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Abstract. Many problems in engineering design involve the use of nonlin-
earities and some integer variables. Methods based on test sets have been
proposed to solve some particular problems with integer variables, but they
have not been frequently applied because of computation costs. The walk-back
procedure based on a test set gives an exact method to obtain an optimal point
of an integer programming problem with linear and nonlinear constraints, but
the calculation of this test set and the identification of an optimal solution
using the test set directions are usually computationally intensive.

In problems for which obtaining the test set is reasonably fast, we show
how the effectiveness can still be substantially improved. This methodology
is presented in its full generality and illustrated on two specific problems: (1)
minimizing cost in the problem of scheduling jobs on parallel machines given
restrictions on demands and capacity, and (2) minimizing cost in the series
parallel redundancy allocation problem, given a target reliability. Our com-
putational results are promising and suggest the applicability of this approach
to deal with other problems with similar characteristics or to combine it with
mainstream solvers to certify optimality.

Non-linear Integer Programming and test set and Gröbner basis and chance
constrained programming

1. Introduction

The ever-increasing demand on operations researchers to lower production costs
or to increase benefits has prompted the specialized community to look for rigorous
methods of decision making, such as optimization methods, to design and process
both economically and efficiently most engineering systems. Optimization tech-
niques, having reached a degree of maturity over the last years, are being used in a
wide spectrum of engineering applications, including reliability of systems, finance,
scheduling, as well as various contributions in aerospace, automotive, chemical,
electrical or manufacturing industries. For some of those applications Operations
Research has developed efficient algorithms, especially when the problems can be
modeled either as continuous (linear or nonlinear) programs or discrete linear pro-
grams. However, in many occasions the resulting models contain both nonlinearities
and discrete variables which make their resolution challenging.

The purpose of this paper is to improve a general technique to handle nonlin-
ear integer problems and to show some applications to engineering optimization
problems in a simple manner. This technique combines three essential elements: 1)
it borrows some tools from Computational Algebra which are applied to generate
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test sets for linear integer programs, 2) it uses relaxed problems to obtain seeds for
a dual search procedure, and 3) it defines an order on the search tree of feasible
solutions that uses the classical idea of a penalty strategy that should take into
account both the objective function value and the distance to the feasible region.
This third ingredient is specifically the new one that makes the general dual search
(or walk-back procedure) much more efficient in the experiments.

The general theory of penalty functions usually considers the transformation
of a constrained problem into unconstrained one(s) and afterward, starting from
some convenient seed, uses suitable directions in order to reach an optimum. Our
approach is a natural generalization in this context: once the optimum for a relaxed
integer linear problem of the original problem is reached, the process starts from
this optimum and chooses the most promising nodes balancing the cost and the
distance to the whole feasible region. The main advance of our algorithm with
respect to the one described in [30] is the insertion in the pending nodes list by the
ascending penalized cost. We will see in Section 4 the effectiveness of this change
in some examples.

The method is described in its full generality and then it is tested in two engineer-
ing design problems taken from the literature, namely, the minimization of the cost
of scheduling jobs on parallel machines given restrictions on demands and capac-
ity and in the minimization of the cost in the series parallel redundancy allocation
problem given a target reliability. For the first problem, with stochastic restrictions,
it is remarkable that our method can manage the examples tested whereas other
mainstream nonlinear solvers cannot deal with the nonlinear formulation. The re-
sults obtained in the second problem are competitive with the nonlinear solvers,
with a remarkable performance in the time needed to reach the optimum.

The paper is organized as follows. In Section 2 the basics about the walk-back
procedure using a test set associated with an integer linear program are presented.
Section 3 contains the main technique followed to improve the pure walk-back pro-
cedure. In this section it is also introduced the penalized cost function that can
be employed to order, in an efficient way, the feasible points of the relaxed inte-
ger linear problem. Section 4 is devoted to the examples where the method has
been tested. In all the examples tables with execution data (CPU time, number of
processed nodes) and comparison with previous works ([30], [25], [17]) and other
nonlinear integer programming solvers are included. Additionally, we show how to
exploit a combined strategy with other solvers to speed up certification of optimal-
ity. Finally, Section 5 contains the conclusions.

2. Preliminaries

This section contains a brief summary of the concepts and algorithms used to
solve integer linear programming problems from an algebraic point of view. In
addition it is recalled the walk back procedure for nonlinear integer programming
problems based on test sets. To this end, we have followed [28] and [30].

2.1. Test sets. Consider an integer linear programming problem:

(LP(b)) min c(x) = ct · x
s. t. A · x = b,

x ∈ ZN
+ ,
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where A ∈ Zd×N , b ∈ Zd, c ∈ RN . The notation (LP(b)) denotes the integer linear
programming problem with right-hand-side fixed to b. (LP) denotes the set of all
the integer linear programming problems obtained by varying the right-hand-side
vector b, fixed A and the cost function c. Let π be the map defined by π(x) = Ax.
Given a vector b ∈ Zd, the set π−1(b) = {u ∈ ZN

+ : π(u) = b} is the fiber of (LP)
over b.

Fixed a term order <c, associated with the cost, defined as usual in [28], there
exists a unique optimum β for (LP(b)). A set G<c

⊂ ZN is a test set for the family
of integer linear problems (LP) with respect to the matrix A and the order <c if

• for each nonoptimal point α of (LP(b)), there exists g ∈ G<c
such that

α− g is a feasible solution for (LP(b)) and α− g <c α,
• for the optimal point β, β − g is not a feasible point for any g ∈ G<c

.

In this way, a test set for (LP) connects the fiber as a directed graph with a unique
sink. It gives an obvious algorithm to solve an integer program, starting from a
feasible solution to this problem. At every step of this algorithm, we have two
different cases:

• There exists an element in the test set which, when subtracted from the
current point, yields an improved point.

• There does not exist such an element in the set, so that the point is the
optimum of the fiber.

2.2. Toric ideal. The toric ideal associated with A, denoted as IA is defined as

IA = 〈xα − xβ : Aα = Aβ,α,β ∈ ZN
+ 〉 ⊂ Q[x1, . . . , xN ].

Given a term order<c compatible with the cost function c(x), a reduced Gröbner
basis G<c

of IA yields a test set G<c
for (LP) (cf. [28]). If the reduced Gröbner

basis is formed by binomials

G<c
= {xαi − xβi , i = 1, 2, . . . , r}, with in<c

(xαi − xβi) = xαi ,

where in<c
stands for the greatest monomial with respect to <c, then the test set

is expressed as
G<c

= {αi − βi, i = 1, 2, . . . , r}.

2.3. Walk back procedure. The walk back procedure is an algorithm which com-
putes the optimum for a nonlinear integer programming problem under some con-
ditions. Our problem is of the form:

(P) min c(x) = ct · x

x ∈ A ⊂ Zn
+,

x ∈ B ⊂ Zn
+,

where

• the constraints x ∈ A are linear, and a test set can be obtained in practice
with respect to the linear cost function and these restrictions;

• the constraints x ∈ B can be linear and nonlinear.

We can assume without loss of generality that c(x) is a linear cost function
because if it were nonlinear we would transform the problem introducing the new
constraint c(x) ≤ z, that would be included in the set x ∈ B, and the objective
function min z. The problem would now fit within the original hypothesis, but the
test set will change because the cost function that defines the term order is different.
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Let (LIP) denotes the relaxed linear integer problem, namely:

(LIP) min c(x)

x ∈ A ⊂ Zn
+.

Let G be the test set associated with the relaxed linear problem (LIP). Starting
from some solution of (LIP) and adding vectors from G, every feasible point of the
relaxed problem (LIP) can be reached. So, in particular, every feasible point of
problem (P) can be reached as well. But we do not need to complete an exhaustive
enumeration of the feasible points of (P): if p′ is a feasible point for (P), with cost
c(p′), all the paths starting from points whose cost is greater than c(p′) can be
pruned. Remember that subtracting the elements of the test set always reduces the
cost, so adding them (or subtracting the elements of the reverse test set) provides
points that do not improve the value c(p′). When a path is pruned, all its points
are discarded. Points with negative components are deleted too. Along this process
new points are generated, called pending nodes, and the paths starting from them
must be analyzed. At the end all the possibilities will have been processed, and
the final result will be an optimum of (P), or a certificate that problem (P) has
an empty feasible region if no feasible point could be reached. This is the walk-
back procedure, described in [30]. The above argument can be summarized in the
following result:

Theorem 2.1. The walk-back procedure solves the problem (P), that is, it obtains
an optimum or shows that the problem has no feasible solution.

To the best of our knowledge, there have been few practical examples where the
walk-back procedure has been successfully applied, as in [30], [17], [9]. This lack of
applicability may be due to its two main drawbacks: the computation of the test
set and the time required for visiting the points x ∈ A to eventually obtain an
optimum for (P).

• The computation of the test set has, in general, a high cost. We have used
the toric ideal approach [28], which is implemented in a very efficient way in
the software 4ti2 [1]. In some cases, there is no need of such computation,
because it is possible to give a closed form of a Gröbner basis of the problem,
as it is made for example in [17].

• The points are ordered taking into account their cost. As soon as a feasible
point for (P) is reached, new points are found quickly, and one of them
is often an optimum. However, the processing time to reach such feasible
points is usually long and the list of pending nodes is huge.

The question is whether it is possible to order the points that have to be visited
in an alternative way, so that new feasible better points are obtained earlier. This
approach is explained in Section 3.

3. Combining test sets and a penalized strategy

3.1. Penalty functions. Traditionally, methods using penalty functions transform
a constrained problem into a single unconstrained problem or into a sequence of
unconstrained problems. Unconstrained problems are easier to manage in general.
The general idea is to place the constraints into the objective function with a penalty
parameter that penalizes properly any violation of these constraints.
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Given a problem (P),

(P) min c(x)
x ∈ A ⊂ Zn

+,
x ∈ B ⊂ Zn

+,

a penalty function p(x) is a function such that p(x) = 0 for x ∈ A ∩ B and
p(x) ≥ γ > 0 if x ∈ A \ B. Moreover, the statement γ > 0 comes from the discrete
nature of (P).

For a problem (P) the penalty problem (Ppen(µ)) is defined as

minx∈AT (x, µ) = c(x) + µp(x), for a certain µ > 0.

Since T (x, µ) = c(x) if x ∈ A ∩ B, it is clear that

opt(P) ≥ opt(Ppen(µ)).

In the problems that we deal with in this work the region B is possibly an
enormous, but finite, subset of Zn. It can be proved that, in this situation the
problem is equivalent to a penalized one.

Theorem 3.1 (cf. [20] Th. 2.11). Suppose that A\B 6= ∅. Let c0 be a lower bound
of c(x) in A and ρ > 0 be a lower bound of minx∈A\B p(x). Then, for any µ > µ0

with

µ0 =
opt(P)− c0

ρ
we have

opt(P) = opt(Ppen(µ)).

3.2. Ordering nodes by penalized cost. Following the notation of [30] we de-
scribe in this subsection our algorithm. The walk-back procedure provides a list of
feasible points, noted P , for the relaxed linear problem (LIP) and a guided search
procedure that allows us to get an exact optimum for the original problem (P).
However, the way in which the points are scanned is fundamental to create an algo-
rithm that performs the computations in a reasonable time. A first approach is to
order the pending nodes list according to their cost ([30], [17]). A second approach,
presented here, consists of ordering the pending nodes by a penalized cost function
of the form

T (x, µ) = c(x) + µp(x),

where the cost of the point is added to a value associated with the distance to the
region defined by the constraints of B in problem (P). Instead of ordering the points
to be visited by the original cost function c, the penalized cost function T (x, µ) is
used, expecting to reach faster some points that are feasible for the whole problem
(P). This is the main advance of our algorithm compared to the one described in
[30]: the insertion in the pending nodes list ordered by the new penalized cost
function.

It is worthwhile to emphasize that this procedure is exact and certifies the opti-
mality as proved in Theorem 2.1, because it is only a different way of visiting the
points required to solve the problem. It starts from the optimum β of (LIP) (that
we assume infeasible for (P) since otherwise we are done), and produces recursively
new points x that are in two possible situations:
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(1) x is feasible for (P), so we include it in the set Y of feasible points for (P)
obtained so far. It is not necessary to follow paths from x since the cost
would be worse;

(2) x is not feasible for (P) and we do not have points in Y with better cost,
then x is inserted according to the function T (x, µ) in the set P of nodes
to examine.

4. Applications

4.1. Correlated setup. The walk back procedure was introduced in [30] and ap-
plied in a problem of assignment of jobs to machines, with given production and
correlated setup costs, capacity constraints and probability to reach a given de-
mand. We deal with the same problem by adding the improvement of the penalized
cost and a set of new cuts that does not alter the optimum.

The notation for the model is the following:

• n number of job types, indexed by i,
• m number of machines, indexed by j,
• (D1, . . . , Dn) random vector of demands,
• N size of the sample set used to estimate the probability,
• Cj capacity (time) for each machine,

• (D̂1, . . . , D̂n) means vector of the probability distribution of demand,
• Sij setup time for job type i on machine j,
• Kij setup cost for job type i on machine j,
• Mi lot splitting,
• L′

ij the cost of producing a unit of product type i on machine j,

• Lij = (D̂i/Mi)L
′
ij ,

• pij processing time for a unit of job type i on machine j,
• γ probability of no shortfall.
• zij equals 1 if job type i is scheduled on machine j, 0 otherwise,
• yij multiples of 1/Mi of demand of product i are scheduled on machine j.

The model presented in [30] is:

(SP) minimize
∑

i

∑

j

(Kijzij + Lijyij)

subject to
m∑

j=1

yij = Mi, i = 1, 2, . . . , n,(1)

Mizij ≥ yij , i = 1, 2, . . . , n, j = 1, 2, . . . ,m,(2)

gj(z,y) =

n∑

i=1

pij

(

D̂i/Mi

)

yij +

n∑

i=1

Sijzij ≤ Cj , j = 1, 2, . . . ,m,(3)

g0(z,y) = Prob

{
n∑

i=1

pij (Di/Mi) yij +
n∑

i=1

Sijzij ≤ Cj , j = 1, 2, . . . ,m

}

≥ γ,(4)

zij ∈ {0, 1}, yij ∈ {0, 1, . . . ,Mi}(5)

The condition (4) will be computed in a sample dataset of size N . As usual we
note (LSP) the linear relaxed problem defined by constraints (1), (2) and (5).
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The model (SP) admits a family of optimality cuts:

(6) zij ≤ yij , i = 1, . . . , n, j = 1, . . . ,m.

It is clear that if the job i is assigned to the machine j, then something is produced
in it. These constraints reduce the feasible region, but do not alter the optimum of
problem (SP). We call problem (ISP) the resulting model obtained from (SP) after
adding the constraints (6).

The test set is associated with the linear constraints (1), (2), (5) and (6), which
defines a relaxed problem (LISP). The equations (3) and (4) are checked for every
point and test feasibility for Problem (ISP).

Similarly to [30], the linear problem with restrictions (1), (2), (5) and (6) can be
expressed with equalities by adding slack variables:

(LISP− II) minimize
∑

i

∑

j

(Kijzij + Lijyij)

subject to
m∑

j=1

yij = Mi, i = 1, 2, . . . , n,(7)

yij + aij −Mizij = 0, i = 1, 2, . . . , n, j = 1, 2, . . . ,m,(8)

zij + bij = 1, i = 1, 2, . . . , n, j = 1, 2, . . . ,m,(9)

− yij + zij + cij , i = 1, 2, . . . , n, j = 1, 2, . . . ,m,(10)

yij , aij , bij , cij ∈ Z+, i = 1, 2, . . . , n, j = 1, 2, . . . ,m.(11)

Theorem 4.1. The set of binomials

yipaiqcip − yiqaipciq, i = 1, 2, . . . , n, 1 ≤ p < q ≤ m,

bipcip − zipa
Mi

ip , i = 1, 2, . . . , n, p = 1, 2, . . . ,m,

bipyiqciq − zipyipa
Mi−1
ip aiq, i = 1, 2, . . . , n, 1 ≤ p 6= q ≤ m,

bipyiqziqa
Mi−1
iq − zipyipbiqa

Mi−1
ip , 1 ≤ p < q ≤ m,

is the reduced Gröbner basis of the toric ideal corresponding to (LISP-II) with respect
to the lexicographical order b > y > z > a > c. The letter y denotes the set of
variables (y11, . . . , ymn) and similarly a, z, b and c denote the other sets of variables.
Within a block, the variables are sorted lexicographically according to index.

The proof is written in Appendix A.
However, this basis is not the one needed to build the test set with respect to

the cost function. We have used 4ti2 to get the basis in a straightforward way,
and the computation cost has been always under one second for all the considered
instances, which are of the same size of those proposed in [30].

4.1.1. New penalized cost function. Following the notation of Section 3, let x be the
set of variables yij , zij . Multiplying by a suitable constant, we can assume that all
the coefficients in gj(x) for j = 1, 2, . . . , n are integers. We consider the functions

G0(x) = γ − g0(x), Gj(x) = gj(x)− Cj .

Let A be the finite set in Zn+m defined by the linear constraints (1), (2), (5) and
(6). We call

B = {x ∈ Zn+m | Gj(x) ≤ 0, j = 0, 1, . . . ,m},
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and define the penalty function

p(x) =

m∑

j=0

max(Gj(x), 0).

Theorem 3.1 gives a constant µ0 which frames a parameter region where the same
objective value for the nonlinear problem and the penalized version is obtained.

Let c(x) =
∑

i

∑

j(Kijzij + Lijyij) be the cost function and x̂ the optimal

solution of the relaxed problem (LISP).

Proposition 4.1. Let c1 :=
∑

i

∑

j(Kij + Lij), N be the size of the sample set

and ρ0 = 1
2N . Let (ISP)′ be the problem that results from (ISP) after replacing

constraint (4) by g0(x) ≥ γ′, with γ′ = ⌈Nγ⌉
N

− 1
2N .

The objective values of problems (ISP) and (ISP)′ coincide. Moreover, for any

µ ≥ µ0 = c1−c(x̂)
ρ0

, Problem (ISP) and the penalized version of (ISP)′ with objective

function c(x) + µp(x) have the same optimal value.

Proof. First of all, we observe that g0(x) is a stepwise function that can only
assume the values k

N
for k = 1, . . . , N . Therefore, the set of feasible points of (ISP)

that satisfy g0(x) ≥ ⌈Nγ⌉
N

for any γ ∈ (0, 1) is the same that those that satisfy

g0(x) ≥
⌈Nγ⌉
N

− 1
2N . This proves the first statement of the proposition.

From now on we only consider (ISP)′ and its penalized version. In order to
apply Theorem 2, we need to prove that ρ0 is a valid lower bound of p(x) on A\B.
Indeed, we note that if x 6∈ B then either Gj(x) > 1 for some j = 1, . . . ,m or

g0(x) <
⌈Nγ⌉
N

− 1
2N . In the former case, we have p(x) ≥

∑m
j=1 Gj(x) ≥ 1 > ρ0. In

the latter case, due to ⌈Nγ⌉−1
N

< ⌈Nγ⌉
N

− 1
2N < ⌈Nγ⌉

N
and taking into account that

g0(x) only assumes values k
N
, then the constraint g0(x) <

⌈Nγ⌉
N

− 1
2N is equivalent

to g0(x) ≤
⌈Nγ⌉−1

N
. So γ′−g0(x) ≥

1
2N and hence p(x) ≥ G0(x) ≥ γ′−g0(x) ≥

1
2N .

Theorem 2 provides a constant µ0 which depends on the unknown optimal value
of (ISP)′. To avoid this inconvenience, we shall replace µ0 by something greater.
We substitute the unknown value of (ISP)′ by c1, a valid upper bound of that value.
Hence, we can apply Theorem 3.1 to (ISP)′ and its penalized version to conclude
the second statement of the proposition. �

�

In spite of the above result, our algorithm does not solve the penalized version.
Rather than that we use the order induced by its values to guide the search strategy
in our branching tree. However, the above estimation gives a good estimate of µ
in our penalty term because a big value of µ yields a poor performance of our
algorithm.

It is clear that c0 = c(x̂) is a lower bound of minx∈A c(x). In our computa-
tional results, after some experimentation, we have used a different estimate of the
value of minx∈A\B p(x) than the one given in Proposition 4.1 because of its better
performance.

Indeed, the values of the functions Gj(x) for j = 1, 2, . . . ,m are greater than
one, while the values of G0(x) are less than 1. We let ρ̄ = G0(x̂), and take

µ̄0 =
c1 − c0

ρ̄
, α = ⌊log(

c0
µ̄0

)⌋, and µ = αµ̄0.
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This quotient is intended to avoid that the coefficient µ̄0 takes on values very
large with respect to c0. The penalized cost is then T (x, µ) = c(x) + µp(x).

We have considered other penalized cost functions, as the adaptive function de-
scribed in [11], or the oracle function of [27], but the computational results have been
slightly worse than the experiments with the previously defined function T (x, µ).

4.1.2. Computational results. In order to evaluate the performance of the new or-
dering in the list P of pending nodes, several families of instances have been con-
sidered and compared with the previous walk-back procedure. Both algorithms
have been coded in Matlab and run on a Intel Xeon X5660 (2.8 GHz) with 32
GB RAM. The data have been randomly generated with the conditions described
in [30, Example 4], that is, n = 7 jobs and m = 4 machines, with capacities
(20, 20, 40, 40) (there is a misprint in the original article), mean demands equal to
µ = (20, 16, 12, 8, 8, 4, 4), lots M = 2 and covariance matrix

V =













36 0 −10.8 0 0 0 7.34
0 23 0 5.9 11.5 0 0

−10.8 0 13 0 0 −4.4 −4.4
0 5.9 0 6 0 0 0
0 11.5 0 0 23 0 0
0 0 −4.4 0 0 6 0

7.34 0 −4.4 0 0 0 6













.

All setup times Sij and production times pij are equal to 1. The setup and pro-
duction costs (Kij , L

′
ij) are provided in Table 1, similarly to [30, Fig. 3], but with

the errors corrected (the values were swapped).

Table 1. Setup and production costs for n = 7 jobs, m = 4 machines

job 1 job2 job 3 job 4 job 5 job 6 job 7
machine 1 5, 3 3, 4 3, 3 1, 2 1, 3 3, 3 5, 4
machine 2 1, 4 1, 4 4, 2 5, 2 3, 4 1, 3 2, 2
machine 3 4, 3 2, 3 5, 2 4, 2 4, 4 2, 2 4, 4
machine 4 5, 3 4, 4 4, 2 4, 3 1, 3 5, 4 2, 2

Different sample sets have been considered, with 250 records, mean µ and co-
variance matrix V . There are no differences among the different samples, we have
chosen the more descriptive one. The results appear in Table 2 for different values
of the probability γ. We compare the runs for the original walk-back procedure
of [30], ordered only by the cost (column “Walk-back” in tables), and the runs
with the previously defined penalized cost function (column “WB new ordering”
for function T (x, µ)). The column “Total” groups the number of visited nodes and
CPU time in seconds. The maximum number of points to be considered has been
set to 120000, (a proxy for a CPU time approximately equivalent to 90 minutes
of computation), and the label “Max” denotes that the run has reached this limit
and it has been terminated. The column “Optimum” groups the number of vis-
ited nodes and CPU time to get an optimum. When the process has reached the
maximum number of points, the value of the best point found is shown, but it is
not possible to guarantee that it is an optimum. If the process has not even found
a feasible point we write “NNP”. The computation of the Gröbner basis is done
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Table 2. 4 machines, 7 jobs,M = 2, improved model, 250 records,
Time in seconds

Walk-back WB new ordering
Total Optimum Total Optimum

γ Time Nodes Time Nodes Time Nodes Time Nodes
0.696 0.3 125 0.1 121 0.2 63 0.1 44
0.710 0.3 125 0.1 121 0.2 63 0.1 44
0.750 0.4 190 0.2 179 0.3 99 0.1 61
0.770 0.5 226 0.3 215 0.3 99 0.1 61
0.850 1.1 396 0.4 311 1.1 278 0.3 130
0.888 3.4 934 1.3 873 2.8 643 0.2 100
0.900 3.4 934 1.3 873 2.7 643 0.2 100
0.932 5.4 1299 1.4 893 4.1 913 0.1 63
0.956 176.9 15220 130.2 14670 64.8 8511 2.1 1145
0.960 534.9 28575 429.3 27799 263.7 19072 62.5 7973
0.980 Max NNP 6355.7 98294 11.7 3360

under one second, for all the examples. It is worthwhile noting that the test set
for the original formulation (LSP) contains 178 vectors and the test set for model
(LISP) contains 245 vectors.

We can remark the following facts:

• The walk-back procedure with a new order given by a penalized cost func-
tion (“WB new ordering”) is, in general, more competitive than the original
method (“Walk-back”) in all the values of γ.

• As we expected, the instances under “Walk-back” find an optimum after
a big number of nodes with respect to the total number of nodes. The
instances with a penalized cost function usually find the optimum very
quickly. Although we have not included the data in the tables, we must
remark that the first feasible point found in “WB new ordering” appears
very early in the run, if we compare it with “Walk-back”.

• In the last row of “WB new ordering”, with γ = 0.98 a very good feasible
point is reached much earlier than for the case of γ = 0.96 (one to the last
row), but it is harder to certify that it is the optimum. We do not order
points by their costs, the trade-off done by the penalty cost function can
give such a result, but its performance is much better than the original
method.

• Certifying a point to be optimum is a heavy task, and all the methods give
similar results.

• We have expanded the range of values of the probability γ with respect to
[30, Example 4] to show that the new ordering method not only increases
the speed of the process, but it also allows to solve more difficult cases.

• The certificate of optimality is very sensitive to small variations in the value
of γ, as Table 2 shows in the high increment of processed nodes. Finding an
optimum is more robust to this change, and the time stays under 4 minutes.
The ordering of pending nodes by a penalized cost function can be used
then as a search tool, as long as a good point can be reached very quickly.
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Obviously, the choice of the value of γ should be made thoroughly, because
it is easy to create infeasible problems.

4.1.3. Other formulation to run solvers. This joint chance constraint problem with
sampling can be solved as an MILP with the use of big-M notation (see [26], [22],
[4]), but with another completely different integer linear formulation. Each record
in the sample generatesm constraints in the new linear problem. This approach has
been implemented in the model language GAMS and solved with Gurobi ([13]),
Mosek ([23]), Cbc ([8]) and Scip ([2]) in the Neos Server site. The results for
the treated levels of probability in Table 2 appear in Table 3. For each solver, the
column “Total” contains the CPU time to certify the optimum and the column
“Optimum” the time when the solver found the solution. The label “Max” denotes
that the run has reached the limits in Neos Server, and “NNP” means optimum
not found.

Table 3. Linear formulation

Gurobi Mosek Cbc Scip
γ Total Optimum Total Optimum Total Optimum Total Optimum

0.696 0.7 0.1 0.8 0.7 10.3 7.5 3.8 3.6
0.71 0.9 0.1 0.9 0.9 16.0 8.6 3.7 3.5
0.750 1.6 1.0 2.7 2.6 9.5 8.0 7.4 6.3
0.770 1.1 1.0 1.6 1.5 13.6 7.0 5.3 5.0
0.850 7.7 6.0 Max 117.2 41.9 23.3 5.8 2.2
0.888 5.1 4.0 Max 337.4 31.7 31.3 16.6 7.4
0.900 17.4 17.0 Max 265.6 18.1 17.0 8.5 4.6
0.932 12.9 2.0 48.1 3.7 17.8 12.3 8.1 6.3
0.956 12.7 1.0 Max 2.7 48.8 41.5 23.9 21.3
0.960 41.3 34.0 Max 294.0 241.4 229.4 23.9 17.5
0.980 39.6 16.0 Max NNP 75.7 38.8 32.5 30.4

As it is expected, linear solvers are in general more robust than nonlinear ones.
For example, the results for Mosek are quite erratic. For easy cases (γ ≤ 0.9),
our approach is faster in both finding the optimal solution and proving optimality.
For hard cases (γ ≥ 0.95), our approach is competitive with the best MILP codes
regarding finding optimal solutions, but vastly inferior to the best MILP codes
regarding proving optimality.

4.2. Reliability. Optimization of the design of engineering systems is an impor-
tant problem. We deal with the case of a series-parallel system, minimizing its cost,
subject to a desired level of reliability. Usually redundancy allocation of compo-
nents is used to achieve the reliability goal. We assume that for each subsystem,
there are different types of components. The constraint which calculates the sys-
tem reliability is a nonlinear and non-separable constraint, so we have a nonlinear
integer programming problem. Even considering only one type of component for
each subsystem, the problem is NP-hard [10].

For real problems, the size of the search space is huge. In the specialized literature
most papers give heuristic methods to find efficient approaches. They are based on
Tabu Search [24], Genetic Algorithms [12] or Ant Colony Optimization [3], among
many other techniques.
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Figure 1. A parallel-series system with multiple choice components

4.2.1. Statement of the problem. We use the following notation:

• n number of subsystems.
• ki number of different types of available components for the i-th subsystem.
• rij reliability of the j-th component for the i-th subsystem.
• cij cost of the j-th component for the i-th subsystem.
• uij upper bound of number of the j-th component for the i-th subsystem.
• R0 admissible level of reliability of the whole system.
• xij number of the j-th component used in the i-th subsystem.

We consider a model of series-parallel with n subsystems which is illustrated in
Figure 1. Some assumptions are made in the following:

• Components have two states: operative or failed.
• The component reliabilities are known and deterministic.
• Failure of individual components are independent.
• Failed components do not damage other components, and they are not
repaired.

The nonlinear integer redundancy allocation problem can be formulated as:

(RP) min
∑n

i=1

∑ki

j=1 cijxij = ctx

s.t. R(x) =
∏n

i=1(1−
∏ki

j=1(1 − rij)
xij ) ≥ R0,

∑ki

j=1 xij ≥ 1 i = 1, . . . , n

0 ≤ xij ≤ uij i = 1, . . . , n
j = 1, . . . , ki

xij ∈ Z+ for all i, j

4.2.2. Associated test set. Consider an integer linear programming problem, de-
noted as (LIRP), which is the relaxed redundancy allocation problem without the
reliability constraint, that is:
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(LIRP) min
∑n

i=1

∑ki

j=1 cijxij

s. t.
∑ki

j=1 xij ≥ 1, i = 1, . . . , n,

0 ≤ xij ≤ uij , i = 1, . . . , n,
j = 1, . . . , ki,

xij ∈ Z+ for all i, j.

Each inequality can be converted to an equality with a new slack variable:

(LIRP) min
∑n

i=1

∑ki

j=1 cijxij

s.t.
∑ki

j=1 xij − di = 1, i = 1, . . . , n,

xij + tij = uij , i = 1, . . . , n,
j = 1, . . . , ki,

xij ∈ Z+ for all i, j.

Usually the computation of the Gröbner basis is the bottleneck phase of this
approach, but in our case (LIRP) is described by a totally unimodular matrix.
Therefore, the set of circuits is known to be its Universal Gröbner basis [19]. How-
ever, for our purpose a Gröbner basis for a specific monomial order is needed. This
basis can be computed explicitly.

For each i = 1, . . . , n, the costs cij can be sorted in descending order: ciq ≥ cip
if q < p. Let N be the sum k1 + · · ·+ kn and define the matrices

Dn×N =










k1

︷ ︸︸ ︷

1 . . . 1

k2

︷ ︸︸ ︷

0 . . . 0 . . .

kn
︷ ︸︸ ︷

0 . . . 0
0 . . . 0 1 . . . 1 . . . 0 . . . 0

. . .

0 . . . 0 0 . . . 0 . . . 1 . . . 1










, Ck′

i
×ki

=
























1 −1 0 0 · · · 0
1 0 −1 0 · · · 0
1 0 0 −1 · · · 0
...

...
. . .

...
1 0 0 0 · · · −1
0 1 −1 0 · · · 0
0 1 0 −1 · · · 0
...

...
...

. . .
...

0 1 0 0 · · · −1
...

...
...

0 0 0 0 1 −1
























where k′i =
(
ki

2

)
. Under these conditions, we have the following result:

Theorem 4.2. The rows of the matrix










IN (Dn×N )t −IN
Ck′

1
×k1

0 0 0 0 −Ck′

1
×k1

0 0 0
0 Ck′

2
×k2

0 0 0 0 −Ck′

2
×k2

0 0
...

. . .
...

. . .

0 0 · · · Ck′

n×kn
0 0 0 0 −Ck′

n×kn










,
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form a test set of (LIRP) with respect to the monomial order defined by the cost
function, where the leftmost block corresponds to the variables

x11, . . . , x1k1
, x21, . . . , xnkn

,

the center block to the variables d1, . . . , dN and the rightmost block to the variables
t11, . . . , t1k1

, t21, . . . , tnkn
.

For a complete proof of this result see [17].

4.2.3. Penalized cost function. The walk-back process for this problem is greatly
improved by the knowledge of a feasible point y0 of (RP), which provides a good
initial upper bound. There are lots of heuristic methods to obtain such a point. In
this case, a greedy algorithm similar to [15] or [25] is used, which obtains a feasible
point y0, with a cost

∑

ij cijy
0
ij = c0 and a reliability R0. Obviously, the optimal

solution of (RP) has a cost less than or equal to c0. Let β be the optimum of
(LIRP) with reliability Rβ.

The penalized cost function can be defined in the following way, inspired by
Theorem 3.1:

T (x, µ) = ct · x+ µ ·max{0, (R0 −R(x))}, where µ =
cY − ct · β

R0 −Rβ

,

with cY the cost of the best point found for (RP). Initially, cY = c0.
An improvement of the method consists in changing after a short period of time

the penalized function. The list P of pending nodes is ordered according to the
penalized cost function for a fixed amount of nodes L. After that, when it is likely
a good feasible point has been found, the ordering is changed to T2(x) = −ct · x,
that is, a “Depth first search” [5]. This assures a fast search for the optimum and a
set P with a medium size. The parameter used is described in the next subsection.

4.2.4. Computational results. In all cases n and k refer to the number of subsys-
tems, and the number of different components in each subsystem, respectively. For
simplicity, the same number of components has been considered in each system
ki = k. The complexity of the problem depends on

∑

i ki, different values of ki do
not increase the problem size. The term “Walk-back” collects the results obtained
with the algorithm published in [17]. The term “WB new ordering” summarizes
the data for the new ordering given by the penalized cost function. For all the
examples a summary table reports the average of a total of 30 instances run for
each case.

The columns show the average CPU time in seconds and nodes visited, both
data computed for the cases when both algorithms certified optimality visiting
80000 nodes or less. The parameter L described in the previous subsection for the
improvement is set to 2000. The column “> Limit” counts how many cases did not
reach optimality.

4.2.5. No correlation between cost and reliability, high reliability values. In the first
case the sample is randomly generated from a uniform distribution, as in [25], with
uij = 4, cij ∈ [10, 20], and values of reliability very close to 1: rij ∈ [0.99, 0.998].
The reliability objective is set to R0 = 0.90. There is no correlation between cost
and reliability of components, so it is likely that certain components are easily
discarded. In Table 4 the results of the experiment are summarized.
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Table 4. No correlation, high values of rij ∈ [0.99, 0.998], cij ∈
[10, 20], uij = 4, R0 = 0.90, average time in seconds and nodes

Walk-back WB new ordering
n k Time Nodes > Limit Time Nodes > Limit
17 4 0.2 58 1 0.1 23 1
19 2 40.1 3389 1 9.1 2255 1
20 2 173.7 7254 6 72.7 7177 5

4.2.6. Correlation between cost and reliability, high reliability values. In this case
we use the hypothesis that the greater the reliability component, the greater cost.
The size of the systems have changed, due to the increased difficulty of the cases.
The ranges of reliability and cost are similar to the first family of examples. Table
5 contains the summarized data.

Table 5. Correlation, high values of rij ∈ [0.99, 0.998], cij ∈
[10, 20], uij = 4, R0 = 0.90, average time in seconds and nodes

Walk-back WB new ordering
n k Time Nodes > Limit Time Nodes > Limit
15 3 322.8 6965 1 42.3 4795 0
15 4 571.1 17629 13 432.6 21843 8
17 2 92.7 6465 1 15.4 3813 1

4.2.7. Correlation between cost and reliability, smaller reliability values. The last
family of examples has the reliability and cost also correlated. When the range
of the reliability of components is changed, the size of the problem increases very
quickly. However if the range of cost is changed, the difficulty of the problem is the
same. Here we consider smaller reliability values of components rij in the range
[0.90, 0.99]. Table 6 summarizes the collected data.

Table 6. Correlation, low values rij ∈ [0.90, 0.99], cij ∈
[10, 20], uij = 4, R0 = 0.90, average time in seconds and nodes

Walk-back WB new ordering
n k Time Nodes > Limit Time Nodes > Limit
7 5 23.6 6157 0 17.9 5301 0
8 4 593.5 37728 7 373.4 34754 1

4.2.8. Comments about the tables. We highlight the following facts about the im-
provements:

• In all the cases when the walk-back algorithm did not find any improvement
to the initial estimation, the new ordering procedure gives a better point.

• In almost the entire set of examples the optimum has been found with the
new ordering algorithm in less than one second.
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• When the walk-back procedure certifies optimality, the optimum is usually
found after a large number of nodes explored during the search. The new
ordering method finds it very quickly and most part of the time is used to
certify optimality.

• The required time to certify optimality has highly decreased in all the cases.
This fact is due to the decrease in the time needed to reach an initial feasible
point. It contributes to speeding up the process through pruning paths. As
an illustrative example in Table 5 the average time needed in the walk-
back algorithm for n = 15, k = 4 is 571.1 s, and the new ordering method
requires 432.6 s, an improvement of 25%.

• The performance is better than that appeared in [25].

4.2.9. Comparison with other solvers. In order to perform further comparisons with
standard integer nonlinear solvers asBaron ([29]), Couenne ([6]) or Bonmin ([7]),
the problem (RP) has been modeled in GAMS format. This encoding has allowed us
to launch our data sets in the Neos Server ([14], [18], [16]) under these solvers. We
have chosen the 30 instances for systems with n = 8, k = 4 from Table 6, because
it contains a good assortment of cases. A summary of the results are reported in
Table 7 that shows average time to certify optimality and in Table 8 that shows the
time required to reach the optimum (Couenne is not considered in the last Table).

Table 7. Comparison of solvers for the case n = 8, k = 4, time to
certify optimality

WB new ordering Baron Couenne Bonmin
Avg. Time 373.4 53.9 1020.9 272.8
N/F 0 0 9 0

Table 8. Comparison of solvers for the case n = 8, k = 4, time to
rearch the optimum

WB new ordering Baron Bonmin
Avg. Time 2.8 25.7 209.4

The columns identify the solvers. The row “Avg. Time” contains the average
time of CPU reported by the outputs for the 30 instances. The row “N/F” indicates
the number of examples that the system has not been able to finish.

We note the following facts:

• The packages Bonmin and Baron have, in general, a better performance
to certify optimality.

• In some cases we have observed that Baron returns a nonoptimal point,
although it is very close to the minimum cost. The walk-back procedure
and Bonmin always return an actual optimal point.

• The walk-back with new ordering found the optimum very quickly, usually
under 3 seconds, as can be seen in Figure 2. This chart compares the times
used by walk-back, Bonmin and Baron to find the optimum. Couenne
reports much larger times.
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Figure 2. Time to find an optimum: WB new ordering, Bonmin
and Baron

A natural question is how to combine the speed of the walk-back procedure with
new ordering to find the optimum, and the good approach of a nonlinear solver like
Baron to certify optimality of the point. This has been done including the point
found by the walk-back procedure in the GAMS code as an initial feasible point. In
all the cases, the point is certified with the right optimal cost, and the CPU time
is significantly reduced, as it can be seen in Figure 3.
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Figure 3. Time to certify: Baron and Baron with initial point
given by WB

5. Conclusions

The walk-back procedure is based on extracting certain linear constraints from
a nonlinear integer problem for which a test set can be easily computed. Starting
from an optimum for the relaxed problem, and using the reverse test set, all the
feasible points for the original problem can be reached, and an optimum can be
found. The method has been improved by giving a criterion to sort the set of
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points to be inspected by a penalized cost function. This new cost function trades
off the cost of a point against its distance to the feasible region. As a result, new
better points are obtained faster than with the order only by cost. Two real design
engineering applications have been presented: the scheduling of jobs on parallel
machines given restrictions on demands and capacity to minimize costs, and the
series parallel redundancy allocation problem given a target reliability. The first
problem includes a probabilistic constraint with random variables in the technology
matrix, that can not be treated with nonlinear solvers. Our approach deals with
any computable constraint. This problem can be reformulated as a linear integer
program, and still in certain cases our approach is competitive with the best MILP
solvers. The second application considered contains a nonlinear restriction given by
the reliability function. This nonlinear model can be compared with other solvers
with remarkable results. We conclude, through extensive computations, that both
applications show that the combination of the walk-back procedure and an improved
ordering is a promising tool as an exact method to solve nonlinear integer programs.
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Appendix A. Proof of Theorem 4.1

Let A be the matrix associated with the restrictions for Problem (LSP-II). Then
A can be divided in five blocks according to the five sets of variables yij , aij , zij , bij
and cij . Let I denote the identity matrix of size mn and O denote a matrix with all
entries zero. Let D be the block diagonal (0, 1)-coefficient matrix associated with
constraints (7). Let −MI denote the coefficient matrix of the variables zij , i =
1, . . . , n, j = 1, . . . ,m in constraints (8). We can then write A as the (n+3mn)×5mn
integer matrix

A =







D O O O O

I I −MI O O

O O I I O

−I O I O I







We note t = (ty , ta, tz, tb, tc), S = {t | At = 0} and the block ty represents the
variables (Y11, . . . , Ymn), noted in capital letters. Similar for the other blocks.
Consider the following cases:
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(1) K1 = {t ∈ S | ty = tb = 0}. Let S′ = kerA′, where

A′ =





I −MI O

O I O

O I I



 →





I −MI O

O I O

O O I



 ,

which is not singular. Then K1 = 0 and there is no binomial xα − xβ such
that contains only the variables aij , zij , cij .

(2) K2 = {t ∈ S | tb = 0}. Let S′′ = kerA′′, where

A′′ =







D O O O

I I −MI O

O O I O

−I O I I







.

By the previous case, we can assume ty 6= 0. The rows in the third block
imply that tz = 0. Then t ∈ K2 if and only if (ty, ta, tc) ∈ S′′′ = kerA′′′,
for

A′′′ =





D O O

I I O

−I O I



 .

Let Yip be the leftmost nonzero component in ty. We can assume Yip > 0,
because S′′′ is a vector space. The row block corresponding to D implies
that there exists q > p such that Yiq < 0. Then

yip divides xt+ , yiq divides xt− .

The second block of rows in A′′′ implies Aip = −Yip < 0, Aiq = −Yiq > 0.
From the third block of rows, Cip = Yip > 0, Ciq = Aiq < 0. Then

yipaiqcip divides xt+ , yiqaipciq divides xt− .

The initial term in xt+ − xt− with respect to > is xt+ because yip divides

xt+ and yip it the greatest monomial in the binomial. Then the initial term
of

(12) yipaiqcip − yiqaipciq

divides the initial term of xt+ − xt− .
(3) Let S = kerA. By (a) and (b) we suppose tb 6= 0. Let Brs the leftmost

nonzero component in tb. As in the previous case, take Brs > 0. Because b

is the set of greatest variables for our term order, xt+ is the leading term.
We also have Zrs = −Brs < 0.
(a) If Yrs ≥ 0 then

−Yrs + Zrs + Crs = 0

then

brscrs divides xt+

and the initial term of

(13) brscrs − zrsa
Mr

rs .

divides xt+ .
(b) Yrs < 0. Then there exists Yrq, s 6= q with Yrq = −Yrs > 0 .
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(i) If Crq > 0, then brsyrqcrq divides xt+ . The initial term of

(14) brsyrqcrq − zrsyrsa
Mr−1
rs arq, s 6= q.

divides the initial term of xt+ − xt− .
(ii) If Crq ≤ 0 then 0 < Yrq ≤ Zrq, which implies Brq < 0 so s < q,

because Brs was the first nonzero element. The rows in the
second block imply that

Yrq +Arq −MrZrq = 0, so Arq = MrZrq − Yrq ≥ MrYrq − Yrq = (Mr − 1)Yrq.

Then the initial term of

(15) brsyrqzrqa
Mr−1
rq − zrsyrsbrqa

Mr−1
rs , s < q

divides the initial term of xt+ − xt− .

We have reviewed all the cases, so the sets (12), (13), (14) and (15) form the reduced
Gröbner basis.
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