A Graph-with-Loop Structure for a Topological Representation of 3D Objects^{*}

Rocio Gonzalez-Diaz, María José Jiménez, Belen Medrano**, and Pedro Real

Applied Math Department, University of Seville, Spain {rogodi,majiro,belenmg,real}@us.es http://alojamientos.us.es/gtocoma

Abstract. Given a cell complex K whose geometric realization |K| is embedded in \mathbb{R}^3 and a continuous function $h : |K| \to \mathbb{R}$ (called the *height function*), we construct a graph $G_h(K)$ which is an extension of the Reeb graph $R_h(|K|)$. More concretely, the graph $G_h(K)$ without loops is a subdivision of $R_h(|K|)$. The most important difference between the graphs $G_h(K)$ and $R_h(|K|)$ is that $G_h(K)$ preserves not only the number of connected components but also the number of "tunnels" (the homology generators of dimension 1) of K. The latter is not true in general for $R_h(|K|)$. Moreover, we construct a map $\psi : G_h(K) \to K$ identifying representative cycles of the tunnels in K with the ones in $G_h(K)$ in the way that if e is a loop in $G_h(K)$, then $\psi(e)$ is a cycle in Ksuch that all the points in $|\psi(e)|$ belong to the same level set in |K|.

1 Reeb Graphs and Tunnels

We are interested in analyzing and visualizing intrinsic properties of geometric models and scientific data. Specifically, Reeb graphs [13], which express the connectivity of level sets, have been used in the past to construct data structures and user-interfaces for modeling and visualization applications [5].

Let X be a topological space and $h: X \to \mathbf{R}$ a continuos map. A *level set* is the primage of a constant value, $h^{-1}(t)$. Call a connected component of a level set a *contour*. Two points $x, y \in X$ are equivalent, $x \sim y$, if they belong to the same contour, that is, if h(x) = h(y) and x and y are connected by a path on X. The *Reeb graph* of h, $R_h(X)$, is the quotient space defined by this equivalence relation. Observe that, by construction, the Reeb graph has a point for each contour and the connection is provided by $\psi : X \to R_h(X)$ that maps each point x to its equivalence class. Even though the Reeb graph loses a lot of the original topological structure, some things can be said: a tunnel in X that maps (by ψ) to a tunnel in $R_h(X)$ cannot be continuously deformed to a single point, and two tunnels in X that map to different tunnels in $R_h(X)$. The number of connected components of X, $\beta_0(X)$, is preserved and the number of tunnels of X, $\beta_1(X)$, cannot increase, i.e. $\beta_0(R_h(X)) = \beta_0(X)$ and $\beta_1(R_h(X)) \leq \beta_1(X)$.

^{*} Partially supported by Junta de Andalucía (FQM-296 and TIC-02268) and Spanish Ministry for Science and Education (MTM-2006-03722).

^{**} Fellow associated to University of Seville under a Junta de Andalucia research grant.

Fig. 1. From left to right, the torus X; representative cycles of the two tunnels of X (the tunnel a is obvious and the other one, b, is not); a geometric realization of the Reeb Graph $R_h(X)$ that h associates to each point on X its elevation; and a geometric realization of the graph with loops $G_h(X)$

In [2] the authors adapt concepts developed for smooth manifolds to discrete surface models, introducing an extended Reeb graph representation for a generic polyhedral surface. Their approach is based on the computation of a sufficiently dense number of contour lines and the definition of the Reeb graph from the contour set. However, such a construction is actually not an extension of the Reeb graph itself, but rather an application of its definition in the discrete domain. In [4], tight upper and lower bounds of the number of tunnels in the Reeb graph that depend on the genus, the number of boundary components and whether or not the 2-manifold is orientable, is given.

In this paper, we focus on objects embedded in \mathbb{R}^3 . Several combinatorial structures may represent a cellular subdivision which models an object such as simplicial, cubical and simploidal complexes. Roughly speaking, the *cells* of a given simplicial complex are simplices (vertices, edges, triangles and tetrahedra); vertices, edges, squares and cubes constitute the collection of cells of a cubical complex; in the case of simploidal complexes, which generalize both simplicial and cubical complexes (see [3]), cells are cartesian products of simplices. In all the cases they fit together in a natural way to form the object (see [11,3]).

From now on, a graph G = (V, E), where V is a set of vertices and E a set of edges, is considered as a particular complex only with vertices and edges. Given

Fig. 2. A simplicial, cubical and simploidal complex

a complex K (simplicial, cubical or simploidal), a geometric realization of it (e.g. a 3D triangulated surface) |K|, and a continuous function $h : |K| \to \mathbf{R}$, our aim is the computation of a graph $G_h(K)$ and a function $\Psi : G_h(K) \to K$ with the following properties:

- $-G_h(K)$ has the same number of connected components and tunnels than K.
- Each loop (an edge such that its endvertices are the same) of $G_h(K)$ maps to a non-contractible cycle c in K such that |c| (the geometric realization of all the cells in c) lies in a contour of |K|, two loops in $G_h(K)$ map to non-homologous cycles in K, and each edge in $G_h(K)$ map to a path in K.
- If we do not consider the loops in $G_h(K)$, then $G_h(K)$ is a subdivision of the Reeb graph $R_h(K)$.

Therefore, $G_h(K)$ can be seen as an extension of $R_h(K)$ such that not only the number of connected components and tunnels of $G_h(K)$ and K coincide (this is not true, in general, for $R_h(K)$), but also there exists a one-by-one identification of tunnels in $G_h(K)$ with tunnels in K in the way that if e is a loop in $G_h(K)$, then $\psi(e)$ is a cycle in K such that all the points in $|\psi(e)|$ have the same height.

2 Algebraic-Topological Models for 3D Objects

This section introduces the algebraic topology background needed to understand the rest of the paper, which is essentially extracted from Munkres' book [12]. The concept of AT-model established in [8,9] for cohomology computation of 3D digital images is adapted here to solve the problem of computing the graph $G_h(K)$ and the function $\Psi : G_h(K) \to K$. Without lost of generality, we will consider that the ground ring is $\mathbb{Z}/2$.

A chain complex C is a sequence $\{C_q, d_q\}$ of abelian groups C_q and homomorphisms $d_q: C_{q+1} \to C_q$, such that, for all $q, d_q d_{q+1} = 0$. The set $\{d_q\}_{q \geq 0}$ is called the differential of C. The chain complex C is free if C_q is a free abelian group for each q; it is finite if there exists an integer n > 0 such that $C_q = 0$ for q > n and each abelian group C_q is finitely generated. All chain complexes considered here are finite and free. A chain c in C is a q-cycle if $c \in \text{Ker } d_q$. If $c \in \text{Im } d_{q+1}$ then a is called a q-boundary. Denote the groups of q-cycles and q-boundaries by Z_q and B_q respectively. Define the integer qth homology group to be the quotient group Z_q/B_q , denoted by $H_q(C)$. We say that c is a representative q-cycle of the homology generator $c + B_q$ (denoted by [c]). For each q, the qth homology group $H_q(C)$ is a finitely generated free abelian group. The rank of H_q , denoted by β_q , is called the qth Betti number of C. Homology is a powerful topological invariant, which characterizes an object by its q-dimensional "holes" (connected components, tunnels and cavities).

Let K be a complex (simplicial, cubical or simploidal). A q-chain c is a formal sum of q-cells (where q is the dimension of the cell) in K. Let $\{\sigma_1^q, \ldots, \sigma_{m_i}^q\}$ be the set of q-cells in K, then $c = \sum_{i=1}^{m_i} \lambda_i \sigma_i^q$, where $\lambda_i \in \{0, 1\}$. Alternatively, we can think of c as the set $\{\sigma_i^q, \text{ such that } \lambda_i = 1\}$, and the sum of two q-chains as their symmetric difference. The q-chains together with the addition operation form the group of q-chains denoted as $C_q(K)$. The differential of a q-cell σ in $K, d_q(\sigma)$, is the sum of the (q - 1)-cells in K that belong to the boundary of σ . By linearity, the differential can be extended to q-chains. The chain complex C(K) is the sequence of chain groups $C_q(K)$ connected by the homomorphisms d_q . The homology of K is defined as the homology of C(K). Since we work with objects embedded in \mathbb{R}^3 , the homology groups are torsion-free (see [1, ch.10]). Moreover, Theorem of Universal Coefficient [12] ensures that all the homology information can be computed working with coefficients in $\mathbb{Z}/2$.

An AT-model for K is established in [8,9] and used to obtain the homology and representative cycles of homology generators of K. An AT-model can be computed starting from an ordering of the cells in K [8,9]. We deal here with a particular ordering based on a cover forest T of K (any two vertices are connected by exactly one path in T if and only if they are connected in K). Let T = (V, E)be a cover forest of K where V is the set of all the vertices of K and E a subset of edges of K. $S = (\sigma_0, \ldots, \sigma_m)$ is a T-filter if it is an ordering of all the cells in K such that:

- for each j (where $0 \le j \le m$), $\{\sigma_0, \ldots, \sigma_j\}$ is a subcomplex of K;
- if i < j, the dimension of σ_i is less or equal than the dimension of σ_j ;
- if i < j, σ_i and σ_j are two edges and $\sigma_j \in T$, then $\sigma_i \in T$ That is, the edges of the cover forest are in first positions in S).

Observe that σ_0 is always a vertex of K. An AT-model for K is then defined as the output of the following algorithm, having as the input a complex K and a T-filter S of K.

Algorithm 1. [8,9] AT-model Algorithm.

INPUT: a T-filter $S = (\sigma_0, \dots, \sigma_m)$ of K, $H := \{\sigma_0\}, f(\sigma_0) := \sigma_0, g(\sigma_0) := \sigma_0, \phi(\sigma_0) := 0$. For i = 1 to m do If $fd(\sigma_i) = 0$, then $H := H \cup \{\sigma_i\}, f(\sigma_i) := \sigma_i, \phi(\sigma_i) := 0, g(\sigma_i) := \sigma_i + \phi d(\sigma_i)$. If $fd(\sigma_i) \neq 0$, then: $k := \max \{j \text{ such that } \sigma_j \in fd(\sigma_i), j = 1, \dots, i - 1\},$ $H := H \setminus \{\sigma_k\}, f(\sigma_i) := 0, \phi(\sigma_i) := 0$. For j = 1 to i - 1 do if $\sigma_k \in f(\sigma_j)$, $f(\sigma_j) := f(\sigma_j) + fd(\sigma_i), \phi(\sigma_j) := \phi(\sigma_j) + \sigma_i + \phi d(\sigma_i)$. OUTPUT: the set (S, H, f, g, ϕ) .

Notice that in the *i*th step of the algorithm (i = 1, ..., m), exactly one homology generator is created or destroyed. The algorithm runs in time at most $\mathcal{O}(m^3)$.

Proposition 1. Let K be a complex (simplicial, cubical or simploidal), let T = (V, E) be a cover forest of K and S a T-filter of K. The output of Algorithm 1, (S, H, f, g, ϕ) , satisfies that:

- H is a subset of S such that no edge in T is an edge in H. H generates a chain complex denoted by \mathcal{H} with null differential;
- The number of vertices, edges and triangles in H equals the number of connected components, tunnels and cavities in |K|, respectively. In other words, the homology of K is isomorphic to \mathcal{H} .
- $-f: C(K) \rightarrow \mathcal{H}$ satisfies that if c ad c' are two cycles in K such that f(c) = f(c') then c and c' are homologous.

- $-g: \mathcal{H} \to C(K)$ satisfies that $\{[g(h)]: h \in H\}$ is a set of homology generators of K. If $h, h' \in H$, $h \neq h'$, then g(h) and g(h') are not homologous. Moreover, if a is an edge in H, then g(a) is a simple cycle in K and all the edges in $g(a) \setminus \{a\}$ are edges in T. In fact, $g(a) \setminus \{a\}$ is the simple path in T connecting the endvertices of a.
- $-\phi: C(K) \to C(K)$ satisfies that if $x \in H$ then $\phi(x) = 0$ and there is no $y \in S$ such that $\phi(y) = x$. Moreover, if v is a vertex in K, then $\phi(v)$ is the simple path in T connecting v with the vertex in H that belongs to the same connected component in K than v.

Fig. 3. A a filter S of a simplicial complex K and the result of applying Algorithm 1 to S (an AT-model for K)

3 Computing a Graph-with-Loop Representation of a 3D Object

Let K be a complex (simplicial, cubical or simploidal); |K| its geometric realization in \mathbb{R}^3 ; and $h: |K| \to \mathbb{R}$ a continuous function. Let e_{xy} denote an edge with endvertices x and y. We say that the *height of a point* $p \in |K|$ is t if h(p) = tand the *height of a cell* $\sigma \in K$ is the minimum of the heights of all the points on $|\sigma|$. We say that K is an h-complex if:

- the set of the vertices of K can be partitioned into a finite number of subsets in terms of their height, $V = \bigcup_{i=1}^{r} V_i$, where $V_i = \{v \in V : h(v) = t_i \text{ and } t_1 < \cdots < t_r$.
- if e_{vw} is an edge in K then v and w belong to V_i for some $i = 1, \ldots, r$ or $v \in V_{i-1}$ and $w \in V_i$ for some $i = 2, \ldots, r$.

h-Complexes appear in a natural way when they are defined by the neighborhood relations of voxels of a 3D digital image and h is the real function that associates to each point on |K| its elevation.

Let K be an h-complex and σ a cell in K. We say that σ is horizontal if the heights of all the points on $|\sigma|$ coincide; otherwise, it is vertical. For $i = 1, \ldots, r$, let K_i be the collection of all the horizontal cells in K with the same height t_i , $i = 0, 1, \ldots, r$. K_i is a subcomplex of K and if a cell σ is not in K_i , then σ is vertical. Let $T_i = (V_i, E_i)$ be a cover forest of K_i and S_i a T_i -filter of K_i . Denote by $(S_i, H_i, f_i, g_i, \phi_i), i = 1, \ldots, r$, the AT-models obtained using Algorithm 1. Let V be the set of vertices in K, T = (V, E) a cover forest of K (obtained

Fig. 4. From left to right: a digital image and 3 *h*-complexes associated to it considering the 6, 14 and 26-adjacency, respectively

after adding vertical edges in K in increasing ordering in height to the graph $(V, \bigcup_{i=1}^{r} E_i))$, and S a T-filter of K. Denote by (S, H, f, g, ϕ) the AT-model obtained using Algorithm 1.

Proposition 2. The AT-model (S, H, f, g, ϕ) satisfies that:

- If a is a horizontal edge in H, then $a \in H_i$ for some i and $g(a) = g_i(a)$ is a simple cycle such that its edges are in K_i .
- If a is a vertical edge in H, then for each level i, i = 1, ..., r, g(a) has an even number of vertical edges of height t_i .

Now, let us explain how to construct the graph $G_h(K)$ and the function Ψ : $G_h(K) \to K$ using the AT-models $(S_i, H_i, f_i, g_i, \phi_i), i = 1, \ldots, r$ and (S, H, f, g, ϕ) computed before. First, the vertices in $G_h(K)$ in each level *i* are the vertices in H_i , $i = 1, \ldots, r$. If *v* is a vertex in $G_h(K)$, then $\Psi(v) = v$. Second, for each level *i* and (horizontal) edge *a* in $H_i \cap H$, we add a loop α in $G_h(K)$ such that its endvertex is the vertex in the level *i* of $G_h(K)$ which belongs to the same connected component than |a| in $|K_i|$. Define $\Psi(\alpha) = g_i(a) = g(a)$. Third, we add an edge e_{xy} between two vertices *x* and *y* in $G_h(K)$ if $x \in H_i$ and $y \in H_{i+1}$ for some *i* and f(x) = $f(y) = z \in H$ (i.e. *x* and *y* belong to the same connected component in *K*). Define $\Psi(e_{xy}) = \phi(x) + \phi(y)$ (the simple path in *T* connecting the vertices *x* and *y*). Finally, for each vertical edge e_{vw} in *H*, an edge *b* is added to $G_h(K)$. Since e_{vw} is vertical, then $v \in H_i$ and $w \in H_{i+1}$ for some *i*. The endvertices of *b* are the vertices in $G_h(K)$ which belong to the same connected component than *v* in K_i and *w* in K_{i+1} , respectively. Define $\Psi(b) = e_{vw} + \phi_i(v) + \phi_{i+1}(w)$.

Theorem 2. Given a complex K and a continuous function $h : |K| \to \mathbf{R}$. If K is an h-complex, then:

- 1. The graph $G_h(K)$ and the complex K has the same number of tunnels and connected components.
- 2. For each loop $\alpha \in G_h(K)$, $\Psi(\alpha)$ is a simple cycle representative of a homology generator of K. If α_1 and α_2 are two different loops in $G_h(K)$, then $\Psi(\alpha_1)$ and $\Psi(\alpha_2)$ are two representative cycles of two non-equivalent generators of homology.
- 3. For each edge e_{xy} in $G_h(K)$ that comes from a vertical edge $e_{vw} \in H$, then $\Psi(e_{xy}) + \phi(x) + \phi(y) = g(e_{vw})$ is a representative cycle of a homology generator of K.
- 4. The graph $G_h(K)$ without loops is a subdivision of the Reeb graph $R_h(K)$.
- 5. The graph $G_h(K)$ and the function Ψ can be computed in $\mathcal{O}(m^3)$, where m is the number of cells in K.

Proof. The number of tunnels of K is the number of edges in H. By construction, each horizontal edge in H produces a loop in $G_h(K)$ (i.e. a tunnel in $G_h(K)$). Each vertical edge e_{vw} in H produces a vertical edge β in $G_h(K)$. Let v in K_i and w in K_{i+1} . Let V and W be the two vertices in $G_h(K)$ that belong to the same connected component than v and w, respectively. Since $e_{vw} \in H$, then e_{vw} created a cycle when it was added. Therefore, v and w belong to the same connected component in K and so, there exists a path p between V and W in $G_h(K)$ apart from the edge β that produces e_{vw} , by construction. Then, $p + \beta$ is a cycle in $G_h(K)$. Moreover, $\Psi(p+\beta) = g(b)$ is a representative cycle of the homology generators of dimension 1 of K. Since representative cycles of a homology generator of dimension 1 of K map by ψ to a cycle in $R_h(K)$, then $\psi(g(b))$ is a cycle in $R_h(K)$. Since K is an h-complex, then a vertex in $R_h(K)$ corresponds to a contour in a level t_i , $i = 1, \ldots, r$. Therefore, a vertex in $R_h(K)$ is a vertex in $G_h(K)$.

Fig. 5. From left to right: a cover forest T of the cubical complex K showed on the right of Figure 4; the complexes K_0 , K_1 , K_2 and K_3 ; a set of representative cycles of the generators $H_1(K)$; and the graph $G_h(K)$

Example 1. Let K be the cubical complex K on the right in Figure 4. A cover forest T of K; the complexes K_0 , K_1 , K_2 and K_3 ; a set of representative cycles of the generators $H_1(K)$; and the graph $G_h(K)$ The non-trivial identification of the edges and loops in $G_h(K)$ and K by Ψ are:

$G_h(K)$	Ψ
h_1	$e_{ab} + e_{bc} + e_{cd} + e_{do} + e_{of} + e_{af}$
v_1	$e_{Bj} + e_{ij} + e_{hi} + e_{gh} + e_{dg} + e_{cd} + e_{ac} + e_{ab} + e_{bC}$
v_2	$e_{Bj} + e_{ij} + e_{bi} + e_{ab} + e_{aC}$
v_3	$e_{Bk} + e_{\ell k} + e_{m\ell} + e_{mn} + e_{nC}$

The representative cycles of generators of $H_1(K)$ are:

 $\begin{array}{l} \alpha_0 = \varPsi(h_1) = e_{ab} + e_{bc} + e_{cd} + e_{do} + e_{of} + e_{af} \\ \alpha_1 = \varPsi(v_1) + e_{BC} = e_{Bj} + e_{ij} + e_{hi} + e_{gh} + e_{dg} + e_{cd} + e_{ac} + e_{ab} + e_{bC} + e_{BC} \\ \alpha_2 = \varPsi(v_2) + e_{BC} = e_{Bj} + e_{ij} + e_{bi} + e_{ab} + e_{aC} + e_{BC} \\ \alpha_3 = \varPsi(v_3) + e_{BC} = e_{Bk} + e_{\ell k} + e_{m \ell} + e_{m n} + e_{nC} + e_{BC} \end{array}$

4 Conclusions and Future Work

It is possible to obtain representative cycles on the boundary of the given complex K if we compute a cover forest of K first adding the edges on the boundary. Another task is the generalization of the method to any dimension. The problem is that the homology of a complex of a dimension higher than 3 can have torsion groups. In order to capture the torsion part of the homology we could use the concept of λ -AT-model developed in [10].

A possible extension of this work is the construction of a discrete Morse complex $M_h(K)$ associated to a cell complex K, such that there is not only a oneby-one identification of all the homology generators of $M_h(K)$ with that of K, but also an isomorphism between cohomology rings. $M_h(K)$ can be constructed using a gradient vector field \mathcal{V}_K associated to a discrete Morse function (see [6,7]) that can be obtained from an AT-model for K.

References

- 1. Alexandroff, P., Hopf, H.: Topologie I. Springer, Berlin (1935)
- Biasotti, S., Facidieno, B., Spagnuolo, M.: Extended Reeb Graphs for Surface Understanding and Description. In: Nyström, I., Sanniti di Baja, G., Borgefors, G. (eds.) DGCI 2000. LNCS, vol. 1953, pp. 185–197. Springer, Heidelberg (2000)
- Dahmen, W., Micchelli, C.A.: On the Linear Independence of Multivariate b-Splines. Triangulation of Simploids. SIAM J. Numer. Anal., 19 (1982)
- Cole-McLaughlin, K., Edelsbruner, H., Harer, J., Natarajan, V., Pascucci, V.: Loops in Reeb Graphs of 2-mainifolds. Discrete Comput. Geom. 32, 231–244 (2004)
- Fomenko, A.T., Kunii, T.L.: Topological Methods for Visualization. Springer, Heidelberg (1997)
- Forman, R.: A discrete Morse theory for cell complexes. In: Yau, S.T.(ed.) Geometry, Topology and Physics for Raoul Bott. International Press (1995)
- Forman, R.: Discrete Morse Theory and the Cohomology Ring. Transactions of the American Mathematical Society 354, 5063–5085 (2002)
- Gonzalez-Diaz, R., Real, P.: Towards Digital Cohomology. In: Nyström, I., Sanniti di Baja, G., Svensson, S. (eds.) DGCI 2003. LNCS, vol. 2886, pp. 92–101. Springer, Heidelberg (2003)
- 9. Gonzalez-Diaz, R., Real, P.: On the Cohomology of 3D Digital Images. Discrete Applied Math. 147, 245–263 (2005)
- Gonzalez-Diaz, R., Jiménez, M.J., Medrano, B., Real, P.: Extending AT-Models for Integer Homology Computation. In: GbR2007. LNCS, vol. 4538, pp. 330–339. Springer, Heidelberg (2007)
- 11. Massey, W.M.: A Basic Course in Algebraic Topology. New York (1991)
- 12. Munkres, J.R.: Elements of Algebraic Topology. Addison-Wesley, London, UK (1984)
- Reeb, G.: Sur les Points Singuliers d'une Forme de Pfaff Complement Integrable ou d'une Function Numérique. C. Rendud Acad. Sciences 222, 847–849 (1946)