A Graph-with-Loop Structure for a Topological Representation of 3D Objects*

Rocio Gonzalez-Diaz, María José Jiménez, Belen Medrano**, and Pedro Real
Applied Math Department, University of Seville, Spain
\{rogodi,majiro,belenmg,real\}@us.es
http://alojamientos.us.es/gtocoma

Abstract

Given a cell complex K whose geometric realization $|K|$ is embedded in \mathbf{R}^{3} and a continuous function $h:|K| \rightarrow \mathbf{R}$ (called the height function), we construct a graph $G_{h}(K)$ which is an extension of the Reeb graph $R_{h}(|K|)$. More concretely, the graph $G_{h}(K)$ without loops is a subdivision of $R_{h}(|K|)$. The most important difference between the graphs $G_{h}(K)$ and $R_{h}(|K|)$ is that $G_{h}(K)$ preserves not only the number of connected components but also the number of "tunnels" (the homology generators of dimension 1) of K. The latter is not true in general for $R_{h}(|K|)$. Moreover, we construct a map $\psi: G_{h}(K) \rightarrow K$ identifying representative cycles of the tunnels in K with the ones in $G_{h}(K)$ in the way that if e is a loop in $G_{h}(K)$, then $\psi(e)$ is a cycle in K such that all the points in $|\psi(e)|$ belong to the same level set in $|K|$.

1 Reeb Graphs and Tunnels

We are interested in analyzing and visualizing intrinsic properties of geometric models and scientific data. Specifically, Reeb graphs [13], which express the connectivity of level sets, have been used in the past to construct data structures and user-interfaces for modeling and visualization applications [5].

Let X be a topological space and $h: X \rightarrow \mathbf{R}$ a continuos map. A level set is the primage of a constant value, $h^{-1}(t)$. Call a connected component of a level set a contour. Two points $x, y \in X$ are equivalent, $x \sim y$, if they belong to the same contour, that is, if $h(x)=h(y)$ and x and y are connected by a path on X. The Reeb graph of $h, R_{h}(X)$, is the quotient space defined by this equivalence relation. Observe that, by construction, the Reeb graph has a point for each contour and the connection is provided by $\psi: X \rightarrow R_{h}(X)$ that maps each point x to its equivalence class. Even though the Reeb graph loses a lot of the original topological structure, some things can be said: a tunnel in X that maps (by ψ) to a tunnel in $R_{h}(X)$ cannot be continuously deformed to a single point, and two tunnels in X that map to different tunnels in $R_{h}(X)$. The number of connected components of $X, \beta_{0}(X)$, is preserved and the number of tunnels of $X, \beta_{1}(X)$, cannot increase, i.e. $\beta_{0}\left(R_{h}(X)\right)=\beta_{0}(X)$ and $\beta_{1}\left(R_{h}(X)\right) \leq \beta_{1}(X)$.

[^0]

Fig. 1. From left to right, the torus X; representative cycles of the two tunnels of X (the tunnel a is obvious and the other one, b, is not); a geometric realization of the Reeb Graph $R_{h}(X)$ that h associates to each point on X its elevation; and a geometric realization of the graph with loops $G_{h}(X)$

In [2] the authors adapt concepts developed for smooth manifolds to discrete surface models, introducing an extended Reeb graph representation for a generic polyhedral surface. Their approach is based on the computation of a sufficiently dense number of contour lines and the definition of the Reeb graph from the contour set. However, such a construction is actually not an extension of the Reeb graph itself, but rather an application of its definition in the discrete domain. In [4], tight upper and lower bounds of the number of tunnels in the Reeb graph that depend on the genus, the number of boundary components and whether or not the 2-manifold is orientable, is given.

In this paper, we focus on objects embedded in \mathbf{R}^{3}. Several combinatorial structures may represent a cellular subdivision which models an object such as simplicial, cubical and simploidal complexes. Roughly speaking, the cells of a given simplicial complex are simplices (vertices, edges, triangles and tetrahedra); vertices, edges, squares and cubes constitute the collection of cells of a cubical complex; in the case of simploidal complexes, which generalize both simplicial and cubical complexes (see [3]), cells are cartesian products of simplices. In all the cases they fit together in a natural way to form the object (see [113]).

From now on, a graph $G=(V, E)$, where V is a set of vertices and E a set of edges, is considered as a particular complex only with vertices and edges. Given

Fig. 2. A simplicial, cubical and simploidal complex
a complex K (simplicial, cubical or simploidal), a geometric realization of it (e.g. a 3D triangulated surface) $|K|$, and a continuous function $h:|K| \rightarrow \mathbf{R}$, our aim is the computation of a graph $G_{h}(K)$ and a function $\Psi: G_{h}(K) \rightarrow K$ with the following properties:

- $G_{h}(K)$ has the same number of connected components and tunnels than K.
- Each loop (an edge such that its endvertices are the same) of $G_{h}(K)$ maps to a non-contractible cycle c in K such that $|c|$ (the geometric realization of all the cells in c) lies in a contour of $|K|$, two loops in $G_{h}(K)$ map to non-homologous cycles in K, and each edge in $G_{h}(K)$ map to a path in K.
- If we do not consider the loops in $G_{h}(K)$, then $G_{h}(K)$ is a subdivision of the Reeb graph $R_{h}(K)$.

Therefore, $G_{h}(K)$ can be seen as an extension of $R_{h}(K)$ such that not only the number of connected components and tunnels of $G_{h}(K)$ and K coincide (this is not true, in general, for $R_{h}(K)$), but also there exists a one-by-one identification of tunnels in $G_{h}(K)$ with tunnels in K in the way that if e is a loop in $G_{h}(K)$, then $\psi(e)$ is a cycle in K such that all the points in $|\psi(e)|$ have the same height.

2 Algebraic-Topological Models for 3D Objects

This section introduces the algebraic topology background needed to understand the rest of the paper, which is essentially extracted from Munkres' book [12]. The concept of AT-model established in [8] for cohomology computation of 3D digital images is adapted here to solve the problem of computing the graph $G_{h}(K)$ and the function $\Psi: G_{h}(K) \rightarrow K$. Without lost of generality, we will consider that the ground ring is $\mathbf{Z} / 2$.

A chain complex \mathcal{C} is a sequence $\left\{C_{q}, d_{q}\right\}$ of abelian groups C_{q} and homomorphisms $d_{q}: C_{q+1} \rightarrow C_{q}$, such that, for all $q, d_{q} d_{q+1}=0$. The set $\left\{d_{q}\right\}_{q \geq 0}$ is called the differential of \mathcal{C}. The chain complex \mathcal{C} is free if C_{q} is a free abelian group for each q; it is finite if there exists an integer $n>0$ such that $C_{q}=0$ for $q>n$ and each abelian group C_{q} is finitely generated. All chain complexes considered here are finite and free. A chain c in \mathcal{C} is a q-cycle if $c \in \operatorname{Ker} d_{q}$. If $c \in \operatorname{Im} d_{q+1}$ then a is called a q-boundary. Denote the groups of q-cycles and q-boundaries by Z_{q} and B_{q} respectively. Define the integer qth homology group to be the quotient group Z_{q} / B_{q}, denoted by $H_{q}(\mathcal{C})$. We say that c is a representative q-cycle of the homology generator $c+B_{q}$ (denoted by $[c]$). For each q, the q th homology group $H_{q}(\mathcal{C})$ is a finitely generated free abelian group. The rank of H_{q}, denoted by β_{q}, is called the q th Betti number of \mathcal{C}. Homology is a powerful topological invariant, which characterizes an object by its q-dimensional "holes" (connected components, tunnels and cavities).

Let K be a complex (simplicial, cubical or simploidal). A q-chain c is a formal sum of q-cells (where q is the dimension of the cell) in K. Let $\left\{\sigma_{1}^{q}, \ldots, \sigma_{m_{i}}^{q}\right\}$ be the set of q-cells in K, then $c=\sum_{i=1}^{m_{i}} \lambda_{i} \sigma_{i}^{q}$, where $\lambda_{i} \in\{0,1\}$. Alternatively, we can think of c as the set $\left\{\sigma_{i}^{q}\right.$, such that $\left.\lambda_{i}=1\right\}$, and the sum of two q-chains as their symmetric difference. The q-chains together with the addition operation form the group of q-chains denoted as $C_{q}(K)$. The differential of a q-cell σ in $K, d_{q}(\sigma)$, is the sum of the $(q-1)$-cells in K that belong to the boundary of σ. By linearity, the differential can be extended to q-chains. The chain complex $C(K)$ is the sequence of chain groups $C_{q}(K)$ connected by the homomorphisms d_{q}. The homology of K is defined as the homology of $C(K)$. Since we work with
objects embedded in \mathbf{R}^{3}, the homology groups are torsion-free (see [1, ch.10]). Moreover, Theorem of Universal Coefficient [12] ensures that all the homology information can be computed working with coefficients in $\mathbf{Z} / 2$.

An AT-model for K is established in [89] and used to obtain the homology and representative cycles of homology generators of K. An AT-model can be computed starting from an ordering of the cells in K [89. We deal here with a particular ordering based on a cover forest T of K (any two vertices are connected by exactly one path in T if and only if they are connected in $K)$. Let $T=(V, E)$ be a cover forest of K where V is the set of all the vertices of K and E a subset of edges of $K . S=\left(\sigma_{0}, \ldots, \sigma_{m}\right)$ is a T-filter if it is an ordering of all the cells in K such that:

- for each j (where $0 \leq j \leq m$), $\left\{\sigma_{0}, \ldots, \sigma_{j}\right\}$ is a subcomplex of K;
- if $i<j$, the dimension of σ_{i} is less or equal than the dimension of σ_{j};
- if $i<j, \sigma_{i}$ and σ_{j} are two edges and $\sigma_{j} \in T$, then $\sigma_{i} \in T$ That is, the edges of the cover forest are in first positions in S).

Observe that σ_{0} is always a vertex of K. An AT-model for K is then defined as the output of the following algorithm, having as the input a complex K and a T-filter S of K.

Algorithm 1. [8 9] AT-model Algorithm.

```
InPUT: a T-filter S = (\sigma0,\ldots, 的) of K,
H:={\mp@subsup{\sigma}{0}{}}, f(\mp@subsup{\sigma}{0}{}):=\mp@subsup{\sigma}{0}{},\quadg(\mp@subsup{\sigma}{0}{}):=\mp@subsup{\sigma}{0}{},\quad\phi(\mp@subsup{\sigma}{0}{}):=0.
For i=1 to m do
    If fd (\sigmai)=0, then
        H:=H\cup{\mp@subsup{\sigma}{i}{}},\quadf(\mp@subsup{\sigma}{i}{}):=\mp@subsup{\sigma}{i}{},\quad\phi(\mp@subsup{\sigma}{i}{}):=0,\quadg(\mp@subsup{\sigma}{i}{}):=\mp@subsup{\sigma}{i}{}+\phid(\mp@subsup{\sigma}{i}{}).
    If fd(\sigma})\not=0\mathrm{ , then:
        k:= max {j such that }\mp@subsup{\sigma}{j}{}\infd(\mp@subsup{\sigma}{i}{}),j=1,\ldots,i-1}
        H:=H\{\mp@subsup{\sigma}{k}{}},f(\mp@subsup{\sigma}{i}{}):=0,\phi(\mp@subsup{\sigma}{i}{}):=0.
        For j=1 to i-1 do if }\mp@subsup{\sigma}{k}{}\inf(\mp@subsup{\sigma}{j}{})\mathrm{ ,
            f(\mp@subsup{\sigma}{j}{}):=f(\mp@subsup{\sigma}{j}{})+fd(\mp@subsup{\sigma}{i}{}),\quad\phi(\mp@subsup{\sigma}{j}{}):=\phi(\mp@subsup{\sigma}{j}{})+\mp@subsup{\sigma}{i}{}+\phid(\mp@subsup{\sigma}{i}{}).
```

Output: the set (S, H, f, g, ϕ).
Notice that in the i th step of the algorithm $(i=1, \ldots, m)$, exactly one homology generator is created or destroyed. The algorithm runs in time at most $\mathcal{O}\left(m^{3}\right)$.

Proposition 1. Let K be a complex (simplicial, cubical or simploidal), let $T=$ (V, E) be a cover forest of K and S a T-filter of K. The output of Algorithm 1 , (S, H, f, g, ϕ), satisfies that:

- H is a subset of S such that no edge in T is an edge in H. H generates a chain complex denoted by \mathcal{H} with null differential;
- The number of vertices, edges and triangles in H equals the number of connected components, tunnels and cavities in $|K|$, respectively. In other words, the homology of K is isomorphic to \mathcal{H}.
$-f: C(K) \rightarrow \mathcal{H}$ satisfies that if c ad c^{\prime} are two cycles in K such that $f(c)=$ $f\left(c^{\prime}\right)$ then c and c^{\prime} are homologous.
$-g: \mathcal{H} \rightarrow C(K)$ satisfies that $\{[g(h)]: h \in H\}$ is a set of homology generators of K. If $h, h^{\prime} \in H, h \neq h^{\prime}$, then $g(h)$ and $g\left(h^{\prime}\right)$ are not homologous. Moreover, if a is an edge in H, then $g(a)$ is a simple cycle in K and all the edges in $g(a) \backslash\{a\}$ are edges in T. In fact, $g(a) \backslash\{a\}$ is the simple path in T connecting the endvertices of a.
$-\phi: C(K) \rightarrow C(K)$ satisfies that if $x \in H$ then $\phi(x)=0$ and there is no $y \in S$ such that $\phi(y)=x$. Moreover, if v is a vertex in K, then $\phi(v)$ is the simple path in T connecting v with the vertex in H that belongs to the same connected component in K than v.

\sim_{0}| S | H | f | g | ϕ |
| :---: | :---: | :---: | :---: | :---: |
| $\langle 0\rangle$ | $\langle 0\rangle$ | $\langle 0\rangle$ | $\langle 0\rangle$ | 0 |
| $\langle 1\rangle$ | | $\langle 0\rangle$ | | $\langle 0,1\rangle$ |
| $\langle 2\rangle$ | | $\langle 0\rangle$ | | $\langle 0,2\rangle$ |
| $\langle 0,1\rangle$ | | 0 | | 0 |
| $\langle 0,2\rangle$ | | 0 | | 0 |
| $\langle 1,2\rangle$ | $\langle 1,2\rangle$ | $\langle 1,2\rangle$ | $\langle 1,2\rangle+\langle 0,2\rangle+\langle 0,1\rangle$ | 0 |

Fig. 3. A a filter S of a simplicial complex K and the result of applying Algorithm 1 to S (an AT-model for K)

3 Computing a Graph-with-Loop Representation of a 3D Object

Let K be a complex (simplicial, cubical or simploidal); $|K|$ its geometric realization in \mathbf{R}^{3}; and $h:|K| \rightarrow \mathbf{R}$ a continuous function. Let $e_{x y}$ denote an edge with endvertices x and y. We say that the height of a point $p \in|K|$ is t if $h(p)=t$ and the height of a cell $\sigma \in K$ is the minimum of the heights of all the points on $|\sigma|$. We say that K is an h-complex if:

- the set of the vertices of K can be partitioned into a finite number of subsets in terms of their height, $V=\bigcup_{i=1}^{r} V_{i}$, where $V_{i}=\left\{v \in V: h(v)=t_{i}\right.$ and $t_{1}<\cdots<t_{r}$.
- if $e_{v w}$ is an edge in K then v and w belong to V_{i} for some $i=1, \ldots, r$ or $v \in V_{i-1}$ and $w \in V_{i}$ for some $i=2, \ldots, r$.
h-Complexes appear in a natural way when they are defined by the neighborhood relations of voxels of a 3D digital image and h is the real function that associates to each point on $|K|$ its elevation.

Let K be an h-complex and σ a cell in K. We say that σ is horizontal if the heights of all the points on $|\sigma|$ coincide; otherwise, it is vertical. For $i=1, \ldots, r$, let K_{i} be the collection of all the horizontal cells in K with the same height t_{i}, $i=0,1, \ldots, r . K_{i}$ is a subcomplex of K and if a cell σ is not in K_{i}, then σ is vertical. Let $T_{i}=\left(V_{i}, E_{i}\right)$ be a cover forest of K_{i} and S_{i} a T_{i}-filter of K_{i}. Denote by $\left(S_{i}, H_{i}, f_{i}, g_{i}, \phi_{i}\right), i=1, \ldots, r$, the AT-models obtained using Algorithm 1 . Let V be the set of vertices in $K, T=(V, E)$ a cover forest of K (obtained

Fig. 4. From left to right: a digital image and $3 h$-complexes associated to it considering the 6,14 and 26 -adjacency, respectively
after adding vertical edges in K in increasing ordering in height to the graph $\left(V, \bigcup_{i=1}^{r} E_{i}\right)$), and S a T-filter of K. Denote by (S, H, f, g, ϕ) the AT-model obtained using Algorithm

Proposition 2. The AT-model (S, H, f, g, ϕ) satisfies that:

- If a is a horizontal edge in H, then $a \in H_{i}$ for some i and $g(a)=g_{i}(a)$ is a simple cycle such that its edges are in K_{i}.
- If a is a vertical edge in H, then for each level $i, i=1, \ldots, r, g(a)$ has an even number of vertical edges of height t_{i}.

Now, let us explain how to construct the graph $G_{h}(K)$ and the function Ψ : $G_{h}(K) \rightarrow K$ using the AT-models $\left(S_{i}, H_{i}, f_{i}, g_{i}, \phi_{i}\right), i=1, \ldots, r$ and (S, H, f, g, ϕ) computed before. First, the vertices in $G_{h}(K)$ in each level i are the vertices in H_{i}, $i=1, \ldots, r$. If v is a vertex in $G_{h}(K)$, then $\Psi(v)=v$. Second, for each level i and (horizontal) edge a in $H_{i} \cap H$, we add a loop α in $G_{h}(K)$ such that its endvertex is the vertex in the level i of $G_{h}(K)$ which belongs to the same connected component than $|a|$ in $\left|K_{i}\right|$. Define $\Psi(\alpha)=g_{i}(a)=g(a)$. Third, we add an edge $e_{x y}$ between two vertices x and y in $G_{h}(K)$ if $x \in H_{i}$ and $y \in H_{i+1}$ for some i and $f(x)=$ $f(y)=z \in H$ (i.e. x and y belong to the same connected component in K). Define $\Psi\left(e_{x y}\right)=\phi(x)+\phi(y)$ (the simple path in T connecting the vertices x and y). Finally, for each vertical edge $e_{v w}$ in H, an edge b is added to $G_{h}(K)$. Since $e_{v w}$ is vertical, then $v \in H_{i}$ and $w \in H_{i+1}$ for some i. The endvertices of b are the vertices in $G_{h}(K)$ which belong to the same connected component than v in K_{i} and w in K_{i+1}, respectively. Define $\Psi(b)=e_{v w}+\phi_{i}(v)+\phi_{i+1}(w)$.
Theorem 2. Given a complex K and a continuous function $h:|K| \rightarrow \mathbf{R}$. If K is an h-complex, then:

1. The graph $G_{h}(K)$ and the complex K has the same number of tunnels and connected components.
2. For each loop $\alpha \in G_{h}(K), \Psi(\alpha)$ is a simple cycle representative of a homology generator of K. If α_{1} and α_{2} are two different loops in $G_{h}(K)$, then $\Psi\left(\alpha_{1}\right)$ and $\Psi\left(\alpha_{2}\right)$ are two representative cycles of two non-equivalent generators of homology.
3. For each edge $e_{x y}$ in $G_{h}(K)$ that comes from a vertical edge $e_{v w} \in H$, then $\Psi\left(e_{x y}\right)+\phi(x)+\phi(y)=g\left(e_{v w}\right)$ is a representative cycle of a homology generator of K.
4. The graph $G_{h}(K)$ without loops is a subdivision of the Reeb graph $R_{h}(K)$.
5. The graph $G_{h}(K)$ and the function Ψ can be computed in $\mathcal{O}\left(m^{3}\right)$, where m is the number of cells in K.

Proof. The number of tunnels of K is the number of edges in H. By construction, each horizontal edge in H produces a loop in $G_{h}(K)$ (i.e. a tunnel in $G_{h}(K)$). Each vertical edge $e_{v w}$ in H produces a vertical edge β in $G_{h}(K)$. Let v in K_{i} and w in K_{i+1}. Let V and W be the two vertices in $G_{h}(K)$ that belong to the same connected component than v and w, respectively. Since $e_{v w} \in H$, then $e_{v w}$ created a cycle when it was added. Therefore, v and w belong to the same connected component in K and so, there exists a path p between V and W in $G_{h}(K)$ apart from the edge β that produces $e_{v w}$, by construction. Then, $p+\beta$ is a cycle in $G_{h}(K)$. Moreover, $\Psi(p+\beta)=g(b)$ is a representative cycle of the homology generators of dimension 1 of K. Since representative cycles of a homology generator of dimension 1 of K map by ψ to a cycle in $R_{h}(K)$, then $\psi(g(b))$ is a cycle in $R_{h}(K)$. Since K is an h-complex, then a vertex in $R_{h}(K)$ corresponds to a contour in a level t_{i}, $i=1, \ldots, r$. Therefore, a vertex in $R_{h}(K)$ is a vertex in $G_{h}(K)$.

Fig. 5. From left to right: a cover forest T of the cubical complex K showed on the right of Figure 4; the complexes K_{0}, K_{1}, K_{2} and K_{3}; a set of representative cycles of the generators $H_{1}(K)$; and the graph $G_{h}(K)$

Example 1. Let K be the cubical complex K on the right in Figure 4. A cover forest T of K; the complexes K_{0}, K_{1}, K_{2} and K_{3}; a set of representative cycles of the generators $H_{1}(K)$; and the graph $G_{h}(K)$ The non-trivial identification of the edges and loops in $G_{h}(K)$ and K by Ψ are:

$G_{h}(K)$	Ψ
h_{1}	$e_{a b}+e_{b c}+e_{c d}+e_{d o}+e_{o f}+e_{a f}$
v_{1}	$e_{B j}+e_{i j}+e_{h i}+e_{g h}+e_{d g}+e_{c d}+e_{a c}+e_{a b}+e_{b C}$
v_{2}	$e_{B j}+e_{i j}+e_{b i}+e_{a b}+e_{a C}$
v_{3}	$e_{B k}+e_{\ell k}+e_{m \ell}+e_{m n}+e_{n C}$

The representative cycles of generators of $H_{1}(K)$ are:

$$
\begin{aligned}
& \alpha_{0}=\Psi\left(h_{1}\right)=e_{a b}+e_{b c}+e_{c d}+e_{d o}+e_{o f}+e_{a f} \\
& \alpha_{1}=\Psi\left(v_{1}\right)+e_{B C}=e_{B j}+e_{i j}+e_{h i}+e_{g h}+e_{d g}+e_{c d}+e_{a c}+e_{a b}+e_{b C}+e_{B C} \\
& \alpha_{2}=\Psi\left(v_{2}\right)+e_{B C}=e_{B j}+e_{i j}+e_{b i}+e_{a b}+e_{a C}+e_{B C} \\
& \alpha_{3}=\Psi\left(v_{3}\right)+e_{B C}=e_{B k}+e_{\ell k}+e_{m \ell}+e_{m n}+e_{n C}+e_{B C}
\end{aligned}
$$

4 Conclusions and Future Work

It is possible to obtain representative cycles on the boundary of the given complex K if we compute a cover forest of K first adding the edges on the boundary. Another task is the generalization of the method to any dimension. The problem is that the homology of a complex of a dimension higher than 3 can have torsion groups. In order to capture the torsion part of the homology we could use the concept of λ-AT-model developed in [10].

A possible extension of this work is the construction of a discrete Morse complex $M_{h}(K)$ associated to a cell complex K, such that there is not only a one-by-one identification of all the homology generators of $M_{h}(K)$ with that of K, but also an isomorphism between cohomology rings. $M_{h}(K)$ can be constructed using a gradient vector field \mathcal{V}_{K} associated to a discrete Morse function (see 667) that can be obtained from an AT-model for K.

References

1. Alexandroff, P., Hopf, H.: Topologie I. Springer, Berlin (1935)
2. Biasotti, S., Facidieno, B., Spagnuolo, M.: Extended Reeb Graphs for Surface Understanding and Description. In: Nyström, I., Sanniti di Baja, G., Borgefors, G. (eds.) DGCI 2000. LNCS, vol. 1953, pp. 185-197. Springer, Heidelberg (2000)
3. Dahmen, W., Micchelli, C.A.: On the Linear Independence of Multivariate bSplines. Triangulation of Simploids. SIAM J. Numer. Anal., 19 (1982)
4. Cole-McLaughlin, K., Edelsbruner, H., Harer, J., Natarajan, V., Pascucci, V.: Loops in Reeb Graphs of 2-mainifolds. Discrete Comput. Geom. 32, 231-244 (2004)
5. Fomenko, A.T., Kunii, T.L.: Topological Methods for Visualization. Springer, Heidelberg (1997)
6. Forman, R.: A discrete Morse theory for cell complexes. In: Yau, S.T.(ed.) Geometry, Topology and Physics for Raoul Bott. International Press (1995)
7. Forman, R.: Discrete Morse Theory and the Cohomology Ring. Transactions of the American Mathematical Society 354, 5063-5085 (2002)
8. Gonzalez-Diaz, R., Real, P.: Towards Digital Cohomology. In: Nyström, I., Sanniti di Baja, G., Svensson, S. (eds.) DGCI 2003. LNCS, vol. 2886, pp. 92-101. Springer, Heidelberg (2003)
9. Gonzalez-Diaz, R., Real, P.: On the Cohomology of 3D Digital Images. Discrete Applied Math. 147, 245-263 (2005)
10. Gonzalez-Diaz, R., Jiménez, M.J., Medrano, B., Real, P.: Extending AT-Models for Integer Homology Computation. In: GbR2007. LNCS, vol. 4538, pp. 330-339. Springer, Heidelberg (2007)
11. Massey, W.M.: A Basic Course in Algebraic Topology. New York (1991)
12. Munkres, J.R.: Elements of Algebraic Topology. Addison-Wesley, London, UK (1984)
13. Reeb, G.: Sur les Points Singuliers d'une Forme de Pfaff Complement Integrable ou d'une Function Numérique. C. Rendud Acad. Sciences 222, 847-849 (1946)

[^0]: * Partially supported by Junta de Andalucía (FQM-296 and TIC-02268) and Spanish Ministry for Science and Education (MTM-2006-03722).
 ** Fellow associated to University of Seville under a Junta de Andalucia research grant.

