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Abstract

We consider the existence and uniqueness of periodic solutions for the generalized bio-

convective flow, which is a well known model to describe the convection caused by the

concentration of upward swimming microorganism in a fluid.
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1 Introduction

We show results of existence of periodic solution to the equations of flow Bioconvective Gene-

ralized, which describe the motion of a viscous fluid and incompressible in which there exists

culture of microorganisms. Understand by bioconvective, convection derived from difference in

concentration of microorganisms in culture, due to the fact that these microorganisms have a

tendency to swim the vertical direction (we are considering the case of a domain where the flow

is submitted to the action of forces gravitational).

The equations discussed in this work are:
∂u

∂t
− 2 div (µ(c)D(u)) + u · ∇u +∇p = −g(1 + ρc)χ+ f ,

divu = 0,
∂c

∂t
− θ∆c+ u · ∇c+ U

∂c

∂x3
= 0, on (0, T )× Ω.

(1)

Here the following notations are used

• Ω ⊂ R3 is a bounded domain and represents the region of flow of fluid. It denotes ∂Ω the

boundary of Ω.
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• u(x, t) denotes the fluid velocity at a point x = (x1, x2, x3) ∈ Ω, and instant t ∈ [0, T ],

where 0 < T ≤ +∞.

• p(x, t) is the hydrostatic pressure at the point x and instant t.

• c(x, t) represents the concentration of microorganisms at a point x ∈ Ω and instant t.

• µ(·) > 0 is the viscosity of fluid.

• θ is a constant that indicates the rate of diffusion of microorganisms.

• g is the intensity of the acceleration of gravity (assumed constant).

• f represents an external force given. We will suppose that f is divided in two parts, f̃

which does not depend on t and f̂ that depends on t.

• χ is a unitary vector in the vertical direction, i.e. χ = (0, 0, 1)t. That is, coordinate system

is placed so that the gravitational forces acting on vertical.

• U denotes the average velocity of swimming of the microorganisms in the vertical direction.

• ρ is a positive constant, given by ρ =
ρ0

ρm
− 1, where ρ0 and ρm are the density of one

organism and the culture fluid density, respectively.

In the above equations, ∇,∆ and div represent the gradient, Laplacian and divergence ope-

rator, respectively; u · ∇u indicates the convection operator, whose component i-th in cartesian

coordinates is given by (u · ∇u)i =
3∑
j=1

uj
∂ui
∂xj

. The operator D(u) =
1

2
(∇u + (∇u)t) represent

the stress-tensor.

In what follows, the spaces labeled in bold face represent the cartesian product of the space

with itself three times.

In order to simplify the notation, we set c = (gρ)−1m and p = q − gx3, µ(c) = ν(m), then

(1) is rewritten as
∂u

∂t
− 2 div (ν(m)D(u)) + u · ∇u +∇q = −mχ+ f ,

divu = 0,
∂m

∂t
− θ∆m+ u · ∇m+ U

∂m

∂x3
= 0, in (0, T )× Ω.

(2)

The classical bioconvective equations correspond to the particular case of (1) with the vis-

cosity µ constant (during of course of this work call this special case of classical bioconvective

equations). Levandowsky and others [15] and Moribe [12] discuss in their work, the biologi-

cal and physical phenomena that give rise to such equations. They also have some qualitative
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descriptions based on intuitive arguments. Kan-On, Narukawa and Teramoto [9] do a mathema-

tical analysis of the classical bioconvective equations, obtaining results of existence of solutions

both of the stationary and evolution problems.

We note that in this paper we are interested in the generalized case in which the concentration

of microorganisms affects the viscosity of the fluid. This problem, with initial conditions, was

studied in the papers [2], [3], both for stationary and evolution problem, proving weak and

strong solutions. The uniqueness question also was studied. Now, we study the problem with

periodic conditions and for this we use techniques similar to those in [4], [5], [6].

The system of equations (2) will be considered together with the following boundary condi-

tions 

u = 0 on (0, T )× S,
u · n = 0 on (0, T )× Γ,

ν(m)[D(u)n− n · (D(u)n)n] = 0 on (0, T )× Γ,

θ
∂m

∂n
− Umn3 = 0 on (0, T )× ∂Ω.

(3)

and periodic conditions:

u(0) = u(T ), m(0) = m(T ), in Ω. (4)

Here, ∂Ω = S∪Γ, is composed of a rigid boundary S and a plane free surface Γ, both orthogonal

at the points of intersection. We are going to consider S and Γ known and time independent.

The vector n(x) = (n1(x), n2(x), n3(x)) is the exterior unitary normal vector at the point x ∈

∂Ω and
∂

∂n
is the normal derivative on ∂Ω. The first and second equation of (3) on Γ are

the so called slip conditions for fluid velocity and they are often used to model conditions about

free boundary in fluids (see Joseph [8]). In particular, the third one corresponds to attribute to

the tangential component of the stress vector null value (free boundary condition). Solonnikov

and Scadilov [19], Mulone and Salemi [18] analyze in their works the classical Navier-Stokes

equations with this type of the boundary conditions for domains with free boundary.

By other hand, the third equation of (1) is associated to the equation of conservation
d

dt
c+

div J = 0, x ∈ Ω, t > 0, for
d

dt
=

∂

∂t
+ u · ∇ and J the flow of microorganisms given by

J = −θ∇c + Ucχ. The fourth equation of (9) establishes the condition of null flow at each

point x ∈ ∂Ω. Kan-On and others [9] use this boundary conditions for the concentration of

microorganisms in culture.

In this work, as in Kan-On, Narukawa and Teramoto [9], we will assume that average velocity

of swimming U is constant. In summary, in this work we will be interested in discuss results of

existence and uniqueness of periodic solutions of the system (2)-(4) when U is constant.
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2 Preliminaries and auxiliary results

In this Section we fix the notation that we will use in the paper and also we recall some results.

Let Ω ⊆ R3 be a bounded domain with boundary of class C3. Let Hm(Ω) be the usual Sobolev

spaces on Ω with norm ‖ · ‖m (m real), (·, ·) denote the usual inner product in L2(Ω) and | · |
denote the L2−norm on Ω. By H1

0 (Ω) we denote the completion of C∞0 (Ω) under the norm

‖ · ‖1, the Lp−norm on Ω is denoted by | · |p, 1 ≤ p ≤ ∞. If B is a Banach space, we denote by

Lq(0, T : B) the Banach space of the B−valued functions defined in the interval (0, T ) that are

Lq−integrable in the sense of Bochner.

Let ∂Ω = S ∪ Γ be with S and Γ disjoint. Assume that S and Γ are sufficiently smooth, we

define

Ḣ(Ω) = {u ∈ C∞0 (Ω); u|S = 0, u · n|Γ = 0},

H(Ω) clousure of Ḣ(Ω) with respect to norm ‖ ‖H(Ω).

Here ‖ · ‖H(Ω) denote the norm given by

||u||H(Ω) =

[∫
Ω
∇u : ∇udx

]1/2

= [(∇u,∇u)]1/2 = |∇u|. (5)

Also, Y will be denote the closed subspace of L2(Ω) consisting of orthogonal functions to the

constants, that is

Y = {f ∈ L2(Ω);

∫
Ω
f(x)dx = 0}

and

B = H1(Ω) ∩ Y.

The following result can be found in [11]

Lemma 1 (Poincaré-Friedrichs inequality). Let Ω be a bounded domain of R3 with boundary

∂Ω, of class C1. Let Σ ⊆ ∂Ω be a part of the boundary on which the normal has three independent

directions, then there exists a positive constant CΩ depending only on the domain Ω such that

|u| ≤ CΩ|∇u|, for all u ∈H1(Ω), u · n|Σ = 0.

The following lemma is given in [19], pp.191.

Lemma 2 (Korn inequality). Let Ω be a bounded domain of R3 with boundary ∂Ω of class C2.

Then there exists a positive constant c, such that:

‖u‖H(Ω) = |∇u| ≤ c|D(u)|, ∀u ∈ H(Ω).

Lemma 3 Under the hypothesis of above lemma, there exists γ depending of Ω and ∂Ω, such

that

|u|2 ≤ γ|D(u)|2, ∀u ∈ H(Ω).
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Thus, in H(Ω) the norms |∇u| and |D(u)| are equivalent.

We denote by

C∞0,σ(Ω) = {f ∈ C∞0 (Ω) : div f = 0}

and

X(Ω) = clousure of C∞0,σ(Ω) in L2(Ω).

It is well known, see for instance, Temam [20]

L2(Ω) = X(Ω)⊕G(Ω),

where

G(Ω) = {w ∈ L2(Ω),w = ∇q, q ∈ H1(Ω)}.

Also, we consider the following spaces

J̇(Ω) = {u ∈ Ḣ(Ω), div u = 0}

and J0(Ω) is the closure of J̇(Ω) in the norm (5).

The following lemma is proved in [13].

Lemma 4 Under the as hypotheses of Lemma 2, there exists a positive constant CΩ, such that

|φ| ≤ CΩ|∇φ|, ∀φ ∈ H1(Ω) ∩ Y.

It is easy deduce, from the convection-diffusion equation for η, the equality
d

dt

∫
Ω
η(x, t) = 0.

Then, we can fix η such that

∫
Ω
η = 0. Therefore, let us consider the following spaces

Hk
N =

{
η ∈ Hk; θ

∂η

∂n
− Uηn3 = 0 on ∂Ω ,

∫
Ω
η = 0

}
where k = 2, 3. Hence, Hk

N is a closed subspace of Hk. Consequently |∆η|2 is equivalent to ‖η‖2
in H2

N and |∇∆η|2 is equivalent to ‖η‖3 in H3
N (See [7], [14]).

Lemma 5 (Some interpolation inequalities)

|v|6 ≤ C‖v‖1, |v|3 ≤ |v|1/22 ‖v‖
1/2
1 ∀ v ∈ H1,

|v|∞ ≤ C‖v‖1/21 ‖v‖
1/2
2 ∀ v ∈ H2.

|v|L2(∂Ω) ≤ C|v|
1/2−δ
2 ‖v‖1/2+δ

1 ∀ v ∈ H1+δ, δ ∈ R.

See [1] or [10].
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Lemma 6 The Stokes operator A = −P∆ with domain D(A) = {u ∈ J0(Ω)∩H2(Ω);D(u)n−
n·(D(u)n)n|Γ = 0} is positive definite, self-adjoint and its inverse operator A−1 is compact, thus

its spectrum is discrete, positive, and the finite multiplicity, the eigenvalues {αi}, i ∈ N converge

to +∞, the eigenfunctions {wi} are orthogonal and complete in X and in J0, J0 ∩H2(Ω) and

satisfy

D(wi) · n− n ·D(wi) · nn|Γ = 0.

See [18].

By other hand, we denote by P the orthogonal projection of L2(Ω) → Y . The following

lemma was proved by Kan-On [9], pp. 150-152.

Lemma 7 The operator A1 = −P∆ with domain

D(A1) =

{
ϕ ∈ Y ∩H2(Ω); θ

∂ϕ

∂n
− Un3ϕ = 0 on ∂Ω

}
,

is positive definite, self-adjoint and its inverse operator is compact. Therefore, −P∆ has a

spectrum discrete, positive, with finite multiplicity. The eigenvalues {βi}, i ∈ N converge to

+∞, the eigenfunctions {φi} are orthogonal and complete in Y .

Also, Pn will denote the projection Pn : L2(Ω) → V n, where V n = 〈w1,w2, . . . ,wn〉 and

P̃n : L2(Ω)→Wn, with Wn = 〈φ1, φ2, . . . , φn〉. We use in the future the following result proved

in [17].

Lemma 8 Let u ∈ V ∩H2 and consider the Helmholtz decomposition of −∆u, i.e. −∆u =

Au +∇q, where q ∈ H1 is taken such that

∫
Ω
q dx = 0 and A is the Stokes operator. Then,

‖q‖1 ≤ C|Au|2.

Moreover, for every ε > 0 there exists a positive constant Cε (independent of u) such that

|q|2 ≤ Cε|∇u|2 + ε|Au|2.

The following Green formula will be fundamental, the proof is similar to that given by

Solonnikov [19].

Lemma 9 Let u,v ∈ J0 and q ∈ C1. then,∫
Ω

[−2div (ν(m)D(u)) +∇q]v dx = 2(ν(m)D(u), D(v))

We consider the stationary problem associated to (2),
−2 div (ν(m)D(u)) + u · ∇u +∇q = −mχ+ f̃ ,

divu = 0,

−θ∆m+ u · ∇m+ U
∂m

∂x3
= 0, in Ω.

(6)
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together with the following boundary and initial conditions:

u = 0 on S,

u · n = 0 on Γ,

ν(m)[D(u)n− n · (D(u)n)n] = 0 on Γ,

θ
∂m

∂n
− Umn3 = 0 on ∂Ω.

(7)

Let us recall that f̃ is the stationary part of the external force f . The following result is been

proved (see [2], [3]):

Theorem 10 Let f ∈ X(Ω). Assume that ν is a function of class C1 satisfying 0 < νmin ≤
ν(s) < νmax and U small enough. Then, there exists a strong solution, (uα, qα,mα), of (6), (7)

verifying

(uα,mα) ∈ (J0(Ω) ∩H2(Ω))× (Y ∩H2(Ω)).

Now, if we consider the changes of variables

v = u− uα, η = m−mα,

then (2) is rewritten as follows

∂v

∂t
− 2div(ν(η +mα)D(v))− 2div(ν(η +mα)D(uα))

+2div(ν(mα)D(uα)) + v · ∇v + v · ∇uα + uα · ∇v +∇(q − qα) = −η · χ+ f̂ ,

divv = 0,
∂η

∂t
− θ∆η + v · ∇η + v · ∇mα + uα · ∇η + U

∂η

∂x3
= 0, in (0, T )× Ω.

(8)

with the initial and boundary conditions

v = 0 on (0, T )× S,
v · n = 0 on (0, T )× Γ,

ν(η +mα)[D(v + uα)n− n · (D(v + uα)n)n] = 0, on (0, T )× Γ,

θ
∂η

∂n
− Uηn3 = 0 on (0, T )× ∂Ω.

(9)

3 Existence of periodic solution

3.1 Existence of the reproductive solution

In this section we seek reproductive solution, namely, a pair (v, η) solution of (8),(9) satisfying:

v(0) = v(T ), η(0) = η(T ).
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Theorem 11 Let f ∈ L2(0, T ;X(Ω)), v0 ∈ J0(Ω) and η0 ∈ H2(Ω) ∩ Y . Assume that ν is a

function of class C1 satisfying 0 < νmin ≤ ν(s) < νmax and sup |ν ′(s)| < ν ′max < ∞ in R. We

consider (uα, qα,mα) a stationary solution obtained in Theorem 10. Then, for |D(uα)|, |∇mα|
small enough there exists reproductive solution for the problem (8)

Proof. At first, we need to obtain an a priori estimate for the solution of the problem (8). Given

(wj)∞1 and (φj)∞1 eigenfunctions of A and A1 respectively, we consider Galerkin approximations

of the form

vn(t, x) =
n∑
j=1

cn,j(t)w
j(x), ηn(t, x) =

n∑
`=j

dn,j(t)φ
j(x),

solutions of the variational formulation of (8)

(
∂v

∂t

n

,wj) + 2(ν(ηn +mα)D(vn), D(wj) + 2(ν(ηn +mα)D(uα), D(wj))

−2(ν(mα)D(uα), D(wj)) + (vn · ∇vn,wj) + (vn · ∇uα,wj)

+(uα · ∇vn,wj) + ((ηn)χ,wj) = (f̂ ,wj) (10)

(∂tη
n, φj) + θ(∇ηn,∇φj) + (vn · ∇ηn, φj) + (vn · ∇mα, φ

j) + (uα · ∇ηn, φj)

−U
(
ηn,

∂

∂x3
φj
)

= 0 (11)

vn(0) = Pnv0, ηn(0) = P̃nη0.

By multiplying (10) by cn,j , summing with respect to j, we obtain

1

2

∂

∂t
|vn|2 + 2(ν(ηn +mα)D(vn), D(vn)) + 2(ν(ηn +mα)D(uα), D(vn))−

2(ν(mα)D(uα), D(vn))) + (vn · ∇uα,vn) = −(ηn · χ,vn) + (f̂ ,vn).

(12)

In a similar manner, we have

1

2

d

dt
|ηn|2 + θ|∇ηn|2 + (vn · ∇mα, η

n)− U
(
ηn,

∂ηn

∂x3

)
= 0 (13)

By Holder inequalities

1

2

∂

∂t
|vn|2 + 2νmin|D(vn)|2 ≤ 4νmax|D(uα)||D(vn)|+ |D(uα)||vn|24 + |ηn||vn|+ |f̂ ||vn|

1

2

d

dt
|ηn|2 + θ|∇ηn|2 ≤ |vn|4|∇mα||ηn|4 + U |ηn||∇ηn|
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We put |D(uα)|, |∇mα| small enough so that (|D(uα)|2 + |∇mα|2) <
νmin

C
, for a given constant

C. Then, we obtain

d

dt
(|vn|2 + |ηn|2) + νmin|D(vn)|2 + θ|∇ηn|2 ≤ C(|D(uα)|2 + |ηn|2 + |f̂ |2). (14)

Integrating in [0, t] and by applying Gronwall inequality we obtain that

|vn|2 + |ηn|2 + νmin

∫ t

0
|D(vn)|2 + θ

∫ t

0
|∇ηn|2 (15)

is bounded by a continuous, bounded function, which not depend on n for every t. Then, from

(14) we obtain

d

dt
(|vn|2 + |ηn|2) + C3(|vn|2 + |ηn|2) ≤ H(t) (16)

where H is a function in L1(0, T ), independent of n. Therefore, by multiplying by eC3t and

integrating in [0, t] we have,

eC3t(|vn(t)|2 + |ηn(t)|2) ≤ (|vn(0)|2 + |ηn(0)|2) +

∫ t

0
H(s)ds (17)

Given (v0n, η0n) ∈ V n ×Wn, we define the application Ln : [0, T ] → Rn × Rn as Ln(t) =

(cn,1(t), . . . , cn,n(t), dn,1(t), . . . , dn,n(t)), where cn,i(t), dn,i(t) , i = 1, ..., n, are the coefficients of

the expansion of vn(t) and ηn(t) in V n and Wn respectively, being (vn, ηn) the unique aproxi-

mate solution of system (10)-(11) with initial condition (v0n, η0n). Notice that ‖Ln(t)‖2Rn×Rn =

|vn(t)|2 + |ηn(t)|.
Given Ln0 ∈ Rn×Rn, define Υn(Ln0 ) = Ln(T ), where Ln(t) are the coefficients of the Galerkin

solution (vn, ηn) with initial value with coefficients Ln0 . We want to prove that Υn has a fixed

point. For this, we will use the Leray-Schauder Theorem. Then, we need to show that for all

λ ∈ [0, 1], the solutions Ln0 (λ) of the equation

Ln0 (λ) = λΥn(Ln0 (λ)), (18)

are bounded independently of λ. Since Ln0 (0) = 0, it is sufficient to consider λ ∈ (0, 1]. This is

equivalent to Υn(Ln0 (λ)) = 1
λL

n
0 (λ). Moreover, by definition of Υn and (17) we obtain

eC3t

∥∥∥∥ 1

λ
Ln0 (λ)

∥∥∥∥
Rn×Rn

≤ ‖Ln0 (λ)‖Rn×Rn +

∫ t

0
H(s)ds

which implies

‖Ln0 (λ)‖Rn×Rn ≤

∫ t

0
H(s)ds

eC3t − 1

for each λ ∈ (0, 1]. This bound is independent of λ ∈ [0, 1] and n. Consequently, Leray-

Schauder Theorem implies the existence of at least one fixed point of Υn, that is, the existence

of reproductive Galerkin solution. Finally, by standard arguments of compacity we conclude the

existence of reproductive solution.
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3.2 Existence of the periodic solution

We seek periodic solution, namely, a pair (v, η) solution of (8) satisfying:

v(t) = v(t+ T ), η(t) = η(t+ T ) ∀t ∈ R.

Definition 12 It will be said that (u, p, η) is a regular solution of (2)–(4) in (0, T ), if

u ∈ L2(H2) ∩ L∞(H1), ∂tu ∈ L2(L2) and p ∈ L2(H1),

η ∈ L2(H3
N ) ∩ L∞(H2

N ) and ∂tη ∈ L2(H1
N ),

satisfying (2) a.e. in (0, T )×Ω, boundary conditions (9) and time reproductivity conditions (4)

in the sense of spaces V and H2
N respectively.

Theorem 13 Let f ∈ L2(0,∞;X(Ω)) be a t-periodic function with period T. Assume that ν is

a function of class C1 satisfying 0 < νmin ≤ ν(s) < νmax and sup |ν ′(s)| < ν ′max <∞ in R. We

consider (uα, qα,mα) a stationary solution obtained in Theorem 10. Then, for νmin big enough

and ‖v0‖1, ‖η0‖2 and |∂tη0|1 small enough, there exists periodic solution for the problem (8),

(9).

To prove this theorem, we first need to demonstrate some differential inequalities, then, using

these inequalities, we shall prove that in the interval [0, T ] there is a reproductive solution.

Finally, thanks to the regularity of solutions, we will deduce the existence of periodic solution.

4 Differential inequalities in regular norms

In the sequel, ε will denote some constant sufficiently small. By C we will denote different

constants, independent on data and ε and νmin. In order to make calculations more simple, we

suppose that f̂ = 0.

Lemma 14 For each ε > 0 sufficiently small, there exists constants C = C(ε) > 0, such that

d

dt

∫
Ω

(ν(ηn +mα + 1))|D(vn)|2 +
νmin

2
‖vn‖22 +

1

2
|∂tvn|22 ≤ ε‖vn‖22(‖ηn‖2 + ‖mα‖2)

+
C

νmin
‖vn‖22

(
‖vn‖21 + ‖ηn‖22 + |∂tηn|22 + ‖uα‖22 + ‖mα‖22

)
+

C

νmin

(
‖ηn‖22(‖uα‖22 + 1) + ‖uα‖22(‖mα‖22 + 1)

)
+ C[‖vn‖21‖uα‖22 + ‖ηn‖22(‖uα‖22 + 1) + ‖uα‖22(‖mα‖22 + 1)].

(19)

10



Proof. First, taking v = Avn as test function in the vn-system (10) (A is the Stokes operator

mentioned in Lemma 6) one has

(∂tv
n, Avn)− 2(∇ · (ν(ηn +mα)D(vn)), Avn)− 2(∇ · (ν(ηn +mα)D(uα)), Avn)

+ 2(∇ · (ν(mα)D(uα)), Avn) + ((vn · ∇)vn, Avn)

+ ((vn · ∇)uα, Av
n) + ((uα · ∇)vn, Avn) = −(ηnχ,Avn).

(20)

We can write the first term as

(∂tv
n, Avn) = −(∂tv

n, 2∇ · (D(un))) =
d

dt
|D(vn)|2 − 2

∫
Γ
∂tv

n(D(un)n).

By splitting ∂tv
n and D(un)n in their tangential and normal components:

D(vn)n = (D(vn)n) ·n)n + (D(vn)n− (D(vn)n) ·n)n), ∂tv = (∂tv ·n)n + (∂tv− (∂tv ·n)n),

taking into account that ∂tv · n = 0 and D(vn)n− (D(vn)n) · n)n = 0 on ∂Ω, we obtain that

(∂tv
n, Avn) =

d

dt
|D(vn)|2.

On the other hand, by using the identity 2∇ · (ν(m)D(u)) = ν(m)∆u + 2ν ′(m)∇mD(u) and

the Helmholtz decomposition ∆vn = −Avn +∇qm, the second term of (20) is equal to

−2(∇ · (ν(ηn +mα)D(vn)), Avn) = (ν(ηn +mα)Avn, Avn)

−(ν(ηn +mα)∇qm, Avn)− 2(ν ′(ηn +mα)∇(ηn +mα)D(vn), Avn)
(21)

Taking into account that

−(ν(ηn +mα)∇qm, Avn) = (qm, ν
′(ηn +mα)∇(ηn +mα)Avn) + (qm, ν(ηn +mα)∇ ·Avn)

= (qm, ν
′(ηn +mα)∇(ηn +mα)Avn)

since ∇ ·Avn = 0, the second term of (20) becomes

−2(∇ · (ν(ηn +mα)D(vn)), Avn) = (ν(ηn +mα)Avn, Avn)

− (qm, ν
′(ηn +mα)∇(ηn +mα)Avn)

− 2(ν ′(ηn +mα)∇(ηn +mα)D(vn), Avn).

Then, proceeding in analogous way for third and fourth term, (20) can also be written as follows

(using ν(·) ≥ νmin > 0)

1

2

d

dt
|D(vn)|2 + νmin‖vn‖22 ≤ (qm, ν

′(ηn +mα)∇(ηn +mα)Avn)

+2(ν ′(ηn +mα)∇(ηn +mα)D(vn), Avn)− (ν(ηn +mα)Auα, Av
n)

(qα, ν
′(ηn +mα)∇(ηn +mα)Avn) + 2(ν ′(ηn +mα)∇(ηn +mα)D(uα), Avn)

+(ν(mα)Auα, Av
n)− (qα, ν

′(mα)∇mαAv
n)− 2(ν ′(mα)∇mαD(uα), Avn)

−((vn · ∇)vn, Avn)− ((uα · ∇)vn, Avn)− ((vn · ∇)uα, Av
n)− (ηnχ,Avn)

:=

12∑
i=1

Ii.

(22)
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For to estimate the first term we use Lemma 8 (and |ν ′(·)| ≤ ν ′max)

I1 ≤ ν ′max|qm|3(|∇ηn|6 + |∇mα|6)|Avn|2 ≤ C|qm|1/22 ‖qm‖
1/2
1 (‖ηn‖2 + ‖mα‖2)‖vn‖2

≤ C(Cε‖vn‖1/21 + ε‖vn‖1/22 )‖vn‖3/22 (‖ηn‖2 + ‖mα‖2)

≤ Cε‖vn‖1/21 ‖v
n‖3/22 ‖(‖η

n‖2 + ‖mα‖2)‖2 + εC‖vn‖22(‖ηn‖2 + ‖mα‖2)

≤ νmin

28
‖vn‖22 +

C

νmin
‖vn‖1‖vn‖2(‖ηn‖22 + ‖mα‖22) + εC‖vn‖22(‖ηn‖2 + ‖mα‖2).

Analogously,

I4 ≤ C(Cε‖uα‖1/21 + ε‖uα‖1/22 )‖uα‖1/22 (‖ηn‖2 + ‖mα‖2)‖vn‖2

≤ νmin

28
‖vn‖22 +

C

νmin
‖uα‖22(‖ηn‖22 + ‖mα‖22).

and

I7 ≤
νmin

28
‖vn‖22 +

C

νmin
‖uα‖22‖mα‖22.

The second term on the right hand side of (22) is bounded by

I2 ≤ 2ν ′max(|∇ηn|6 + |∇mα|6)|D(vn)|3|Avn|2 ≤ C(‖ηn‖2 + ‖mα‖2)‖vn‖1/21 ‖v
n‖3/22

≤ νmin

28
‖vn‖22 +

C

νmin
(‖ηn‖22 + ‖mα‖22)‖vn‖1‖vn‖2.

Analogously

I5 ≤ C(‖ηn‖2 + ‖mα‖2)‖uα‖1/21 ‖uα‖
1/2
2 ‖v

n‖2 ≤
νmin

28
‖vn‖22 +

C

νmin
(‖ηn‖22 + ‖mα‖22)‖uα‖22.

and

I8 ≤
νmin

28
‖vn‖22 +

C

νmin
‖mα‖22‖uα‖22.

The third and sixth terms are bounded by

Ii ≤
νmin

28
‖vn‖22 +

C

νmin
‖uα‖22 i = 3, 6.

The ninth, tenth, eleventh terms and the last one term on the right hand side of (22) are bounded

respectively by

I9 ≤
νmin

28
‖vn‖22 +

C

νmin
‖vn‖21‖vn‖22, I10 ≤

νmin

28
‖vn‖22 +

C

νmin
‖uα‖21‖vn‖22,

I11 ≤
νmin

28
‖vn‖22 +

C

νmin
‖uα‖21 and I12 ≤

νmin

28
‖vn‖22 +

C

νmin
|ηn|22.

Consequently, from (22) we arrive at

d

dt
‖vn‖21 +

4

7
νmin‖vn‖22 ≤

C

νmin
[‖vn‖22(‖vn‖21 + ‖ηn‖22 + ‖uα‖22 + ‖mα‖22)

+‖ηn‖22(‖uα‖22 + 1) + ‖uα‖22(‖mα‖22 + 1)] + ε‖vn‖22(‖ηn‖2 + ‖mα‖2).

(23)

12



On the other hand, using ∂tv
n as a test function in the vn-system (10), one obtains

(∂tv
n, ∂tv

n) + 2(ν(ηn +mα)D(vn), ∂tD(vn))− 2(∇ · (ν(ηn +mα)D(uα)), ∂tv
n)

+2(∇ · (ν(mα)D(uα)), ∂tv
n) + ((vn · ∇)vn, ∂tv

n) + ((vn · ∇)uα, ∂tv
n)

= ((uα · ∇)vn, ∂tv
n) = −(ηnχ, ∂tv

n).

(24)

By taking into account that the second term of the left hand side of (24) can be written as

2(ν(ηn+mα)D(vn), ∂tD(vn)) =
d

dt
(ν(ηn+mα)D(vn), D(vn))−(ν ′(ηn+mα)∂tη

nD(vn), D(vn)),

we deduce from (24) that

d

dt

∫
Ω
ν(ηn +mα)|D(vn)|2 + |∂tvn|22 ≤ (ν ′(ηn +mα)∂tη

nD(vn), D(vn))

+2(ν ′(ηn +mα)∇(ηn +mα)D(uα), ∂tv
n) + 2(ν(ηn +mα)∆uα, ∂tv

n)

+2(ν ′(mα)∇mαD(uα), ∂tv
n) + 2(ν(mα)∆uα, ∂tv

n)

−((vn · ∇)vn, ∂tv
n)− ((vn · ∇)uα, ∂tv

n)− ((uα · ∇)vn, ∂tv
n)− (ηnχ, ∂tv

n)

:=

9∑
i=1

Ji.

(25)

The first term on the right side of (25) is bounded by

J1 ≤ ν ′max|∂tηn|2|D(vn)|6|D(vn)|3 ≤ C|∂tηn|2‖vn‖3/22 ‖v
n‖1/21

≤ νmin

28
‖vn‖22 +

C

νmin
|∂tηn|22‖vn‖1‖vn‖2.

The second one is bounded by

J2 ≤ ν ′max|∇(ηn +mα)|6|D(uα)|3|∂tvn|2 ≤ C(‖ηn‖2 + ‖mα‖2)‖uα‖2|∂tvn|2

≤ 1

14
|∂tvn|22 + C‖uα‖22(‖ηn‖22 + ‖mα‖22)

and analogously

J4 ≤
1

14
|∂tvn|22 + C‖uα‖22‖mα‖22.

It easy to see that the remaining terms are bounded respectively, by

Ji ≤
1

14
|∂tvn|22 + C‖uα‖22 i = 3, 5,

J6 ≤
1

14
|∂tvn|22+

νmin

28
‖vn‖22+

C

νmin
|vn|22‖vn‖21‖vn‖22, Ji ≤

1

14
|∂tvn|22+C‖uα‖22‖vn‖21 i = 7, 8

and

J9 ≤
1

14
|∂tvn|22 + C|ηn|22.

13



Consequently,

d

dt

∫
Ω
ν(ηn +mα)|D(vn)|2 +

1

2
|∂tvn|22 ≤

νmin

14
‖vn‖22 +

C

νmin
‖vn‖22(|∂tηn|22 + ‖vn‖21)

+C
(
‖vn‖21‖uα‖21 + ‖ηn‖22(‖uα‖22 + 1) + ‖uα‖22(‖mα‖22 + 1)

)
.

(26)

Finally, (23) and (26) prove the Lemma.

Lemma 15 There exists C > 0 such that

d

dt
(‖ηn‖22 + |∂tηn|22) + θ‖ηn‖23 +

θ

2
‖∂tηn‖21 ≤

νmin

4
‖vn‖22 +

1

4
|∂tvn|22

+
C

νmin
‖ηn‖23

(
‖ηn‖2 + ‖mα‖22 + ‖vn‖

2+4δ
3+2δ

1 ‖ηn‖
1−2δ
3+2δ

2

)
+

C

νmin
‖vn‖21(‖ηn‖42 + ‖mα‖42) + C|∂tηn|22(‖ηn‖42 + ‖mα‖42 + 1)

+C‖ηn‖22
(
‖uα‖41 + ‖uα‖

4
3−2δ

1 + ‖uα‖
8

5−6δ

2 + 1

)
+ C|∂tηn|2‖ηn‖2.

(27)

Proof. Differentiating respect to the time the ηn-equation of (11) and multiplying by ∂tη
n as

test function, using that

(vn · ∇∂tηn, ∂tηn) = 0, (uα · ∇∂tηn, ∂tηn) = 0

and

θ(∇∂tvnηn · n, ∂tηn)− U(∂tη
n, ∂tη

n · n3) = 0 on (0, T )× ∂Ω,

one obtains

1

2

d

dt
|∂tηn|22 + θ|∇∂tηn|2 = −(∂tv

n∇ηn, ∂tηn)− (∂tv
n∇mα, ∂tη

n) + U(∂tη
n,

∂

∂x3
(∂tη

n)). (28)

By bounding the two first terms on the right hand side of (28) in analogous way:

−(∂tv
n∇ηn, ∂tηn) ≤ |∂tvn|2|∇ηn|6|∂tηn|3 ≤ C|∂tvn|2‖ηn‖2|∂tηn|1/22 ‖∂tηn‖

1/2
1

≤ 1

16
|∂tvn|22 +

θ

6
‖∂tηn‖21 + C‖ηn‖42|∂tηn|22,

−(∂tv
n∇mα, ∂tη

n) ≤ 1

16
|∂tvn|22 +

θ

6
‖∂tηn‖21) + C‖mα‖42|∂tηn|22

and the third one as

U(∂tη
n,

∂

∂x3
(∂tη

n)) ≤ θ

6
‖∂tηn‖21 + C|∂tηn|22

we obtain
d

dt
|∂tηn|22 + θ‖∂tηn‖21 ≤

1

4
|∂tvn|22 + C(‖ηn‖42 + ‖mα‖42 + 1)|∂tηn|22. (29)

14



Note that A2
1η
n ∈Wn owing to the choice of spectral basis, moreover ∇A1η

n ·n =
U

θ
A1η

nn3 on

∂Ω Therefore, by using A2
1η
n as test function, integrating by parts in all terms and taking into

account that

−(∇∂tηn,∇A2
1η
n) =

1

2

d

dt
|A1η

n|22 −
U

θ

∫
∂Ω
∂tη

nn3A1η
n dS,

one obtains:

1

2

d

dt
|A1η

n|22 + θ|∇A1η
n|22 = (∇vn∇ηn,∇A1η

n) + (vn∇2ηn,∇A1η
n) + (∇vn∇mα,∇A1η

n)

+(vn∇2mα,∇A1η
n) + (∇uα∇ηn,∇A1η

n) + (uα∇2ηn,∇A1η
n) + U(

∂∇ηn

∂x3
,∇A1η

n)

+
U

θ

∫
∂Ω
∂tη

nn3A1η
n dS −

∫
∂Ω
∂tη

n∇A1η
nn dS + θ

∫
∂Ω

∆ηn∇A1η
nn dS

−
∫
∂Ω

vn∇ηn∇A1η
nn dS −

∫
∂Ω

vn∇mα∇A1η
nn dS −

∫
∂Ω

uα∇ηn∇A1η
nn dS

−U
∫
∂Ω

∂ηn

∂x3
∇A1η

n dS =

14∑
i=1

Li.

We will replace the following estimations for the Li, i = 1, 7 in the above inequality:

L1 ≤ |∇vn|6|∇ηn|3|∇A1η
n|2 ≤ C‖vn‖2‖ηn‖1/21 ‖η

n‖1/22 ‖η
n‖3

≤ νmin

48
‖vn‖22 +

C

νmin
‖ηn‖1‖ηn‖2‖ηn‖23.

L2 ≤ |vn|∞|∇2ηn|2|∇A1η
n|2 ≤ C‖vn‖1/21 ‖v

n‖1/22 ‖η
n‖2‖ηn‖3

≤ νmin

48
‖vn‖22 +

θ

20
‖ηn‖23 + +

C

νmin
‖vn‖21‖ηn‖42.

L3 ≤ |∇vn|6|∇mα|3|∇A1η
n|2 ≤ C‖vn‖2‖mα‖2‖ηn‖3

≤ νmin

48
‖vn‖22 +

C

νmin
‖mα‖22‖ηn‖23.

L4 ≤ |vn|∞|∇2 mα|2|∇A1η
n|2 ≤ C‖vn‖1/21 ‖v

n‖1/22 ‖mα‖2‖ηn‖3

≤ νmin

48
‖vn‖22 +

θ

20
‖ηn‖23 + +

C

νmin
‖vn‖21‖mα‖42.

L5 ≤ |∇uα|6|∇2ηn|3|∇A1η
n|2 ≤ C‖uα‖2‖ηn‖1/22 ‖η

n‖3/23 ≤ θ

20
‖ηn‖23 + C‖uα‖41‖ηn‖22.

L6 ≤ |uα|6|∇2ηn|3|∇A1η
n|2 ≤ C‖uα‖1‖ηn‖1/22 ‖η

n‖3/23 ≤ θ

20
‖ηn‖23 + C‖uα‖41‖ηn‖22.
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L7 ≤ C‖ηn‖2‖ηn‖3 ≤
θ

20
‖ηn‖23 + C‖ηn‖22.

To bound boundary terms we use Lemma 5 and in some cases, the equality ∇A1η
n · n =

U

θ
A1η

nn3, provided by the boundary conditions.

Li ≤
U

θ
|∂tηnn3|L2(∂Ω)|A1η

n|L2(∂Ω) ≤ C|∂tηn|
1/2−δ
2 ‖∂tηn‖1/2+δ

1 ‖ηn‖1/2−δ2 ‖ηn‖1/2+δ
3

≤ θ

20
‖ηn‖23 +

θ

8
‖∂tηn‖21 + C‖ηn‖2|∂tηn|2 for i = 8, 9.

L10 ≤ U

θ
|
∫
∂Ω

∆ηnA1η
nn3 dS| ≤ C|A1η

n|2L2(∂Ω) ≤ C‖η
n‖1/2−δ2 ‖ηn‖1/2+δ

3 ≤ θ

20
‖ηn‖23 + C‖ηn‖22.

L11 ≤ U

θ
|vn∇ηn|L2(∂Ω)|A1η

n|L2(∂Ω) ≤ C|vn∇ηn|
1/2−δ
2 ‖vn∇ηn‖1/2+δ

1 ‖ηn‖1/2−δ2 ‖ηn‖1/2+δ
3

≤ C(‖vn‖1‖ηn‖1/21 ‖η
n‖1/22 )1/2−δ(‖vn‖2‖ηn‖1/21 ‖η

n‖1/22 + ‖vn‖1‖ηn‖1/22 ‖η
n‖1/23 )1/2+δ

·‖ηn‖1/2−δ2 ‖ηn‖1/2+δ
3 ≤ C(‖vn‖1/2−δ1 ‖vn‖1/2+δ

2 ‖ηn‖1/21 ‖η
n‖1−δ2 ‖ηn‖1/2+δ

3

+‖vn‖1‖ηn‖
1
4
− δ

2
1 ‖ηn‖1−δ2 ‖ηn‖

3
4

+ 3δ
2

3 ) ≤ νmin

96
‖vn‖22 +

C

νmin
‖ηn‖1‖ηn‖2−2δ

2 ‖ηn‖1+2δ
3

+
νmin

96
‖vn‖21 +

C

νmin
‖vn‖

2+4δ
3+2δ

1 ‖ηn‖
4−4δ
3+2δ

2 ‖ηn‖
3+6δ
3+2δ

3

≤ νmin

48
‖vn‖22 +

C

νmin
‖ηn‖2‖ηn‖23 + ‖vn‖

2+4δ
3+2δ

1 ‖ηn‖
1−2δ
3+2δ

2 ‖ηn‖23.

L12 ≤ C(‖vn‖1‖mα‖1/21 ‖mα‖1/22 )1/2−δ(‖vn‖2‖mα‖1/21 ‖mα‖1/22 + ‖vn‖1/21 ‖v
n‖1/22 ‖mα‖2)1/2+δ

·‖ηn‖1/2−δ2 ‖ηn‖1/2+δ
3 ≤ ‖vn‖

1−2δ
2

1 ‖mα‖2‖vn‖
1+2δ

2
2 ‖ηn‖

1−2δ
2

2 ‖ηn‖
1+2δ

2
3

+‖vn‖
3−2δ

4
1 ‖vn‖

1+2δ
4

2 ‖mα‖2‖vn‖
1+2δ

2
2 ‖ηn‖

1−2δ
2

2 ‖ηn‖
1+2δ

2
3

≤ νmin

48
‖vn‖22 +

C

νmin
‖mα‖22‖ηn‖23.

L13 ≤ C(‖uα‖1‖ηn‖1/21 ‖η
n‖1/22 )1/2−δ(‖uα‖2‖ηn‖1/21 ‖η

n‖1/22 + ‖uα‖1‖ηn‖1/22 ‖η
n‖1/23 )1/2+δ

·‖ηn‖1/2−δ2 ‖ηn‖1/2+δ
3 ≤ θ

20
‖ηn‖23

+C(‖uα‖
2−4δ
3−2δ

1 ‖uα‖
2+4δ
3−2δ

2 ‖ηn‖
2

3−2δ

1 ‖ηn‖
4−4δ
3−2δ

2 + ‖uα‖
8

5−6δ

1 ‖ηn‖
2−4δ
5−6δ

1 ‖ηn‖
8−8δ
5−6δ

2 )

≤ θ

20
‖ηn‖23 + C(‖uα‖

8
5−6δ

2 + ‖uα‖
4

3−2δ

1 )‖ηn‖22.

L14 ≤ C|∂η
n

∂x3
|1/2−δ2 ‖∂η

n

∂x3
‖1/2+δ

1 |A1η
n|1/2−δ2 ‖A1η

n‖1/2+δ
1

≤ C‖ηn‖1/2−δ1 ‖ηn‖2‖ηn‖1/2+δ
3 ≤ θ

20
‖ηn‖23 + C‖ηn‖22.
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Then we get,

d

dt
‖ηn‖22 + θ‖ηn‖23 ≤

νmin

4
‖vn‖22 +

θ

2
‖∂tηn‖21 +

C

νmin
‖vn‖21(‖ηn‖42 + ‖mα‖42)

+
C

νmin
‖ηn‖23

(
‖ηn‖2 + ‖mα‖22 + ‖vn‖

2+4δ
3+2δ

1 ‖ηn‖
1−2δ
3+2δ

2

)
+C‖ηn‖22

(
‖uα‖41 + ‖uα‖

4
3−2δ

1 + ‖uα‖
8

5−6δ

2 + 1

)
+ C|∂tηn|2‖ηn‖2.

(30)

Finally, (29) added to (30) proves the Lemma.

5 Proof of Theorem 13

If we suppose νmin ≥ 1 adding (19) and (27), one has

d

dt

(∫
Ω

(ν(ηn +mα) + 1)|D(vn)|2 + ‖ηn‖22 + |∂tηn|22
)

+
νmin

4
‖vn‖22 +

1

4
|∂tvn|22

+ θ‖ηn‖23 +
θ

2
‖∂tηn‖21 ≤ ε‖vn‖22(‖ηn‖2 + ‖mα‖2)

+
C

νmin
‖vn‖22

(
‖vn‖21 + ‖ηn‖22 + |∂tηn|22 + ‖uα‖22 + ‖mα‖22

)
+

C

νmin
‖ηn‖23

(
‖ηn‖2 + ‖mα‖22 + ‖vn‖

2+4δ
3+2δ

1 ‖ηn‖
1−2δ
3+2δ

2

)
+ C‖ηn‖22

(
‖uα‖41 + ‖uα‖21 + ‖uα‖

4
3−2δ

1 + ‖uα‖
8

5−6δ

2 + 1

)
+ C‖vn‖21

(
‖ηn‖42 + ‖uα‖21 + ‖mα‖42

)
+ C|∂tηn|2‖ηn‖2

+ C|∂tηn|22
(
‖ηn‖42 + ‖mα‖42 + 1

)
+ C‖uα‖22(‖mα‖22 + 1).

(31)

By denoting

Φ1(t) =

∫
Ω

(ν(ηn +mα) + 1)|D(vn)|2, Φ2 = ‖ηn‖22 + |∂tηn|22, Φ = Φ1 + Φ2,

Ψ1(t) = ‖vn‖22 and Ψ2 = |∂tvn|22 + ‖ηn‖23 + ‖∂tηn‖21

and taking into account that ‖uα‖2, ‖mα‖2 are bounded, one has
Φ′ +

νmin

4
Ψ1 + CΨ2 ≤ εΨ1(Φ

1/2
2 + ‖mα‖2)

+
C1

νmin
Ψ1 (Φ + 1) +

C2

νmin
Ψ2(Φ1/2 + ‖mα‖22) +DΦΦ2

2 + E

Φ(0) = Φ0.

(32)

where C1, C2, D,E > 0 are constants independents of νmin.

First step: We will prove that if Φ(0) ≤M/2, then Φ(t) ≤M ∀ t ∈ [0, T ], where M is a positive

constant that we will specify below.
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Let us define R1, R2 and R3 as follows: ‖v(0)‖1 = R1, Φ2(0) = R2 and νmax − νmin = R3.

Assume that ε, R1 and R2 are small enough and νmin is big enough such that,

νmin

4
− ε(((νmin +R3 + 1)R1 +R2)1/2 + ‖mα‖2)− C1

νmin
((νmin +R3 + 1)R1 +R2 + 1) ≥ a1 (33)

and

C − C2

νmin
(((νmin +R3 + 1)R1 +R2)1/2 + ‖mα‖22) ≥ a2, (34)

for some constants a1, a2 > 0. We define a = min{a1, a2} and P = min{P1, P2} where 1/P1 and

1/P2 are the Poincaré constants that verify Φ1 ≤
1

P1
Ψ1 and Φ2 ≤

1

P2
Ψ2 respectively.

Since in [3] one can see that

Φ(t) ≤ C̃
(

1 +
1

νmin

)
, (35)

we have that Φ(t) ≤ 2C̃ for all t ∈ [0, T ] where C̃ is independent of νmin. Now, we choose νmin

so that (33) and (34) holds and

Cw =
8DC̃3 + E

aP
< (νmin + 1)R1 +R2.

We put M = M(νmax, R1, R2) defined as M/2 = (νmax + 1)R1 + R2. Let t∗ > 0 the first

value such that Φ(t∗) = M , hence

Φ(t∗) = M and Φ(t) < M ∀ t ∈ [0, t∗).

The following differential inequality holds:{
Φ′ + aPΦ ≤ DΦΦ2

2 + E.

Φ(0) = Φ0

(36)

for each t ∈ [0, t∗].

Multiplying (36) by eaPt and integrating in [0, t∗] we deduce

Φ(t∗) ≤ Φ(0)e−aPt
∗

+ e−aPt
∗
∫ t∗

0
(DΦΦ2

2 + E)eaPs ds. (37)

Therefore, by using Φ2 ∈ L∞, Φ1 ∈ L1 and taking into account (35) , we obtain

Φ(t∗) ≤ Φ(0)e−aPt
∗

+ (D(2C̃)3 + E) 1
aP (1− e−aPT )

≤ (νmax + 1)‖v(0)‖21 + Φ2(0) + Cw ≤ (νmax + 1)R1 +R2 + Cw

but Cw < M/2, then we arrives at a contradiction.

Second step: Under conditions of first step then Φ(T ) ≤ Φ(0).

Now, since Φ(t) < M ∀t ∈ [0, T ], we can repeat the above argument obtaining (36) in [0, T ]

and we arrive at

Φ(T ) ≤ Φ(0)e−aPT + Cw.
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Choosing νmin big enough such that Cw ≤ ((νmin+1)R1+R2)(1−e−aPT ) we obtain Φ(T ) ≤M/2.

Hence, Φ(T ) ≤ Φ(0)

Third step: Existence of approximate periodic solution

Given (vn0, ηn0) ∈ V n ×Wn, we define the map

Ln : [0, T ] 7→ Rn × Rn

t 7→ (ξ1n(t), ..., ξnn(t), ζ1n(t), ..., ζnn(t))

where (ξ1n(t), ..., ξnn(t)) and (ζ1n(t), ..., ζnn(t)) are coefficients of vn(t) and ηn(t) respect to

V n and Wn respectively, being (vn(t), ηn(t)) the (unique) approximate solution of (10)-(11)

corresponding to the initial data (vn0, θn0).

Now, varying the initial data (vn0, ηn0), we are going to define a new map

Rn : B ⊂ Rn × Rn 7→ Rn × Rn

as follows: given Ln0 ∈ Rn × Rn, we define Rn(Ln0 ) = Ln(T ), where Ln(t) is related to the

solution of problem (10)− (11) with initial data Ln0 (= Ln(0)) and

B = {(ξ1n, ..., ξnn, ζ1n, ..., ζnn) = Ln0 : Φ(0) ≤M/2}.

By uniqueness of approximate solution of problem (10)-(11), this map is well-defined. Moreover,

using regularity of the corresponding ordinary differential system (equivalent to (10)-(11)), this

map is continuous. By the second step, Rn maps B into B and B is a closed, convex and

compact set. Consequently, Brouwer Theorem implies the existence of fixed point of Rn, which

gives us existence of periodic Galerkin solution.

Four step: Pass to the limit in periodic approximate solutions

If the νmin is big, owing to the first step we have

Φ(t) =

∫
Ω

(ν(ηn + ‖mα‖) + 1)|∇vn|2 + ‖ηn‖22 + |∂tηn|22 ≤M.

Therefore, the following bounds hold uniformly:

(vn, ηn) in L∞(H1 ×H2
N ) ∩ L2(H2 ×H3

N ),

(∂tv
n) in L2(L2),

(∂tη
n) in L∞(L2) ∩ L2(H1).

Using compactness results for time spaces with values in Banach spaces with the compact em-

bedding of H2 into H1, one has

(vn, ηn) is relatively compact in L2(H1 ×H2).
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In fact, this compactness is sufficient in the pass to the limit in the approximated problem

(10), (11) in order to control the nonlinear terms.

Now, we go to pass to the limit in periodic conditions. From estimations of ηn in L∞(H2)

and (∂tη
n) in L2(H1) and using the compact embedding of H2 into H1, one has that ηn is

relatively compact in C([0, T ];H1), hence ηn(T ) → η(T ) and ηn(0) → η(0) strongly in H1(Ω).

Since ηn(T ) = ηn(0), then η(T ) = η(0) in H1(Ω). Finally, since ηn(T ) and ηn(0) are bounded

in H2(Ω), we have that η(T ) = η(0) in H2(Ω).

The argument for u is similar, hence one deduces u(T ) = u(0) in H1(Ω).

Finally, given the reproductive solution (v, η) associated to v(0) = v(T ) := v0 and η(0) =

η(T ) := η0, then (v, η) is the (unique) solution of the initial-boundary problem associated to the

initial data (v0, η0), which is defined for all time t ∈ (0,∞). Moreover, this solution is T-periodic,

because in (T, 2T ) must be equal to the reproductive solution defined as v(t) = v(t − T ) and

η(t) = η(t− T ) (which verifies v(T ) = v(2T ) = v0 and η(T ) = η(2T ) = η0) and so on.
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