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Abstract

We study the effect of the rugosity of a wall on the solution of the Stokes
system complemented with Fourier boundary conditions. We consider the case
of small periodic asperities of size €. We prove that the velocity field, pressure
and drag respectively converge to the velocity field, pressure and drag of a ho-
mogenized Stokes problem, where a different friction coefficient appears. This
shows that, contrarily to the case of Dirichlet boundary conditions, rugosity
is dominant here.
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1 Introduction

Let us consider a fluid in a domain O, limited at the bottom by a plane wall P
and at the top by a wall R.. We assume that P moves at a constant velocity while
R. is at rest. The latter is assumed to consist of a smooth wall R covered with
periodically distributed asperities of small size . We are then concerned with the
asymptotic behaviour, as ¢ — 0, of the velocity and the pressure in the fluid.

The case in which the fluid adheres to the walls has been considered in [?], [?] and
[?]. In [?], [?], the wall R is a plate. Using boundary layer correctors, it is proved
that, outside a neighbourhood of the rugose zone, the flow behaves asymptotically
as a Couette flow, up to an exponentially small error. An accurate approximation of
the drag is given which shows that there is no palpable drag reduction. These results
have been then extended to the case of a flow governed by Navier-Stokes equations,
see [?]. Let us also mention a recent paper by W. Jager and A. Mikeli¢ [?] on
the laminar viscous channel flow, with the lateral surface of the channel containing
surface irregularities. The fluid satisfies a no-slip boundary condition on the rugose
surface and it is supposed that a uniform pressure gradient is maintened in the
longitudinal direction in the channel. So the limit flow is a Hagen-Poiseuille flow.
Using the correponding boundary layers, the authors derive a wall law which gives
an approximation of the tangential drag force at order O(%/?).

As appears from the quoted works, if the fluid is assumed to adhere to the walls,
that is to say, if Dirichlet conditions are imposed, then the effect of rugosity is
negligible. More precisely, the drag, the velocity field, and the pressure related to
R. converge to those related to R as ¢ — 0.

In this paper, we assume that, on the walls, the fluid satisfies conditions of
Fourier kind. In particular, on the rugose wall we impose

o-n+ku=0 on R., (1)

where ¢ is the usual stress tensor and k is a friction coefficient. We prove that
these conditions, contrarily to Dirichlet (no-slip) conditions, bring a leading part
to rugosity : as ¢ — 0, the drag experienced by the rugose wall R. converges to
the drag associated with the smooth wall R provided with an homogenized friction
coefficient K which is not constant and depends on the profile of asperities. We
calculate the limit flow and we give estimates of the deviations of the drag, velocity
field and pressure, in terms of the size € of the asperities. In the particular case of
a plate, the limit drag is larger than the drag of the smooth wall, see Remark 2.1.

In the case of Laplace or Poisson equation with Fourier or Neumann bound-
ary conditions, similar results to those of the present paper have been obtained by
O.A. Oleinik, A.S. Shamaev and G.A. Yosifian [?] and by G.A. Chechkin, A. Fried-
man and A.L. Piatnitski [?]. See also E. Sanchez-Palencia [?].



In fact, it is not completely realistic to assume that a fluid satisfies (??), unless
the wall R. has some kind of porosity, see R.L. Panton [?, p. 149-152]. It would be
more appropriate, instead, to impose the slip conditions

u-n=0, (0 N)ang+ku=0 on R, (2)

where (0 - 1)tang denotes the tangential component of o - n. However, (??) may be
used for large k as a formal approximation of the Dirichlet condition u = 0.

It would be very interesting to extend the present results to the case in which con-
ditions like (?7) are considered, but there are some technical difficulties to do this.
Our results may be considered as a first step in this direction. Let us mention here
that slip boundary conditions have been considered by G. Allaire [?], and D. Cio-
ranescu, P. Donato and H. I. Ene [?] for homogenization of Stokes or Navier-Stokes
equations in domains containing periodically distributed obstacles. For conditions
of Fourier kind, we refer to C. Conca [?], [?].

2 The main result

The smooth wall R is assumed to be the graph of a function r on IR?, with
r is Lipschitz-continuous, positive and (Iy, [5)-periodic (3)

(the latter means that r is periodic with respect to x; with period [; for i = 1 or 2).
For each ¢ > 0, the rugose wall R. is assumed to be the graph of the function r.
defined on R? as follows : for any z’ = (z1, 1),

x/
refa) = r@)(1 + en(a’, ). ()
Here, n = n(2’,y’) is a function on IR? x R? satisfying
7 is Lipschitz-continuous and [y, [s-periodic with respect to =’ and 3/.

In order to ensure that r. satisfies (??), we assume that
I 1, :
€HTIHL°<>(52) < 3z is an integer number. (5)
€

The fluid occupies the unbounded domain
O.={reR®: 2 e R* 0 < a3 <r. ()}

Setting S = (0,1;1) x (0,l3), O can be viewed as generated by periodic translations
of the bounded domain

Q.={zxcR®: 2" €S, 0<a3<r ()}
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Observe that 0€). consists of the following parts of the walls R. and P
R.={zcR’:2' €S a3=r.(2")}, P={rcR>: 2’ €S, x3=0}
and the lateral immaterial boundary
L={reR’:2'€9S,0< 23 <r(z)}.
For each m > 0, let us introduce the space

Hye () = {v e Hi(Oc) - v e H™ (L),
v(x 4+ (11,0,0)) = v(x + (0,13,0)) = v(x) for a.e. z € O.}.

In other words, H}¢ (€2.) is formed by all (I1,ly)-periodic functions on O, which are
H™ in any bounded subset (and not only in compact subsets, as H[". means). As
usual, for m = 0, we write L2_.(€).

The velocity field and the pressure are assumed to satisfy

Ue € (le)er<Q€>)37 Pe € L?)er<Q€)7
—vAu. +Vp. =0, V-u.=0 in O,
o.-n+ku=0 on R.,

o.-n+k(u—g)=0 on P,
where v > 0 is the viscosity,
0. = o(uz,p.) = —pld + v(Vu, +'Vu,), (7)

n is the outwards unit normal vector field, £ > 0 is a friction coefficient and g =
(¢',0) is the velocity of the wall P.

The existence and uniqueness of a solution is proved in proposition 3.1. Remark
that the boundary conditions on R. and P are meaningful, since (??) gives 0. €
(L2..(9.))*3 and

per
V-0.=-Vp. +vAu, +"'V(V-u.)=0. (8)

This allows to define the normal trace o - n in (H,,. 2(00,))3.
The hydrodynamical drag 7. associated with the bounded part R. of the wall
R. (the drag of the whole wall is infinite) is by definition the projection of the force

exerted on R. by the fluid, that is

Tez—g-/R o - nds. (9)



Thanks to the boundary condition on R., it reads as well
T.=g- / Ue ds.
R

Let us now define the homogenized friction coefficient K = K (a/,r(2')). First,
we introduce the following function m € L°°(IR? x R?) : for any (2/,¢') € R? x R?,

L+ |Vr(') + r(@)Vyn (e y’)IQ)%

i) = L5 Vi) ? (10)

Then we put, for all 2’ € R?,
1
(m) (&) = rgp [l o)y’

Obviously, we have (m) € L*(IR?). The homogenized friction coefficient is given R
as follows : for all 2’ € IR?,

K(2',r(x')) = k(m)(2). (11)

It is therefore a (Iy,l3)-periodic function which belongs to L>(R).
We will prove that (u., p.) converges in an appropriate sense to the unique solu-
tion of the system

Ug € (Hl (Q))s, Po € L? (Q),

per per
—vAug+Vpy=0, V-ug=0 in O,
op-n+ Kug=0 on R,

(12)

oo-n+k(up—g)=0 on P,

where g = —pold + v(Vug + *Vug), R is the graph of r, O is the domain bounded
by Rand P and Q = {z € R*: 2/ € S, 0 < a3 < r(2/)}. Furthermore, we will
prove that the limit drag is

Toz—g~/Rao-nd5:g~/RKu0ds.

Notice that, in general, ug is not the velocity field related to the smooth wall R
because K # k, and Ty is not the drag experienced by R.

Since the domain €2, varies with €, the convergence of u. and p. cannot hold in
the whole domain €2. We will obtain convergence outside a neighbourhood of R of
arbitrary small size § > 0, that is, in all subdomains of the form

ws={reR?: 2’ €S, 0< a3 <r(z) -6}

Our main result is the following.



Theorem 2.1 Assume r € W3*(IR?). There exists C > 0 such that, for any e > 0
satisfying (?7), we have :
1. T < CVE (13)

Moreover, for any 6 > 0 there exists Cs > 0 such that, for any € satisfying (?7), we
have :

e — ol 11 (w5) < CsVE, (14)
IPe — PollL2(ws) < Csv/e. (15)
O

Remark 2.1 The drag 7. of a rugose plate is strictly greater than the drag T' of
the corresponding (homogenized) smooth plate. Indeed, assume that r(z') = I3 (a
positive real number) and 1 depends only on 3. Then (m) is independent of 2’ and
is greater than 1 unless 7 is a constant. Accordingly, we have

viilok{m)|g|? _ viilok|g|?
v(1+ (m)) + lsk(m) U+ I3k

im 7. =T =
e—0

Remark 2.2 Notice that

! / (r(@)* 1 AN
T or@p = m@) = (ngfswy/n(r,y)\dy) .

The last quantity is bounded from above by the local asymptotic ratio of the R.-area
and the R-area. In other words, for any 2’ € S, we have

lim,_olim. 0| R: U B(2'; a)|

@) < = TRUB(a)]

where B(z';a) is the ball centered at (z’,r(x’)) of radius a. O

Remark 2.3 The drag 7. can also be written in the form

Tazg-/Pcra-nds:—k:g-/P(uE—g)ds. (16)

Indeed, the following equalities hold :

—g-/ ae-nds:—g-/ og-nderg-/cra-nds
R R.UP P
:—g~/ V~a€ds+g~/a€-nds.
Q. P

A similar equality holds for 7. O



3 Existence, uniqueness and estimates

We will prove that there exists exactly one solution (u.,p.) to (??) and exactly one
solution (ug, po) to (??). Notice that (??) is similar to (??) with a varying friction
coefficient, since both walls R. and R are the graphs of periodic Lipschitz functions.
Therefore, in order to put these two problems in the same framework, we will assume
in this Section that

ke LX (Q), k>k>0, (17)

per

where & is a real number.
We will use the following variational formulation :

Ue € (Hl (Qa))3> p- € L2 (Q),

per per

2 : — .
v [ elws)see) = | peV gt
V- u. =0,

. = . 1 3
R.UP bz - ¢ /Pk:g v V€ (Hpu(Sk)),

(18)
where e(¢) = 2(Vp + V) and e(u) : e(p) = X, ; e (u)es; ().

Proposition 3.1 Problem (77?) is equivalent to (7?7) and possesses exactly one so-
lution. Furthermore, one has

el (0. + Ip:l 200y < €, (19)
where C' is independent of €. O

Obviously, this result also provides the existence and uniqueness of a solution
(uo, po) to (77).

In order to prove this proposition, we need some previous results. In particular,
we need a Korn inequality for a special class of star-shaped domains. By definition,
D is star-shaped, with respect to a ball B if the segment connecting any two points
re€ Bandye D liesin D.

Lemma 3.1 There exists C' > 0 such that, for any bounded domain D C R? of
diameter R which is star-shaped with respect to a ball B of radius p and for any
v € (H'(D))?, the following inequality holds

R\3
Vol < €(5) (1@, +190le0m) (20)

O



For the proof see O.A. Oleinik, A.S. Shamaev and G.A. Yosifian, [?, Theo-
rem 2.10, p. 23].
Let us put

l
D*:{SL’ERBZI/ES,O<SL’3<§3}.

Lemma 3.2 There exists C' > 0, only depending on S and l3, such that, for all
v € (H'(D.)),

[V0li320.) < € (le@Excon, + [, IoF ds) 1)

PROOF: Suppose the assertion in this lemma is false. Then, for each m > 1, there
exists w,, € (H'(D,))? such that

IVl > m(lle(wn)llfam.) + [, lumf?ds).
Let us put vy, = wp,/||Vwn||2(p,)- Then ||Vuy||r2p,) = 1 and
lewn) 2o,y + [ loml® < —
whence we obtain the following as m — oo :
e(vp) = 0 in (L2(D,))*, /P o |2 ds — 0. (22)
On the other hand, the following estimate holds for all v € (H'(D,))? :

/D* 0|2 ds < 13(/P|v\2 +%/D Vol?). (23)

Indeed, for any regular v and any = = (2, z3) in D,, one has

o(a) = v(a’,0) + [ Oy0(a’, s dys.

Consequently,

l3/2 2
o(@)? < 2ol OF +2( [ [02,0( 1) dys)

whence

13/2 13/2 2
[ ) P < sl 0P + ([ 10000, ) dus) )



and

l3/2
/ / lv(a!, z3)|* dos do’
s.Jo

1 13/2
<ts( [ o 0 da’ 5 [ [ 0(a o) Pl dysda’).
P 2 JsJo

This proves (?77?), at least when v is regular enough. By density, (??) holds for all v
in (H'(D,))3. Tt follows from (??) that v,, is uniformly bounded in (H'(D,))3. From
the compactness of the embedding H'(D,) < L?*(D,), there exists a subsequence,
still denoted v,,, that converges strongly in (L*(D,))3*® to some v € (H*(D,))3. In
view of Korn inequality in Lipschitz domains, one has

[ = vl i o,y < Clle(var) = e(Wm)lz2(p,) + vm — vl Z2(p,));

where the constant C' depends only on S and I3, see [?], [?]. These inequalities and
(?7?) show that v, converges strongly in H'(D,) to v and, also, that

VUl =1, lle(v)ll 2w, =0, /Plv\2d8 =0. (24)

But the equality e(v) = 0 implies that v is a rigid displacement, i.e. v = Az + b
where A is a skew-symmetric constant matrix and b is a constant vector. This fact,
together with the third equality in (??), implies v = 0. This leads to a contradiction
and proves the lemma. O

Lemma 3.3 Let € satisfy (7). Then, for any v € (H'(2.))3,

ol < € (e + [ 1oF)., (25)

where C depends only of ly, Iy, r and n.

PrOOF: The function r. defined by (??) is Lipschitz-continous, with a Lipschitz
constant independent of €. It is also bounded from below by a positive number
independent of €. Therefore, if /; and l; are small enough, there exists a ball B
independent of € such that (). is star-shaped with respect to B. Moreover, B can
be chosen in D,. For arbitrarily given [; and Iy, by dividing S in sufficiently small
squares, it follows that €2, is the union of m domains Q! which are respectively star-
shaped with respect to the balls B?, with m and B’ independent of €. Lemma 3.1
vields the following for each i and for all v € (H'(€2.))? :

IVol320i) < C (le@) 2y + 1VVI320s, )

Adding these inequalities for i = 1, ..., m, we find that
HVUH%Q(QE) <C (He(U)H%?(QE) + HVUH%Q(D*))

8



and using (?7) we obtain

1900220y < € (le@z + [ 10F) (26)
It is also clear that
oMz < € (N0l + [ 1oF). (21)

This can be seen arguing as in the proof of (??) in the previous lemma. From (?77)
and (?7), we deduce (?7) and the lemma is proved. 0

Lemma 3.4 Let ¢ satisfy (??). For any F € L*(Q.) and any wy € (HY?(05.))3

such that
/ F = wo + N
e 00

there exists a function w. € (H*(Q.))? such that
V-w.=F in Q., w.=wy on 05,

and
[well 10y < Clllwollmirz@a.) + [1F1l2@.));
where C' s independent of F', wg and €. g

The proof of this lemma is essentially contained in theorem 3.1 of [?, p. 116,124].

Lemma 3.5 Let e satisfy (7?). For each q € L2.(Q:), there exists z. € (H)..(Q:))?
such that

22=0 on R, V-zz=q in Q, |zl < COldla, (28)
where C' s independent of q and €.

PROOF: Let v, € (HY?(05.))? be such that v, = 0 on R.,
/ Ve - nds = |Q|
00

and ||| 1/2(90.) is bounded uniformly with respect to e. It is clear that v. can be
chosen z’-periodic, i.e. satisfiying

U€<x1707x3) = Ue(l’hll,ﬂ?:s), 05(0,56’271’3) = Ue(llaib’z,ll?:s)-

Using lemma 3.4 with F' = 1 and wy = v., we obtain a function v, € (H'(£.))3 such
that
V-u.=1in Q. 7.=wv. on 08, (29)



and
1Tell 100y < Cllvell przgan. + 19:%) < C. (30)

Obviously, since v, is a'-periodic, the same is true for 7.. Let ¢ be an arbitrary

function of L2 .(Q.). We can write ¢ in the form

1
q=p-+ Iy /ng7
with p € L*(.) and /Q p = 0. By lemma 3.4 with wy = 0, there exists w. €
(H}(£2.))? such that
Veowe=p in Q, lwellmq.) < Cllpllzae,),
where C' is independent of € and p. Consequently, we have

|wel| 510 < Cllgll 2. (31)

1 _
e (o

It is then clear from (?7?), (??) and (?7) that z. € (H},(Q:))?, V- 2. = ¢ and

per

Let us put

lzell ey < Cligllz2on) +

C
ol < Clalia,

This proves the lemma. O

PROOF OF PROPOSITION 3.1: Let us first prove that (??7) is equivalent to (?7).

Given a solution (u.,p.) to (?7), a normal trace o. - n in (ngcl/Q(@Og))?’ is defined,
thanks to (?7), by : for all p € (H'(£2.))3,

(0: -1, @)a0. =/Q 0. - V.

If in addition ¢ is periodic, that is if ¢ € (H! (€Q.))?, this reduces to

per

(0. n@hr = | 0. Ve (32)
Indeed, the contribution of the lateral part L of the boundary is then (o.-n, ), =0

since, on opposite sides, 0. and ¢ are preserved while n is replaced by the opposite
vector. Using the boundary conditions and the following identity

o. -V =2ve(u:): e(p) —pV - (33)
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we obtain the equation in (?77).

Conversely, let (ue, p.) satisfy (?7). Choosing ¢ to be the periodic extension of
a function in (D(€.))® and using (??), we get [o_ 0. - Vo = 0 and thus V - 0. = 0.
Then (?7?) holds and (??) reads, for all ¢ € (H! _(Q.))?,

per

<cr€-n,g0>REUp+/ k:ug-gods:/ kg - @ds.
R.UP P

This provides the boundary conditions in (?7?); Stokes equation follows from V-0, =
0, V-u. =0 and (??). Therefore (??) is equivalent to (?7?).

Let us now prove the existence and uniqueness of a solution (u.,p.) to (?7). We
can put (?7?) in the form

(tte; pe) € (Hpee(2:))7 X Lier(Qe),

per per

(e @) +blpps) = [ kg W € (Hpu() (34)
b(us,q) =0 Vqe L2 (),

per

where the bilinear forms a(-,-) and b(-, -) are defined by

a(u,v) = 21// e(u) :e(v) + ku-v Yu,v e (H ., (Q))?

e R:UP per
and
bo.g) == [ (V-v)g Vu € (Hpu(Q), Va € L2n(Q)

per per

Taking into account Corollary 4.1, p. 61 of [?], in order to establish existence and
uniqueness, it is sufficient to prove that a(-,-) is coercive on V, i.e.

a(v,v) > aHvaql(QE) Yoe V., a>0, (35)
and b(, -) satisfies the Brezzi-Babuska “inf-sup” condition

b
inf sup (. 9) > [ >0. (36)

(Q), 470 VE(H o, (2:))3, v#0 ||U||H1(QE) Q||L2(QE)

qeL3,,

In (77?), V. stands for the space

V.={ve (H, () bv,q) =0 Vqe L? (Q.)}.

per per

Thus V. is the space of all functions v in (H!, (£2.))? satisfying V-v =0 in Q..

per

The inequality (??) holds for some « independent of . Indeed, thanks to
lemma 3.3, we have :

a(v,0) = 2]y + [ kol = Cllolnga, (37

11



Let us now check the inf-sup condition (??). Assume that ¢ € L2, (€2.) and

q # 0 and let z. be the function furnished by lemma 3.5. Then

b — bz, 1
sup (v q) 2 (z q) >_ 0

ve(HL, Q)3 v20 ||Vl H1 (0. |22 1 (e C

per

per

per per

This proves (?77). Since (??) and (?7) hold, there exists exactly one pair (uc, p.)
which solves (77).
Let us estimate u.. Choosing ¢ = u. in (?7), we obtain

CL(UE,UE) = / kg " Ue
P

and then (?7) gives
[ucll 1) < C. (38)

Finally, let us estimate p.. From lemma 3.5, there exists w. € (H,.(%))*
satisfying
V-w, =p. in €, Hwe”Hl(Qs) < C”pe”L2(Qg)a

where C' is independent of ¢, p. and w.. Let us choose ¢ = w, in (??). Then we

find
/ |p€|2 / e(ue) :e(w5)+k/ ua-wg—k:/ g - We.
Q. P P

The right-hand side can be bounded as follows :
1// e(us):e(w€)+k/ u€~w€—k/ g w,
. P

< Cllucll . - well o @o) + Cllwellmr @) < ”p6HL2 0.) + Clluellm o + C.

-2
Thus, using (?7), we deduce that
pell 20y < C. (39)

This ends the proof of proposition 3.1. O

4 The equations in the homogenized domain

For any function ¢ = 1(2’,y') defined in S x S and periodic with respect to y’, we
will denote by ¢° the function defined on S by



Let L. denote the one-to-one mapping from 2 onto €2, defined by

/

L&', 5) = (& s (1 en(al, 2))) = (a1 + &7 (2).

a € 1 € . . .
Since 0,,71° = 0,1 + —0,,1 , the Jacobian matrix is
£
L0 a3(e0un +0,m)
VL= | 0 1 x3(¢0.,m +0y,n ) |-
0 0 14 er°

Given a function v on €., we will denote by v its image on €2, that is v = vo L.. If
ve L (Q), 1 <s< oo, then v € L(2) and

= [ 0(1+e7). 40
[ o= p0er) (40)
If v € WhH¥(Q,), then © € Wh4(Q) and we have the following for all 7 :

3
00 =>_0;,L.; 0 (41)
j=1
Conversely, for all i,
3
8ﬂ) = Z(ME)Z] 8]@\, (42)
j=1
where I
10 _1‘3(589617]6 + 8@117]8)/(1 + Eﬁe)
M. = 0 1 —$3(58x27) + 8@127] )/(1 +Eﬁ€) :
00 1/(1 4 em)
Another way to write (?7?) is the following :
Vo = M.Vd. (43)
Also, -
V-v="M,:Vi. (44)
The image of the divergence can also be obtained from the dual formula
(14e7)V-v=V-('N.D), (45)

where N, = (1 + &7 ) M.. Indeed, given 1) € D(€).), we have
L) (b= [ (Vg = [ 0wy
=~ [@- Vi) +em) = - [ 5 MV + o)
= [V (1 + &) MDY,

13



Therefore, the weak formulation (??) (where k& > 0 is constant again) is equivalent
to the following

aE € (Hltl)er(Q))g? ﬁt? € L?)er(Q)7 (46)
w [ (@) eo))ic = BV (Vo) +k [ (@ o)ue
N (47)
+k/Pﬁe~sozk/Pg~so Vo € (Hpeu()),
V- ('NAa.) = 0. (48)
Here, the following notations have been introduced :
1
e.(v) = §(M€Vv + (M.Vv)), (49)
14 |V, r|?)1/2
jo= 1t e, pe= Gt IVarel) (50)

(14 [Var?)/2

The asymptotic behavior of (., p.) as € — 0 is explained in the following result,
which is crucial in the proof of theorem 2.1.

Proposition 4.1 Assume that r € W3*(IR?). Then, for any € satisfying (?7?), we

have

it =@l o) < CVE (51)
and

1P- = poll2@) < CVe, (52)
where

U = ug + €237 Oy U
and C' 1s independent of €. O

This result is proved in Section 6. Before, we need some technical results, which
are given in Section 5.

Remark 4.1 Proceeding as in [?], it can be seen that the assumption r € W3°°(IR?)

leads to the regularity of (ug, po), namely ug € (H3*(Q))? and py € H*(2). This will
be used in the sequel. O

14



5 Some technical lemmas

Lemma 5.1 Let v = v(2/,y') be a Lipschitz function on S?, periodic with respect
to y' and satisfying

/v(x/,y’) dy' =0

S

for any ' € S. There exists a real number C' such that :

i) For all functions ¢ and v in HY(Q) and 0 < e < 1, we have

/

| D)) do

< Cel|lY|lavollell @) (53)

it) For all functions v € H*(Q) and ¢ € H'(Q) and 0 < & < 1, we have

/

[ Dol @ @) def| < CVENlmm lelme:  (54)

O

For the proof, see O.A. Oleinik, A.S. Shamaev and G.A. Yosifian [?, Lemma 1.6,
p. 8J.

Lemma 5.2 Assume r € W3>(S). There exists a positive number C, independent
of ug and €, with the following properties :

i) For 0 <e <1, we have

IV - (New)l| 2@ < Celluoll o) (55)
it) For any function ¢ € (HY(Q))? and 0 < ¢ < 1, we have

@@ aoDic — [ elw): 0] < CVEluallmslelme.  (56)

Q

PRrROOF: Notice that ug € (H?(2))3, since r € W*°(S). Let us first prove (?7).
Since by definition N. = (1 + £7°) M., we see that

V- ("New) = 0, (1 4 €7 )w1) + Oy ((1 4 €77 )w32)
+ Oy (=238 (00, 77 ) w1 — 238(02, 7 Jwo + w3)
=V.w + 8ﬁ6<a$1w1 + 8332w2) - x3<8<8:v1ﬁ8>8333w1 + €<a$2ﬁ6)a$3w2>7
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for any function w. With the particular choice w = @ = g + x3e7°0,,up, since
V - uy = 0, we obtain

V U= T3 (8(8x1ﬁ€)8x3’l$01 + 8(8x2ﬁ€)8x3?$02> + EﬁeaxSU(]gg
and
8ﬁ68x1ﬂ1 — .T3€<amlﬁ6)amgﬂ1 = eﬁ‘f@mlum — 1’38(8x1ﬁ8>8x3’U(]1
+$3(57I )2a§1m3 x§€2ﬁ€(aﬂﬂ1n )8§3x3

Using the corresponding similar equality for u,, we deduce that

V- (tNEﬂ) = SL’3<€T] ) (82 Uo1 —+ 0$2x3u02)

r1T3

- $§57I ( (aﬂﬂln )a'rg:vgu(n + 5(896277 )8;%313”02)-

The inequality (??) follows, since [77°(z')| < ||9]| oo (s2) and

_ x’ x’
|58x¢77€(37/)| = ‘gamin(x/u ;) + ayﬁ](ﬂf/y ;)‘ < 2H77HW1’°°(52)-

Let us now prove (??). The definition (??) of €. yields the following for all @
and ¢ :

1 1
(@GD:éanzz5&@Vﬂ:b@V¢4—§kﬁvﬂ:%A@wa

Moreover, the definition of M, leads to the identities, for 1 < k < 3,

1
aﬂﬁz(pk - ~_l‘3€(aﬂﬁiﬁ6)a¢3ﬁpk 1= 17 27
(M) = 16
arg@k - .—5#83:3901% ;= 3.
131
For i = 3, we have used j. = 1+ 7 and thus 1/j. = 1 — &5°/j.. In particular, we
obtain
7€ 1 —c .
81:in/{: + 1‘3877 8:1: xSUOk; - _5 n 81:1’[] 8333353“019 1 = ]_’ 2’
a7 £
Oy + — 23602 i—3

1'3333
Je

Therefore,
2 3
() je : e(¢) — e(ug) ZZaerZf—:n o
=1 k=1
where

1
Qi = —55535(8%#)83:38%(8%%% + 8:vku0i>
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and each b, is the product of a first or second derivative of ug, a derivative of ¢ and
some of the following functions : z3, j., (j.)', en° and €d,,7°. Since |e7°| < Ce, we
see that

| 1e7bal < Celluollm ¢ lm e

Since
/ !

/ / € / X
€8xiﬁ6(l‘ ) = Eaﬂﬂzn(x ) ;) + ayﬂ?@ ) ;)a

we can also put
i, = — 19038%77 Oy k(D tion, + O uigi) + €051 b, (57)
where the b}, have the same structure as b,. Hence,
18 b < Celluollieollelmo.
The integrals of the other terms in the right-hand side of (??) are as follows :
ARG
— /Q%E@m(xg@mlu()m)gok — /89 :ngjnagok(axluo,n)ng ds.

Since 1/¢ is an integer and 7 is periodic with respect to all its variables, we have
— x‘/
/Sﬁyjn = /58 (2, €> dr' = 0. (58)
Therefore, thanks to lemma 5.1, part i),

‘/ Wi 8903 (2304, Uom) Pk dx’ < C€||u0m||H2(Q ||S0k||H1(Q

On the other hand, from lemma 5.1, part ii), we have

- x ’ /
| Bl s(@ron )i ds| = | [ 0),n(a, ) s Ouon) o) (@' () de

< Velluomll g3 ) llokll a1 0.)-

Here, we have used that n3 ds = da’. This proves that

‘/ Qg k
Q

This completes the proof of (77?).

< Celluoll as @l orll a1 @)-
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Lemma 5.3 Let us assume that r € W3°(S). Then, for any € satisfying (?7) and
any ¢ € (HL (Q))?, we have

per

[ 20V - (Ve = )] < ORIl o, (59)
where C' is independent of €, py and .

PROOF: Let us first notice that py € H*(Q), since r € W**°(S). We have

2
V- ('Nep — ) = €T (Bpy 01 + Dy 02) — Z By, )0y -

Then, multiplying by py and integrating by parts the last term, we see that

2

/ poV - ("N — ) = /Qgpo Z(ﬁeamj%‘ - SUsaxﬂaaxg%)
j=1
2 . 2

+/Qaa:3($3po)jlay77 / r(x")po(z’, r(

In the right-hand side, the first integral is bounded by

/

)i r(2")) da'.

< Cellpoll 21l 1 () -

2
‘/Q*Spo > (70,05 — €x305,1 Ouy5)
=1

Using lemma 5.1, part i) and (?7?), the second integral is bounded by

2

‘/ Oy ($3p0) ay n
Q =

On the other hand, from lemma 5.1, part ii), the boundary integral satisfies

’d/" ]?0 37 T

Hence, lemma 5.3 is proved. O

©;| < Cellpoll 2 )l @)-

2

)i (2 r(2')) da’| < OVellpollmz@ lel m@)

Lemma 5.4 Assume that v € L
¢ € (HY(Q))? such that

V- Y Nep) = in Q, lellme) < Ol (60)

per(

Q) is such that /Qz/J = 0. Then there exists

where C' 1s independent of €, ¥ and .
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PROOF: Let us put
1
. = £h.
Vo= e L)

Clearly, 9. € L2, (Q.). From lemma 3.4 with wy = 0, there exists w. € (H}(2))?

per

such that V- w. =1, in . and

HweHHl(Qs) < C”%HB(QE),

where C' does not depend of ¢, 1. and w.. In accordance with (?7), the function
© = W, satisfies V - (‘N.p) = 1 in Q. Moreover,

1
52: 2< 2.
[ 0P = [ ol < [

6 The proofs of proposition 4.1 and theorem 2.1

PROOF OF PROPOSITION 4.1: We will first proof the estimates (77). Let us write
the weak formulation of the problem satisfied by (ug, po) :

(0, po) € (Hper(Q))* % Lie, (), (61)

per per

21//Qe(uo):e(tp)—/QPOV'SOJF/RKUE'¢+k/]3u5'¢:k/zog'(p (62)
Ve € (Hper ()%,

Substracting (??) from (?7), we obtain, for all ¢ € (H!_(2))3,

per

2w [ (@) s 2:0)j — e(wo) : elg)) = [ (V- ('Neg) =1V - )

(64)
+/ (kpet. — Kug) - gpds+k/ (Ue —ug) - pds = 0.
R P
Let us set 4. =T + z., where T = ug + 23670, up. Then (?77?) reads
2|1 (o) < CVe. (65)

Since T = ug on P, (?7) gives :
QV/Q(ég(zg) cee(9))je + k/Rz6 e ds + k/Pz6 ~pds
= 20 [ (2:() : 2x(0)ie (o) s e(9)) + [ (B —p0)V - (Nep)  (66)

+/onv-(tN5g0—g0)—/R(k:,uaﬂ—Kuo)-cpds.
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Let us choose ¢ = 2. Then the left-hand side is larger than C'|z[|75: gy thanks
to Korn inequality (??). Using (??) to estimate the first integral in the right-hand
side of (?7), we see that

||26||§{1(Q) < CVeluwollmz o l|z=lm @) + A+ B + ’/R(kugﬂ — Kug) - z.ds|, (67)

where C' is independent of ¢ and A and B are respectively given by

A=|[ 6=V (N, B=|[ pV - (Nez - 20|
Thanks to (?7),
V- ('Neze) =V - ('NA.) — V- ('Na) = -V - ('Na).

Thus, (??) and (??) give

A < Ce([|pell 2 + [lpoll z2@)) uoll 20y < Ce. (68)
On the other hand, (??) implies

B < OVellpol w2 |2 10y < CVEl 2 (o) (69)
In order to estimate the integral over R in (?77?), let us put

kpt — Kug = (km° — K)uo + k(pe — M )uo + ke (T — uo), (70)

where ¢ (2') = m(a’, 2" /¢). From the definition of K, we see that (km® — K)(2') =
kv(a', 2’ /¢), where
(@' y) = m(a,y') — (m)(a).

Thus, lemma 5.1, part ii), gives :
’/R(kma — K)ug - 2 ds| < OvElluoll 2o 2l 10 (71)
From (77?), (??) and (?7?), we deduce that

|erVom +eFEVr)2 4 2(erVom + e V) (rVyn + Vr)

2 —e\2
pz — (m°) 1+ [Vr?

This implies that . —m°| < Ce and

\/R k(e — 0 Vug - 2 ds| < Celluoll i1zl 100 (72)
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Finally, [T — ug| = |237°0pyt0| < ClOz,up| and
’/R Fte (T — ug) - 2 ds| < Celuoll 2oy |2l m1(00. (73)
From (77?), (?7), (??) and (??), we see that
[ (s = Kuo) - 2 ds| < CVEl 2 1o (74)
Using (77?), (??) and (?7?) in (?77?), we obtain

Izl7 () < CVEllzellm () + Ce.

This implies (??) and, therefore, (??) holds.
Let us now prove (??). Choosing ¢ € (H}(2))? in (?7), we find

2w [ (@) 2@ = (= p)V - (Nep) + [ oV (Voo = )
_2V/Q(<a€(a)  8(9))je — eluo) < e(9)).

Let ¢ be a function in L2,.(Q) and let ¢ € (Hj(€2))? be the function furnished by
lemma 5.4. Then (?77) reads

/Q(ﬁe — o)y = 21//9(65(,28) () Je
+21//Q<(65(U) : @E(Qp))jg — e(uo) : e(gp)) — /onv . (tNaSO . SO)-

Using (?77), (?7?), (??) and (??), it is not hard to see that

(75)

[ 3- = po)e| < CVEIL
Since 1 is arbitrary, this implies (??). This completes the proof. O

PROOF OF THEOREM 2.1: First, let us prove that (??) follows from (?7). Let
0" = 1/(2||n||(s2)). Thanks to (??), we have

1.~ To| = kg - [ (10— u.)

Therefore, (??7) implies (?7).
Let us now prove (?7). It suffices to assume § < §*, since (?7) for § = 0* implies
(?7?) for any 6 > §*. Using (??) and putting &5 = £.'(ws), we have

< kl|g|Cs-

Uo _ue”Hl(w(g*)-

171 () Z/A G (1917 + MV ) < Cll@l iy
ws
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Then, it suffices to prove that

@ — Goll g,y < CVe

(where C' can depend of §). From (77?), we see that it is sufficient to prove that
% = foll iy < CVE. (76)

Since u = ug = 1 on P, we only have to estimate the L? norms of the first derivatives
Oy, (u — Up). In fact, we are going to prove that, for all z € @,

01, (T — wo)(@)] < CVE. (77)

Recall that @ = ug + ex37°0,,up. Then,

O, U =

O, uo + 23(0y, n + €0y, 17 )0yt + €x3ﬁ58§3xjuo j=1,2,
Oy U + ETF Opyug + €230, Ug j = 3.

313

Thanks to (?7),

—

o o { O Uy + :1:3(81,1,77E + 58xj'r;€)8$3u0 ji=1,2,
z; W0 — —
] (L + €77)Fry j=

Since 7, 0,;n and 9,;n are bounded, it follows that
3 — —_—
|02, (@ — )| < C ) |03, 0 — On, ttg| + Ce(|0yu0] + Dy tio] + [0y, 0]))-
k=1

Since r € W(S), we have ug € (H*(2))* and thus Morrey-Sobolev theorem gives
up € (CH1/2(Q))3, with a norm in this space bounded by C'|uol|g3(q). Therefore, for
all x € ws,

|(Dr 10 — Drpig) ()] < Cslluo|l ms eyl — Lo(2)]? < Csv/e

and (77?) is established. Thanks to Poincaré inequality, (??) holds too. This com-
pletes the proof of (77).
Finally, let us prove (??7). Arguing as before, it suffices to show that

||ﬁ€ _ﬁOHLQ(Gé) S C\/E

From (?7?), it suffices to prove that
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But we already know that py € H 2(Q), whence (again from Morrey-Sobolev embed-
ding) py € C*'/2(Q) and its norm in this space is bounded by C||po||z2(). This
leads to the following inequalities, for all x € @s,

|(po — P0) ()] < Csllpoll w2yl — Le(2)[V? < Csv/e.

This implies (??) and, thus, (??) holds. The proof of theorem 2.1 is now completed.O
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