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1 Introduction

Let us consider a fluid in a domain Oε, limited at the bottom by a plane wall P
and at the top by a wall Rε. We assume that P moves at a constant velocity while
Rε is at rest. The latter is assumed to consist of a smooth wall R covered with
periodically distributed asperities of small size ε. We are then concerned with the
asymptotic behaviour, as ε → 0, of the velocity and the pressure in the fluid.

The case in which the fluid adheres to the walls has been considered in [?], [?] and
[?]. In [?], [?], the wall R is a plate. Using boundary layer correctors, it is proved
that, outside a neighbourhood of the rugose zone, the flow behaves asymptotically
as a Couette flow, up to an exponentially small error. An accurate approximation of
the drag is given which shows that there is no palpable drag reduction. These results
have been then extended to the case of a flow governed by Navier-Stokes equations,
see [?]. Let us also mention a recent paper by W. Jäger and A. Mikelić [?] on
the laminar viscous channel flow, with the lateral surface of the channel containing
surface irregularities. The fluid satisfies a no-slip boundary condition on the rugose
surface and it is supposed that a uniform pressure gradient is maintened in the
longitudinal direction in the channel. So the limit flow is a Hagen-Poiseuille flow.
Using the correponding boundary layers, the authors derive a wall law which gives
an approximation of the tangential drag force at order O(ε3/2).

As appears from the quoted works, if the fluid is assumed to adhere to the walls,
that is to say, if Dirichlet conditions are imposed, then the effect of rugosity is
negligible. More precisely, the drag, the velocity field, and the pressure related to
Rε converge to those related to R as ε→ 0.

In this paper, we assume that, on the walls, the fluid satisfies conditions of
Fourier kind. In particular, on the rugose wall we impose

σ · n+ ku = 0 on Rε, (1)

where σ is the usual stress tensor and k is a friction coefficient. We prove that
these conditions, contrarily to Dirichlet (no-slip) conditions, bring a leading part
to rugosity : as ε → 0, the drag experienced by the rugose wall Rε converges to
the drag associated with the smooth wall R provided with an homogenized friction
coefficient K which is not constant and depends on the profile of asperities. We
calculate the limit flow and we give estimates of the deviations of the drag, velocity
field and pressure, in terms of the size ε of the asperities. In the particular case of
a plate, the limit drag is larger than the drag of the smooth wall, see Remark 2.1.

In the case of Laplace or Poisson equation with Fourier or Neumann bound-
ary conditions, similar results to those of the present paper have been obtained by
O.A. Oleinik, A.S. Shamaev and G.A. Yosifian [?] and by G.A. Chechkin, A. Fried-
man and A.L. Piatnitski [?]. See also E. Sanchez-Palencia [?].
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In fact, it is not completely realistic to assume that a fluid satisfies (??), unless
the wall Rε has some kind of porosity, see R.L. Panton [?, p. 149–152]. It would be
more appropriate, instead, to impose the slip conditions

u · n = 0, (σ · n)tang + ku = 0 on Rε, (2)

where (σ · n)tang denotes the tangential component of σ · n. However, (??) may be
used for large k as a formal approximation of the Dirichlet condition u = 0.

It would be very interesting to extend the present results to the case in which con-
ditions like (??) are considered, but there are some technical difficulties to do this.
Our results may be considered as a first step in this direction. Let us mention here
that slip boundary conditions have been considered by G. Allaire [?], and D. Cio-
ranescu, P. Donato and H. I. Ene [?] for homogenization of Stokes or Navier-Stokes
equations in domains containing periodically distributed obstacles. For conditions
of Fourier kind, we refer to C. Conca [?], [?].

2 The main result

The smooth wall R is assumed to be the graph of a function r on IR2, with

r is Lipschitz-continuous, positive and (l1, l2)-periodic (3)

(the latter means that r is periodic with respect to xi with period li for i = 1 or 2).
For each ε > 0, the rugose wall Rε is assumed to be the graph of the function rε
defined on IR2 as follows : for any x′ = (x1, x2),

rε(x
′) = r(x′)(1 + εη(x′,

x′

ε
)). (4)

Here, η = η(x′, y′) is a function on IR2 × IR2 satisfying

η is Lipschitz-continuous and l1, l2-periodic with respect to x′ and y′.

In order to ensure that rε satisfies (??), we assume that

ε‖η‖L∞(S2) ≤
1

2
,

1

ε
is an integer number. (5)

The fluid occupies the unbounded domain

Oε = {x ∈ IR3 : x′ ∈ IR2, 0 < x3 < rε(x
′)}.

Setting S = (0, l1)× (0, l2), Oε can be viewed as generated by periodic translations
of the bounded domain

Ωε = {x ∈ IR3 : x′ ∈ S, 0 < x3 < rε(x
′)}.
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Observe that ∂Ωε consists of the following parts of the walls Rε and P

Rε = {x ∈ IR3 : x′ ∈ S, x3 = rε(x
′)}, P = {x ∈ IR3 : x′ ∈ S, x3 = 0}

and the lateral immaterial boundary

L = {x ∈ IR3 : x′ ∈ ∂S, 0 ≤ x3 ≤ rε(x
′)}.

For each m ≥ 0, let us introduce the space

Hm
per(Ωε) = {v ∈ Hm

loc(Oε) : v ∈ Hm(Ωε),

v(x+ (l1, 0, 0)) = v(x+ (0, l2, 0)) = v(x) for a.e. x ∈ Oε}.

In other words, Hm
per(Ωε) is formed by all (l1, l2)-periodic functions on Oε which are

Hm in any bounded subset (and not only in compact subsets, as Hm
loc means). As

usual, for m = 0, we write L2
per(Ωε).

The velocity field and the pressure are assumed to satisfy





uε ∈ (H1
per(Ωε))

3, pε ∈ L2
per(Ωε),

−ν∆uε +∇pε = 0, ∇ · uε = 0 in Oε,

σε · n + ku = 0 on Rε,

σε · n + k(u− g) = 0 on P,

(6)

where ν > 0 is the viscosity,

σε = σ(uε, pε) = −pεId + ν(∇uε + t∇uε), (7)

n is the outwards unit normal vector field, k > 0 is a friction coefficient and g =
(g′, 0) is the velocity of the wall P.

The existence and uniqueness of a solution is proved in proposition 3.1. Remark
that the boundary conditions on Rε and P are meaningful, since (??) gives σε ∈
(L2

per(Ωε))
3×3 and

∇ · σε = −∇pε + ν∆uε +
t∇(∇ · uε) = 0. (8)

This allows to define the normal trace σε · n in (H
−1/2
loc (∂Oε))

3.
The hydrodynamical drag Tε associated with the bounded part Rε of the wall

Rε (the drag of the whole wall is infinite) is by definition the projection of the force
exerted on Rε by the fluid, that is

Tε = −g ·
∫

Rε

σε · n ds. (9)

3



Thanks to the boundary condition on Rε, it reads as well

Tε = g ·
∫

Rε

uε ds.

Let us now define the homogenized friction coefficient K = K(x′, r(x′)). First,
we introduce the following function m ∈ L∞(IR2 × IR2) : for any (x′, y′) ∈ IR2 × IR2,

m(x′, y′) =
(
1 + |∇r(x′) + r(x′)∇y′η(x

′, y′)|2
1 + |∇r(x′)|2

) 1
2

. (10)

Then we put, for all x′ ∈ IR2,

〈m〉(x′) = 1

|S|
∫

S
m(x′, y′) dy′.

Obviously, we have 〈m〉 ∈ L∞(IR2). The homogenized friction coefficient is given R
as follows : for all x′ ∈ IR2,

K(x′, r(x′)) = k〈m〉(x′). (11)

It is therefore a (l1, l2)-periodic function which belongs to L∞(R).
We will prove that (uε, pε) converges in an appropriate sense to the unique solu-

tion of the system




u0 ∈ (H1
per(Ω))

3, p0 ∈ L2
per(Ω),

−ν∆u0 +∇p0 = 0, ∇ · u0 = 0 in O,
σ0 · n+Ku0 = 0 on R,
σ0 · n+ k(u0 − g) = 0 on P,

(12)

where σ0 = −p0Id + ν(∇u0 + t∇u0), R is the graph of r, O is the domain bounded
by R and P and Ω = {x ∈ IR3 : x′ ∈ S, 0 < x3 < r(x′)}. Furthermore, we will
prove that the limit drag is

T0 = −g ·
∫

R
σ0 · n ds = g ·

∫

R
Ku0 ds.

Notice that, in general, u0 is not the velocity field related to the smooth wall R
because K 6= k, and T0 is not the drag experienced by R.

Since the domain Ωε varies with ε, the convergence of uε and pε cannot hold in
the whole domain Ω. We will obtain convergence outside a neighbourhood of R of
arbitrary small size δ > 0, that is, in all subdomains of the form

ωδ = {x ∈ IR3 : x′ ∈ S, 0 < x3 < r(x′)− δ}.

Our main result is the following.
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Theorem 2.1 Assume r ∈ W 3,∞(IR2). There exists C > 0 such that, for any ε > 0
satisfying (??), we have :

|Tε − T0| ≤ C
√
ε. (13)

Moreover, for any δ > 0 there exists Cδ > 0 such that, for any ε satisfying (??), we
have :

‖uε − u0‖H1(ωδ) ≤ Cδ

√
ε, (14)

‖pε − p0‖L2(ωδ) ≤ Cδ

√
ε. (15)

⊔⊓

Remark 2.1 The drag Tε of a rugose plate is strictly greater than the drag T of
the corresponding (homogenized) smooth plate. Indeed, assume that r(x′) ≡ l3 (a
positive real number) and η depends only on y′. Then 〈m〉 is independent of x′ and
is greater than 1 unless η is a constant. Accordingly, we have

lim
ε→0

Tε = T0 =
νl1l2k〈m〉|g|2

ν(1 + 〈m〉) + l3k〈m〉 > T =
νl1l2k|g|2
2ν + l3k

.

⊔⊓

Remark 2.2 Notice that

1

1 + |∇r(x′)|2 ≤ 〈m〉(x′) ≤
(
1 +

(r(x′))2

1 + |∇r(x′)|2
1

|S|
∫

S
|∇y′η(x

′, y′)|dy′
)1/2

.

The last quantity is bounded from above by the local asymptotic ratio of the Rε-area
and the R-area. In other words, for any x′ ∈ S, we have

〈m′〉(x′) ≤ lima→0limε→0|Rε
⋃
B(x′; a)|

lima→0|R
⋃
B(x′; a)|

where B(x′; a) is the ball centered at (x′, r(x′)) of radius a. ⊔⊓

Remark 2.3 The drag Tε can also be written in the form

Tε = g ·
∫

P
σε · n ds = −kg ·

∫

P
(uε − g) ds. (16)

Indeed, the following equalities hold :

−g ·
∫

Rε

σε · n ds = −g ·
∫

Rε∪P
σε · n ds+ g ·

∫

P
σε · n ds

= −g ·
∫

Ωε

∇ · σε ds+ g ·
∫

P
σε · n ds.

A similar equality holds for T0. ⊔⊓
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3 Existence, uniqueness and estimates

We will prove that there exists exactly one solution (uε, pε) to (??) and exactly one
solution (u0, p0) to (??). Notice that (??) is similar to (??) with a varying friction
coefficient, since both walls Rε and R are the graphs of periodic Lipschitz functions.
Therefore, in order to put these two problems in the same framework, we will assume
in this Section that

k ∈ L∞
per(Ωε), k ≥ κ > 0, (17)

where κ is a real number.
We will use the following variational formulation :





uε ∈ (H1
per(Ωε))

3, pε ∈ L2
per(Ωε),

2ν
∫

Ωε

e(uε) : e(ϕ)−
∫

Ωε

pε∇ · ϕ+
∫

Rε∪P
kuε · ϕ =

∫

P
kg · ϕ ∀ϕ ∈ (H1

per(Ωε))
3,

∇ · uε = 0,
(18)

where e(ϕ) = 1
2
(∇ϕ+ t∇ϕ) and e(u) : e(ϕ) = ∑

i,j eij(u)eij(ϕ).

Proposition 3.1 Problem (??) is equivalent to (??) and possesses exactly one so-

lution. Furthermore, one has

‖uε‖H1(Ωε) + ‖pε‖L2(Ωε) ≤ C, (19)

where C is independent of ε. ⊔⊓

Obviously, this result also provides the existence and uniqueness of a solution
(u0, p0) to (??).

In order to prove this proposition, we need some previous results. In particular,
we need a Korn inequality for a special class of star-shaped domains. By definition,
D is star-shaped, with respect to a ball B if the segment connecting any two points
x ∈ B and y ∈ D lies in D.

Lemma 3.1 There exists C > 0 such that, for any bounded domain D ⊂ IR3 of

diameter R which is star-shaped with respect to a ball B of radius ρ and for any

v ∈ (H1(D))3, the following inequality holds

‖∇v‖2L2(D) ≤ C
(
R

ρ

)3 (
‖e(v)‖2L2(D) + ‖∇v‖2L2(B)

)
. (20)

⊔⊓
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For the proof see O.A. Oleinik, A.S. Shamaev and G.A. Yosifian, [?, Theo-
rem 2.10, p. 23].

Let us put

D⋆ = {x ∈ IR3 : x′ ∈ S, 0 < x3 <
l3
2
}.

Lemma 3.2 There exists C > 0, only depending on S and l3, such that, for all

v ∈ (H1(D⋆))
3,

‖∇v‖2L2(D⋆) ≤ C
(
‖e(v)‖2L2(D⋆) +

∫

P
|v|2 ds

)
. (21)

Proof: Suppose the assertion in this lemma is false. Then, for each m ≥ 1, there
exists wm ∈ (H1(D⋆))

3 such that

‖∇wm‖2L2(D⋆) > m
(
‖e(wm)‖2L2(D⋆) +

∫

P
|wm|2 ds

)
.

Let us put vm = wm/‖∇wm‖L2(D⋆). Then ‖∇vm‖L2(D⋆) = 1 and

‖e(vm)‖2L2(D⋆) +
∫

P
|vm|2 <

1

m
,

whence we obtain the following as m→ ∞ :

e(vm) → 0 in (L2(D⋆))
3×3,

∫

P
|vm|2 ds→ 0. (22)

On the other hand, the following estimate holds for all v ∈ (H1(D⋆))
3 :

∫

D⋆

|v|2 ds ≤ l3
(∫

P
|v|2 + l3

2

∫

D⋆

|∇v|2
)
. (23)

Indeed, for any regular v and any x = (x′, x3) in D⋆, one has

v(x) = v(x′, 0) +
∫ x3

0
∂x3

v(x′, y3) dy3.

Consequently,

|v(x)|2 ≤ 2|v(x′, 0)|2 + 2
(∫ l3/2

0
|∂x3

v(x′, y3)| dy3
)2
,

whence

∫ l3/2

0
|v(x′, x3)|2 dx3 ≤ l3

(
|v(x′, 0)|2 +

(∫ l3/2

0
|∂x3

v(x′, y3)| dy3
)2)
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and ∫

S

∫ l3/2

0
|v(x′, x3)|2 dx3 dx′

≤ l3

(∫

P
|v(x′, 0)|2 dx′ + 1

2

∫

S

∫ l3/2

0
|∂x3

v(x′, y3)|2l3 dy3dx′
)
.

This proves (??), at least when v is regular enough. By density, (??) holds for all v
in (H1(D⋆))

3. It follows from (??) that vm is uniformly bounded in (H1(D⋆))
3. From

the compactness of the embedding H1(D⋆) →֒ L2(D⋆), there exists a subsequence,
still denoted vm, that converges strongly in (L2(D⋆))

3×3 to some v ∈ (H1(D⋆))
3. In

view of Korn inequality in Lipschitz domains, one has

‖vm′ − vm‖2H1(D⋆) ≤ C(‖e(vm′)− e(vm)‖2L2(D⋆) + ‖vm′ − vm‖2L2(D⋆)),

where the constant C depends only on S and l3, see [?], [?]. These inequalities and
(??) show that vm converges strongly in H1(D⋆) to v and, also, that

‖∇v‖L2(D⋆) = 1, ‖e(v)‖L2(D⋆) = 0,
∫

P
|v|2 ds = 0. (24)

But the equality e(v) = 0 implies that v is a rigid displacement, i.e. v = Ax+ b
where A is a skew-symmetric constant matrix and b is a constant vector. This fact,
together with the third equality in (??), implies v = 0. This leads to a contradiction
and proves the lemma. ⊔⊓

Lemma 3.3 Let ε satisfy (??). Then, for any v ∈ (H1(Ωε))
3,

‖v‖2H1(Ωε) ≤ C
(
‖e(v)‖2L2(Ωε) +

∫

P
|v|2

)
, (25)

where C depends only of l1, l2, r and η.

Proof: The function rε defined by (??) is Lipschitz-continous, with a Lipschitz
constant independent of ε. It is also bounded from below by a positive number
independent of ε. Therefore, if l1 and l2 are small enough, there exists a ball B
independent of ε such that Ωε is star-shaped with respect to B. Moreover, B can
be chosen in D⋆. For arbitrarily given l1 and l2, by dividing S in sufficiently small
squares, it follows that Ωε is the union of m domains Ωi

ε which are respectively star-
shaped with respect to the balls Bi, with m and Bi independent of ε. Lemma 3.1
yields the following for each i and for all v ∈ (H1(Ωε))

3 :

‖∇v‖2L2(Ωi
ε)
≤ C

(
‖e(v)‖2L2(Ωi

ε)
+ ‖∇v‖2L2(Bi)

)
.

Adding these inequalities for i = 1, ..., m, we find that

‖∇v‖2L2(Ωε) ≤ C
(
‖e(v)‖2L2(Ωε) + ‖∇v‖2L2(D⋆)

)
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and using (??) we obtain

‖∇v‖2L2(Ωε) ≤ C
(
‖e(v)‖2L2(Ωε) +

∫

P
|v|2

)
. (26)

It is also clear that

‖v‖2L2(Ωε) ≤ C
(
‖∇v‖2L2(Ωε) +

∫

P
|v|2

)
. (27)

This can be seen arguing as in the proof of (??) in the previous lemma. From (??)
and (??), we deduce (??) and the lemma is proved. ⊔⊓

Lemma 3.4 Let ε satisfy (??). For any F ∈ L2(Ωε) and any w0 ∈ (H1/2(∂Ωε))
3

such that ∫

Ωε

F =
∫

∂Ωε

w0 · n

there exists a function wε ∈ (H1(Ωε))
3 such that

∇ · wε = F in Ωε, wε = w0 on ∂Ωε

and

‖wε‖H1(Ωε) ≤ C(‖w0‖H1/2(∂Ωε) + ‖F‖L2(Ωε)),

where C is independent of F , w0 and ε. ⊔⊓

The proof of this lemma is essentially contained in theorem 3.1 of [?, p. 116,124].

Lemma 3.5 Let ε satisfy (??). For each q ∈ L2
per(Ωε), there exists zε ∈ (H1

per(Ωε))
3

such that

zε = 0 on Rε, ∇ · zε = q in Ωε, ‖zε‖H1(Ωε) ≤ C‖q‖L2(Ωε), (28)

where C is independent of q and ε.

Proof: Let vε ∈ (H1/2(∂Ωε))
3 be such that vε = 0 on Rε,
∫

∂Ωε

vε · n ds = |Ωε|

and ‖vε‖H1/2(∂Ωε) is bounded uniformly with respect to ε. It is clear that vε can be
chosen x′-periodic, i.e. satisfiying

vε(x1, 0, x3) = vε(x1, l1, x3), vε(0, x2, x3) = vε(l1, x2, x3).

Using lemma 3.4 with F ≡ 1 and w0 = vε, we obtain a function vε ∈ (H1(Ωε))
3 such

that
∇ · vε = 1 in Ωε, vε = vε on ∂Ωε (29)
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and
‖vε‖H1(Ωε) ≤ C(‖vε‖H1/2(∂Ωε) + |Ωε|1/2) ≤ C. (30)

Obviously, since vε is x′-periodic, the same is true for vε. Let q be an arbitrary
function of L2

per(Ωε). We can write q in the form

q = p+
1

|Ωε|
∫

Ωε

q,

with p ∈ L2(Ωε) and
∫

Ωε

p = 0. By lemma 3.4 with w0 = 0, there exists wε ∈
(H1

0 (Ωε))
3 such that

∇ · wε = p in Ωε, ‖wε‖H1(Ωε) ≤ C‖p‖L2(Ωε),

where C is independent of ε and p. Consequently, we have

‖wε‖H1(Ωε) ≤ C‖q‖L2(Ωε). (31)

Let us put

zε = wε +
(

1

|Ωε|
∫

Ωε

q
)
vε.

It is then clear from (??), (??) and (??) that zε ∈ (H1
per(Ωε))

3, ∇ · zε = q and

‖zε‖H1(Ωε) ≤ C‖q‖L2(Ωε) +
C

|Ωε|

∣∣∣∣
∫

Ωε

q
∣∣∣∣ ≤ C‖q‖L2(Ωε).

This proves the lemma. ⊔⊓

Proof of proposition 3.1: Let us first prove that (??) is equivalent to (??).

Given a solution (uε, pε) to (??), a normal trace σε · n in (H
−1/2
loc (∂Oε))

3 is defined,
thanks to (??), by : for all ϕ ∈ (H1(Ωε))

3,

〈σε · n, ϕ〉∂Ωε =
∫

Ωε

σε · ∇ϕ.

If in addition ϕ is periodic, that is if ϕ ∈ (H1
per(Ωε))

3, this reduces to

〈σε · n, ϕ〉Rε∪P =
∫

Ωε

σε · ∇ϕ. (32)

Indeed, the contribution of the lateral part L of the boundary is then 〈σε ·n, ϕ〉L = 0
since, on opposite sides, σε and ϕ are preserved while n is replaced by the opposite
vector. Using the boundary conditions and the following identity

σε · ∇ϕ = 2νe(uε) : e(ϕ)− pε∇ · ϕ (33)
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we obtain the equation in (??).
Conversely, let (uε, pε) satisfy (??). Choosing ϕ to be the periodic extension of

a function in (D(Ωε))
3 and using (??), we get

∫
Ωε
σε · ∇ϕ = 0 and thus ∇ · σε = 0.

Then (??) holds and (??) reads, for all ϕ ∈ (H1
per(Ωε))

3,

〈σε · n, ϕ〉Rε∪P +
∫

Rε∪P
kuε · ϕds =

∫

P
kg · ϕds.

This provides the boundary conditions in (??); Stokes equation follows from ∇·σε =
0, ∇ · uε = 0 and (??). Therefore (??) is equivalent to (??).

Let us now prove the existence and uniqueness of a solution (uε, pε) to (??). We
can put (??) in the form





(uε, pε) ∈ (H1
per(Ωε))

3 × L2
per(Ωε),

a(uε, ϕ) + b(ϕ, pε) =
∫

P
k · gϕ ∀ϕ ∈ (H1

per(Ωε))
3,

b(uε, q) = 0 ∀q ∈ L2
per(Ωε),

(34)

where the bilinear forms a(·, ·) and b(·, ·) are defined by

a(u, v) = 2ν
∫

Ωε

e(u) : e(v) +
∫

Rε∪P
ku · v ∀u, v ∈ (H1

per(Ωε))
3

and
b(v, q) = −

∫

Ωε

(∇ · v)q ∀u ∈ (H1
per(Ωε))

3, ∀q ∈ L2
per(Ωε).

Taking into account Corollary 4.1, p. 61 of [?], in order to establish existence and
uniqueness, it is sufficient to prove that a(·, ·) is coercive on Vε, i.e.

a(v, v) ≥ α‖v‖2H1(Ωε) ∀v ∈ Vε, α > 0, (35)

and b(·, ·) satisfies the Brezzi-Babuska “inf-sup” condition

inf
q∈L2

per(Ωε), q 6=0

sup
v∈(H1

per(Ωε))3, v 6=0

b(v, q)

‖v‖H1(Ωε)‖q‖L2(Ωε)

≥ β > 0. (36)

In (??), Vε stands for the space

Vε = {v ∈ (H1
per(Ωε))

3 : b(v, q) = 0 ∀q ∈ L2
per(Ωε)}.

Thus Vε is the space of all functions v in (H1
per(Ωε))

3 satisfying ∇ · v = 0 in Ωε.
The inequality (??) holds for some α independent of ε. Indeed, thanks to

lemma 3.3, we have :

a(v, v) = 2ν‖e(v)‖2L2(Ωε) +
∫

Rε∪P
k|v|2 ≥ C‖v‖2H1(Ωε). (37)
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Let us now check the inf-sup condition (??). Assume that q ∈ L2
per(Ωε) and

q 6= 0 and let zε be the function furnished by lemma 3.5. Then

sup
v∈(H1

per(Ωε))3, v 6=0

b(v, q)

‖v‖H1(Ωε)‖q‖L2
per(Ωε)

≥ − b(zε, q)

‖zε‖H1(Ωε)‖q‖L2
per(Ωε)

≥ 1

C
> 0.

This proves (??). Since (??) and (??) hold, there exists exactly one pair (uε, pε)
which solves (??).

Let us estimate uε. Choosing ϕ = uε in (??), we obtain

a(uε, uε) =
∫

P
kg · uε

and then (??) gives
‖uε‖H1(Ωε) ≤ C. (38)

Finally, let us estimate pε. From lemma 3.5, there exists wε ∈ (H1
per(Ωε))

3

satisfying
∇ · wε = pε in Ωε, ‖wε‖H1(Ωε) ≤ C‖pε‖L2(Ωε),

where C is independent of ε, pε and wε. Let us choose ϕ = wε in (??). Then we
find ∫

Ωε

|pε|2 = ν
∫

Ωε

e(uε) : e(wε) + k
∫

P
uε · wε − k

∫

P
g · wε.

The right-hand side can be bounded as follows :

ν
∫

Ωε

e(uε) : e(wε) + k
∫

P
uε · wε − k

∫

P
g · wε

≤ C‖uε‖H1(Ωε) · ‖wε‖H1(Ωε) + C‖wε‖H1(Ωε) ≤
1

2
‖pε‖2L2(Ωε) + C‖uε‖H1(Ωε) + C.

Thus, using (??), we deduce that

‖pε‖L2(Ωε) ≤ C. (39)

This ends the proof of proposition 3.1. ⊔⊓

4 The equations in the homogenized domain

For any function ψ = ψ(x′, y′) defined in S × S and periodic with respect to y′, we
will denote by ψ

ε
the function defined on S by

ψ
ε
(x′) = ψ(x′,

x′

ε
).

12



Let Lε denote the one-to-one mapping from Ω onto Ωε defined by

Lε(x
′, x3) = (x′, x3(1 + εη(x′,

x′

ε
))) = (x′, x3(1 + εηε(x′))).

Since ∂xi
ηε = ∂xi

η
ε
+

1

ε
∂yiη

ε
, the Jacobian matrix is

∇Lε =




1 0 x3(ε∂x1
η
ε
+ ∂y1η

ε
)

0 1 x3(ε∂x2
η
ε
+ ∂y2η

ε
)

0 0 1 + εηε


 .

Given a function v on Ωε, we will denote by v̂ its image on Ω, that is v̂ = v ◦ Lε. If
v ∈ Ls(Ωε), 1 ≤ s ≤ ∞, then v̂ ∈ Ls(Ω) and

∫

Ωε

v =
∫

Ω
v̂(1 + εηε). (40)

If v ∈ W 1,s(Ωε), then v̂ ∈ W 1,s(Ω) and we have the following for all i :

∂iv̂ =
3∑

j=1

∂iLεj ∂̂jv. (41)

Conversely, for all i,

∂̂iv =
3∑

j=1

(Mε)ij ∂j v̂, (42)

where

Mε =




1 0 −x3(ε∂x1
η
ε
+ ∂y1η

ε
)/(1 + εηε)

0 1 −x3(ε∂x2
η
ε
+ ∂y2η

ε
)/(1 + εηε)

0 0 1/(1 + εηε)


 .

Another way to write (??) is the following :

∇̂v =Mε∇v̂. (43)

Also,
∇̂ · v = tMε : ∇v̂. (44)

The image of the divergence can also be obtained from the dual formula

(1 + εηε)∇̂ · v = ∇ · ( tNεv̂), (45)

where Nε = (1 + εηε)Mε. Indeed, given ψ ∈ D(Ωε), we have
∫

Ω
(1 + εηε)(∇̂ · v)ψ̂ =

∫

Ωε

(∇ · v)ψ = −
∫

Ωε

v · ∇ψ

= −
∫

Ω
(v̂ · ∇̂ψ)(1 + εηε) = −

∫

Ω
v̂ ·Mε∇ψ̂(1 + εηε)

=
∫

Ω
∇ · ((1 + εηε) tMεv̂)ψ̂.
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Therefore, the weak formulation (??) (where k > 0 is constant again) is equivalent
to the following

ûε ∈ (H1
per(Ω))

3, p̂ε ∈ L2
per(Ω), (46)





2ν
∫

Ω
(êε(ûε) : êε(ϕ))jε −

∫

Ω
p̂ε∇ · ( tNεϕ) + k

∫

R
(ûε · ϕ)µε

+k
∫

P
ûε · ϕ = k

∫

P
g · ϕ ∀ϕ ∈ (H1

per(Ω))
3,

(47)

∇ · ( tNεûε) = 0. (48)

Here, the following notations have been introduced :

êε(v) =
1

2
(Mε∇v + t(Mε∇v)), (49)

jε = 1 + εηε, µε =
(1 + |∇x′rε|2)1/2
(1 + |∇x′r|2)1/2 . (50)

The asymptotic behavior of (ûε, p̂ε) as ε→ 0 is explained in the following result,
which is crucial in the proof of theorem 2.1.

Proposition 4.1 Assume that r ∈ W 3,∞(IR2). Then, for any ε satisfying (??), we
have

‖ûε − u‖H1(Ω) ≤ C
√
ε (51)

and

‖p̂ε − p0‖L2(Ω) ≤ C
√
ε, (52)

where

u = u0 + εx3η
ε∂x3

u0

and C is independent of ε. ⊔⊓

This result is proved in Section 6. Before, we need some technical results, which
are given in Section 5.

Remark 4.1 Proceeding as in [?], it can be seen that the assumption r ∈ W 3,∞(IR2)
leads to the regularity of (u0, p0), namely u0 ∈ (H3(Ω))3 and p0 ∈ H2(Ω). This will
be used in the sequel. ⊔⊓
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5 Some technical lemmas

Lemma 5.1 Let γ = γ(x′, y′) be a Lipschitz function on S2, periodic with respect

to y′ and satisfying ∫

S
γ(x′, y′) dy′ = 0

for any x′ ∈ S. There exists a real number C such that :

i) For all functions ϕ and ψ in H1(Ω) and 0 < ε ≤ 1, we have

∣∣∣∣∣

∫

Ω
γ(x′,

x′

ε
)ψ(x)ϕ(x) dx

∣∣∣∣∣ ≤ Cε‖ψ‖H1(Ω)‖ϕ‖H1(Ω). (53)

ii) For all functions ψ ∈ H2(Ω) and ϕ ∈ H1(Ω) and 0 < ε ≤ 1, we have

∣∣∣∣∣

∫

S
γ(x′,

x′

ε
)ϕ(x′, r(x′))ψ(x′, r(x′)) dx′

∣∣∣∣∣ ≤ C
√
ε‖ψ‖H2(Ω)‖ϕ‖H1(Ω). (54)

⊔⊓

For the proof, see O.A. Oleinik, A.S. Shamaev and G.A. Yosifian [?, Lemma 1.6,
p. 8].

Lemma 5.2 Assume r ∈ W 3,∞(S). There exists a positive number C, independent
of u0 and ε, with the following properties :

i) For 0 < ε ≤ 1, we have

‖∇ · ( tNεu)‖L2(Ω) ≤ Cε‖u0‖H2(Ω). (55)

ii) For any function ϕ ∈ (H1(Ω))3 and 0 < ε ≤ 1, we have

∣∣∣∣
∫

Ω
(êε(u) : êε(ϕ))jε −

∫

Ω
e(u0) : e(ϕ)

∣∣∣∣ ≤ C
√
ε‖u0‖H3(Ω)‖ϕ‖H1(Ω). (56)

Proof: Notice that u0 ∈ (H3(Ω))3, since r ∈ W 3,∞(S). Let us first prove (??).
Since by definition Nε = (1 + εηε)Mε, we see that

∇ · ( tNεw) = ∂x1
((1 + εηε)w1) + ∂x2

((1 + εηε)w2)

+ ∂x3
(−x3ε(∂x1

ηε)w1 − x3ε(∂x2
ηε)w2 + w3)

= ∇ · w + εηε(∂x1
w1 + ∂x2

w2)− x3(ε(∂x1
ηε)∂x3

w1 + ε(∂x2
ηε)∂x3

w2),
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for any function w. With the particular choice w = u = u0 + x3εη
ε∂x3

u0, since
∇ · u0 = 0, we obtain

∇ · u = x3(ε(∂x1
ηε)∂x3

u01 + ε(∂x2
ηε)∂x3

u02) + εηε∂x3
u03

and
εηε∂x1

u1 − x3ε(∂x1
ηε)∂x3

u1 = εηε∂x1
u01 − x3ε(∂x1

ηε)∂x3
u01

+x3(εη
ε)2∂2x1x3

u01 − x23ε
2ηε(∂x1

ηε)∂2x3x3
u01.

Using the corresponding similar equality for u2, we deduce that

∇ · ( tNεu) = x3(εη
ε)2(∂2x1x3

u01 + ∂2x2x3
u02)

− x23εη
ε(ε(∂x1

ηε)∂2x3x3
u01 + ε(∂x2

ηε)∂2x3x3
u02).

The inequality (??) follows, since |ηε(x′)| ≤ ‖η‖L∞(S2) and

|ε∂xi
ηε(x′)| =

∣∣∣ε∂xi
η(x′,

x′

ε
) + ∂yiη(x

′,
x′

ε
)
∣∣∣ ≤ 2‖η‖W 1,∞(S2).

Let us now prove (??). The definition (??) of êε yields the following for all u
and ϕ :

(êε(u) : êε(ϕ)) =
1

2
Mε∇u :Mε∇ϕ+

1

2
Mε∇u : t(Mε∇ϕ).

Moreover, the definition of Mε leads to the identities, for 1 ≤ k ≤ 3,

(Mε∇ϕ)ik =





∂xi
ϕk −

1

jε
x3ε(∂xi

ηε)∂x3
ϕk i = 1, 2,

∂x3
ϕk −

1

jε
εηε∂x3

ϕk i = 3.

For i = 3, we have used jε = 1 + εηε and thus 1/jε = 1 − εηε/jε. In particular, we
obtain

(Mε∇u)ik =





∂xi
u0k + x3εη

ε∂2xix3
u0k −

1

jε
ε2ηε∂xi

ηε∂2x3x3
u0k i = 1, 2,

∂x3
u0k +

1

jε
x3εη

ε∂2x3x3
u0k i = 3.

Therefore,

êε(u)jε : êε(ϕ)− e(u0) : e(ϕ) =
2∑

i=1

3∑

k=1

aik +
∑

α

εηεbα,

where

aik = −1

2
x3ε(∂xi

ηε)∂x3
ϕk(∂xi

u0k + ∂xk
u0i)
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and each bα is the product of a first or second derivative of u0, a derivative of ϕ and
some of the following functions : x3, jε, (jε)

−1, εηε and ε∂xi
ηε. Since |εηε| ≤ Cε, we

see that ∫

Ω
|εηεbα| ≤ Cε‖u0‖H2(Ω)‖ϕ‖H1(Ω).

Since

ε∂xi
ηε(x′) = ε∂xi

η(x′,
x′

ε
) + ∂yiη(x

′,
x′

ε
),

we can also put

aik = −1

2
x3∂yiη

ε
∂x3

ϕk(∂xi
u0k + ∂xk

u0i) + ε∂xi
η
ε
b′ik, (57)

where the b′ik have the same structure as bα. Hence,

∫

Ω
|ε∂xi

η
ε
b′ik| ≤ Cε‖u0‖H2(Ω)‖ϕ‖H1(Ω).

The integrals of the other terms in the right-hand side of (??) are as follows :

∫

Ω
−x3∂yjη

ε
(∂x3

ϕk)(∂xl
u0m)

=
∫

Ω
∂yjη

ε
∂x3

(x3∂xl
u0m)ϕk −

∫

∂Ω
x3∂yjη

ε
ϕk(∂xl

u0m)n3 ds.

Since 1/ε is an integer and η is periodic with respect to all its variables, we have

∫

S
∂yjη

ε
=

∫

S
∂yiη(x

′,
x′

ε
) dx′ = 0. (58)

Therefore, thanks to lemma 5.1, part i),

∣∣∣
∫

Ω
∂yjη

ε
∂x3

(x3∂xl
u0m)ϕk dx

∣∣∣ ≤ Cε‖u0m‖H2(Ω)‖ϕk‖H1(Ω).

On the other hand, from lemma 5.1, part ii), we have

∣∣∣
∫

∂Ω
∂yjη

ε
x3(∂xl

u0m)ϕkn3 ds
∣∣∣ =

∣∣∣
∫

S
∂yjη(x

′,
x′

ε
)(x3(∂xl

u0m)ϕk)(x
′, r(x′)) dx′

∣∣∣

≤ √
ε‖u0m‖H3(Ωε)‖ϕk‖H1(Ωε).

Here, we have used that n3 ds = dx′. This proves that

∣∣∣
∫

Ω
ai,k

∣∣∣ ≤ Cε‖u0‖H3(Ω)‖ϕk‖H1(Ω).

This completes the proof of (??).
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Lemma 5.3 Let us assume that r ∈ W 3,∞(S). Then, for any ε satisfying (??) and
any ϕ ∈ (H1

per(Ω))
3, we have

∣∣∣
∫

Ω
p0∇ · ( tNεϕ− ϕ)

∣∣∣ ≤ C
√
ε‖p0‖H2(Ω)‖ϕ‖H1(Ω), (59)

where C is independent of ε, p0 and ϕ.

Proof: Let us first notice that p0 ∈ H2(Ω), since r ∈ W 3,∞(S). We have

∇ · ( tNεϕ− ϕ) = εηε(∂x1
ϕ1 + ∂x2

ϕ2)− x3
2∑

j=1

(ε∂xj
η
ε
+ ∂yjη

ε
)∂x3

ϕj.

Then, multiplying by p0 and integrating by parts the last term, we see that

∫

Ω
p0∇ · ( tNεϕ− ϕ) =

∫

Ω
εp0

2∑

j=1

(ηε∂xj
ϕj − x3∂xj

η
ε
∂x3

ϕj)

+
∫

Ω
∂x3

(x3p0)
2∑

j=1

∂yjη
ε
ϕj −

∫

S
r(x′)p0(x

′, r(x′))
2∑

j=1

∂yjη
ε
(x′)ϕj(x

′, r(x′)) dx′.

In the right-hand side, the first integral is bounded by

∣∣∣∣
∫

Ω
εp0

2∑

j=1

(ηε∂jϕj − εx3∂xj
η
ε
∂x3

ϕj)
∣∣∣∣ ≤ Cε‖p0‖L2‖ϕj‖H1(Ω).

Using lemma 5.1, part i) and (??), the second integral is bounded by

∣∣∣∣
∫

Ω
∂x3

(x3p0)
2∑

j=1

∂yjη
ε
ϕj

∣∣∣∣ ≤ Cε‖p0‖H2(Ω)‖ϕj‖H1(Ω).

On the other hand, from lemma 5.1, part ii), the boundary integral satisfies

∣∣∣∣
∫

S
r(x′)p0(x

′, r(x′))
2∑

j=1

∂yjη
ε
(x′)ϕj(x

′, r(x′)) dx′
∣∣∣∣ ≤ C

√
ε‖p0‖H2(Ω)‖ϕ‖H1(Ω).

Hence, lemma 5.3 is proved. ⊔⊓

Lemma 5.4 Assume that ψ ∈ L2
per(Ω) is such that

∫

Ω
ψ = 0. Then there exists

ϕ ∈ (H1
0 (Ω))

3 such that

∇ · t(Nεϕ) = ψ in Ω, ‖ϕ‖H1(Ω) ≤ C‖ψ‖L2(Ω), (60)

where C is independent of ε, ψ and ϕ.

18



Proof: Let us put

ψε =
1

1 + εηε
(ψ ◦ L−1

ε ).

Clearly, ψε ∈ L2
per(Ωε). From lemma 3.4 with w0 = 0, there exists wε ∈ (H1

0 (Ωε))
3

such that ∇ · wε = ψε in Ωε and

‖wε‖H1(Ωε) ≤ C‖ψε‖L2(Ωε),

where C does not depend of ε, ψε and wε. In accordance with (??), the function
ϕ = ŵε satisfies ∇ · ( tNεϕ) = ψ in Ω. Moreover,

∫

Ωε

|ψε|2 =
∫

Ω

1

1 + εηε
|ψ|2 ≤

∫

Ω
|ψ|2.

⊔⊓

6 The proofs of proposition 4.1 and theorem 2.1

Proof of proposition 4.1: We will first proof the estimates (??). Let us write
the weak formulation of the problem satisfied by (u0, p0) :

(u0, p0) ∈ (H1
per(Ω))

3 × L2
per(Ω), (61)

2ν
∫

Ω
e(u0) : e(ϕ)−

∫

Ω
p0∇ · ϕ+

∫

R
Kuε · ϕ+ k

∫

P
uε · ϕ = k

∫

P
g · ϕ

∀ϕ ∈ (H1
per(Ω))

3,
(62)

∇ · u0 = 0 in Ω. (63)

Substracting (??) from (??), we obtain, for all ϕ ∈ (H1
per(Ω))

3,

2ν
∫

Ω

(
êε(ûε) : êε(ϕ)jε − e(u0) : e(ϕ)

)
−

∫

Ω

(
p̂ε∇ · ( tNεϕ)− p0∇ · ϕ

)

+
∫

R
(kµεûε −Ku0) · ϕds+ k

∫

P
(ûε − u0) · ϕds = 0.

(64)

Let us set ûε = u+ zε, where u = u0 + x3εη
ε∂x3

u0. Then (??) reads

‖zε‖H1(Ω) ≤ C
√
ε. (65)

Since u = u0 on P , (??) gives :

2ν
∫

Ω
(êε(zε) : êε(ϕ))jε + k

∫

R
zε · ϕµε ds+ k

∫

P
zε · ϕds

= −2ν
∫

Ω

(
êε(u) : êε(ϕ)jε − e(u0) : e(ϕ)

)
+

∫

Ω
(p̂ε − p0)∇ · ( tNεϕ)

+
∫

Ω
p0∇ · ( tNεϕ− ϕ)−

∫

R
(kµεu−Ku0) · ϕds.

(66)
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Let us choose ϕ = zε. Then the left-hand side is larger than C‖zε‖2(H1(Ω))3 thanks
to Korn inequality (??). Using (??) to estimate the first integral in the right-hand
side of (??), we see that

‖zε‖2H1(Ω) ≤ C
√
ε‖u0‖H3(Ω)‖zε‖H1(Ω) + A+B +

∣∣∣
∫

R
(kµεu−Ku0) · zε ds

∣∣∣, (67)

where C is independent of ε and A and B are respectively given by

A =
∣∣∣
∫

Ω
(p̂ε − p0)∇ · ( tNεzε)

∣∣∣, B =
∣∣∣
∫

Ω
p0∇ · ( tNεzε − zε)

∣∣∣.

Thanks to (??),

∇ · ( tNεzε) = ∇ · ( tNεûε)−∇ · ( tNεu) = −∇ · ( tNεu).

Thus, (??) and (??) give

A ≤ Cε(‖p̂ε‖L2(Ω) + ‖p0‖L2(Ω))‖u0‖H2(Ω) ≤ Cε. (68)

On the other hand, (??) implies

B ≤ C
√
ε‖p0‖H2(Ω)‖zε‖H1(Ω) ≤ C

√
ε‖zε‖H1(Ω). (69)

In order to estimate the integral over R in (??), let us put

kµεu−Ku0 = (kmε −K)u0 + k(µε −mε)u0 + kµε(u− u0), (70)

where mε(x′) = m(x′, x′/ε). From the definition of K, we see that (kmε −K)(x′) =
kγ(x′, x′/ε), where

γ(x′, y′) = m(x′, y′)− 〈m〉(x′).
Thus, lemma 5.1, part ii), gives :

∣∣∣
∫

R
(kmε −K)u0 · zε ds

∣∣∣ ≤ C
√
ε‖u0‖H2(Ω)‖zε‖H1(Ω). (71)

From (??), (??) and (??), we deduce that

µ2
ε − (mε)2 =

|εr∇x′η
ε
+ εηε∇r|2 + 2(εr∇x′η

ε
+ εηε∇r)(r∇y′η

ε
+∇r)

1 + |∇r|2 .

This implies that |µε −mε| ≤ Cε and

∣∣∣
∫

R
k(µε −mε)u0 · zε ds

∣∣∣ ≤ Cε‖u0‖H1(Ω)‖zε‖H1(Ω). (72)
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Finally, |u− u0| = |x3ηε∂x3
u0| ≤ C|∂x3

u0| and
∣∣∣
∫

R
kµε(u− u0) · zε ds

∣∣∣ ≤ Cε‖u0‖H2(Ω)‖zε‖H1(Ω). (73)

From (??), (??), (??) and (??), we see that

∣∣∣
∫

R
(kµεu−Ku0) · zε ds

∣∣∣ ≤ C
√
ε‖zε‖H1(Ω). (74)

Using (??), (??) and (??) in (??), we obtain

‖zε‖2H1(Ω) ≤ C
√
ε‖zε‖H1(Ω) + Cε.

This implies (??) and, therefore, (??) holds.
Let us now prove (??). Choosing ϕ ∈ (H1

0 (Ω))
3 in (??), we find

2ν
∫

Ω
(êε(zε) : êε(ϕ))jε =

∫

Ω
(p̂ε − p0)∇ · ( tNεϕ) +

∫

Ω
p0∇ · ( tNεϕ− ϕ)

−2ν
∫

Ω

(
(êε(u) : êε(ϕ))jε − e(u0) : e(ϕ)

)
.

(75)

Let ψ be a function in L2
per(Ω) and let ϕ ∈ (H1

0(Ω))
3 be the function furnished by

lemma 5.4. Then (??) reads
∫

Ω
(p̂ε − p0)ψ = 2ν

∫

Ω
(êε(zε) : êε(ϕ))jε

+2ν
∫

Ω

(
(êε(u) : êε(ϕ))jε − e(u0) : e(ϕ)

)
−

∫

Ω
p0∇ · ( tNεϕ− ϕ).

Using (??), (??), (??) and (??), it is not hard to see that

∣∣∣
∫

Ω
(p̂ε − p0)ψ

∣∣∣ ≤ C
√
ε‖ψ‖L2.

Since ψ is arbitrary, this implies (??). This completes the proof. ⊔⊓

Proof of theorem 2.1: First, let us prove that (??) follows from (??). Let
δ∗ = 1/(2‖η‖L∞(S2)). Thanks to (??), we have

|Tε − T0| =
∣∣∣kg ·

∫

P
(u0 − uε)

∣∣∣ ≤ k|g|Cδ∗‖u0 − uε‖H1(ωδ∗ ).

Therefore, (??) implies (??).
Let us now prove (??). It suffices to assume δ ≤ δ∗, since (??) for δ = δ∗ implies

(??) for any δ ≥ δ∗. Using (??) and putting ω̂δ = L−1
ε (ωδ), we have

‖ϕ‖2H1(ωδ)
=

∫

ω̂δ

jε(|ϕ̂|2 + |Mε∇ϕ̂|2) ≤ C‖ϕ̂‖H1(ω̂δ)
.
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Then, it suffices to prove that

‖ûε − û0‖H1(ω̂δ)
≤ C

√
ε

(where C can depend of δ). From (??), we see that it is sufficient to prove that

‖u− û0‖H1(ω̂δ)
≤ C

√
ε. (76)

Since u = u0 = û0 on P , we only have to estimate the L2 norms of the first derivatives
∂xj

(u− û0). In fact, we are going to prove that, for all x ∈ ω̂δ,

|∂xj
(u− u0)(x)| ≤ C

√
ε. (77)

Recall that u = u0 + εx3η
ε∂x3

u0. Then,

∂xj
u =




∂xj

u0 + x3(∂yjη
ε
+ ε∂xj

η
ε
)∂x3

u0 + εx3η
ε∂2x3xj

u0 j = 1, 2,

∂x3
u0 + εηε∂x3

u0 + εx3η
ε∂2x3x3

u0 j = 3.

Thanks to (??),

∂xj
û0 =




∂̂xj

u
0
+ x3(∂yjη

ε
+ ε∂xj

η
ε
)∂̂x3

u0 j = 1, 2,

(1 + εηε)∂̂x3
u0 j = 3.

Since ηε, ∂xj
η
ε
and ∂yjη

ε
are bounded, it follows that

|∂xj
(u− û0)| ≤ C

3∑

k=1

|∂xk
u0 − ∂̂xk

u0|+ Cε(| ̂∂x3
u0|+ |∂x3

u0|+ |∂x3xj
u0|)).

Since r ∈ W 3,∞(S), we have u0 ∈ (H3(Ω))3 and thus Morrey-Sobolev theorem gives
u0 ∈ (C1,1/2(Ω))3, with a norm in this space bounded by C‖u0‖H3(Ω). Therefore, for
all x ∈ ω̂δ,

|(∂xk
u0 − ∂̂xk

u0)(x)| ≤ Cδ‖u0‖H3(Ω)|x−Lε(x)|1/2 ≤ Cδ

√
ε

and (??) is established. Thanks to Poincaré inequality, (??) holds too. This com-
pletes the proof of (??).

Finally, let us prove (??). Arguing as before, it suffices to show that

‖p̂ε − p̂0‖L2(ω̂δ)
≤ C

√
ε.

From (??), it suffices to prove that

‖p0 − p̂0‖L2(ω̂δ)
≤ C

√
ε. (78)
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But we already know that p0 ∈ H2(Ω), whence (again from Morrey-Sobolev embed-
ding) p0 ∈ C0,1/2(Ω) and its norm in this space is bounded by C‖p0‖H2(Ω). This
leads to the following inequalities, for all x ∈ ω̂δ,

|(p0 − p̂0)(x)| ≤ Cδ‖p0‖H2(Ω)|x− Lε(x)|1/2 ≤ Cδ

√
ε.

This implies (??) and, thus, (??) holds. The proof of theorem 2.1 is now completed.⊔⊓
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