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ABSTRACT: Cohomology groups and the cohomology ring of three-
dimensional (3D) objects are topological invariants that characterize

holes and their relations. Cohomology ring has been traditionally

computed on simplicial complexes. Nevertheless, cubical complexes
deal directly with the voxels in 3D images, no additional triangulation

is necessary. This could facilitate efficient algorithms for the compu-

tation of topological invariants in the image context. In this article, we

present a constructive process, made up by several algorithms, to
compute the cohomology ring of 3D binary-valued digital photo-

graphs represented by cubical complexes. Starting from a cubical

complex Q that represents such a 3D picture whose foreground has

one connected component, we first compute the homological infor-
mation on the boundary of the object, @Q, by an incremental tech-

nique; using a face reduction algorithm, we then compute it on the

whole object; finally, applying explicit formulas for cubical complexes
(without making use of any additional triangulation), the cohomology

ring is computed from such information. VVC 2011 Wiley Periodicals, Inc.
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Library (wileyonlinelibrary.com). DOI 10.1002/ima.20271
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1. INTRODUCTION

Many computer application areas involve topological methods

which usually mean a significant reduction in the amount of data.

Homology groups are algorithmically computable topological

invariants that characterize an object by its ‘‘holes’’ (in any dimen-

sion). Informally, the connected components of a three dimentional

(3D)-object are the holes in dimension (dim.) 0, the tunnels are the

holes in dim. 1 and the cavities the ones in dim. 2. Cohomology

groups are topological invariants that represent an algebraic duality

of homology groups. Although the formal definition of cohomology

groups is motivated primarily by algebraic considerations, homol-

ogy and cohomology groups of 3D objects are isomorphic, that is,

they provide the same topological information. Nevertheless, coho-

mology groups have an additional ring structure provided by the

cup product (denoted by ^). The cup product can be seen as the

way the holes obtained in homology are related to each other. For

example, think of the torus, and the wedge sum of two loops and a

2-sphere (see Fig. 1). Both objects have two tunnels and one cavity;

but the cavity (g) of the first object can be decomposed in the prod-

uct of the two tunnels (a and b), that is, a^b 5 g, whereas the

cavity of the second object cannot. This information contributes to

a better understanding of the degree of topological complexity of

the analyzed digital object, and sheds light on its geometric

features.

In (Gonzalez-Diaz and Real, 2003, 2005), a method for comput-

ing the cohomology ring of 3D binary digital images is described. In

those papers, the cohomology ring computation is performed over a

simplicial complex K associated with the digital binary-valued pic-

ture using the 14-adjacency, applying the known formulas for com-

puting the cohomology ring of any simplicial complex (see Munkres,

1984). In (Molina-Abril and Real, 2008), a particular cell structure

provided by the 26-adjacency is associated with a given 3D picture

for computing homology groups. However, one could assert that a

more natural combinatorial structure when dealing with 3D digital

images is the one provided by cubical complexes. In (Gonzalez-Diaz

et al., 2009b), we presented formulas to directly compute the coho-

mology ring of 3D cubical complexes without making use of addi-

tional triangulations. In this article, given a 3D digital image I, we
consider the cubical complex Q whose elements are the unit cubes

(voxels) of the foreground of I together with all their faces. We

describe a strategy to tackle the cohomology ring computation on a

3D binary-valued digital picture: we first compute the homology of

the ‘‘boundary’’ of Q, denoted by @Q; second, using a face reduction
technique, we obtain a cell complex K with the same topological in-

formation than Q but with far fewer cells, which makes possible the

reduction of the complexity of the computation of the cup product.

Finally, we compute the cohomology ring of K and give a procedure

to translate the results obtained to the digital image I.
This article is organized as follows. In Section 2, we recall the

concept of AT-model (Gonzalez-Diaz and Real, 2003, 2005) for a

polyhedral cell complex P, which consists of an algebraic set of

data that provides homological information of P. Given an AT-

model for a polyhedral cell complex, we provide the formulas of a

new AT-model obtained after a subdivision; this result is the key to

prove the validity of the formulas for computing the cohomology

ring of 3D cubical complexes established in Section 3. Section 4 is

devoted to describe a process to obtain an AT-model of a given 3D

digital image I that provides the ingredients for computing the

cohomology ring of I. Finally, some conclusions and plans for

future are drawn in Section 5.
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2. AT -MODELS FOR POLYHEDRAL CELL COMPLEXES

Since we are working with objects embedded in R3, homology

groups are torsion-free (Alexandroff and Hopf, 1935. ch. 10), so

computing homology over a field is enough to characterize shapes

(Munkres, 1984; p 332). This fact, together with the isomorphism

(over any field) between homology and cohomology groups

(Munkres, 1984; p. 320), enables us to consider Z/2 as the ground

ring throughout this article.

Definition 1. A polyhedral cell complex P in R3, is given by a

finite collection of cells, which are convex polytopes (vertices,

edges, polygons, and polyhedra), together with all their faces and

such that the intersection between any two of them is either empty

or a face of each of them. A proper face of r [ P is a face of r
whose dimension is strictly less than the one of r. A facet of r is a

proper face of r of maximal dimension. A maximal cell of P is a

cell of P, which is not a proper face of any other cell of P.
Observe that if the cells of P are n—simplices, P is a simplicial

complex (Munkres, 1984); in the case that the cells of P are n—
cubes, then P is a cubical complex (see for example (Kaczynski

et al., 2004)). A q-cell of either a simplicial complex or a cubical

complex can be denoted by the list of its vertices.

For any graded set S ¼ fSqgq, one can consider formal sums of

elements of Sq, which are called q—chains, and which form abelian

groups with respect to the component-wise addition (module (mod)

2). These groups are called q—chain group denoted by Cq (S). The
collection of all the chain groups associated with S is denoted by C
(S), that is CðSÞ ¼ fCqðSÞgq, and also called chain group, for sim-

plicity. Let fs1; . . . ; smg be the elements of Sq for a fixed q. Given
two q-chains c1 ¼

Pm
i¼1 kisi and c2 ¼

Pm
i¼1 lisi, where

ki; li 2 Z=2 for i ¼ 1; :::;m, the expression hc1; c2i refers toPm
i¼1 ki � li 2 Z=2. For example, fixed i and j, the expression

hc1; sii is ki and hsi; sji is 1 if i 5 j and 0 otherwise.

Definition 2. The polyhedral chain complex associated with the

polyhedral cell complex P is the collection CðPÞ ¼ fCqðPÞ; @qgq
where:

� Each Cq (P) is the corresponding chain group generated by

the q-cells of P;
� The boundary operator @q : CqðPÞ ! Cq�1ðPÞ connects two

immediate dimensions.

The boundary of a q-cell is the formal sum of all its facets. It is

extended to q-chains by linearity.
For example, consider a triangle (vi, vj, vk) with vertices vi, vj, vk.

The boundary of the triangle is the formal sum of its edges, that is,

@2 (vi, vj, vk)5 (vi, vj)1 (vj, vk)1 (vi, vk).

Definition 3. Given a polyhedral cell complex P, an algebraic-

topological model (AT-model (Gonzalez-Diaz and Real, 2003,

2005)) for P is a set of data ðP;H; f ; g;/Þ, where H is a graded sub-

set of P and f, g, and / are three families of maps ffq : CqðPÞ !
CqðHÞgq, fgq : CqðHÞ ! CqðPÞgq, and f/q : CqðPÞ ! Cqþ1ðPÞgq,
such that, for each q:

1. fqgq ¼ idCqðHÞ, /q�1@q þ @qþ1/q ¼ idCqðPÞ þ gqfq;

2. fq�1@q ¼ 0, @qgq ¼ 0;

3. /qþ1/q ¼ 0, fqþ1/q ¼ 0, /qgq ¼ 0;

where idCqðHÞ and idCqðPÞ are the identity maps.

As a result, the chain group C (H) is isomorphic to the homology

(and to the cohomology) of P. In particular, the number of vertices of H
coincides with the number of connected components of P, the number

of edges ofHwith the number of tunnels of P and the number of 2-cells

of H with the number of cavities of P. Fixed q, for each r 2 Hq, gqðrÞ
is a representative cycle of a homology generator of dim. q.

Define an homomorphism r�fq : CqðPÞ ! Z=2 such that if l is

a q-cell of P,

r�fqðlÞ :¼ hr; fqðlÞi mod 2:

Then, r�fq is a representative cocycle of a cohomology generator of

dim. q. An isomorphism between C (H) and the homology (respec-

tively (resp.) cohomology) of P maps each r 2 H to the homology

class represented by gqðrÞ (resp. the cohomology class represented

by r�fq) (see (Gonzalez-Diaz and Real, 2003, 2005)).
From now on, we will omit subscripts for simplicity.

Example 1. Let Q be an abstract cubical representation of the

hollow torus (see Fig. 2). An AT-model for Q is the set of data (Q, H,
f, g, /) given in Table I, where a1 [ {(v3, v6), (v4, v8)}; a2 [ {(v1, v7),
(v2, v8)}; b1 5 (v0, v2); b2 5 (v0, v4); c5 (v0, v2, v4, v8); g(vi, v0) is the
only path in Q from vi to v0 given in Figure 2 (on the center). For

example, g(v7, v0) 5 (v5, v7) 1 (v1, v5) 1 (v0, v1). Given an edge e of
Q, ce is the sum of the squares that correspond to the ‘‘path’’ starting

from e and following the arrows in Figure 2 (on the right). For exam-

ple, c(v1, v7)5 (v0, v1, v4, v7)1 (v3, v5, v4, v7)1 (v0, v1, v3, v5). Repre-
sentative cycles of homology generators are the vertex v0, the tunnels
a1 5 (v0, v1) 1 (v1, v2) 1 (v0, v2) and a (v0, v3) 1 (v3, v4) 1 (v0, v4)
and the cavity b which is the sum of the nine squares of Q.

An algorithm for computing AT-models for polyhedral cell

complexes appears for example in (Gonzalez-Diaz and Real, 2003,

2005). In fact, in those papers, the algorithm is designed for simpli-

cial complexes but the adaptation to polyhedral cell complexes is

straightforward. That algorithm runs in time O(m3) where m is the

Figure 1. On the left, a hollow torus and its two tunnels. On the right, the wedge sum of a 2-sphere and two loops.
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number of cells of the given polyhedral cell complex. If an AT-

model (P, H, f, g, /) for a polyhedral cell complex P is computed

using that algorithm then it is also satisfied that if a [ H then f(a) 5
a and a [ g(a).

Let P be a polyhedral cell complex. Fixed q, we say that a q-cell
a [ P is subdivided into two new q-cells a1 =2 P and a2 =2 P by a

new (q 2 1)-cell e =2 P (see, for example, Fig. 3) if:

� e is a facet of a1 and a1;

� a1 | a1 5 a;
� a1 \ a1 5 e.

The following lemma establishes how to obtain a new AT-model

for P after subdividing a q-cell a of P by a (q 2 1)-cell e into two

new q-cells a1 and a1. This result is used to prove the equivalence

between the formula to directly compute the cup product on cubical

complexes and the classical one on simplicial complexes.

Lemma 1. Let (P, H, f, g, /) be an AT-model for a polyhedral

cell complex P computed using the algorithm given in (Gonzalez-

Diaz and Real, 2003, 2005). Let a be a q-cell, which is subdivided

into two new q-cells a1 and a1 by a new (q 2 1)-cell e. Let H0: 5
(H\{a}) | {a1} if a [ H, and H0: 5 H otherwise; P0: 5 (P\{a}) |
{a1, a1, e}; and @0 the boundary operator of P0 given by: @0 (c): 5
@ (c) 1 h a, @ (c)i (a 1 a1 1 a1) for any c [ P0\{e, a1, a1}. Denote

@ (a1) 1 e by A, and @ (a1) 1 e by B. Then, the set (P0, H0, f0, g0,
/0) is an AT-model for P0, where f0, g0, and /0 are given by:

� f 0ða1Þ :¼ f ðaÞþ ha; f ðaÞiðaþa1Þ; f 0ða2Þ :¼ 0;

f 0ðeÞ :¼ f ðAÞ ¼ f ðBÞ;
f 0ðrÞ :¼ f ðrÞþ ha; f ðrÞiðaþa1Þ; for any r2 P0nfa1;a2;eg;

� /0ða1Þ :¼/ðaÞ;/0ða2Þ :¼ 0;/0ðeÞ :¼a2þ/ðBÞ
þ ha;/ðBÞiðaþa1þa2Þ;
/0ðrÞ :¼/ðrÞþ ha;/ðrÞiðaþa1þa2Þ r2 P0nfa1;a2;eg

� If aH;g0ða1Þ :¼ gðaÞþaþa1þa2;

g0ðgÞ :¼ gðgÞþ ha;gðgÞiðaþa1þa2Þ; for any g2H0nfa1g

Proof. We have to check that (P0, H0, f0, g0, /0) is an AT-model

for P0. We will only check that f0g0 5 id and id 1 g0f0 5 /0@0 1
@0/0. The rest of the conditions are left to the reader. Let g [ H0, g
= a1, and r [ P0\{a.

1: f 0g0 ¼ id :

f 0g0ðgÞ ¼ f 0ðgðgÞþ ha;gðgÞiaÞþ ha;gðgÞif 0ða1Þ
¼ fgðgÞþha;gðgÞif ðaÞ
þha;gðgÞiha; f ðaÞiðaþa1Þþ ha;gðgÞiðf ðaÞ
þha; f ðaÞiðaþa1ÞÞ ¼ g:

If a2H : f 0g0ða1Þ ¼ f 0ðgðaÞþaÞþ f 0ða1Þ
¼ f ðgðaÞþaÞþ f ðaÞþaþa1 ¼a1:

2: idþg0f 0 ¼/0@0 þ@0/0 :
a1þg0f 0ða1Þ ¼ a1þg0ðf ðaÞþ ha; f ðaÞiaÞþ ha; f ðaÞig0ða1Þ
¼a1þgðf ðaÞþ ha; f ðaÞiaÞþha;gðf ðaÞ
þha; f ðaÞiaÞiðaþa1þa2Þ þha; f ðaÞigðaÞ

þha; f ðaÞiðaþa1þa2Þ
¼a1þgf ðaÞþ ha;gf ðaÞþha; f ðaÞigðaÞiðaþa1þa2Þ
þha; f ðaÞiðaþa1þa2Þþha; f ðaÞiðaþa1þa2Þ

¼a1þgf ðaÞþ ha;gf ðaÞiðaþa1þa2Þ
¼a1þaþ/ðAÞþ/ðBÞþ@/ðaÞþaþa1þa2

þha;/@ðaÞiðaþa1þa2Þþ ha;@/ðaÞiðaþa1þa2Þ
¼a2þ/ðBÞþ ha;/ðBÞiðaþa1þa2Þþ/ðAÞ
þha;/ðAÞiðaþa1þa2Þ þ@/ðaÞþha;@/ðaÞiðaþa1þa2Þ

¼/0@0ða1Þþ@0/0ða1Þ:

/0@0ða2Þþ@0/0ða2Þ ¼/0ðeÞþ/0ðBÞ
¼ a2þ/ðBÞþ ha;/ðBÞiðaþa1þa2Þþ/ðBÞ
þ ha;/ðBÞiðaþa1þa2Þ

¼ a2 ¼a2þg0f 0ða2Þ:

Figure 2. On the left, an abstract cubical representation Q of the hollow torus. On the center, the path Y(vi, v0), for each vertex vi of Q. On the

right, the ‘‘path’’ ce, for each edge e of Q.

Figure 3. A subdivision of a square a in two triangles a1 and a2.

Table I. An AT-model for the abstract cubical representation of the hollow

torus Q given in Figure 2

Q f / H g

v0 v0 0 v0 v0
vi,i5 1,. . ., 8 v0 g(vi, v0)
ai, i 5 1,2 bi cai

bi, i 5 1,2 bi 0 bi ai

Any edge b=ai, bi 0 cb

c c 0 c b
Any square r = c 0 0
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/0@0ðeÞþ@0/0ðeÞ ¼/0@ðBÞþ@0ða2þ/ðBÞ
þha;/ðBÞiðaþa1þa2ÞÞ
¼/@ðBÞþ@ða2Þþ@/ðBÞ ¼ eþgf ðBÞ ¼ eþg0f 0ðeÞ:
ðrecall that f ðAÞ ¼ f ðBÞ ¼ f ðeÞ because f@ ¼ 0 in an AT�modelÞ:

/0@0ðrÞþ@0/0ðrÞ ¼/0ð@ðrÞþha;@ðrÞiaÞ
þha;@ðrÞi/0ða1þa2Þ
þ@0ð/ðrÞþ ha;/ðrÞiaÞþha;/ðrÞi/0ða1þa2Þ

¼/ð@ðrÞþ ha;@ðrÞiaÞþ ha;/ð@ðrÞ
þha;@ðrÞiaÞðaþa1þa2Þþ ha;@ðrÞi/ðaÞ
þ@ð/ðrÞþ ha;/ðrÞiaÞþha;@ð/ðrÞ
þha;/ðrÞiaÞiðaþa1þa2Þþ ha;/ðrÞi@ðaÞ

¼rþgf ðrÞþðha;/@ðrÞiþ ha;@/ðrÞiÞðaþa1þa2Þ
¼rþgf ðrÞþha;rþgf ðrÞiðaþa1þa2Þ
¼rþgðf ðrÞþha; f ðrÞiaÞþ ha;gðf ðrÞ
þha; f ðrÞiaÞiðaþa1þa2Þ
þha; f ðrÞiðgðaÞþaþa1þa2Þ

¼rþg0ðf ðrÞþ ha; f ðrÞiaÞþ ha; f ðrÞig0ða1Þ ¼rþg0f 0ðrÞ:

Observe that h :CðHÞ!CðH0Þ, given by h(a) 5 a1 if a [ H and

h(r) 5 r for any r [ H\{a}, is a chain-group isomorphism. n

3. 3D CUBICAL COHOMOLOGY RING

In (Niethammer et al., 2002; Kaczynski et al., 2004), the authors

consider cubical complexes as the geometric building blocks to

compute the homology of digital images. In this section, we adapt,

to the cubical setting, the method developed in (Gonzalez-Diaz and

Real, 2003, 2005) for computing the simplicial cohomology ring of

3D binary-valued digital photographs. We must mention (Serre,

1951; Kadeishvili and Hopf, 1998) as related works dealing with

the cup product on cubical chain complexes in a theoretical context.

Notice that, in 3D, the only non trivial cup products are those

corresponding to elements of cohomology of dim. 1. If the cup

product of two elements of cohomology of dim. 1 is not zero, then

it is a sum of elements of cohomology of dim. 2. Recall that given

an AT-model (P, H, f, g, /) for a polyhedral cell complex P, it is
satisfied that H is isomorphic to the homology and to the cohomol-

ogy of P.

A. Cohomology Ring of Simplicial Complexes. We recall

now how the cup product is defined in the simplicial setting using

AT-models.

Definition 4. (Gonzalez-Diaz and Real, 2003, 2005). Let K be a

simplicial complex. It is assumed that the vertices of K are ordered.

Let (K, H, f, g, /) be an AT-model for K. Let fb1; . . . ;bqg be the

set of 2-simplices of H and let a1 and a2 be two edges of H. The
cup product of a1 and a2 is:

a1^a2 :¼
Xq

k¼1

ðða1f^a2f ÞðgðbkÞÞÞbk mod 2;

where a1f^a2f on a 2-simplex (vi, vj, vk) with vertices vi < vj < vk
is ha1; f ðvi; vjÞi � ha2; f ðvj; vkÞi; and ða1f^a2f Þ is extended to 2-

chains (sums of 2-simplices) by linearity. Observe that for each k,
g(bk) is a sum of 2-simplices representing one cavity. Then,

ða1f^a2f ÞðgðbkÞÞ is a sum of 0s and 1s over Z/2 whose result is 0

or 1. Therefore,
Pq

k¼1ðða1f^a2f ÞðgðbkÞÞÞbk is a sum of 2-simpli-

ces of H of dim. 2, representing the cavities obtained by ‘‘multi-

plying’’ the two representative cycles g(a1) and g(a2) (think of the

two tunnels of a hollow torus).

It is known that two objects with non isomorphic cohomology

rings are not topologically equivalent (more precisely, they are not

homotopic) (Munkres, 1984). To use the information of the coho-

mology ring for this aim, one can construct both matrices M and M0

collecting the results of the cup product of cohomology classes of

Figure 4. Scheme of the cubical cup product.

Figure 5. From (a) to (c), successive subdivisions; (d) a cube subdivided in six tetrahedra.
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dim. 1 of each object. If the rank of M and M0 are different, then we

can assert that both objects are not homotopic (see (Gonzalez-Diaz

and Real, 2005)).

B. Cohomology Ring of Cubical Complexes. In this section,

we explain how to obtain a direct formula for the cup product on

cubical complexes without making use of any triangulation.

Definition 5. Let Q be a cubical complex. We say that Q satis-

fies Property P1 if the vertices of Q are labeled in a way that each

square (vi, vj, vk, v‘) of Q with vertices vi < vj < vk < v‘ has the

edges (vi, vj), (vi, vk), (vj, v‘), and (vk, v‘) in its boundary.
For example, a cubical complex whose set of vertices is a subset

of Z3 (the set of points with integer coordinates in 3D space R3)

with vertices labeled using the lexicographical order, satisfies P1.

Definition 6. Let Q be a cubical complex satisfying P1 and (Q,
H, f, g, /) an AT-model for Q. Let {b1, . . ., bq} be the set of

squares of H and let a1 and a2 be two edges of H. The cup product

of a1 and a2 is:

a1 ^Q a2 :¼
Xq

k¼1

ðða1f ^Q a2f ÞðgðbkÞÞÞbk mod 2;

where a1f^Qa2f on a square (vi, vj, vk, v‘) with vertices vi < vj < vk
< v‘ (see Fig. 4) is:

ha1; f ðvi; vjÞi � ha2; f ðvj; v‘Þi þ ha1; f ðvi; vkÞi � ha2; f ðvk; v‘Þi;

and (a1f^Qa2f) is extended to 2-chains (sum of squares) by

linearity.

Example 2. Let Q be an abstract cubical representation of the

hollow torus given in Figure 2. Consider the AT-model (Q, H, f, g,

/) for Q, given in Example 1. Recall that H 5 {v0, (v0, v2),(v0,
v4),(v0, v2, v4, v8)}; g(v0) 5 v0, g(v0, v2) 5 (v0, v1) 1 (v1, v2) 1 (v0,
v2), g(v0, v4) 5 (v0, v3) 1 (v3, v4) 1 (v0, v4) and g(v0, v2, v4, v8) is
the sum of the squares of Q, representing the connected component,

the two tunnels and the cavity, respectively.

Apply the formula given in Definition 6 in order to obtain the

cup product of (v0, v2) and (v0, v4) in H:

ððv0; v2Þ�f ^Q ðv0; v4Þ�f Þðgðv0; v2; v4; v8ÞÞ
:¼ hðv0; v2Þ; f ðv0; v2Þi � hðv0; v4Þ; f ðv2; v8Þi
þhðv0; v2Þ; f ðv0; v4Þi � hðv0; v4Þ; f ðv4; v8Þi

¼ 1 � 1þ 0 � 0 ¼ 1:

Then, (v0, v2)^Q (v0, v4)5 (v0, v2, v4, v8).

The following theorem shows the validity of the definition of

^Q (Definition 6). That is, it is stated that we obtain the same result

by applying the formula of Definition 6 to compute the cup product

on the cubical complex, than making first a triangulation to obtain a

simplicial complex, and applying the classical definition of the cup

product given in Definition 4, afterward.

Consider successive subdivisions of each cube of a given cubical

complex Q until each one is converted in six tetrahedra, and such

that each square (vi, vj, vk, v‘) of Q with vertices vi < vj < vk < v‘ is
subdivided by the edge (vi, v‘) (see Fig. 5d). Let us denote this

resulting simplicial complex by KQ. Observe that with this particu-

lar subdivision, if (vp, vq, vr) is a 2-simplex of KQ, with vp < vq <
vr, obtained by a subdivision of a square of Q, then (vp, vq) and (vq,
vr) will correspond to edges in Q.

Theorem 1. Let (Q,H,f,g,/) be an AT-model for Q. Let a and a0

be two edges of H. Let (KQ, H
0, f0, g0, /0) be the AT-model for KQ

Figure 6. On the left, a 3D binary digital picture I5 (Z3, 26, 6, B). On the right, the set of squares of @Q.

Figure 7. (a) A hollow cube; (b) a spanning tree Twith root v; (c) the ‘‘path’’ cb, for each edge b that does not belong to T; (d) the cells of H.
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obtained after successively applying Lemma 1. Then,

a^Qa0 ¼ ða ^ a0Þh

where ^ is the simplicial cup product given in Definition 4, ^Q is

the cubical cup product given in Definition 6, and h : C(H) ? C(H0)
is the isomorphism defined at the end of Section 2.

Proof. Observe that since a and a0 are edges of H, then a, a0 [
H0, that is, h(a) 5 a and h(a0) 5 a0. Observe also that f(a) 5 f0(a)
for any edge a because b =2 f(a).

We must prove that (af^Q a0f)(g(b)) 5 (af0^ a0f0)(g0(h(b))).
Let b 5 (vi, vj, vk, v‘). Let b1 5 (vi, vj, v‘) and b2 5 (vi, vk, v‘) be
the two triangles obtained after subdividing b by the edge e 5 (vi,
v‘). Remember that h(b) 5 b1 and g0(h(b)) 5 g0(b1). Notice that

g0(b1) coincides with g(b) if we replace b by b1 1 b2 in the expres-

sion of g(b). Therefore, it is enough to prove that (af^Q a0f)(b) 5
(af0^a0f0)(b1 1 b2):

ðaf ^Q a0f ÞðbÞ ¼ ðaf ^Q a0f Þðvi; vj; vk; v‘Þ
¼ ha; f ðvi; vjÞi � ha0; f ðvj; v‘Þi þ ha; f ðvi; vkÞi � ha0; f ðvk; v‘Þi
¼ ha; f 0ðvi; vjÞi � ha0; f 0ðvj; v‘Þi þ ha; f 0ðvi; vkÞi � ha0; f 0ðvk; v‘Þi
¼ ðaf 0 ^ a0f 0Þðb1 þ b2Þ:

This concludes the proof. n

4. CUBICAL COHOMOLOGY RING OF 3D DIGITAL
PHOTOGRAPHS

In this section, we develop the main bulk of this article: beginning

from a cubical complex Q that represents a 3D binary digital picture

whose foreground has one connected component, we first compute an

AT-model for the boundary @Q of the object; then, having in mind

that the homology of @Q contains the homology of Q, we obtain an

AT-model for Q with the representative cycles of homology genera-

tors lying in @Q; finally, applying the formula given in Section 3, the

cohomology ring is computed from such an AT-model.

A. From Digital Photographs to Cubical Complexes Each

point of Z3 can be identified with a unit cube (called voxel) centered

at this point, with facets parallel to the coordinate planes. This gives

us an intuitive and simple correspondence between points in Z3 and

voxels in R3.

Consider a 3D binary digital picture I 5 (Z3, 26,6, B), where B
(the foreground) is finite, having Z3 as the underlying grid and fix-

ing the 26-adjacency for the points of B and the 6-adjacency for the

points of Z3\B (the background). We say that a voxel V is in the

boundary of I if V [ B (i.e., if the point of Z3 identified with V is in

B) and V has a 6-neighbor in Z3\B.
Take the cubical complex Q for B whose elements are the unit

cubes (voxels) centered at the points of B together with all their

faces. Observe that this cubical complex, with vertices labeled by

the corresponding Cartesian coordinates and considering the lexico-

graphical order, satisfies (P1) (see Definition 5).

Without lack of generality, we consider that the foreground is

connected.

The elements of @Q are all the squares of Q which are shared by

a voxel of B and a voxel of Z3\B together with all their faces.

In Figure 6, an example of a 3D digital picture and the squares

considered in @Q is shown.

B. AT-Model for ›Q Our interest now is to adapt the incremental

algorithm for computing an AT-model given in (Gonzalez-Diaz and

Real, 2003, 2005) to the particular complex @Q.
First, consider the set of edges and vertices of @Q as a graph and

compute a spanning forest T. Let T1, . . ., Tm be the trees of T corre-

sponding to the connected components of @Q. Fixed i, i 5 1, . . ., m,
take a vertex vi of Ti and consider it as the root of Ti.

Algorithm 1. Computing an AT-model (@Q, H, f, g, /) for @Q.
INPUT: The complex @Q,

the set {T1, . . ., Tm} of trees of a spanning forest T of @Q,
the set {v1, . . ., vm} of roots of the trees of T.

1. Initialize f(r): 5 r, / (r) :5 0 for each r [ @Q; H :5
{v1, . . ., vm},
U :5 {v:v is a vertex of @Q},
f(v) :5 vi if v is a vertex of Ti for some i, i 5 1, . . ., m.
For i 5 1 to m do

From ‘ 5 1 to the height of Ti do
For each vertex v at level ‘, and edge a linking v with its

parent w do

/(v) :5 a1 /(w), U :5 U| {a}, f(a) :5 0.

2. Althrough there are edges in @Q\U do

If there is a square c [ @Q\U with exactly one edge a [ @Q\U in

its boundary:

U :5 U| {c,a},
f(a) :5 f(@(c)1 a), /(a) :5 c1 /(@(c)1 a), f(c) :5 0.

Table II. An AT-model for the hollow cube given of Figure 7

@Q f / H g

Step 1 v v 0 v v
vi, i 5 1, . . ., 7 v g(vi, v)

Step 2 Any edge b [ Q\T 0 cb
Step 3 (v,v2,v4,v6) (v,v2,v4,v6) 0 (v,v2,v4,v6) C

Figure 8. On the left, the squares in the boundary of two cubes c and r sharing a square r0 (in bold). On the right, the squares of @(c)5 @(c1 r).
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Else take an edge a [ @Q\U then: H :5 H| {a}, U :5 U| {a}.
3. Althrough there is a square c in @Q\U do U :5 U| {c}.

If f@(c)5 0 then H :5 H| {c}.
Else take an edge a in f@(c) then H :5 H\{a}.
For each edge b in @Q\T do f(b) :5 f(b)1 ha, f(b)i f@(c),

/ (b) :5 /(b)1 ha, f(b)i (c 1 /@(c)), f(c)5 0.

4. For each r [ H do g(r) :5 r 1 /@ (r).
OUTPUT: the AT-model (@Q, H, f, g, /) for @Q.

The auxiliary set U is defined to indicate the cells which have al-

ready been used. In Step 1, neither the vertices nor the edges of Ti
create cycles except for the root vi. In Step 3, if a square has edges

in its boundary that created cycles in a previous step, then one of

these cycles is destroyed. Otherwise, this square creates a new cycle

(a cavity). In the last step, the representative cycles of homology

generators are computed.

Observe that all the steps of Algorithm 1 are quadratic in the

number of elements of @Q (worst-case complexity) except for the

last part of Step 3 which is cubic in the number of edges of @Q\T.
Example 3. The AT-model (@Q, H, f, g, /) of a hollow cube @Q

(see Fig. 7) is given in the Table II, where g{(vi, v)} is the only path

in T from vi to v; cb is the square at which the arrow corresponding to

an edge b in Figure 7c points, except for c{(v4, v6)} which is (v4, v5,
v6, v7)1 (v1, v3, v5, v7); and C is the sum of the six squares of @Q.

Example 4. The AT-model (@Q, H, f, g, /) of a hollow cube @Q
(see Fig. 7) is given in the Table II, where g{(vi, v)} is the only path

in T from vi to v; cb is the square at which the arrow corresponding to

an edge b in Figure 7c points, except for c{(v4, v6)} which is (v4, v5,
v6, v7)1 (v1, v3, v5, v7); and C is the sum of the six squares of @Q.

C. AT-Model for the Cell Complex K Topologically
Equivalent to Q. Now, we use a face reduction technique (see,

for example, Kaczynski et al., 2004; Gonzalez-Diaz et al., 2008;

Peltier et al., 2009) to obtain a cell complex K which has far fewer

cells than Q, such that homology, cohomology and cohomology

ring of K coincide with that of Q, and the cells of @Q are also cells

of K.
Algorithm 2. Face Reduction Process.
INPUT: A cubical complex Q.
Initially, K :5 Q.
While there exist r, r0 [ Q\@Q such that r0 is in @(r) do

For each cell c [ K such that r0 is in @ (c) do
redefine @(c) as @(c1 r).

Remove r and r0 from the current K;
OUTPUT: the cell complex K.

See Figure 8 as an example of face reduction.

Figure 9. On the left, two non-linked circles. On the right, two once-linked circles.

Figure 10. On the left, representative cycles of the two tunnels of Q1

0
. On the right, representative cycles of the two tunnels of Q2

0
. [Color figure

can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Observe that after the face reduction process, we obtain a cell

complex K with the same topological information as Q but with

fewer cells. Now, starting from an AT- model for @Q, compute an

AT-model for K adding the cells of K\@Q incrementally as follows:

Algorithm 3. AT-model for K.
INPUT: An AT-model for @Q: (@Q, H, f, g, /) and the cells {r1,

. . ., rm} of K\@Q ordered by increasing dimension.

Initially, fK (r) :5 f(r), /K (r) :5 /(r), gK (r)5 g(r) for
each r [ @Q;

fK (r) :5 0, /K (r) :5 0, for each r [ K\@Q; HK :5 H.
For i 5 1 to i 5 m do:

Take a cell, r, of fK @ (ri), then HK :5 H \ {r},
For k 5 1 to k5 i 2 1 do

fK (rk) :5 fK (rk)1 hr, fK (rk)i fK @ (ri)

/K (rk) :5 /K (rk)1 hr, fK (rk)i (ri 1 /K @(ri))

OUTPUT: the AT-model (K, HK, fK, gK, /K) for K.

Observe that, in the algorithm, a cycle is never created because

the set of the homology generators of K is a subset of the homology

generators of @Q. Therefore, when a cell ri of K is added, then fK @
(ri) is never null and then a class of homology is always eliminated

(that is, a cell r of fK \partial (ri) is removed from HK).

The worst-case complexity of Algorithm 3 is O(m3), where m is

the number of cells of K\@Q. Observe that m is also the number of

generators of the homology of @Q minus the number of generators

of Q.

D. Cohomology Ring of the Cell Complex K Topologically
Equivalent to Q Given a digital picture (Z3, 26,6, B), the cubical
complex Q associated with it, and having computed an AT-model

(K, HK, fK, gK, /K) for K, the last step of the process is the computa-

tion of the cohomology ring. This can be performed using the for-

mula for the cubical cup product given in Definition 5.

Example 5. This example shows an application of ^Q to dis-

criminate different embeddings of the same object. Consider the cu-

bical complex Q1 (resp. Q2) associated with a digital picture where

the set B consists in two once-linked ‘‘circle’’ (resp. two unlinked

‘‘circles’’). See Figure 9. Both complexes have two tunnels and no

cavities, so these properties are not able to distinguish them. Now,

denote by Q1

0
and Q2

0
, the cubical complexes associated with the back-

ground of I1 and I2 (white voxels of Fig. 9). Compute an AT-model

for Q1

0
and its cohomology ring, for i5 1,2. We obtain that the multi-

plication table for the cup product on Q1

0
is null whereas on Q2

0
is not

(see Fig. 10 and Table III). This fact allows us to assert that the back-

ground of I1 and I2 are not topologically equivalent. This problem

has been pointed out in (Kropatsch, 2002).

Example 6. Consider the picture in Figure 11. The cubical com-

plex associated with the white voxels of the picture has 1 connected

component, 7 tunnels, and 12 cavities. The results of the computa-

tion of the cup product can be seen in Table IV).

Now, let Q be a cubical complex with m cells. Let q be the num-

ber of cavities of Q, let m1 (resp. m2) be the number of edges (resp.

squares) of Q. Observe that, on one hand, we can compute an AT-

model for Q in O(m3) and the cup product of two cohomology

classes of Q in O(m1
2 m2q). On the other hand, using the results of

this section, we can compute an AT-model for K in O(n1
3 1 n3)

where n1 is the number of edges of @Q\T and n is the number of

homology generators of @Q minus the number of homology genera-

tors of Q. The cup product of two cohomology classes can be per-

formed in O(n1
2 n2q) where n2 is the number of squares of @Q. See

Table V relating m1, m2, m with n1, n2, n.
Example 7. Consider the two magnetic resonance images given

in Figure 12. The picture on the left, called I1, consists of 14 slices of
size 320 3 320 and the picture on the right, called I2, consists of 25

Table III. The multiplication tables for the cup product on Q1

0
and Q2

0

Q1

0
a1 ^Q a1 a1 ^Q a2 a2 ^Q a2

b1 0 0 0

b2 0 0 0

Q1

0
a1

0
^Q a1

0
a1

0
^Q a2

0
a2

0
^Q a2

0

b1

0
0 1 0

b2

0
0 1 0

The cubical complexes associated with the background of the photographs given in
Figure 10, where ai (resp. ai

0
), i 5 1,2, are representative cycles of the two tunnels of

Q1

0
(resp. Q2

0
); and bi (resp. bi

0
), i 5 1,2, are representative cycles of the two cavities of

Q1

0
(resp. Q2

0
).

Figure 11. A configuration of seven linked circles (picture of size

20320320)

Table IV. The multiplication table for the cup product of the cubical

complex associated to the white voxels of the photograph in Figure 12,

where ‘‘CP i j’’ denotes the sum of the cavities i and j

a1 a2 a3 a4 a5 a6 a7

a1 – – – – – –

a2 – – – – –

a3 - CP 3 5 CP 3 6 –

a4 CP 4 5 – –

a5 - CP 5 7

a6 CP 6 7

a7

Table V. Number of vertices, edges, squares and cubes of the cubical com-

plexes Qi and @Qi, associated with the photographs Ii, i 5 1,2, of Figure 13

Q1 @Q1 Q2 @Q2

Number of vertices 183,593 85,084 646,332 298,075

Number of edges 500,252 170,321 1,778,591 602,360

Number of squares 453,733 85,532 1,622,249 304,738

Number of cubes 136,989 0 489,960 0
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slices of size 340 3 240. In Table V, the number of the vertices,

edges, squares and cubes of Qi and @Qi, the cubical complexes asso-

ciated with Ii, i 5 1,2, is given. Our naı̈ve implementation of the

algorithms only permits photographs of maximum size

10031003100. After subsampling the two photographs we obtain

another two, called I1
0
and I2

0
, of size 80 3 80 3 14 and 84 3 84 3

25 (see Fig. 13). In Table VI, the number of cells of Qi

0
and Ki

0
, the cu-

bical complexes associated with Ii
0
, i 5 1,2, and the number of con-

nected components, tunnels and cavities of both I2
1 and I1

1 are given.

E. From Cubical Complexes to Digital Photographs Now,

given a digital photograph I, suppose that we have computed an

AT-model (K, HK, fK, gK, /K) for K, following the steps given in

Subsections A–C. For each r in HK, gK (r) is a representative cycle
of a homology generator of K and, therefore, of Q, since the homol-

ogy of K and Q coincide and the representative cycles are in @Q.
Recall that if r is a vertex, then gK (r) is a vertex representing a

connected component; if r is an edge, then gK (r) is a sum of edges

representing a tunnel; and if r is a square, then gK (r) is a sum of

squares representing a cavity.

Given a representative cycle gK (r) of a homology generator,

our aim in this subsection is to draw the equivalent cycle in the

picture I.
1 If gK (r) is a vertex then, gK (r) is a face of a square in @Q.

This square is shared by a voxel V of B and a voxel of Z3/B.
Then, associate the voxel V with the vertex gK (r).

2 If gK (r) is a sum of edges, suppose that gK (r) is a simple cycle

(if not, it always can be decomposed in simple ones). Visit all

the edges of the cycle in order. If an edge, a, and the next edge,

b, are facets of a square r [ @Q, then associate the single voxel

V of B which has r in its boundary, with the edges a and b.
Visit all the edges that have not been associated with any voxel.

If a voxel V is associated with the next edge of the current one,

a, and there is a voxel V0 [ B having a in its boundary, such that

V0 is in the boundary of I and V0 and V are 6-neighbor, then asso-

ciate V0 with a. If not, look at the previous edge and do the same

procedure. If not, take any voxel of B that contains a, having a

6-neighbor voxel in Z3\B.
3 Finally, if gK (r) is a sum of squares, associate the single voxel

V of B which has r in its boundary, , with each square r.
See Figure 13 as an example of the procedure.

5. CONCLUSIONS AND FUTURE WORK

In this article, we present formulas to directly compute the coho-

mology ring of 3D cubical complexes and develop a method for the

computation on 3D binary-valued photographs. This computation

on cubical complexes can be regarded as a starting point to compute

the cup product on general polyhedral cell complexes, which is, in

fact, our ultimate goal. The restriction to the 3D-world allows to

work over Z/2, what facilitates the calculus. However, a harder task

could be to extend the formulas of the cohomology ring to higher

dimensions what could be applied to more general contexts out of

digital images. In this sense, our starting point could be first, the

tools described in (Gonzalez-Diaz et al., 2009d) which are useful to

determine homological information in the integer domain of nD

structured objects such as simplicial, cubical or simploidal com-

plexes and second, the work on cohomology ring of nD simplicial

complexes using AT-models in the integer domain (also called

AM-models) developed in (Gonzalez-Diaz et al., 2009c). Another

Figure 12. On the left, a magnetic resonance angiography of the heart (picture I1 of size 3203320314 ) and, on the right, a magnetic reso-
nance image of the torax (picture I2 of size 2403240325), after a binarization process. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.].

Table VI. Number of cells of the cell complexes Q1

0
and K1

0
associated with

the photographs I1
0
, i 5 1,2, of Figure 14 and the number of connected

components, tunnels, and cavities of I1
0
and I2

0

Q1

0
K1

0
Q2

0
K2

0

Number of cells 93,441 39,051 739,515 253,181

Number of connected

components

59 59 129 129

Number of tunnels 19 19 477 477

Number of cavities 2 2 10 10

Execution time 52 sec 9 sec Out of memory 30 sec
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goal for future work is to adapt our results to irregular graph pyra-

mids and compute the cohomology ring on the cell complexes asso-

ciated with such structures. In this article (Gonzalez-Diaz et al.,

2009a), representative cocycles for cohomology generators on

irregular graph pyramids are computed, what can be considered as a

first step in this direction.
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Figure 14. On the left, a representative cycle of a homology generator (the set of edges in bold); On the topcenter, voxels considered the first

time the edges of the cycle are visited. On the bottom-center, voxels considered the second time the edges of the cycle are visited. On the right,

voxels in bold representing the cycle. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 13. Photographs I1
0
(on the left) and I2

0
(on the right) after resizing the photographs of Figure 13. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com.]
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