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Abstract 9 

Bemisia tabaci is a significant pest for many crops, but there are few population studies of this 10 

insect on sweet pepper (Capsicum annuum). In this study, stage frequency data were generated with 11 

B. tabaci in sweet pepper plants in various situations, and the Bellows and Birley method was used 12 

to obtain population parameters from the data. The Akaike Information Criterion (AIC) was used to 13 

select the best option of the Bellows and Birley method and, in some cases, to estimate the 14 

parameters of the population using model averaging. The ratios estimated/observed for each 15 

population parameter were calculated to assess bias and were used to correct the estimations if the 16 

ratios were different from 1. The effects of different factors on the estimations of population 17 

parameters were analysed. The total duration of development was affected by the experimental 18 

conditions (laboratory vs. greenhouse) and temperature, but it had the highest precision. The final 19 

survival rate was affected by temperature, and the estimation of individuals entering each stage was 20 

affected only by the options included in the Bellows and Birley method. AIC helped to detect 21 

differences in the daily survival rate among the different experiments between N1 (first instar) 22 

(range 0.842-0.923), and the egg (range 0.989-1.0) and N4 (fourth instar) (0.990). The methodology 23 

used can be employed in field population studies. For example, the final survival rate in the 24 
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greenhouse experiments varied between 0.624 and 0.097, depending on if the parasitoids were 25 

present or not, and the total development varied between 420.6 and 440.7 degree-days. 26 
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Introduction 35 

The whitefly, Bemisia tabaci (Gennadius), is a significant pest in many crops around the world 36 

(Oliveira et al. 2001).  In regions where there is a great density of vegetable crops cultivated in 37 

greenhouses, as is found in the southeast of Spain, the whitefly becomes a serious threat in terms of 38 

the increase of its population and the potential transmission of several viral diseases (Navas-Castillo 39 

et al. 2000; Segundo et al. 2004; Ruiz et al. 2006). Crops such as sweet peppers, tomatoes, melons, 40 

cucumbers, green beans and others may be seriously affected by this pest. Many studies have 41 

focused on the biology of this species in different crops and on the analysis of life tables to 42 

investigate different parameters of the population or the key factors that regulate its population (Von 43 

Arx et al. 1983; Horowitz et al. 1984; Baumgartner et al. 1986; Baumgartner and Yano 1990; 44 

Naranjo and Ellsworth 2005; Asiimwe et al. 2007). Several of these studies have compared different 45 

models. The biology of B. tabaci has been studied in sweet peppers (Capsicum annuum) under 46 

controlled (laboratory) conditions (González-Zamora and Gallardo 1999; Muñiz 2000; Muñiz et al. 47 

2002), but no studies have been presented on the biology of this species with sweet peppers under 48 

field conditions. 49 

 50 

Stage frequency data are analysed in different ways to obtain information on populations. One way 51 

is to use a model or models, which can be as simple or as complicated as needed under the 52 

circumstances (for a review see Manly 1990; Southwood and Henderson 2000). If different models 53 

are used to analyse the data, the results must be compared to select the most suitable one. Different 54 

biological conclusions may be drawn from the data depending upon the final model selected, and 55 

therefore, it is important to have a method that selects the best model and measures the strength of 56 

the evidence for each one. The Akaike Information Criterion (AIC) is widely used in biological 57 

studies to select the best model due to the advantages it has over other criteria, and it is used to 58 

estimate parameters by model averaging (Burham and Anderson 2002; Johnson and Omland 2004; 59 
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Posada and Buckley 2004). In the field of entomology, the application of AIC or other information 60 

criteria is generally used to select models that help explain different aspects of the biology and 61 

behaviour of insects and to select models that can be used in the field of crop protection (Luh and 62 

Croft 1999; Hansen et al. 2001; Hemerik and van der Hoeven 2003; Umble and Fisher 2003; Sileshi 63 

2006; Takeuchi 2006; Saint-Germain et al. 2007). A study undertaken by Sileshi (2006) is one of 64 

few examples of the use of AIC for insect count data or applications for life table analyses. Model 65 

averaging is applied when none of the set of models is clearly the best, and several can be used. In 66 

such case, the parameters of interest are estimated based on the relative importance (or weight) of 67 

the models. To date, no examples have been found on the use of model averaging to estimate 68 

population parameters. 69 

 70 

This work had different objectives corresponding to the information that can be obtained from stage 71 

frequency data of B. tabaci in sweet peppers, both from the laboratory and field. We studied the bias 72 

generated after using a model (in this case, the Bellows and Birley method), comparing the 73 

observed and estimated parameters, and how different factors can influence this bias. The other 74 

objective of this study was to demonstrate the application of model selection and averaging with the 75 

AIC to accurately estimate population parameters. The Bellows and Birley method produces 76 

different parameters from stage frequency data and, with the help of the AIC, it can be of great 77 

interest in population studies due the information generated, such as, for example, survival rates, 78 

development time, number of entering stages, and others. Finally, population parameters from field 79 

studies are presented to show the potential of this methodology. 80 

 81 

Materials and Methods 82 

 83 

Experimental conditions 84 
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The study was carried out in the facilities of the I.F.A.P.A. (Instituto para la Formación Agraria y 85 

Pesquera de Andalucia) of “La Mojonera-La Cañada" (36º47’18.57’’ N and 2º42’13.87’’ W) in 86 

Almería (southeast Spain). The experiments were conducted under laboratory conditions with 87 

potted plants and in a plastic greenhouse using sweet pepper plants (Capsicum annum) cv. 88 

"Espartaco". The pots had a diameter of 13.8 cm and a volume of 1.2 L. The substratum was 89 

coconut fibre, and the plants were periodically fertilised with Multi Poli-Feed
®
 (Haifa Chemical).  90 

 91 

A 600-m
2
 plastic greenhouse was used for the greenhouse conditions. The sweet pepper plants were 92 

transplanted to the ground in August 1995. The normal agricultural practice in the area for this crop 93 

was followed during the period of cultivation, with the spraying of pesticides on the upper part of 94 

the plants to control certain diseases and pests, such as powdery mildew (Leveillula taurica (Lev.) 95 

Arnaud (Perisporales: Erysiphaceae)) with dinocap and bupirimate; beet armyworm (Spodoptera 96 

exigua (Hübner) (Lepidoptera: Noctuidae)) with Bacillus thuringiensis and trichlorfon mixed with 97 

wheat bran; and broad mite (Poliphagotarsonemus latus (Banks) (Acari: Tarsonemidae)) with 98 

bromopropylate and avermectin. Care was taken to avoid products harmful to whiteflies and their 99 

natural enemies. 100 

 101 

The adults of B. tabaci that were used to lay the eggs were collected from a different greenhouse 102 

planted with peppers (cv. "Espartaco"), where a colony of B. tabaci was constantly reared.  103 

 104 

Three trials were carried out in different situations to generate stage frequency data that could be 105 

used for the posterior analysis of model selection and model averaging to obtain population 106 

parameters. The experiments were carried out under the following two experimental conditions: 107 

controlled temperature (laboratory conditions in Trials 1 and 2) vs. uncontrolled temperature (field 108 
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conditions in Trial 3). There were also two scales of observation: individual counts (in Trial 1) vs. 109 

grouped counts (in Trials 2 and 3). The three trials were as follows: 110 

 111 

1) Trial 1 (individual counts and controlled temperature). Assays were carried out at 20 ± 1, 25 ± 1 112 

and 30 ± 1 °C in a growth chamber (KOXKA model MEC-185/F) with 4,000 lux, a 16:8 113 

photoperiod (light:dark) and a relative humidity of 75 ± 10%; and in a breeding chamber at 25 ± 114 

2°C with 6,000 lux, a 16:8 photoperiod (light:dark) and a relative humidity of 65 ± 10%. Each of 115 

the studies consisted of one or two potted plants with six to eight leaves each. The plants were 116 

infested with high numbers of B. tabaci adults. The adults were confined to one or two leaves per 117 

plant by means of a cloth bag for 24 h at the different temperatures defined above. After this time, 118 

the adults were eliminated, and the eggs were counted. This time point was considered the initial 119 

moment, or zero time point, for the study of development. The eggs were observed and counted 120 

daily. When nymphs of the first instar emerged, we waited until they fixed on the leaf, and then 121 

their positions were marked with a soft marker (Lumocolor


, Staedtler, Germany). Daily counts of 122 

each individual took place until the whitefly adults emerged. 123 

 124 

2) Trial 2 (grouped counts and controlled temperature). Assays were carried out at 20 ± 1 and 30 ± 1 125 

°C in a growth chamber (KOXKA model MEC-185/F) with 4,000 lux, a 16:8 photoperiod 126 

(light:dark) and a relative humidity of 75 ± 10%; and in a breeding chamber at 25 ± 2°C with 6,000 127 

lux, a 16:8 photoperiod (light:dark) and a relative humidity of 65 ± 10%. Two replicates were done 128 

at each temperature. The plant infestation was initiated following the same procedure as described 129 

in Trial 1. Once the adults were eliminated, the leaves where the adults had been confined were 130 

observed daily. The eggs and individuals that emerged were counted and grouped according to their 131 

developmental stage, but they were not marked. The daily counts took place until the adults 132 

emerged. 133 
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 134 

3) Trial 3 (grouped counts with uncontrolled temperature in a plastic greenhouse). Three 135 

experiments were carried out at several time periods throughout the year, as follows: September 19, 136 

1995 to October 23, 1995 (experiment 1); December 1, 1995 to February 26, 1996 (experiment 2); 137 

and March 6, 1996 to April 30, 1996 (experiment 3). In each experiment, six to ten plants were 138 

selected, and a leaf from each plant was isolated with a cloth bag. Large numbers of adult B. tabaci 139 

were introduced into each bag and left for 24 h. The eggs that were laid were counted, and this was 140 

considered the starting point for the developmental study. The population was counted daily except 141 

in experiment 1, where it was counted every two days until all of the adults had emerged. 142 

Individuals were counted and grouped according to their developmental stage. The temperature and 143 

relative humidity were registered daily during the experiments, with mean temperatures (and 144 

ranges) of 24.9 ºC (12 - 37 ºC), 15.9 ºC (4 - 30 ºC) and 18.9 ºC (8 - 33 ºC) for experiments 1, 2, and 145 

3, respectively. Time was measured using degree days (DDs). The DDs were calculated using the 146 

maximal and minimal temperatures of two periods in the day (from 00.00 to 12.00 h and from 12.00 147 

to 24.00 h), and 10 °C was the minimum development threshold temperature (Zalom et al. 1985). 148 

The following equation was used to calculate DD: 149 

   

10
2

22

2412minmax120minmax











TTTT

DD
,
 150 

where T is temperature.  151 

 152 

In Trials 1 and 2, the different developmental stages, from egg to fourth instar (N4), were observed 153 

in the laboratory with a stereobinocular microscope (9x and 45x magnification) by turning the leaf 154 

under the microscope. The developmental stages were distinguished as a function of size. The first 155 

instar (N1) was the smallest, and the fourth (N4) was the largest. In Trial 3, the different 156 

developmental stages from egg to N4 were distinguished using a field lens (8x magnification), and 157 
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they were separated according to their relative size. In the first greenhouse experiment, the nymphs 158 

of the first, second and third instars were counted together. 159 

 160 

In the individual counts (Trial 1), the fate of each individual was recorded. Thus, it was possible to 161 

calculate different parameters, such as the number of individuals entering each instar, the daily 162 

survival rate of each instar, the survival rate of each developmental stage, the duration of each 163 

instar, the final survival rate of the population and the total development period (González-Zamora 164 

and Gallardo 1996). In contrast, in the grouped counts (Trials 2 and 3), only the number of 165 

individuals found at each instar was recorded daily. In the grouped counts, the initial number of 166 

eggs and the final number of adults that emerged from the empty pupal cases was known. With 167 

these data, most of the previous parameters could not be calculated except for the final survival rate 168 

of the population and the total development period. Therefore, the other parameters had to be 169 

estimated with the help of a model. With individual counts, it was possible to compare the observed 170 

values of all parameters with their estimations and to establish the bias and validity of the model 171 

used. With Trials 2 and 3, the bias was identified using fewer parameters, such as individuals 172 

entering the egg and adult stage, the final survival rate and the total development. 173 

 174 

Model Fitting 175 

The P1f software package (Manly 1994) was used to analyse the life tables, and it was specifically 176 

designed to analyse data from stage-structured populations with different models. In model 177 

selection, it is important to have a group of models that are relevant to the data and to the objectives 178 

of the analysis, representing a plausible research hypothesis (Burham and Anderson 2002). The 179 

Bellows and Birley method (Bellows and Birley 1981) is the most flexible method because it allows 180 

estimation of the duration of each stage, the unit time survival rate, the final survival rate, and the 181 
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numbers entering each stage. This method also allows for different assumptions when different 182 

survival parameters for each stage or time of entry in stage 1 are considered (Manly 1990). 183 

 184 

All of the experiments were performed using a single cohort, and therefore, the initial number 185 

entering stage 1 was known, and no entering distribution was necessary. The Weibull distribution 186 

was also used to model the distribution function of each stage. The Weibull distribution function is 187 

as follows: 188 









 


)(exp1)(
t

tf

,
   (3) 189 

where alpha () is the shape parameter, and lambda (λ) determines the spread of the curve along the 190 

X axis. Lambda is also an estimate of the mean duration of each stage. 191 

 192 

The P1f program allows for different combinations of the unit time survival rate (needed in the 193 

Bellows and Birley method) and the shape parameter () of the Weibull distribution, which may be 194 

different for each stage in the Bellows and Birley method. The combinations of these two 195 

parameters produce the following four options in the program: 1) different survival and shape 196 

parameters for each stage; 2) the same survival parameters but different shape parameters for each 197 

stage; 3) different survival parameters but the same shape parameters for the stages; and 4) the same 198 

survival parameters and shape parameters for all stages. These four options of the Bellows and 199 

Birley method produced different estimations of the same population parameters along with fitting 200 

of the model to the data as expressed in the log likelihood for each option. For this reason, the four 201 

options were considered in this study as models to be selected with a given criterion. 202 

 203 

The output estimates produced by the Bellows and Birley method were as follows: a) individuals 204 

entering into each stage (egg, N1, N2, N3, N4 and adult); b) the stage-specific survival rate (SSSR),  205 
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which is the survival of a given stage; and c) duration, which is the developmental time for each 206 

stage considered. The P1f program generated the standard deviation for the duration of each stage, 207 

but not for the individuals entering the stage or for the SSSR. Two other estimates were calculated 208 

using the results of the program as follows: a) the SRf, which is the final survival rate from egg to 209 

adult; and b) the Durationt, which is the duration of the total developmental period, from egg to 210 

adult. However, neither of these two last estimates had an associated standard deviation. The shape 211 

parameter () of the Weibull distribution and the unit time (daily) survival rate () were also 212 

estimated in the four options of the Bellows and Birley method. Both of these parameters could be 213 

considered equal or different for each stage, and both of them had a standard deviation produced by 214 

the P1f program. 215 

 216 

Statistical analyses 217 

The output estimates produced by the Bellows and Birley method, such as the individuals entering 218 

each stage, the SSSR, the duration of each immature stage, the final survival rate (SRf) and the total 219 

duration (Durationt), were compared with the observed values of the same parameters, which were 220 

obtained mainly from Trial 1, but also from Trials 2 and 3, to obtain the estimated/observed ratios. 221 

The ratios were used to identify the bias of the estimates and to determine if the bias was affected 222 

by different factors.  223 

 224 

The previous parameters, expressed by relative values in the ratios, were considered as variables 225 

that could be affected by different factors. These factors and their levels were as follows: a) Scale of 226 

observation, with two levels, including individual counts (with data coming from the experiments 227 

of Trial 1) and grouped counts (with data coming from the experiments of Trial 2); b) Experimental 228 

conditions, with two levels, including controlled temperatures (with data coming from the 229 

experiments of Trial 2) and uncontrolled temperatures (with data coming from the experiments of 230 
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Trial 3); c) Temperatures, with the three temperatures used in controlled temperatures (with data 231 

coming from the experiments of Trials 1 and 2); d) Options, with the four options of the Bellows 232 

and Birley method supported by the P1f program (with the available data from Trials 1, 2 and 3). 233 

 234 

The ratios were not transformed in any way, and they were first analysed to test the homogeneity of 235 

the variances within factors using Cochran’s C contrast, Bartlett’s contrast and Levene’s tests. If the 236 

probability associated with any of them was less than 0.05, the Kruskall-Wallis test was used to 237 

analyse the data. In contrast, if the p-value was greater than 0.05 in all of them, a one-way ANOVA 238 

was used to analyse the data. If the p-value of the Kruskall-Wallis statistic was less than 0.05, the 239 

means of the different levels within the factor were separated using Mann-Whitney’s U test (Steel 240 

and Torrie 1988). If the p-value of the ANOVA test was less than 0.05, the means of the different 241 

levels within the factor were separated using Tukey’s honestly significant difference (HSD) test at p 242 

= 0.05. The ratios were then tested to determine whether they differed from 1 using the contrast 243 

hypothesis test, with p = 0.05. All analyses were performed using the Statgraphics package 244 

(Statistical Graphics 2000). 245 

 246 

Model selection  247 

There are different ways of comparing models to select the most appropriate one. This study used 248 

the AIC, which is a powerful method for model selection and the inference of ecological data 249 

(Burham and Anderson 2002). With AIC, the goal is to select the model with the least number of 250 

parameters that represents the data adequately (i.e., the principle of parsimony) (Franklin et al. 251 

2001; Mazerolle 2004). The AIC was used to select the best option of the Bellows and Birley 252 

method, and it is defined as follows: 253 

KlikelihoodAIC 2)(log2  . 254 
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In this equation, K is the number of estimated parameters included in each model (or the options of 255 

the Bellows and Birley method in this study). The log-likelihood of the model given the data are 256 

readily available in the statistical output, and reflects the overall fit of the model. When there was a 257 

comparison of models, the model with the smallest AIC was selected. With count data, as was the 258 

case here, it is normal to find overdispersion. Therefore, the AIC was modified to obtain QAICc 259 

(Burham and Anderson 2002). 260 

  261 

Two measures, delta AIC (Δ) and Akaike weights (w), associated with the AIC and equally with 262 

QAICc were used to compare models (Burham and Anderson 2002). The delta AIC is a measure of 263 

each model relative to the best model. As a rule of thumb, when Δi is less than two, it suggests 264 

substantial evidence in support of the model. When the values are between three and seven, it 265 

indicates that the model has considerably less support. When Δi is greater than ten, it indicates that 266 

the model is unlikely. Akaike weights provide another measure of the strength of evidence for each 267 

model, and they represent the ratio of delta AIC (Δi) values for each model relative to the whole set 268 

of candidate models (the four options of the Bellows and Birley model). Akaike weights also 269 

indicate the probability that the model is the best among the set of candidate models. 270 

 271 

Selecting a model from a set of candidate models may produce a new problem. When no single 272 

model is clearly the best, predictions cannot be based on the model ranked in first place. In some 273 

cases, the best model may have competitors for the top rank (e.g., when Δi < 2). A solution to this 274 

problem is to base the inference on the entire set of models, an approach called “multimodel 275 

inference” or “model averaging” (Burham and Anderson 2002; Johnson and Omland 2004; Posada 276 

and Buckley 2004). When this situation happened in the present study, a weighted average of the 277 

estimates was computed using the Akaike weights. 278 

 279 
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To conduct model averaging, the estimate of the parameter for each model was weighted by the 280 

Akaike weights as follows: 281 





R

i

iiwestimateaveragedModel
1

ˆˆ 
,
 282 

where î denotes the estimate for model i. Similarly, the precision (as standard error, SE) of the 283 

model averaged estimate may also be computed and is called the unconditional SE (Burham and 284 

Anderson 2002). In many cases, model averaging reduces bias and increases precision, which are 285 

desirable properties (Burham and Anderson 2002). Once the model averaged estimates and SE were 286 

calculated, confidence intervals were used to assess the magnitude of the effect. After using AIC, or 287 

model averaging if needed, the observed parameters and their final estimates were used to calculate 288 

the coefficients of determination R
2
.  289 

 290 

Results 291 

 292 

Differences among the observed parameters and their estimates from the Bellows and Birley 293 

method in its different options were observed. The discrepancies were measured by calculating the 294 

estimated/observed ratios (Table 1), which were used to identify the bias of the method in the 295 

different parameters and to assess the effect of the factors on estimations of the same parameters. 296 

The ratios were less than one in most cases, but some were close to one. Table 2 shows the statistics 297 

obtained for the analyses and their significance. There were no differences in the ratios of each 298 

variable studied within the scale of observation (individual counts vs. grouped counts), although the 299 

experimental conditions (controlled temperature vs. uncontrolled temperature) showed a significant 300 

difference in the ratios only in the total duration of development. The temperature factor displayed 301 

differences only in the final survival rate and total duration. Finally, the option factor, which must 302 

be considered as appertaining to the Bellows and Birley method, demonstrated significant 303 
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differences within each factor only in the entering individuals. The estimated/observed ratios were 304 

used to correct the estimated parameters in each situation, but only when the ratio was significantly 305 

different from one, by dividing the estimated parameter by the ratio value. This correction was used 306 

to obtained the final values of each parameter, but it was not used to select the best option with the 307 

AIC. 308 

 309 

The different parameters of the AIC analysis for each Trial (Table 3) indicated that the data were 310 

overdispersed (c between 1 and 5; Burham and Anderson 2002). Each trial comprised its own set of 311 

data, and therefore, the results are shown separately. The four options supported by the P1f program 312 

with the Bellows and Birley method were compared with the delta AIC (Δ) and the Akaike weights 313 

(w). The first option (i.e., different daily survival rates for the stages) was selected as the best with 314 

the experiments carried out at the lowest temperature under controlled conditions (20ºC in both 315 

individual and grouped counts, Trials 1 and 2, respectively). In contrast, the second option (i.e., the 316 

same daily survival rate for all stages) was selected as the best at the intermediate temperature 317 

(25ºC in both individual and grouped counts, Trials 1 and 2, respectively). At the higher temperature 318 

(30ºC in both individual and grouped counts, Trials 1 and 2, respectively), the selection was not as 319 

clear, but the options with the same survival rate for the stages (options 2 and 4) generally had 320 

higher weights. Similar selections of options occurred in the experiments carried out in the 321 

greenhouse (Trial 3). In the experiment carried out in winter (experiment 2 with a mean temperature 322 

of 15.9ºC), the first option (i.e., different daily survival rates for the stages) was clearly selected. In 323 

experiment 3 (mean temperature of 18.9 ºC and at the beginning of spring), the third option (i.e., 324 

different daily survival rate for each stage) was the most important. In experiment 1, under 325 

greenhouse conditions (warm temperatures with a mean of 24.9ºC and at the beginning of autumn), 326 

the second and fourth options (both with the same daily survival rate for each stage) were more 327 

important. 328 
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 329 

Finally, the final population parameters for each experiment (with their own standard errors), were 330 

obtained using multimodel inference when necessary, according to the w factor of Table 3. The 331 

coefficients of determination R
2
 between the observed and estimated parameters (corrected with the 332 

ratio if necessary) were calculated as follows: 0.909 (41), 0.925 (20), 0.988 (20), 0.985 (12) and 333 

0.999 (13) for the individuals entering the different stages, the stage specific survival rate (SSSR), 334 

the duration of development in the different stages, the final survival rate, and the duration of total 335 

development period, respectively (the numbers between brackets are the number of points used to 336 

calculate the coefficient of determination in each case). 337 

 338 

In 6 out of 13 experiments, the first and/or third option of the Bellows and Birley method (i.e., in 339 

which the daily survival rates were considered differently for each instar) produced higher Akaike 340 

weights (Table 4). Three of the experiments demonstrated a clear difference with non-overlapping 341 

confidence intervals between the daily survival rates of the egg and N1 stages, and in one 342 

experiment between the N1 and N4 stages (Table 4). In several cases, there was only a light overlap 343 

in the confidence intervals of the daily survival rate of the N4 with the egg stage. Also, the estimates 344 

of the daily survival rate with the different options in the individual counts (Trial 1) were similar to 345 

the observed daily survival rates, which were included in the 95% confidence intervals of the 346 

estimates (Table 4). The observed values of daily survival rate showed statistical differences in the 347 

stage and temperature factors and their interaction (F4,5 = 68.5, p < 0.001; F2,5 = 113.8, p < 0.001; 348 

and F8,5 = 16.6, p = 0.003, respectively). The differences between stages within the temperature 349 

were consistent with the results from the estimations and their confidence intervals at 20ºC (N1 was 350 

different from egg and N4; Table 4). At 30ºC and 25ºC, however, differences were found between 351 

the egg stage and the remaining instar stages (Table 4 and data not shown).  352 

 353 
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The final estimates obtained for the greenhouse experiments are presented in Table 5, and they 354 

show the type of output obtained using the AIC and the multimodel inference. From the results, the 355 

similarity of the total duration among the three experiments (ranging from 420.6 to 440.7 DD) was 356 

significant, whereas the final survival rates (ranging from 0.097 to 0.624) indicate that the 357 

environmental conditions in the three experiments were different. 358 

 359 

Discussion 360 

 361 

The study presented in this paper had two objectives. The first objective was to show the potential 362 

of the Bellows and Birley method to estimate parameters from stage frequency data. As in any 363 

estimation, the parameters estimated may differ from the observed values of the same parameters. 364 

The observed parameters are not always known. In this study, however, the observed parameters 365 

were known in most of the cases, and they were used to identify the bias of the Bellows and Birley 366 

method as presented by the software P1f program. The second objective was to use a procedure to 367 

select a model that provides the best trade-off between bias and accuracy (i.e., AIC selected the 368 

most parsimonious model from those used to adjust the data). If different models support the data 369 

similarly, a multimodel inference (e.g., model averaging) can be considered to obtain a precision 370 

estimator for the different parameters. 371 

 372 

The Bellows and Birley method produced several estimates that were different from the observed 373 

values, as shown by the ratios in Table 1. The ratios of the estimated/observed parameters are useful 374 

for identifying the bias of the estimates and for determining if this bias is affected by the different 375 

factors considered. It is of particular interest that no difference of the ratios within the scale of 376 

observation (individual vs. grouped counts) was observed in the variables estimated. However, 377 

there were statistical differences in the ratios within the experimental conditions and temperatures, 378 
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which affected variables representing general values (i.e., final survival rate and total duration of 379 

development). There were differences among the experiments carried out in the greenhouses and 380 

among the different temperatures in the laboratory. However, there was a remarkably high precision 381 

in several of the estimated variables, such as the total duration of development, across all factors. 382 

 383 

The option factor was associated with the Bellows and Birley method of the P1f program, and it had 384 

a significant effect on one of the studied variables. The second option of the Bellows and Birley 385 

method (i.e., same survival parameter but different shape parameter for each stage) had a 386 

remarkable effect on the estimations of entering individuals, with a ratio close to 0.5 (Table 1).  387 

 388 

With the analysis presented herein, we have a tool to help answer the question of whether there are 389 

different daily survival rates at each stage. The options of the Bellows and Birley method with 390 

different daily survival rates in each stage (options 1 and 3) obtained better support at lower 391 

temperatures (both in controlled conditions and the plastic greenhouse), whereas the options with 392 

equal survival rates (options 2 and 4) were selected at medium and higher temperatures. The factors 393 

that affect mortality in each situation may be different and may change in other experiments, but 394 

their identification and quantification may only be answered with an adequate sampling 395 

methodology that identifies them and relates them to the results of the analysis. 396 

 397 

The daily survival rates of the stages was of particular interest (Table 4). The observed values of the 398 

daily survival rates in the experiments of Trial 1 fell within the confidence interval of their 399 

estimations, reflecting their accuracy. It may be assumed that the estimations in the other 400 

experiments shown in Table 4, where no observed values were generated, were equally accurate. 401 

Although the daily survival rates were different among some stages within the temperatures, as 402 

confirmed by the ANOVA of the observed values (even though these results must be considered 403 
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with caution due the low number of replications of the observed data), this was not confirmed with 404 

the Bellows and Birley method in some cases (e.g., the experiment performed at 25ºC, not shown in 405 

Table 4, the experiment performed at 30ºC in Trial 1, shown in Table 4, or one of the experiments 406 

performed at 20ºC in Trial 2, shown in Table 4). 407 

 408 

For differences among stages, studies that relate this variation to environmental variables, such as 409 

climate, number of predators, number of parasitoids, food availability or any other variable, may 410 

help to explain these differences (Manly 1990). In experiments conducted at a controlled 411 

temperature at 20ºC, the temperature and possible manipulations under the stereomicroscope may 412 

be considered as factors affecting the survival of N1. Other factors may have produced these 413 

differences in the experiments carried out with uncontrolled temperatures (Trial 3 in the 414 

greenhouse). 415 

 416 

The egg and N1 and N4 instar stages had the greatest effect on the B. tabaci population in the life 417 

table analysis in different locations and crops (Horowitz et al. 1984; Naranjo and Ellsworth 2005; 418 

Asiimwe et al. 2007). Predation (Naranjo and Ellsworth 2005) and parasitisation (Asiimwe et al. 419 

2007) were the principal factors responsible for decreasing populations, affecting mainly the N4 420 

instar, and dislodgement was second in most of the previous studies. In general, these conclusions 421 

agree with the results obtained in the present study for the greenhouse experiments (although with 422 

only three experiments), where N1 and N4 had the highest mortalities, with estimated survival rates 423 

of 0.758 and 0.474, respectively, in experiment 2, and 0.372 and 0.515, respectively, in experiment 424 

3 (Table 5). In greenhouses, the N1 instar is the most exposed to environmental factors, such as 425 

peaks of high temperature and low humidity typical of greenhouses in southeast Spain and low 426 

temperatures in some periods of the year. The N1 instar is also subject to other factors related to the 427 

plant itself, such as nutritional factors and cuticle thickness (Byrne and Bellows 1991). Predation by 428 
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lacewings or beetles on whiteflies was not observed in Trial 3 (greenhouses). However, 429 

Eretmocerus mundus Mercet adults, which are the main parasitoid of B. tabaci in greenhouses in 430 

Almería (Rodríguez-Rodríguez et al. 1994), and subsequently, parasitised N4, were detected. The 431 

high mortality found in N4 (mainly from parasitism but also from direct feeding) and the low final 432 

survival rates recorded in experiments 2 and 3 (SRf = 0.143 and SRf = 0.097, respectively) (Table 5) 433 

were due to E. mundus in contrast to the values obtained in the first experiment in which no E. 434 

mundus was detected. 435 

 436 

The level of parasitism due to E. mundus in the N4 instar may be high (González-Zamora et al. 437 

1996; Téllez et al. 2003; Stansly et al. 2005). Predation by E. mundus adults on different instars of 438 

the whitefly B. tabaci is well known and has been evaluated (Gerling and Fried 2000; Urbaneja et 439 

al. 2007), and  is considered an important factor in population regulation (Téllez et al. 2003; Zang 440 

and Liu 2008).  441 

 442 

The methodology used in this work allowed the bias of the Bellows and Birley method to be 443 

identified in different experimental situations (laboratory vs. greenhouse and individual vs. grouped 444 

counts) and with the use of the P1f program. The final estimates obtained from the best option of 445 

the Bellows and Birley method selected with the AIC or with model averaging, when it was needed, 446 

include the correction with the estimated/observed ratio when the ratios were different from one. 447 

The estimations may be used to analyse life tables to, for example, study the key factors that affect 448 

the survival of a population with a high enough number of generations (Southwood and Henderson 449 

2000). However, this was not the objective of the present work. The final estimates for all of the 450 

experiments were compared with the observed values, obtaining, in general, a good agreement 451 

between them, as reflected in the coefficient of determination R
2
. It is especially remarkable that the 452 

total duration of development had an R
2
 = 0.999, which reflects the robustness of its estimation in 453 
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both experimental conditions (Table 1). The duration of development of each stage and the final 454 

survival rates also had high values of R
2
 (0.988 and 0.985, respectively). The high similarity 455 

between the observed and final estimated parameters with the field experiments in greenhouses is 456 

shown in Table 5. 457 

 458 

The final estimates for the experiments carried out in the greenhouses (Table 5) are of particular 459 

interest for their implications in population studies in field conditions. The final estimation of the 460 

total duration of development may be compared with other studies, such as those carried out in 461 

cotton, to study the developmental time of B. tabaci (Zalom et al. 1985; Zalom and Natwick 1987).  462 

The mean generation time of B. tabaci in cotton was found to be between 316.0 DD and 369.5 DD, 463 

which differs from the values obtained for sweet peppers in the present study. The duration of each 464 

instar also indicates the difference among instars. The development times of the egg and N4 stages 465 

were longer than the other instars, in agreement with results from laboratory studies on sweet 466 

peppers and other crops (González-Zamora and Gallardo 1996, Muñiz 2000). 467 

  468 

In conclusion, the methodology used in this paper allowed the bias of the estimations obtained from 469 

the model (the Bellows and Birley method) to be identified. This methodology also permitted the 470 

selection of the best model from a set of models (applying model averaging when necessary) to 471 

analyse stage frequency data in life tables to shed light on important aspects of a population, which 472 

was presented in this study for the whitefly B. tabaci in sweet pepper plants. 473 

 474 

475 
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Table 1 Mean value ± the standard error of the estimated/observed ratios of the different 

population parameters with the factors used 

 

 
 
 

 
 

 
 
 

 
 
 

 
 
 

 
 
 

 
 
 
 
 

 
 

Means in the same column within a factor followed by different letter differ significantly (Tukey’s honestly significant 
difference test, p = 0.05). 

1 In controlled conditions (laboratory), with Trials 1 and 2. 
2 With grouped counts, Trials 2 and 3. 
3With the three temperatures used in the laboratory trials, Trials 1 and 2. 
4 With the four options of the Bellows and Birley method supported in the P1f software package, using Trials 1, 2 and 3. 

 

  
 POPULATION PARAMETERS    

FACTORS 

Individuals 
Entering   SSSR   Duration   SRf   Durationt   

Scale of 
observation 1           

Individual 0.913±0.026  -  -  1.010±0.030  0.878±0.008  

Group 0.902±0.034  -  -  1.037±0.044  0.891±0.005  

           

Experimental 
conditions

2           
Controlled 
temperature 0.902±0.034  -  -  1.037±0.044  0.891±0.005 a 

Greenhouse 1.028±0.101  -  -  1.253±0.191  0.931±0.006 b 

           

Temperature
3           

20º C 0.914±0.047  1.020±0.075  0.891±0.006  0.971±0.067 a 0.923±0.001 b 

25º C 0.877±0.027  1.015±0.027  0.856±0.015  0.944±0.023 a 0.866±0.003 a 

30º C 0.955±0.036  1.039±0.043  0.825±0.028  1.189±0.031 b 0.875±0.005 a 

           

Option
4           

Opt 1 1.024±0.026 b 1.033±0.053  0.869±0.019  1.085±0.073  0.900±0.009  

Opt 2 0.548±0.024 a 1.019±0.054  0.850±0.023  1.090±0.104  0.893±0.010  

Opt 3 1.039±0.027 b 1.025±0.045  0.857±0.025  1.046±0.079  0.897±0.008  

Opt 4 1.084±0.032 b 1.013±0.053  0.852±0.023  1.033±0.073  0.894±0.009  
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Table 2 Statistical analyses of the population parameters studied with the factors used and their 

significance 

 

 

 
a F statistic obtained by one-way ANOVA 
b Kruskall-Wallis statistic 

 POPULATION PARAMETERS 

 Individuals entering  SSSR  Duration  SRf  Durationt 

FACTORS  P   P   P   P   P 

                

Scale of 
observation 

Fa=0.05 0.815  - -  - -  K-Wb=0.37 0.544  F=2.10 0.156 

                

Experimental 
conditions 

K-W=0.22 0.638  - -  - -  K-W=0.32 0.572  F=23.24 <0.001 

                

Temperature K-W=3.02 0.220  K-W=1.16 0.561  K-W=3.86 0.145  K-W=18.84 <0.001  K-W=25.82 <0.001 

                

Option F=84.69 <0.001  F=0.03 0.990  F=0.14 0.938  F=0.11 0.951  F=0.13 0.941 
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Table 3 Values of the Akaike Information Criterion (AIC) in the different trials and 

options of the Bellows and Birley method 

    N K  Deviance 
Residuals 

d.f. 
c QAICc Δ w 

Trial 1 (Individual counts with controlled temperature)           

20 ºC Option 1 72 16 78.8 55 1.43 99.93 0.00 0.999 

 Option 2 72 11 121.4 60 2.02 113.81 13.88 0.001 

 Option 3 72 12 124.6 59 2.11 119.05 19.12 0.000 

 Option 4 72 7 169.2 64 2.64 136.31 36.38 0.000 

25º(I) Option 1 64 16 138.4 47 2.94 93.75 11.84 0.003 

 Option 2 64 11 153.2 52 2.95 81.91 0.00 0.997 

 Option 3 64 12 325.3 51 6.38 143.46 61.55 0.000 

 Option 4 64 7 326.0 56 5.82 129.25 47.34 0.000 

25 º(II) Option 1 57 16 132.7 40 3.32 88.93 16.18 0.000 

 Option 2 57 11 139.2 45 3.09 72.74 0.00 1.000 

 Option 3 57 12 267.8 44 6.09 114.84 42.10 0.000 

 Option 4 57 7 265.5 49 5.42 98.94 26.19 0.000 

30 ºC Option 1 57 16 13.7 40 0.34 88.93 0.00 0.737 

 Option 2 57 11 20.7 45 0.46 90.99 2.06 0.263 

 Option 3 57 12 52.4 44 1.19 186.61 97.68 0.000 

  Option 4 57 7 59.0 49 1.20 190.64 101.71 0.000 

Trial 2 (Grouped counts with controlled temperature)           

20ºC(I) Option 1 79 16 295.5 62 4.77 105.71 0.00 0.972 

 Option 2 79 11 530.3 67 7.91 139.84 34.13 0.000 

 Option 3 79 12 398.8 66 6.04 115.09 9.38 0.009 

 Option 4 79 7 455.5 71 6.42 113.56 7.85 0.019 

20ºC(II) Option 1 91 16 190.3 74 2.57 116.16 0.00 0.999 

 Option 2 91 11 260.7 79 3.30 129.25 13.09 0.001 

 Option 3 91 12 393.4 78 5.04 183.55 67.39 0.000 

 Option 4 91 7 420.2 83 5.06 181.10 64.94 0.000 

25ºC(I) Option 1 67 16 172.4 50 3.45 96.00 10.27 0.006 

 Option 2 67 11 193.6 55 3.52 85.73 0.00 0.994 

 Option 3 67 12 265.6 54 4.92 109.65 23.92 0.000 

 Option 4 67 7 291.2 59 4.93 102.83 17.11 0.000 

25ºC(II) Option 1 61 16 114.8 44 2.61 91.60 8.15 0.017 

 Option 2 61 11 138.9 49 2.83 83.45 0.00 0.983 

 Option 3 61 12 191.7 48 3.99 106.89 23.44 0.000 

 Option 4 61 7 223.2 53 4.21 104.20 20.76 0.000 

30ºC(I) Option 1 67 16 56.1 50 1.12 96.00 12.89 0.002 

 Option 2 67 11 60.1 55 1.09 83.11 0.00 0.998 

 Option 3 67 12 149.8 54 2.77 166.01 82.90 0.000 

 Option 4 67 7 156.2 59 2.65 157.54 74.44 0.000 

30ºC(II) Option 1 64 16 178.9 47 3.81 93.75 5.24 0.050 

 Option 2 64 11 223.2 52 4.29 88.51 0.00 0.692 

 Option 3 64 12 234.5 51 4.60 94.59 6.08 0.033 

  Option 4 64 7 275.0 56 4.91 90.76 2.25 0.225 

Trial 3 (Grouped counts with uncontrolled temperatures (greenhouse))          

EXP-1 Option 1 46 9 94.8 36 2.63 61.95 6.02 0.032 

 Option 2 46 7 101.2 38 2.66 58.13 2.21 0.213 

 Option 3 46 8 96.5 37 2.61 59.38 3.45 0.114 

 Option 4 46 6 103.0 39 2.64 55.93 0.00 0.641 

EXP-2 Option 1 72 16 43.2 55 0.79 99.93 0.00 1.000 

 Option 2 72 11 73.7 60 1.23 122.90 22.97 0.000 

 Option 3 72 12 176.7 59 2.99 256.82 156.90 0.000 

 Option 4 72 7 199.4 64 3.12 271.82 171.89 0.000 

EXP-3 Option 1 51 16 82.9 34 2.44 85.49 10.12 0.006 

 Option 2 51 11 171.6 39 4.40 102.16 26.79 0.000 

 Option 3 51 12 97.6 38 2.57 75.37 0.00 0.994 

  Option 4 51 7 185.6 43 4.32 95.38 20.01 0.000 
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Table 4 Unit time (daily) survival rates estimated and observed, and their 

confidence intervals, for the experiments in which the Akaike Information Criterion selected 

the option with different daily survival rates for the stages 

 

  ESTIMATED  OBSERVED 

    Survival 95% CI  Survival 95% CI1 

Trial 1 (Individual counts with controlled temperature)    

20ºC Egg 1.000    a2 0.978 - 1.023  0.997 0.991-1.000 

 N1 0.880    b 0.829 - 0.931  0.857 0.828-0.885 

 N2 0.928 0.755 - 1.101  0.962 0.944-0.976 

 N3 0.932 0.767 - 1.098  0.948 0.928-0.964 

 N4 0.990    a 0.928 - 1.052  0.987 0.977-0.995 

 Adult 0.990 0.868 - 1.112  --  

        

30ºC Egg 0.983 0.914 - 1.052  0.986 0.975-0.994 

 N1 0.960 0.892 - 1.029  0.941 0.920-0.959 

 N2 0.963 0.767 - 1.160  0.956 0.937-0.971 

 N3 0.936 0.678 - 1.195  0.941 0.920-0.959 

 N4 0.941 0.862 - 1.020  0.941 0.921-0.959 

 Adult 0.981 0.895 - 1.067  --  

             

Trial 2 (Grouped counts with controlled temperature)   

20ºC(I) Egg 0.996 0.973 - 1.019   

 N1 0.964 0.902 - 1.027   

 N2 0.952 0.800 - 1.103   

 N3 0.921 0.751 - 1.091   

 N4 0.972 0.899 - 1.044   

 Adult 0.982 (-7.620) - 9.584   

       

20ºC(II) Egg 0.989    a 0.972 - 1.006   

 N1 0.923    b 0.876 - 0.970   

 N2 0.999 0.870 - 1.128   

 N3 0.977 0.855 - 1.099   

 N4 0.976     0.934 - 1.018   

 Adult 1.018 (-0.404) - 2.440   

             

Trial 3 (Grouped counts with uncontrolled temperatures (greenhouse)) 

EXP-2 Egg 0.992     a?3 0.973 - 1.011   

 N1 0.945    0.878 - 1.012   

 N2 0.976 0.873 - 1.078   

 N3 0.972 0.889 - 1.055   

 N4 0.953     b? 0.919 - 0.987   

 Adult 0.830 (-5.179) - 6.839   

       

EXP-3 Egg 0.995     a 0.972 - 1.018   

 N1 0.842     b 0.756 - 0.927   

 N2 0.890 0.678 - 1.102   

 N3 0.923 0.737 - 1.110   

 N4 0.961 0.884 - 1.038   

  Adult 1.063 0.727 - 1.400    

The AIC (and model averaging if it was needed) was used to obtain the mean (m) and standard error (s.e.) needed to calculate 
the 95% confidence intervals of the estimated values. The standard error was corrected with the c of the most complex model 

(option) of the Bellows and Birley method. 
1 Standard errors needed to calculate confidence intervals were obtained from pooled data. 
2 Different letters in each experiment indicates differences between the stages when comparing the intervals, which do not 
overlap. 
3 The confidence intervals of egg and N4 overlapp slightly in this experiment. 

 
Table 5 Final estimates of population parameters with their standard errors obtained from the three 

experiments carried out in the plastic greenhouse 
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The AIC was used to select the best option of the Bellows and Birley method, and model averaging was used to obtain the parameters 
of the experiment 1, accordingly with the w values of Table 3. The estimated parameters have been corrected with the  
estimated/observed ratio. The standard error was corrected with the c of the most complex model (option) of the Bellows and Birley 
method. 

a Duration is expressed in degree days (DD) 

b Numbers in italics between brackets are the observed values. 

c Final survival rate (SRf). 

d Duration of total development (Durationt). It is also expressed in degree days (DD). 

 

 

 
Individuals 

entering  SSSR  Durationa 

  m s.e.   m s.e.   m s.e. 

EXP-1         

Egg       132.3 0.0 

N123 145.1 14.1  0.746 0.024  178.6 37.2 

N4 107.9 9.7  0.836 0.010  110.0 19.3 

Adult 90.2 8.4       

   (97)b   0.624
c 0.026  420.7

d 0.5 

              (420.2)  

EXP-2          

Egg 56.8 0.0  0.901 0.000  128.7 4.9 

 (59)        

N1 51.2 0.0  0.758 0.000  47.2 21.5 

N2 38.8 0.0  0.892 0.000  43.5 4.8 

N3 34.6 0.0  0.865 0.000  48.2 6.8 

N4 29.9 0.0  0.474 0.000  153.1 16.5 

Adult 14.2 0.0       

     (8)   0.143
c 0.000  420.6

d 0.0 

        (0.136)   (422.2)  

EXP-3           

Egg 120.3 0.0  0.933 0.000  142.3 31.7 

 (126)        

N1 112.3 0.0  0.372 0.001  56.9 13.4 

N2 41.8 0.1  0.625 0.001  38.3 9.8 

N3 26.0 0.0  0.640 0.001  50.3 12.1 

N4 17.3 0.0  0.515 0.003  152.6 33.9 

Adult 8.9 0.0       

     (12)   0.097
c 0.000  440.7

d 0.1 

        (0.095)   (440.2)  


