)}.

Step 1. Compute d3.

d(V3) t = 1 t = 2 t = 6
x3 0 0 0
x2y 2xy 2x2 + 4xy 10x2 + 12xy
xy2 −2xy −2x2 − 4xy −10x2 − 12xy
y3 0 0 0

Step 2. Compute H2(D2t·2) and representative cycles from d3.
In order to compute H2(D2t·2) in the cases t = 1, 2, 6, it is useful
to calculate the Smith normal form Dt = PtMtQt of the matrix Mt

associated to d3, with basis change matrices Pt and Qt, respectively.
In these cases,

t = 1 t = 2 t = 6

Dt




2 0 0
0 0 0
0 0 0
0 0 0







2 0 0
0 0 0
0 0 0
0 0 0







2 0 0
0 0 0
0 0 0
0 0 0




Qt


0 1 0

1 0 0
0 0 1





1 −2 0

0 1 0
0 0 1





−1 −6 0

1 5 0
0 0 1




Hence, H2(D2t·2) = Z2 for t = 1, 2, 6 and the representative cycle is the
first element in the new basis U of Z[V2].
In order to translate to the basis B of Z[V2] the homological informa-
tion which H2(D2t·2) provides, it suffices to select the odd entries of
each of the columns of Qt corresponding to each representative cycle in
the basis U (that is, to select which elements of Z[V2] with regards to
basis B have an odd entry in the position corresponding to a represen-
tative cycle with coordinates in basis U). The homological information
is concentrated in elements with coordinates (−, n,−)B for odd values
of n in the case t = 1, in elements (n,−,−)B for odd values of n in the
case t = 2, and in elements (n,m,−)B for n,m of distinct parity in the
case t = 6.
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Step 3. Elevate the representative cycles from H2(D2t·2) to M2(D2t·2) via F .
It suffices to detect which elements ofM2(D2t·2) are carried out via F to
elements (−, n,−)B for odd n (t = 1), (n,−,−)B for odd n (t = 2), and
(n,m,−)B for n,m of distinct parity (t = 6). These elements indicate
the positions in the |D2t·2| × |D2t·2| commutator cocyclic generator
matrix which are not trivial.
In the case t = 1, we obtain the following elements:

[(0, 1), (1, 0)], [(1, 1), (1, 0)], [(0, 1), (1, 1)], [(1, 1), (1, 1)].

For t = 2,
[(1, 0), (3, 0)], [(1, 0), (3, 1)], [(2, 0), (2, 0)], [(2, 0), (3, 0)], [(2, 0), (2, 1)],
[(2, 0), (3, 1)], [(3, 0), (1, 0)], [(3, 0), (2, 0)], [(3, 0), (3, 0)], [(3, 0), (0, 1)],
[(3, 0), (2, 1)], [(3, 0), (3, 1)], [(0, 1), (2, 0)], [(0, 1), (2, 1)], [(1, 1), (1, 0)],
[(1, 1), (2, 0)], [(1, 1), (1, 1)], [(1, 1), (3, 1)], [(2, 1), (1, 0)], [(2, 1), (1, 1)],
[(3, 1), (1, 0)], [(3, 1), (3, 0)], [(3, 1), (1, 1)], [(3, 1), (3, 1)].
In the case t = 6, the elements which are carried out via F to elements
(n,m,−)B for n,m of distinct parity are those [(a1, b1), (a2, b2)] such
that 


b1 = 0, a1 + a2 > 11;
or
b1 = 1, a1 < a2.

Output data: set of commutator generators for a basis of cocyclic matrices
over D2t·2, t = 1, 2, 6. Assuming K2 = 1, we obtain

t = 1 t = 2 t = 6(
A1 A1
B1 B1

) (
A2 A2
B2 B2

) (
A6 A6
B6 B6

)

where

A1 =
(

1 1
1 1

)
, B1 =

(
1 K
1 K

)
, A2 =




1 1 1 1
1 1 1 K
1 1 K K
1 K K K


 , B2 =




1 1 K 1
1 K K 1
1 K 1 1
1 K 1 K


 ,

A6 =




1 1 · · · 1 1
1 1 · · · 1 K
...

...
...

...
1 1 · · · K K
1 K · · · K K



, B6 =




1 K · · · K K
1 1 · · · K K
...

...
...

...
1 1 · · · 1 K
1 1 · · · 1 1



.

Note that A6 is usually called back negacyclic.
In general, it may be proved that for t > 2 the computation of H2(D2t·2)

reduces to the matrices

Dt =




2 0 0
0 0 0
0 0 0
0 0 0


 and Qt =


−1 −t 0

1 t− 1 0
0 0 1



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so that H2(D2t·2) = Z2 and the homological information is concentrated in
elements with coordinates (n,m,−)B for n,m of distinct parity.

Hence, the set of commutator generators for a basis of cocyclic matrices over

D2t·2 reduces to
{(

At At

Bt Bt

)}
, where At is the correspondant back negacyclic

matrix and Bt consists in the matrix whose rows are the ones of At displayed in
reverse order.

It should be noted that the cocyclic matrices over dihedral groups have al-
ready been found from Flannery’s techniques in [10].

Remark 1. The case t = 2 is also studied in [7], where the commutator generator
is said to be 



1 1 1 1 1 1 1 1
1 1 1 B B 1 1 1
1 1 B B B 1 1 B
1 B B B B 1 B B
1 1 1 1 1 1 1 1
1 B B B B 1 B B
1 1 B B B 1 1 B
1 1 1 B B 1 1 1




with B2 = 1.
Both matrices differ in the (Hadamard) product of a coboundary generator

C and a symmetric generator S , which are

C =




1 1 1 1 1 1 1 1
1 A 1 A A A 1 1
1 1 1 1 A 1 A 1
1 A 1 A A 1 1 A
1 1 A 1 1 1 A 1
1 A 1 1 A 1 1 1
1 A A A A A 1 A
1 1 1 A A 1 1 1



, S =




1 1 1 1 1 1 1 1
1 D 1 D 1 D 1 D
1 1 1 1 1 1 1 1
1 D 1 D 1 D 1 D
1 1 1 1 1 1 1 1
1 D 1 D 1 D 1 D
1 1 1 1 1 1 1 1
1 D 1 D 1 D 1 D



,

with A = D = −1.
The matrix C arises from any of the set map αk : D4·2 → K2, k ∈ {1,−1},

α(0, 0) = 1, α(1, 0) = −1, α(2, 0) = −1, α(3, 0) = 1,

α(0, 1) = k, α(1, 1) = k, α(2, 1) = k, α(3, 1) = −k.
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