MORSE DECOMPOSITION OF GLOBAL ATTRACTORS WITH INFINITE COMPONENTS

TOMÁS CARABALLO, JUAN C. JARA, JOSÉ A. LANGA

Dpto. Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Apdo. de Correos 1160, 41080-Sevilla, Spain

JOSÉ VALERO

Centro de Investigación Operativa, Universidad Miguel Hernández, Avda. de la Universidad, s/n, 03202-Elche, Spain

(Communicated by Associate Editor)

Abstract. In this paper we describe some dynamical properties of a Morse decomposition with a countable number of sets. In particular, we are able to prove that the gradient dynamics on Morse sets together with a separation assumption is equivalent to the existence of an ordered Lyapunov function associated to the Morse sets and also to the existence of a Morse decomposition -that is, the global attractor can be described as an increasing family of local attractors and their associated repellers.

1. Introduction. The asymptotic behaviour of a system of (ordinary or partial) differential equations modeling real phenomena from different areas of Science is usually described by the analysis of their global attractors, a compact invariant set for the associated semigroups attracting (uniformly) bounded sets forwards in time. This subject has received much attention throughout the last decades (see, for instance, [\[4\]](#page-15-0), [\[9\]](#page-15-1), [\[12\]](#page-16-0), [\[16\]](#page-16-1), [\[19\]](#page-16-2), [\[18\]](#page-16-3) or [\[20\]](#page-16-4)). We recall now the definition of global attractor associated to a semigroup.

First, let X be a metric space with metric $d: X \times X \to \mathbb{R}^+$, where $\mathbb{R}^+ = [0, \infty)$, and denote by $\mathscr{C}(X)$ the set of continuous maps from X into X. Given a subset $A \subset$ X, the ϵ -neighborhood of A is the set $\mathcal{O}_{\epsilon}(A) := \{x \in X : d(x,a) < \epsilon \text{ for some } a \in \mathbb{C}\}$ A .

Definition 1.1. A family $\{T(t): t \geq 0\} \subset \mathcal{C}(X)$ is a semigroup in a complete metric space X if:

- $T(0) = I_X$, with I_X being the identity map in X,
- $T(t + s) = T(t)T(s)$, for all $t, s \in \mathbb{R}^+$,
- $\mathbb{R}^+ \times X \ni (t, x) \mapsto T(t)x \in X$ is continuous.

²⁰⁰⁰ Mathematics Subject Classification. 37B25, 37L99, 35B40, 35B41.

Key words and phrases. Morse decomposition; infinite components; gradient dynamics; Lyapunov function; gradient-like semigroup.

Partially supported by FEDER and Ministerio de Economía y Competitividad (Spain) under grants MTM2011-22411 and MTM2012-31698, and by Junta de Andalucía under Proyecto de Excelencia P12-FQM-1492.

The notion of invariance plays a fundamental role in the study of the asymptotic behavior of semigroups.

Definition 1.2. A subset A of X is said invariant under the semigroup $\{T(t): t \geq 0\}$ 0} if $T(t)A = A$ for all $t \geq 0$.

Given $A, B \subset X$, the Hausdorff semidistance from A to B is given by

$$
d(A, B) := \sup_{a \in A} \inf_{b \in B} d(a, b).
$$

Definition 1.3. Given two subsets A, B of X we say that A attracts B under the action of the semigroup $\{T(t): t \geq 0\}$ if $d(T(t)B, A) \stackrel{t \to \infty}{\longrightarrow} 0$.

We are now in a position to define *global attractors*.

Definition 1.4. A subset A of X is a global attractor for a semigroup $\{T(t):$ $t \geq 0$ if it is compact, invariant under the action of $\{T(t): t \geq 0\}$ and for every bounded subset B of X we have that A attracts B under the action of $\{T(t): t \geq 0\}$.

Definition 1.5. The semigroup $\{T(t): t \geq 0\}$ is eventually dissipative if for any bounded set B there exists $t^* = t^*(B) \geq 0$ such that $\bigcup_{t \geq t^*} T(t)B$ is bounded.

Remark 1.6. It is obvious that if $T(t)$ possesses a global attractor, then it is eventually dissipative.

One of the main properties in the study of attractors is referred to the description of their geometrical internal structure. Generically, a global attractor is characterized by a (finite or infinite) number of isolated invariant sets and the connecting orbits among them. This fact leads to a Morse decomposition of the global attractor in terms of a family of attracting-repeller pairs (see $[8, 17, 11, 14, 15]$ $[8, 17, 11, 14, 15]$ $[8, 17, 11, 14, 15]$ $[8, 17, 11, 14, 15]$ $[8, 17, 11, 14, 15]$ $[8, 17, 11, 14, 15]$ $[8, 17, 11, 14, 15]$ $[8, 17, 11, 14, 15]$ $[8, 17, 11, 14, 15]$). We now introduce this concept.

Definition 1.7. Let $\{T(t): t \geq 0\}$ be a semigroup on X. We say that an invariant set $E \subset X$ for the semigroup $\{T(t): t \geq 0\}$ is an isolated invariant set if there is an $\epsilon > 0$ such that E is the maximal invariant subset of $\mathcal{O}_{\epsilon}(E)$.

Definition 1.8. A disjoint family of isolated invariant sets is a family $\{M_1, \dots, M_n\}$ of isolated invariant sets with the property that

$$
\mathcal{O}_{\epsilon}(M_i) \cap \mathcal{O}_{\epsilon}(M_j) = \varnothing, \ 1 \leq i < j \leq n,
$$

for some $\epsilon > 0$.

Definition 1.9. A global solution for a semigroup $\{T(t): t \geq 0\}$ is a continuous function $\xi : \mathbb{R} \to X$ with the property that $T(t)\xi(s) = \xi(t+s)$ for all $s \in \mathbb{R}$ and for all $t \in \mathbb{R}^+$. We say that $\xi : \mathbb{R} \to X$ is a global solution through $x \in X$ if it is a qlobal solution with $\xi(0) = x$.

It is also well known that the global attractor is the union of all bounded complete global solutions of the semigroup T.

Definition 1.10. Let $\{T(t): t \geq 0\}$ be a semigroup which possesses a disjoint family of isolated invariant sets $M = \{M_1, \cdots, M_n\}$. A homoclinic structure associated to M is a subset $\{M_{k_1}, \cdots, M_{k_p}\}\$ of M $(p \leq n)$ together with a set of global solutions $\{\xi_1, \dots, \xi_p\}$ such that

$$
M_{k_j} \stackrel{t \to -\infty}{\longleftarrow} \xi_j(t) \stackrel{t \to \infty}{\longrightarrow} M_{k_{j+1}}, \ 1 \le j \le p,
$$

where $M_{k_{p+1}} := M_{k_1}$.

Remark 1.11. Here, $\xi(t) \stackrel{t \to \pm \infty}{\longrightarrow} M$ means that $d(\xi(t), M) \to 0$ as $t \to \pm \infty$.

We will study the dynamics of the semigroup inside the global attractor A . We now define generalized dynamically gradient semigroups (see [\[6,](#page-15-4) [5\]](#page-15-5)).

Definition 1.12. Let $\{T(t): t \geq 0\}$ be a semigroup with a global attractor A and a disjoint family of isolated invariant sets $M = \{M_1, \dots, M_n\}$ in A. We say that ${T(t) : t \geq 0}$ is a generalized dynamically gradient semigroup relative to M if:

a) For any global solution $\xi : \mathbb{R} \to A$ there are $1 \leq i, j \leq n$ such that

$$
M_i \stackrel{t \to -\infty}{\longleftarrow} \xi(t) \stackrel{t \to \infty}{\longrightarrow} M_j.
$$

b) There is no homoclinic structure associated to M.

Remark 1.13. The concept of generalized dynamically gradient semigroup is the same as the concept of gradient-like semigroup as given in [\[1\]](#page-15-6), [\[5\]](#page-15-5).

To introduce the notion of a Morse decomposition for the attractor A of a semigroup $\{T(t): t \geq 0\}$ (see [\[8\]](#page-15-2), [\[17\]](#page-16-5) or [\[18\]](#page-16-3)) we previously need the notion of attractorrepeller pair. We recall that the omega-limit set of $B \subset X$ is defined by

$$
\omega(B) = \cap_{t \ge 0} \overline{\cup_{s \ge t} T(s)B}.
$$

Definition 1.14. Let $\{T(t): t \geq 0\}$ be a semigroup with a global attractor A. We say that a non-empty subset A of A is a local attractor if there is an $\epsilon > 0$ such that $\omega(\mathcal{O}_{\epsilon}(A)) = A$. The repeller A^* associated to a local attractor A is the set defined by

$$
A^* := \{ x \in \mathcal{A} : \omega(x) \cap A = \varnothing \}.
$$

The pair (A, A^*) is called an attractor-repeller pair for $\{T(t): t \geq 0\}.$

Note that if A is a local attractor, then A^* is closed and invariant.

Definition 1.15. Given an increasing family $\emptyset = A_0 \subset A_1 \subset \cdots \subset A_n = A$, of $n+1$ local attractors, for $j=1,\cdots,n$, define $M_j := A_j \cap A_{j-1}^*$. The ordered n-tuple $M := \{M_1, M_2, \cdots, M_n\}$ is called a Morse decomposition for A.

Definition 1.16. We will say that a semigroup $\{T(t) : t \geq 0\}$ with a global attractor A and a disjoint family of isolated invariant sets $M = \{M_1, \dots, M_n\}$ in A is a gradient semigroup with respect to M , if there exists a continuous function V : $X \to \mathbb{R}$ such that $[0, \infty) \ni t \mapsto V(T(t)x) \in \mathbb{R}$ is non-increasing for each $x \in X \backslash M$, V is constant in M_i for each $1 \leq i \leq n$, and $V(T(t)x) = V(x)$ for all $t \geq 0$ if and only if $x \in \bigcup^n$ $\bigcup_{i=1} M_i.$

V is called a Lyapunov function related to M.

It has been proved in [\[1\]](#page-15-6) that given a disjoint family of isolated invariant sets on the global attractor $M = \{M_1, \dots, M_n\}$ for a semigroup $T(t)$, the dynamical property of being generalized dynamically gradient, the existence of an associated ordered family of local attractor-repellers, and the existence of a Lyapunov functional related to M , are equivalent properties. Many of the arguments in $[1]$ make a precise use of the fact that the number of Morse sets is finite. The aim of this paper is to generalize this result to the case of a countable number of Morse sets.

Indeed, the general theory of Morse decomposition of invariant sets is generically adapted to the existence of a finite number of isolated Morse sets. However, it is not unusual to have an infinite number of invariants in a global attractor. For instance, consider the scalar differential equation

$$
\frac{dy}{dt} = f(y)
$$

with

$$
f(y) = \begin{cases} -y, & \text{if } y \le 0, \\ (1 - e^{-y}) \left| \sin\left(\frac{\pi}{y}\right) \right|, & \text{if } 0 < y \le 1, \\ 1 - y, & \text{if } y \ge 1. \end{cases}
$$

Note that the equation possesses the following fixed points:

$$
y_1 = 1, y_2 = \frac{1}{2}, y_3 = \frac{1}{3}, \dots, y_k = \frac{1}{k}, \dots, y_{\infty} = 0,
$$

with their respective associated unstable manifolds (see Definition [4.2\)](#page-8-0)

$$
W^{u}(1) = 1, W^{u}\left(\frac{1}{2}\right) = \left[\frac{1}{2}, 1\right), \dots, W^{u}\left(\frac{1}{k}\right) = \left[\frac{1}{k}, \frac{1}{k-1}\right), \dots, W^{u}(0) = 0,
$$

and as global attractor $\mathcal{A} = [0, 1]$. In [\[3\]](#page-15-7) the authors study a multivalued version of the well-known Chafee-Infante equation, also leading to a global attractor with an infinite number of equilibria, which actually has motivated the necessity of developing the theory in this paper. We will consider this application in a subsequent work.

In Section [2](#page-3-0) we recall some results on the dynamics related to an attractor-repeller pair. In Section [3](#page-4-0) we will generalize Definitions [1.12,](#page-2-0) [1.15](#page-2-1) and [1.16](#page-2-2) to the case of an infinite number of disjoint isolated invariant sets $\mathbf{M}_{\infty} = \{M_i\}_{i=1}^{\infty} \cup M_{\infty}$ inside the global attractor. In Sections [4,](#page-7-0) [5](#page-10-0) and [6](#page-11-0) we prove the main result of this paper, the equivalence between a generalized dynamically gradient semigroup referred to M_{∞} with a suitable separation assumption, the existence of an ordered Lyapunov function associated to M_{∞} , and the existence of a Morse decomposition on the global attractor. This is done in several steps: first, we prove that the property of the semigroup of being generalized dynamically gradient together with a separation assumption implies that a Morse decomposition can be constructed; then we prove that from a Morse decomposition related to \mathbf{M}_{∞} an ordered Lyapunov function can be defined; finally, we check that the existence of an ordered Lyapunov function implies that the semigroup is generalized dynamically gradient semigroup referred to M_{∞} and that the separation assumption holds.

2. Preliminary results on attractor-repeller pairs. The following results on the dynamics on attractor-repeller pairs are taken from [\[1\]](#page-15-6).

We recall that local attraction of A in $\mathcal A$ is equivalent to local attraction in X, for which we firstly need the following result.

Lemma 2.1. Let $\{T(t): t \geq 0\}$ be a semigroup in X with a global attractor A. If $A \subset \mathcal{A}$ is a compact invariant set for $\{T(t): t \geq 0\}$ and there is an $\epsilon > 0$ such that A attracts $\mathcal{O}_{\epsilon}(A) \cap \mathcal{A}$, then given $\delta \in (0,\epsilon)$ there is a $\delta' \in (0,\delta)$ such that $\gamma^+(\mathcal{O}_{\delta'}(A)) \subset \mathcal{O}_{\delta}(A)$, where $\gamma^+(\mathcal{O}_{\delta'}(A)) = \bigcup$ $x \in \mathcal{O}_{\delta'}(A)$ U $t\geq 0$ $\{T(t)x\}.$

The next result generalizes for semigroups a known result for groups given in [\[8\]](#page-15-2) and shows that our definition of local attractor is equivalent to that one in [\[8,](#page-15-2) [17\]](#page-16-5).

Lemma 2.2. If $\{T(t): t \geq 0\}$ is a semigroup in X with a global attractor A and $S(t) := T(t)|_A$, clearly $\{S(t) : t \geq 0\}$ is a semigroup in the metric space A. If A is a local attractor for $\{S(t): t \geq 0\}$ in the metric space A (that is, there exists $\varepsilon > 0$ with $\omega(\mathcal{O}_{\epsilon}(A) \cap \mathcal{A}) = A$, and K is a compact subset of A such that $K \cap A^* = \emptyset$, then A attracts K. Furthermore A is a local attractor for $\{T(t): t \geq 0\}$ in X.

We now describe the dynamics on an attractor-repeller pair.

Lemma 2.3. Let $\{T(t): t \geq 0\}$ be a semigroup in X with a global attractor A and (A, A^*) an attractor-repeller for $\{T(t): t \geq 0\}$. Then:

(i) If $\xi : \mathbb{R} \to X$ is a global bounded solution for $\{T(t) : t \geq 0\}$ through $x \notin A \cup A^*$, then $\xi(t) \stackrel{t\to\infty}{\longrightarrow} A$ and $\xi(t) \stackrel{t\to-\infty}{\longrightarrow} A^*$.

(ii) A global solution $\xi : \mathbb{R} \to X$ of $\{T(t) : t \geq 0\}$ with the property that $\xi(t) \in \mathcal{O}_{\delta}(A^*)$ for all $t \leq 0$ for some $\delta > 0$ such that $\mathcal{O}_{\delta}(A^*) \cap A = \varnothing$ must satisfy $d(\xi(t), A^*) \stackrel{t \to -\infty}{\longrightarrow} 0.$

(iii) If $x \in X \backslash A$, then $T(t)x \stackrel{t\to\infty}{\longrightarrow} A \cup A^*$.

Part (i) of the previous lemma is proved in Theorem 1.4 in [\[17\]](#page-16-5). Parts (ii) and (iii) can be found in [\[1\]](#page-15-6).

3. Generalized dynamically gradient semigroups. In this section we will introduce the concepts of generalized dynamically gradient semigroups and Morse decomposition for a countable set of isolated invariant sets.

Definition 3.1. A disjoint (countable) family of invariant sets is a family $\mathbf{M}_{\infty} =$ ${M_i}_{i=1}^{\infty} \cup M_{\infty}$ of invariant sets with the property that, given $j \in \mathbb{N}$, there exists δ_j such that

$$
\mathcal{O}_{\delta_j}(M_j) \cap \mathcal{O}_{\delta_j}(M_i) = \varnothing, \text{ for all } i \neq j, i \in \mathbb{N} \cup \{\infty\}. \tag{3.1}
$$

Definition 3.2. Let $\{T(t) : t \geq 0\}$ be a semigroup which possesses a disjoint family of invariant sets $\mathbf{M}_{\infty} = \{M_i\}_{i=1}^{\infty} \cup M_{\infty}$ with M_j isolated for each $j \in \mathbb{N}$. A homoclinic structure associated to \mathbf{M}_{∞} is a finite subset $\{M_{k_1},\cdots,M_{k_p}\}\;$ of \mathbf{M}_{∞} together with a set of global solutions $\{\xi_1, \dots, \xi_p\}$ such that

$$
M_{k_j} \stackrel{t \to -\infty}{\longleftarrow} \xi_j(t) \stackrel{t \to \infty}{\longrightarrow} M_{k_{j+1}}, \ 1 \le j \le p,
$$

where $M_{k_{p+1}} := M_{k_1}$.

Remark 3.3. The set M_{∞} is not assumed to be isolated. The reason is that typically in applications M_{∞} is an accumulation set of the sequence M_n as $n \to \infty$. Hence, it is not isolated. This is the case in the example given in the introduction, and also, for instance, in the application for multivalued semiflows in [\[3\]](#page-15-7).

Definition 3.4. Let $\{T(t): t \geq 0\}$ be a semigroup with a global attractor A and a disjoint family of invariant sets $\mathbf{M}_{\infty} = \{M_i\}_{i=1}^{\infty} \cup M_{\infty}$ in A with M_j isolated for each $j \in \mathbb{N}$. We say that $\{T(t) : t \geq 0\}$ is a generalized dynamically gradient semigroup relative to \mathbf{M}_{∞} if for any global solution $\xi : \mathbb{R} \to \mathcal{A}$ such that $\xi(t_0) \notin M_k$, for some $t_0 \in \mathbb{R}$ and any $k \in \mathbb{N} \cup \infty$, it holds that

$$
M_j \stackrel{t \to -\infty}{\longleftarrow} \xi(t) \stackrel{t \to \infty}{\longrightarrow} M_i, \quad \text{for } 1 \le i < j \le \infty. \tag{3.2}
$$

Remark 3.5. It is obvious that condition [\(3.2\)](#page-4-1) implies the following properties:

• For any global solution $\xi : \mathbb{R} \to A$ there are $1 \leq i, j \leq \infty$ such that

$$
M_j \stackrel{t \to -\infty}{\longleftarrow} \xi(t) \stackrel{t \to \infty}{\longrightarrow} M_i.
$$

• There is no homoclinic structure associated to \mathbf{M}_{∞} .

When the number of sets M_i is finite, then it is proved in $[2]$ that these last two properties imply (3.2) for a suitable rearrangement of the sets. In fact, Definition [3.4](#page-4-2) is the way in which it is defined a Morse decomposition of a global attractor in [\[18\]](#page-16-3).

Note that, in particular, [\(3.2\)](#page-4-1) implies that there is no global solution $\xi(t): \mathbb{R} \to A$ with $\xi(t_0) \notin M_1$ for some $t_0 \in \mathbb{R}$ such that

$$
\lim_{t \to -\infty} d(\xi(t), M_1) = 0.
$$

The following lemma implies that an isolated invariant set inside a global attractor is compact.

Lemma 3.6. Let M be an isolated invariant set which is relatively compact. Then M is compact.

Proof. We need to prove that M is closed. Let $y_n \to y$, where $y_n \in M$. By the continuity of T we have that $T(t)y_n \to T(t)y$ for any $t > 0$. Hence, $T(t)y \in \overline{M}$. Thus, $T(t)\overline{M} \subset \overline{M}$ for all $t \geq 0$. On the other hand, as M is invariant, for any $t > 0$ there exists $z_n \in M$ such that $T(t)z_n = y_n$. Since M is relatively compact, passing to a subsequence we have $z_n \to z \in \overline{M}$, and then $T(t)z = y$. Therefore, $\overline{M} \subset T(t)\overline{M}$ for all $t > 0$. It follows that \overline{M} is invariant. As M is an isolated invariant set, we get $M = \overline{M}$. \Box

As a consequence of the first statement in Lemma [2.3](#page-4-3) we obtain the following.

Corollary 3.7. If $\{T(t): t \geq 0\}$ is a semigroup in X with a global attractor A and (A, A^*) is an attractor-repeller pair for $\{T(t) : t \ge 0\}$, then $\{T(t) : t \ge 0\}$ is a generalized dynamically gradient semigroup associated to the disjoint family of isolated invariant sets $\{A, A^*\}.$

Note that (3.1) implies

$$
M_i \cap M_{\infty} = \varnothing, \text{ for each } i \in \mathbb{N}.
$$
 (3.3)

Lemma 3.8. Condition [\(3.2\)](#page-4-1) implies that there is no global solution $\xi : \mathbb{R} \to \mathcal{A}$ with $\xi(t_0) \in \mathcal{A} \setminus M_\infty$ for some $t_0 \in \mathbb{R}$ such that

$$
\lim_{t \to +\infty} d(\xi(t), M_{\infty}) = 0.
$$
\n(3.4)

 \Box

Proof. It is obvious, as in (3.2) , that the index i cannot be ∞ .

Lemma 3.9. Let $\mathbf{M}_{\infty} = \{M_i\}_{i=1}^{\infty} \cup M_{\infty}$ be compact invariant sets such that $M_j \cap$ $M_i = \emptyset$ for $i \neq j$, $i, j \in \mathbb{N} \cup \infty$, and also suppose that the invariant compact set $M_{\infty} \subset A$ is such that

$$
\lim_{i \to \infty} d(M_i, M_\infty) = 0. \tag{3.5}
$$

Then \mathbf{M}_{∞} is a disjoint family of invariant sets.

Proof. Take $j \in \mathbb{N}$ arbitrary. We have to check [\(3.1\)](#page-4-4). There exists $\delta_1 > 0$ such that

$$
\mathcal{O}_{\delta_1}(M_j)\cap\mathcal{O}_{\delta_1}(M_\infty)=\varnothing.
$$

In view of (3.5) there is $N > i$ such that

$$
M_i \subset \mathcal{O}_{\frac{\delta_1}{2}}(M_\infty) \text{ if } i > N.
$$

Hence,

$$
\mathcal{O}_{\delta_1}(M_j)\cap\mathcal{O}_{\frac{\delta_1}{2}}(M_i)=\varnothing \text{ if } i>N.
$$

2

Obviously, there exists $\delta_2 > 0$ for which

$$
\mathcal{O}_{\delta_2}(M_j) \cap \mathcal{O}_{\delta_2}(M_i) = \varnothing \text{ for } 1 \leq i \leq N, i \neq j.
$$

Then the result follows for $\delta_i = \min{\{\delta_1/2, \delta_2\}}$.

We can now introduce the concept of a Morse decomposition referred to M_{∞} .

Definition 3.10. Given an increasing family $\varnothing = A_0 \subset A_1 \subset \cdots \subset A_n \subset \cdots A_\infty =$ A of local attractors, for $j \in \mathbb{N}$ define $M_j := A_j \cap A_{j-1}^*$, $M_\infty = \cap_{j=0}^\infty A_j^*$. The ordered countable set $\mathbf{M}_{\infty} := \{M_i\}_{i=1}^{\infty} \cup M_{\infty}$ is called a Morse decomposition of A.

The following properties of the sets M_j follow.

Lemma 3.11. $M_{\infty} \cap A_j = \emptyset$ for any $j \in \mathbb{N}$. Hence, $M_{\infty} \subset A_{\infty} \setminus \bigcup_{j=1}^{\infty} A_j$ and $M_{\infty} \cap M_j = \varnothing$ for all $j \in \mathbb{N}$.

Proof. Let $y \in M_\infty$. Then $y \in A_j^*$, for any $j \in \mathbb{N}$, implies $y \notin A_j$ for all $j \in \mathbb{N}$. \Box

Lemma 3.12. The sets M_j , $j \in \mathbb{N} \cup \infty$, are compact.

Proof. Since $M_j \subset \mathcal{A}$, they are relatively compact. Also, as M_j are the intersection of closed sets, they are closed. □

We can also give the following characterization.

Proposition 3.13. Let $\{T(t): t \geq 0\}$ be a semigroup with the global attractor A and $\mathbf{M}_{\infty} = \{M_i\}_{i=1}^{\infty} \cup M_{\infty}$ a Morse decomposition for A with the family $\varnothing = A_0 \subset$ $A_1 \subset \cdots \subset A_\infty = A$ of local attractors. Then,

$$
\bigcap_{j=0}^{\infty} (A_j \cup A_j^*) = (\bigcup_{j=1}^{\infty} M_j) \cup M_{\infty}.
$$

Proof. If $z \in \bigcup^{\infty}$ $\bigcup_{j=1}^{\infty} M_j$, let $k \in \mathbb{N}$ be such that $z \in M_k = A_k \cap A_{k-1}^*$. Hence $z \in A_k \subset A_{k+1} \subset \cdots \subset A_{\infty}$ and $z \in A_{k-1}^* \subset A_{k-2}^* \subset \cdots \subset A_0^*$. Thus

$$
z \in (\bigcap_{j=k}^{\infty} A_j) \cap (\bigcap_{j=0}^{k-1} A_j^*) \subset \left[\bigcap_{j=k}^{\infty} (A_j \cup A_j^*)\right] \cap \left[\bigcap_{j=0}^{k-1} (A_j \cup A_j^*)\right] = \bigcap_{j=0}^{\infty} (A_j \cup A_j^*),
$$

proving that \bigcup^{∞} $\bigcup_{j=1}^{\infty} M_j \subset \bigcap_{j=1}^{\infty}$ $\bigcap_{j=0}^{\infty} (A_j \cup A_j^*)$. If $z \in M_\infty$, then $z \in \bigcap_{j=0}^{\infty}$ $j=0$ A_j^* ⊂ \bigcap^{∞} $\bigcap_{j=0} (A_j \cup A_j^*).$

Conversely, we take $z \in \bigcap^{\infty}$ $\bigcap_{j=0}^{\infty} (A_j \cup A_j^*)$. If $z \in \bigcap_{j=0}^{\infty}$ A_j^* , then $z \in M_\infty$. Otherwise, $j=0$ $z \in A_j$ for some $j \in \mathbb{N}$. Denote $I := \{i_1, i_2, \cdots, i_k, \dots\}$ and $J := \{j_1, j_2, \cdots, j_l, \dots\}$ such that $I \cup J = \mathbb{Z}^+$ with $I \cap J = \emptyset$ and $z \in A_i$ for all $i \in I$ and $z \in A_j^*$ for all $j \in J$. Clearly, if $i := \min I$, necessarily $I = \{j \geq i\}$ and $J = \{0, 1, \cdots, i-1\}$, consequently $z \in A_i$ and $z \in A_{i-1}^*$. So, $z \in A_i \cap A_{i-1}^* = M_i$, from which $\bigcap_{i=1}^{\infty}$ $\bigcap_{j=0} (A_j \cup A_j^*) \subset$ ∞
U $\bigcup_{j=1} M_j$. \Box

 \Box

4. Construction of a Morse decomposition from the dynamics on M_{∞} . In this section we describe the construction of a Morse decomposition of the global attractor A relative to the disjoint family of invariant sets $\mathbf{M}_{\infty} = \{M_i\}_{i=1}^{\infty} \cup M_{\infty}$ in A such that M_j is isolated if $j \in \mathbb{N}$ and satisfying [\(3.2\)](#page-4-1). By Lemma [3.8](#page-5-1) we have that [\(3.4\)](#page-5-2) does not hold.

The following lemma will play an important role in what follows.

Lemma 4.1. Let $\{T(t): t \geq 0\}$ be a semigroup with a global attractor A and the disjoint family of invariant sets $\mathbf{M}_{\infty} = \{M_i\}_{i=1}^{\infty} \cup M_{\infty} = \{M_1, \ldots, M_n, \ldots, M_{\infty}\}\$ in A be such that M_j are isolated for $j \in \mathbb{N}$. Assume that T is generalized dynamically gradient relative to \mathbf{M}_{∞} . Then, M_1 is a local attractor for $\{T(t): t \geq 0\}$.

Proof. We firstly prove that for all $\delta \in (0, \delta_1)$ there exists $\delta' \in (0, \delta)$ such that

$$
\gamma^{+}\left(\mathcal{O}_{\delta'}\left(M_{1}\right)\right)\subset\mathcal{O}_{\delta}\left(M_{1}\right),
$$

where δ_1 satisfies $\mathcal{O}_{\delta_1}(M_1) \cap \mathcal{O}_{\delta_1}(M_i) = \emptyset$ for $i > 1$ or $i = \infty$.

If not, there exist $0 < \delta < \delta_1$ and sequences $\{t_k\}_{k \in \mathbb{N}}$ of positive times and $\{x_k\}_{k \in \mathbb{N}}$ of points in X such that for all k

$$
d(x_k, M_1) < \frac{1}{k},
$$
\n
$$
d(T(t_k)x_k, M_1) = \delta
$$

and

$$
d(T(t)x_k, M_1) < \delta \text{ for } t \in [0, t_k).
$$

Thus, if we define, for each $k, \xi_k(t) := T(t+t_k)x_k$ for $t \in [-t_k, \infty)$, as $t_k \underset{k \to \infty}{\to} \infty$, we conclude that there exists a global solution $\xi : \mathbb{R} \to X$ for $T(\cdot)$ such that $\xi_k \underset{k \to \infty}{\to} \xi$ uniformly in compact sets of times (see [\[7,](#page-15-9) Lemma 3.1]). Then, $d(\xi_k(t), M_1) \leq \delta$ for $t \in [-t_k, 0]$ implies

$$
d(\xi(t), M_1) \le \delta < \delta_1 \text{ for } t \le 0.
$$

But by [\(3.2\)](#page-4-1) we have $\xi(t) \to M_i$, with $j > 1$, as $t \to -\infty$, a contradiction.

 M_1 is the maximal invariant set in $\mathcal{O}_{\varepsilon}(M_1)$ for some $\varepsilon > 0$. Thus, for $\delta <$ $\min\{\varepsilon, \delta_1\}$ take $\delta' \in (0, \delta)$ such that

$$
\gamma^+(\mathcal{O}_{\delta'}(M_1))\subset \mathcal{O}_{\delta}(M_1),
$$

so that

$$
\omega(\mathcal{O}_{\delta'}(M_1)) \subset \overline{\mathcal{O}_{\delta}(M_1)} \subset \mathcal{O}_{\varepsilon}(M_1),
$$

and then, as $\omega(\mathcal{O}_{\delta'}(M_1))$ is invariant,

$$
\omega(\mathcal{O}_{\delta'}(M_1))\subset M_1.
$$

 \Box

The other inclusion is trivial, so that M_1 is a local attractor.

For M_1 a local attractor, let $M_1^* = \{x \in \mathcal{A} : \omega(x) \cap M_1 = \emptyset\}$ be its associated repeller, so each M_i , with $i \geq 2$, is contained in M_1^* and more generally the orbit $\xi(\mathbb{R})$ of any global solution $\xi : \mathbb{R} \to A$ that converges to M_i , $i \geq 2$, when $t \to +\infty$, is contained in M_1^* . Considering the restriction $\{T_1(t): t \geq 0\}$ of $\{T(t): t \geq 0\}$ to M_1^* we have that $\{T_1(t): t \geq 0\}$ satisfies (3.2) in the space M_1^* with the invariant sets ${M_i}_{i=2}^{\infty} \cup M_{\infty}$ and we may assume, by the last lemma, that M_2 is a local attractor for the semigroup $\{T_1(t): t \geq 0\}$ in M_1^* . If $M_{2,1}^*$ is the repeller associated to the local attractor M_2 for $\{T_1(t): t \geq 0\}$ in M_1^* we may proceed and consider the restriction

 ${T_2(t) : t \ge 0}$ of the semigroup ${T_1(t) : t \ge 0}$ to $M_{2,1}^*$ and then ${T_2(t) : t \ge 0}$ satisfies [\(3.2\)](#page-4-1) in $M_{2,1}^*$ with the associated invariant sets $\{M_i\}_{i=3}^{\infty} \cup M_{\infty}$.

Setting $\mathcal{A} =: M^*_{0,-1}$ and $M^*_{1,0} := M^*_1$, for $j \geq 1$ we have that M_j is a local attractor for the restriction of $\{T(t): t \geq 0\}$ to $M^*_{j-1,j-2}$ whose repeller will be indicated by $M^*_{j,j-1}$.

Definition 4.2. Let $\{T(t): t \geq 0\}$ be a semigroup. The unstable set of an invariant set M is defined by

$$
W^{u}(M) := \{ z \in X : \text{ there is a global solution } \xi : \mathbb{R} \to X
$$

such that $\xi(0) = z$ and $\lim_{t \to -\infty} d(\xi(t), M) = 0 \}.$

Define $A_0 := \emptyset$, $A_1 := M_1$ and for $j = 2, 3, \cdots$,

$$
A_j := A_{j-1} \cup W^{\mathrm{u}}(M_j) = \bigcup_{i=1}^{j} W^{\mathrm{u}}(M_i). \tag{4.1}
$$

Also, $A_{\infty} = A$.

It is clear that $\mathcal{A} = \bigcup_{i=1}^{\infty} W^{\mathfrak{u}}(M_i) \cup W^{\mathfrak{u}}(M_{\infty}).$

Lemma 4.3. Assume the conditions of Lemma [4.1.](#page-7-1) Then $M_{\infty} = \bigcap_{j=0}^{\infty} A_j^*$.

Proof. Let $z \in M_\infty$. Then as M_∞ is invariant, $\omega(z) \subset M_\infty$. Then z cannot be in $W^u(M_j)$ for $j \in \mathbb{N}$, as in such a case by (3.2) we would have $\omega(z) \cap M_i \neq \emptyset$ for some $i \leq j$, a contradiction. Thus, by (4.1) we have that $z \notin A_j$ for $j \in \mathbb{N}$. Hence, $\omega(z) \cap A_j = \varnothing$, so that $z \in \bigcap_{j=0}^{\infty} A_j^*$.

Conversely, let $z \in \bigcap_{j=0}^{\infty} A_j^*$. Then $\omega(z) \cap A_j = \varnothing$ for all $j \in \mathbb{N}$. If $z \notin M_\infty$, we take a global solution $\xi(\cdot)$ such that $\xi(0) = z$. Then by condition [\(3.2\)](#page-4-1) we have that $\xi(t) \to M_i$ as $t \to +\infty$ for some $i \in \mathbb{N}$. But then $\omega(z) \cap A_i \neq \emptyset$, a contradiction. \Box

Lemma 4.4. Assume the conditions of Lemma [4.1.](#page-7-1) Then the sets M_j , $j \in \mathbb{N} \cup \infty$, are compact.

Proof. We note that $M_j \subset \mathcal{A}$ implies by Lemma [3.6](#page-5-3) that the sets M_j are compact if $j \in \mathbb{N}$. Also, Lemma [4.3](#page-8-2) implies that M_{∞} is closed, and then $M_{\infty} \subset \mathcal{A}$ implies that it is compact. П

Lemma 4.5. Assume the conditions of Lemma [4.1.](#page-7-1) Suppose that, given $j \in \mathbb{N}$, there exists δ_i such that

$$
W^{u}(M_{j}) \cap \mathcal{O}_{\delta_{j}}\left(\bigcup_{i=j+1}^{\infty} M_{i} \cup M_{\infty}\right)) = \emptyset.
$$
\n(4.2)

Then,

$$
A_j \cap \mathcal{O}_{\delta_j}((\bigcup_{i=j+1}^{\infty} M_i) \cup M_{\infty}) = \emptyset.
$$
\n(4.3)

Proof. For $j = 1$ the result follows since $A_1 = M_1 = W^u(M_1)$. Suppose [\(4.3\)](#page-8-3) is true for j − 1 and we will show it for j. If not, there exists a sequence $\{x_k\}_{k\in\mathbb{N}}$ in A_i such that for all k

$$
d(x_k, (\bigcup_{i=j+1}^{\infty} M_i) \cup M_{\infty}) < \frac{1}{k}.
$$

As $A_j := A_{j-1} \cup W^u(M_j)$ and we have (4.3) for $j-1$, then $x_k \in W^u(M_j)$, from which, by hypothesis, we get a contradiction. \Box **Remark 4.6.** The separation condition (4.2) can be proved easily in the case of a finite number of elements M_i . It is interesting to study whether this assumption can be somehow avoided in the case of an infinte number of elements.

Corollary 4.7. Under the hypotheses of the previous lemma, given $j \in \mathbb{N}$, there exists δ_i such that

$$
\mathcal{O}_{\delta_j}(A_j) \cap \left((\bigcup_{i=j+1}^{\infty} M_i) \cup M_{\infty} \right) = \emptyset. \tag{4.4}
$$

Theorem 4.8. Let $\{T(t): t \geq 0\}$ be a semigroup with a global attractor A and consider the disjoint family of invariant sets $\mathbf{M}_{\infty} = \{M_i\}_{i=1}^{\infty} \cup M_{\infty}$ in A such that M_j is isolated if $j \in \mathbb{N}$. Assume that T is generalized dynamically gradient relative to \mathbf{M}_{∞} and such that [\(4.2\)](#page-8-4) holds, so that each M_j is a local attractor for the restriction of $\{T(t): t \geq 0\}$ to $M^*_{j-1,j-2}$. Then A_j defined in [\(4.1\)](#page-8-1) is a local attractor for $\{T(t): t \geq 0\}$ in X, and

$$
M_j = A_j \cap A_{j-1}^*.\tag{4.5}
$$

As a consequence, $\mathbf{M}_{\infty} = \{M_i\}_{i=1}^{\infty} \cup M_{\infty}$ defines a Morse decomposition on the global attractor A.

Proof. If we prove that for any $0 < \delta < \delta_j$, there is $\delta' < \delta$ such that $\gamma^+(\mathcal{O}_{\delta'}(A_j)) \subset$ $\mathcal{O}_{\delta}(A_j)$, then $\omega(\mathcal{O}_{\delta'}(A_j))$ attracts $\mathcal{O}_{\delta'}(A_j)$ and (as $\omega(\mathcal{O}_{\delta'}(A_j))$ is invariant) is contained in A_i proving that A_i is a local attractor.

Suppose there is $j \in \mathbb{N}$ for which there exist $\delta \in (0, \delta_j)$ and sequences $(t_k)_{k \in \mathbb{N}}$ with $t_k \to \infty$ and $(x_k)_{k \in \mathbb{N}}$ in X such that

$$
d(x_k, A_j) < \frac{1}{k},
$$
\n
$$
d(T(t_k)x_k, A_j) = \delta.
$$

and

$$
d(T(t) x_k, A_j) < \delta \text{ for } t \in [0, t_k).
$$

Then, as in Lemma [4.1,](#page-7-1) we get a global solution $\xi_0 : \mathbb{R} \to X$ satisfying

$$
d\left(\xi_0\left(t\right), A_j\right) \le \delta \text{ for all } t \le 0 \tag{4.6}
$$

with

$$
d\left(\xi_0\left(0\right), A_j\right) = \delta. \tag{4.7}
$$

For this global solution, there exists $M_i \in \mathbf{M}_{\infty}$ such that

$$
\lim_{t \to -\infty} d\left(\xi_0\left(t\right), M_i\right) = 0,
$$

and since $\delta \in (0, \delta_j)$, with δ_j satisfying (4.4) , it holds that $i \leq j$, and so $\xi_0(0) \in$ $W^u(M_i) \subset A_j$, which contradicts [\(4.7\)](#page-9-1).

To prove that $M_j = A_j \cap A_{j-1}^*$ note that

$$
A_j = \bigcup_{i=1}^j W^{\mathrm{u}}(M_i)
$$

and $A_{j-1}^* = \{z \in \mathcal{A} : \omega(z) \cap A_{j-1} = \varnothing\}$. Hence, given $z \in A_j \cap A_{j-1}^*$ we have that any global solution $\xi : \mathbb{R} \to \mathcal{A}$ through z must satisfy that

$$
\cup_{i=1}^j M_i \overset{t\to -\infty}{\longleftarrow} \xi(t) \overset{t\to \infty}{\longrightarrow} \cup_{i=j}^{\infty} M_i.
$$

As a consequence of that and of the fact that $\{T(t) : t \geq 0\}$ satisfies [\(3.2\)](#page-4-1) we obtain that $z \in M_j$. This shows that $A_j \cap A_{j-1}^* \subset M_j$. The other inclusion is immediate from the definition of A_j and A_{j-1}^* .

Finally, [\(4.5\)](#page-9-2) and Lemma [4.3](#page-8-2) imply that $\mathbf{M}_{\infty} = \{M_i\}_{i=1}^{\infty} \cup M_{\infty}$ defines a Morse decomposition on the global attractor A. П

Remark 4.9. As we suppose [\(3.2\)](#page-4-1) for a dynamically gradient system, we get an order in Morse sets by an energy level decomposition of the global attractor in the sense of $[2]$, in which the attractor is described by connecting global solutions among the different levels in a decreasing way.

5. A Lyapunov function for a Morse decomposition. In this section we will construct a Lyapunov function for semigroups having a Morse decomposition with an infinite number of elements.

Definition 5.1. We say that a semigroup $\{T(t): t \geq 0\}$ with a global attractor A and a disjoint family of invariant sets $\mathbf{M}_{\infty} = \{M_i\}_{i=1}^{\infty} \cup M_{\infty}$ in A such that M_j are isolated for $j \in \mathbb{N}$ is a generalized gradient semigroup with respect to \mathbf{M}_{∞} if there is a continuous function $V : \mathcal{A} \to \mathbb{R}$ such that:

(i) The real function $[0, \infty) \ni t \mapsto V(T(t)x) \in \mathbb{R}$ is non-increasing for each $x \in \mathcal{A} \setminus \cup_{i=1}^{\infty} M_i \cup M_{\infty},$

(ii) V is constant in M_i for each $i \in \mathbb{N} \cup \infty$,

(iii) $V(T(t)x) = V(x)$ for all $t \geq 0$ if and only if $x \in M_{\infty}$.

A function V with the properties above is called a Lyapunov function for the generalized gradient semigroup $\{T(t): t \geq 0\}$ with respect to \mathbf{M}_{∞} .

The following result, which is proved in $[1,$ Proposition 3.3, gives the existence of a Lyapunov type functional for an attractor-repeller pair

Proposition 5.2. Let $\{T(t): t \geq 0\}$ be a nonlinear semigroup in a metric space (X, d) with the global attractor A, and let (A, A^*) be an attractor-repeller pair in A. Then, for any $\gamma > 0$ there exists a function $f : \mathcal{A} \to [0,1]$ satisfying the following:

(i) $f : \mathcal{A} \to [0,1]$ is continuous in A.

(ii) $f : \mathcal{A} \to [0, 1]$ is non-increasing along solutions.

(iii) $f^{-1}(0) = A$ and $f^{-1}(1) = A^*$.

(iv) $f(T(t)z) = f(z)$, for all $t \geq 0$, if and only if $z \in A \cup A^*$.

We now prove that the existence of a Morse decomposition implies the existence of a Lyapunov function

Proposition 5.3. Let $\{T(t): t \geq 0\}$ be a semigroup with the global attractor A and a disjoint family of invariant sets $\mathbf{M}_{\infty} = \{M_i\}_{i=1}^{\infty} \cup M_{\infty}$ in A such that M_j are isolated for $j \in \mathbb{N}$. If \mathbf{M}_{∞} is a Morse decomposition, then $\{T(t): t \geq 0\}$ is gradient in the sense of the Definition [5.1](#page-10-1) with respect to \mathbf{M}_{∞} . In addition, the Lyapunov function $V: \mathcal{A} \to \mathbb{R}$ may be chosen in such a way that $V(x) = 1 - \frac{1}{2^{k-1}}$, for $x \in M_k$, $k \in \mathbb{N}, V(x) = 1, for x \in M_{\infty}.$

Proof. Let $\emptyset = A_0 \subset A_1 \subset \cdots \subset A_n \subset \ldots$ A be the sequence of local attractors given in Definition [3.10](#page-6-0) and $\emptyset = A_{\infty}^* \subset \ldots A_n^* \subset \cdots \subset A_0^* = A$ their corresponding repellers such that for each $j \in \mathbb{N}$ we have $M_j = A_j \cap A_{j-1}^*$, and $M_\infty = \bigcap_{j=0}^\infty A_j^*$.

Let $f_i : X \to \mathbb{R}$ be the function from Proposition [5.2](#page-10-2) for the attractor-repeller pair $(A_j, A_j^*), j \in \mathbb{N}$.

Define the function $V : \mathcal{A} \to \mathbb{R}$ by

$$
V(z) := \sum_{j=1}^{\infty} \frac{1}{2^j} f_j(z), \ z \in \mathcal{A}.
$$

Then $V : \mathcal{A} \to \mathbb{R}$ is a Lyapunov function for the generalized gradient semigroup ${T(t) : t \geq 0}$ with respect to \mathbf{M}_{∞} .

Indeed, since each $f_j : \mathcal{A} \to \mathbb{R}, j \geq 1$, is non-increasing along solutions of ${T(t) : t \geq 0}$, V is also non-increasing along solutions of ${T(t) : t \geq 0}$.

Now, if $z \in A$ is such that $V(T(t)z) = V(z)$ for all $t \geq 0$, then, using that each $f_j, j \geq 0$, are non-increasing along solutions of $\{T(t): t \geq 0\}$, we conclude that $f_j(T(t)z) = f_j(z)$ for all $t \geq 0$ and for each $j \in \mathbb{N}$. From part (iv) of Proposition [5.2,](#page-10-2) we have that $z \in (A_j \cup A_j^*)$, for each $j \in \mathbb{N}$; that is, $z \in \bigcap_{j=1}^{\infty}$ $\bigcap_{j=0}^{\infty} (A_j \cup A_j^*)$. From Lemma [3.13](#page-6-1) we have that

$$
\bigcap_{j=0}^{\infty} (A_j \cup A_j^*) = (\bigcup_{j=1}^{\infty} M_j) \cup M_{\infty},
$$

and so $z \in \bigcup^{\infty}$ $\bigcup_{j=1} M_j \cup M_\infty.$

If $k \in \mathbb{N}$ and $z \in M_k = A_k \cap A_{k-1}^*$, it follows that $z \in A_k \subset A_{k+1} \subset \cdots \subset A_{\infty} = A$ and $z \in A_{k-1}^* \subset A_{k-2}^* \subset \cdots \subset A_0^* = A$. Hence $f_j(z) = 0$ if $k \leq j$ and $f_j(z) = 1$ if $1 \leqslant j \leqslant k - 1$. Hence,

$$
V(z) = \sum_{j=1}^{\infty} f_j(z) = \sum_{j=1}^{k-1} f_j(z) + \sum_{j=k}^{\infty} f_j(z) = \sum_{j=1}^{k-1} \frac{1}{2^j} = 1 - \frac{1}{2^{k-1}}.
$$

If $z \in M_\infty$, then $z \in \bigcap_{j=1}^\infty A_j^*$. Hence, $f_j(z) = 1$, for all $j \ge 1$, and then

$$
V(z) = \sum_{j=1}^{\infty} \frac{1}{2^j} = 1.
$$

Finally, we prove the continuity of V. Since $f_i(z) \in [0,1]$, for any $\varepsilon > 0$ there exists $N(\varepsilon) > 0$ such that

$$
\sum_{j\geq N}\frac{1}{2^j}f_j(z)\leq \sum_{j\geq N}\frac{1}{2^j}\leq \varepsilon \text{ for all } z\in\mathcal{A}.
$$

Then, as each f_j is continuous, it is standard to prove the continuity of V.

 \Box

6. Dynamically gradient semigroups via a Lyapunov function. We now prove that the existence of an ordered Lyapunov function with respect to a family $\mathbf{M}_{\infty} = \{M_i\}_{i=1}^{\infty} \cup M_{\infty}$ in A implies that the semigroup is generalized dynamically gradient and that [\(4.2\)](#page-8-4) holds. Hence, together with the previous results we will obtain the equivalence of generalized dynamically gradient semigroups referred to \mathbf{M}_{∞} satisfying [\(4.2\)](#page-8-4), the existence of an ordered Lyapunov function associated to M_{∞} and the existence of a Morse decomposition of the global attractor.

As before, $\{T(t): t \geq 0\}$ is a semigroup with the global attractor A and we consider a disjoint family of isolated sets $\mathbf{M}_{\infty} = \{M_i\}_{i=1}^{\infty} \cup M_{\infty}$ in A such that M_j are isolated for $j \in \mathbb{N}$.

Definition 6.1. We say that \mathbf{M}_{∞} is ordered with respect to the generalized Lyapunov function V, or that V is an ordered Lyapunov function for \mathbf{M}_{∞} , if

$$
L_1 \le L_2 \le \cdots \le L_n \le \cdots < L_{\infty},
$$

where $L_j = V(z)$ for $z \in M_j$. Moreover, there cannot be an infinite number of sets M_i with the same value of V.

Remark 6.2. If $L_n \to L_\infty$, then the last condition in Definition [6.1](#page-12-0) holds. Also, if [\(3.5\)](#page-5-0) is satisfied, from the continuity of V it follows that $L_n \to L_\infty$.

Proposition 6.3. Let $\{T(t): t \geq 0\}$ be a semigroup with global attractor A and a disjoint family of invariant sets $\mathbf{M}_{\infty} = \{M_i\}_{i=1}^{\infty} \cup M_{\infty}$ in A such that M_j are isolated for $j \in \mathbb{N}$. Let \mathbf{M}_{∞} be ordered with respect to the generalized Lyapunov function V. Then for any complete bounded trajectory $\xi : \mathbb{R} \to X$,

- i) either there exists $i \in \mathbb{N}$ such that $\xi(t) \in M_i$, for all $t \in \mathbb{R}$,
- ii) or there exist $M_j, M_r \in \mathbf{M}_{\infty}$ with $r > j$ such that

$$
\lim_{t \to -\infty} d(\xi(t), M_r) = 0, \ \lim_{t \to +\infty} d(\xi(t), M_j) = 0.
$$

Proof. Suppose that i) is not true. The function $t \mapsto V(\xi(t))$ is monotone. Since $\xi(t) \in \mathcal{A}$, it is also bounded. Hence, the following limits exist

$$
L_{-} = \lim_{t \to -\infty} V(\xi(t)), \ L_{+} = \lim_{t \to +\infty} V(\xi(t)).
$$

Thus,

$$
V(y) = L_{-} \text{ for all } y \in \alpha(\xi),
$$

$$
V(y) = L_{+} \text{ for all } y \in \omega(\xi),
$$

where $\alpha(\xi)$ is the alfa-limit set $\alpha(\xi) = \bigcap_{t \leq 0} \overline{\bigcup_{s \leq t} \xi(s)}$. It is well known that the sets $\omega(\xi)$, $\alpha(\xi)$ are invariant and connected (see e.g. [\[18\]](#page-16-3)).

As $\omega(\xi)$ is invariant, for any $y \in \omega(\xi)$ and $t \geq 0$ we have that $T(t)y \in \omega(\xi)$, and then $V(y) = V(T(t) y) = L_+$. Thus, $y \in M_j$ for some $j \in \mathbb{N} \cup \infty$.

In fact, we shall prove that $\omega(\xi) \subset M_j$. By contradiction assume that there exists $z \in M_i \cap \omega(\xi)$, $i \neq j$. This is not possible if $j = \infty$, as in such a case we have that $L_i < L_+ = L_{\infty}$. Assume then that $j < \infty$. The number of sets M_i such that $L_i = L_+$ is finite. Denote by $E_1, ..., E_m \in \mathbf{M}_{\infty}$ the sets such that $V(x) = L_+$ if $x \in \widehat{E}_k$ for some $k \in \{1, ..., m\}$. We can find $\varepsilon > 0$ for which $\mathcal{O}_{\varepsilon}(\widehat{E}_k) \cap \mathcal{O}_{\varepsilon}(\widehat{E}_r)$ for all $r \neq k \in \{1, ..., m\}$. Since $\omega(\xi)$ is connected, there exists $u \in \omega(\xi)$ such that $u \notin \cup_{k=1}^m \mathcal{O}_{\varepsilon}\left(\widehat{E}_k\right)$. But we have proved that any $u \in \omega(\xi)$ belongs to M_k for some

 $k \in \mathbb{N} \cup \infty$, and then $V(u) = L_+$ implies that $u \in \bigcup_{k=1}^m \mathcal{O}_{\varepsilon}\left(\widehat{E}_k\right)$, a contradiction. Therefore, $\lim_{t\to+\infty} d(\xi(t), M_i) = 0$. Similarly, we prove $\alpha(\xi) \subset M_r$ for some $r \in \mathbb{N} \cup \{\infty\}$. Hence, $\lim_{t \to -\infty} d(\xi(t), M_r) = 0$.

Since $L_-\geq L_+$, it is clear that $r\geq j$. As we are in the case where i) does not hold, the fact that if V is constant on a global solution $\xi(t)$ implies that it belongs to a fixed M_i prevents that $r = j$. \Box

Corollary 6.4. Assume the conditions of Proposition [6.3.](#page-12-1) Then the sets M_j , $j \in$ $\mathbb{N} \cup \infty$, are compact.

Proof. By Proposition 6.3 condition (3.2) is satisfied. Then the result follows from Lemma [4.4.](#page-8-5) □

The existence of a Lyapunov function associated to an infinite number of invariant sets gives, as in the case of a finite number of invariants, a characterization of the global attractor as follows.

Proposition 6.5. Let $\{T(t): t \geq 0\}$ be a semigroup with global attractor A and a disjoint family of invariant sets $\mathbf{M}_{\infty} = \{M_i\}_{i=1}^{\infty} \cup M_{\infty}$ in A such that M_j are isolated for $j \in \mathbb{N}$. Let \mathbf{M}_{∞} be ordered with respect to the generalized Lyapunov function V . Then

$$
\mathcal{A} = \bigcup_{j=1}^{\infty} W^u(M_j) \cup W^u(M_{\infty}).
$$

Proof. If $x \in A$, then x belongs to a bounded complete trajectory, so that Propo-sition [6.3](#page-12-1) implies $x \in W^u(M_j)$ for some $j \in \mathbb{N} \cup \infty$. Thus, $\mathcal{A} \subset \bigcup_{j=1}^{\infty} W^u(M_j) \cup$ $W^u(M_\infty)$.

Conversely, let $x \in W^u(M_j)$ for some $j \in \mathbb{N} \cup \infty$. Since M_j is bounded, there exists t_0 such that $\cup_{t\leq t_0} \xi(t)$ is bounded, where $\xi(\cdot)$ is a complete trajectory satisfying lim_{t→−∞} $d(\xi(t), M_i) = 0$. From the definition of a complete trajectory and the fact that $T(t)$ is eventually dissipative (see Remark [1.6\)](#page-1-0) it follows that $\cup_{t\geq t_0} \xi(t)$ is also bounded. Thus, $\xi(\cdot)$ is a bounded complete trajectory. But then $\xi(t) \in \mathcal{A}$ for all $t \in \mathbb{R}$. In particular, $x = \xi(0) \in \mathcal{A}$. П

Note that Lemma [4.5](#page-8-6) is also a consequence of the existence of a Lyapunov functional.

Proposition 6.6. Let $\{T(t): t \geq 0\}$ be a semigroup with the global attractor A and a disjoint family of invariant sets $\mathbf{M}_{\infty} = \{M_i\}_{i=1}^{\infty} \cup M_{\infty}$ in A such that M_j are isolated for $j \in \mathbb{N}$. Let \mathbf{M}_{∞} be ordered with respect to the generalized Lyapunov function V. Then [\(4.2\)](#page-8-4) holds, that is, for any $j \in \mathbb{N}$ there exists δ_j such that

$$
W^u(M_j) \cap \mathcal{O}_{\delta_j}(\cup_{i \geq j+1} M_i \cup M_\infty) = \varnothing.
$$

Proof. We note that by Corollary [6.4](#page-12-2) the sets M_j are compact for $j \in \mathbb{N} \cup \infty$.

First, let k_j be the first integer $k_j > j$ such that $L_{k_j} > L_j$. We shall prove the existence of δ_j^j for which $W^u(M_j) \cap \mathcal{O}_{\delta_j'}(\cup_{i \geq k_j} M_i \cup M_\infty) = \emptyset$.

By contradiction assume the existence of $j \in \mathbb{N}$ and a sequence $x_n \in W^u(M_j)$ such that

$$
d(x_n, \cup_{i \ge k_j} M_i \cup M_\infty) < \frac{1}{n}.
$$

Then, there exists $y_n \in \bigcup_{i \geq k_j} M_i \cup M_\infty$ such that $d(x_n, y_n) < \frac{1}{n}$. Since $V(y_n) \geq$ $L_{k_j} > L_j$, by the continuity of V there exist $n, \varepsilon > 0$ such that

$$
V(x_n) \ge L_j + \varepsilon.
$$

But $x_n \in W^u(M_j)$ implies the existence of a bounded complete trajectory $\xi(t)$ such that $\xi(0) = x_n$ and

$$
\lim_{t \to -\infty} d\left(\xi\left(t\right), M_j\right) = 0.
$$

By the definition of V we have that $V(\xi(t)) \geq L_j + \varepsilon$ for $t \leq 0$. We take then sequences $t_m \to -\infty$, $z_m \in M_j$ for which

$$
\lim_{t_m \to -\infty} d\left(\xi\left(t_m\right), z_m\right) = 0.
$$

Since M_j is compact, we can assume that $z_m \to z_0$ and then

$$
\lim_{t_m \to -\infty} d\left(\xi\left(t_m\right), z_0\right) = 0.
$$

Again, by the continuity of V we have that $V(z_0) \geq L_j + \varepsilon$ and $V(z_0) = L_j$, which is a contradiction.

Further, considering a j for which $k_j - 1 > j$, we will check that there exists δ_j'' such that $W^u(M_j) \cap \mathcal{O}_{\delta''_j}(\cup_{i=j+1}^{k_j-1} M_i) = \varnothing$. If not, then arguing as before we obtain sequences $x_n \in W^u(M_j)$, $y_n \in \bigcup_{i=j+1}^{k_j-1} M_i$ such that $d(x_n, y_n) < \frac{1}{n}$. We can assume passing to a subsequence that $y_n \in M_k$ for all n and some $k \in \{j+1, ..., k_j-1\}$. We take a bounded complete trajectory $\xi_n(t)$ such that $\xi_n(0) = x_n$ and

$$
\lim_{t \to -\infty} d\left(\xi_n\left(t\right), M_j\right) = 0.
$$

We choose $\varepsilon > 0$ satisfying

$$
\mathcal{O}_{\varepsilon}(M_r) \cap \mathcal{O}_{\varepsilon}(M_i) = \varnothing \text{ for all } r, i \in \{j, ..., k_j - 1\},\
$$

and take *n* for which $\frac{1}{n} < \varepsilon$. Then $x_n \in O_{\varepsilon}(M_k)$. Since $t \mapsto \xi_n(t)$ is continuous, it follows the existence of $t_n > 0$ such that

$$
d(\xi_n(-t_n), M_k) = \varepsilon,
$$

$$
d(\xi_n(t), M_k) < \varepsilon \text{ for all } t \in (-t_n, 0].
$$

We define the functions $\bar{\xi}_n(t) = \xi_n(t - t_n)$. Then $d(\bar{\xi}_n(0), M_k) = \varepsilon$ and $\bar{\xi}_n(t_n) =$ x_n . There exists a complete trajectory $\overline{\xi}$ (·) (see [\[7,](#page-15-9) Lemma 3.1]) such that up to a subsequence $\overline{\xi}_n(t) \to \overline{\xi}(t)$ for all $t \in \mathbb{R}$. We note that

$$
V(\overline{\xi}_n(t)) \le L_j \text{ for all } t \in \mathbb{R},
$$

and then by the continuity of V ,

$$
V(\overline{\xi}(t)) \le L_j \text{ for all } t \in \mathbb{R}.
$$

We note that $t_n \to +\infty$. Otherwise, if $t_n \to t_0$, then as M_k is compact, we have $\overline{\xi}(t_0) = \lim_{n \to \infty} x_n = x \in M_k$, so that $V(\overline{\xi}(t_0)) = L_j$. Hence,

$$
V(\overline{\xi}(t) \ge V(\overline{\xi}(t_0)) = L_j \text{ for all } t \le t_0.
$$

By the last two inequalities, we have that $V(\overline{\xi}(t)) = L_i$ for all $0 \le t \le t_0$. Also, $\overline{\xi}(t) = T(t-t_0)\overline{\xi}(t_0)$ if $t \geq t_0$, so that $V(\overline{\xi}(t)) = L_j$ for all $t \geq t_0$ as well. From the definition of the Lyapunov function, we obtain that $\overline{\xi}(0) \in M_k$. But $d(\overline{\xi}_n(0), M_k) =$ ε and $\overline{\xi}_n(0) \to \overline{\xi}(0)$ imply that $d(\overline{\xi}(0), M_k) = \varepsilon$, a contradiction.

Hence, it is clear that

$$
d(\overline{\xi}(t), M_k) \leq \varepsilon
$$
 for any $t \geq 0$.

On the other hand,

$$
V(x_n) = V\left(\overline{\xi}_n(t_n)\right) \le V\left(\overline{\xi}_n(t)\right) \le L_j \text{ for any } 0 \le t \le t_n.
$$

Since $x_n \to x \in M_k$, the continuity of V implies that $V(x_n) \to V(x) = L_j$ and $V\left(\overline{\xi}_{n}(t)\right) \rightarrow V\left(\overline{\xi}(t)\right)$. Thus,

$$
V\left(\overline{\xi}\left(t\right)\right) = L_j \text{ for all } t \ge 0.
$$

From the definition of a Lyapunov function, we have that $\overline{\xi}(t) \in M_k$ for any $t \geq 0$. This is a contradiction, as $d(\bar{\xi}_n(0), M_k) = \varepsilon$ and $\bar{\xi}_n(0) \to \bar{\xi}(0)$.

Taking $\mathcal{O}_{\delta_j} = \mathcal{O}_{\delta'_j} \cup \mathcal{O}_{\delta''_j}$ we obtain the required result.

$$
\Box
$$

We can now conclude our main theorem.

Theorem 6.7. Let $\{T(t) : t \geq 0\}$ be a semigroup with global attractor A and consider a disjoint family of invariant sets $\mathbf{M}_{\infty} = \{M_i\}_{i=1}^{\infty} \cup M_{\infty}$ in A such that M_j are isolated for $j \in \mathbb{N}$. Then, the following conditions are equivalent:

- 1. $\{T(t): t \geq 0\}$ is a generalized gradient semigroup with respect to \mathbf{M}_{∞} in the sense of the Definition [5.1](#page-10-1) and M_{∞} is ordered with respect to the respective Lyapunov function.
- 2. $\{T(t): t \geq 0\}$ is a generalized dynamically gradient semigroup with respect to \mathbf{M}_{∞} (as in Definition [3.4\)](#page-4-2) satisfying [\(4.2\)](#page-8-4).
- 3. M_{∞} is a Morse decomposition of A.

Proof. It is a straightforward consequence of Theorem [4.8](#page-9-3) and Propositions [5.3,](#page-10-3) [6.3](#page-12-1) and [6.6.](#page-13-0) \Box

Corollary 6.8. Let $\{T(t) : t \geq 0\}$ be a semigroup with global attractor A and consider a disjoint family of invariant sets $\mathbf{M}_{\infty} = \{M_i\}_{i=1}^{\infty} \cup M_{\infty}$ in A such that M_j are isolated for $j \in \mathbb{N}$. Assume that \mathbf{M}_{∞} is a Morse decomposition of A. Then

$$
\mathcal{A} = \bigcup_{j=1}^{\infty} W^u(M_j) \cup W^u(M_{\infty}).
$$

Proof. In view of Theorem [6.7,](#page-15-10) $\{T(t): t \geq 0\}$ is a generalized gradient semigroup with respect to \mathbf{M}_{∞} in the sense of the Definition [5.1](#page-10-1) and \mathbf{M}_{∞} is ordered with respect to the Lyapunov function. Hence, the result follows from Proposition [6.5.](#page-13-1) \Box

Acknowledgement. We would like to thank the referees for their helpful comments and suggestions which allowed us to improve the presentation of the paper.

REFERENCES

- [\[1\]](http://www.ams.org/mathscinet-getitem?mr=MR2805595&return=pdf) Arag˜ao-Costa, E.R., Caraballo, T., Carvalho, A.N., & Langa, J.A., Stability of gradient semigroups under perturbation, Nonlinearity, 24 (2011), 2099–2117.
- [\[2\]](http://www.ams.org/mathscinet-getitem?mr=MR2934334&return=pdf) Aragão-Costa, E.R., Caraballo, T., Carvalho, A.N., & Langa, J.A., Continuity of Lyapunov functions and of energy level for a generalized gradient system, Topological Methods Nonl. Anal., 39 (2012), 57-82.
- [\[3\]](http://www.ams.org/mathscinet-getitem?mr=MR2283554&return=pdf) J. M. Arrieta, A. Rodríguez-Bernal, J. Valero, Dynamics of a reaction-diffusion equation with a discontinuous nonlinearity, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 16 (10) (2006), 2695-2984.
- [\[4\]](http://www.ams.org/mathscinet-getitem?mr=MR1156492&return=pdf) A. V. Babin and M. I. Vishik, Attractors in Evolutionary Equations Studies in Mathematics and its Applications 25, North-Holland Publishing Co., Amsterdam (1992).
- [\[5\]](http://www.ams.org/mathscinet-getitem?mr=MR2503016&return=pdf) A. N. Carvalho and J. A. Langa, An extension of the concept of gradient semigroups which is stable under perturbation, J. Differential Equations, 246 (2009), 2646–2668.
- [\[6\]](http://www.ams.org/mathscinet-getitem?mr=MR2976449&return=pdf) Carvalho, A.N., Langa, J.A., & Robinson, J.C., Attractors for infinite-dimensional nonautonomous dynamical systems, Applied Mathematical Series 182, Springer, New York (2013).
- [\[7\]](http://www.ams.org/mathscinet-getitem?mr=MR2322025&return=pdf) A.N. Carvalho, J.A. Langa, J.C. Robinson, A. Suárez, Characterization of non-autonomous attractors of a perturbed infinite-dimensional gradient system, J. Differential Equations, 236 (2007), 570–603.
- [\[8\]](http://www.ams.org/mathscinet-getitem?mr=MR0511133&return=pdf) C. Conley, Isolated invariant sets and the Morse index, CBMS Regional Conference Series in Mathematics, 38. American Mathematical Society, Providence, R.I. (1978).
- [\[9\]](http://www.ams.org/mathscinet-getitem?mr=MR0941371&return=pdf) J. K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs Number 25 (American Mathematical Society, Providence, RI) (1988).
- [\[10\]](http://www.ams.org/mathscinet-getitem?mr=MR0610244&return=pdf) D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics 840, Springer-Verlag, Berlin, (1981).
- [\[11\]](http://www.ams.org/mathscinet-getitem?mr=MR1348735&return=pdf) M. Hurley, Chain recurrence, semiflows and gradients, J. Dyn. Diff. Equations, 7 (1995), 437–456.

- [\[12\]](http://www.ams.org/mathscinet-getitem?mr=MR1133627&return=pdf) O. A. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations, Cambridge University Press, Cambridge (1991).
- [\[13\]](http://www.ams.org/mathscinet-getitem?mr=MR1364499&return=pdf) D.E. Norton, The fundamental theorem of dynamical systems, Comment. Math., Univ. Carolinae, 36 (3) (1995), 585–597.
- [\[14\]](http://www.ams.org/mathscinet-getitem?mr=MR2279951&return=pdf) M. Patrao, Morse decomposition of semiflows on topological spaces, J. Dyn. Diff. Equations, 19 (1) (2007), 181–198.
- [\[15\]](http://www.ams.org/mathscinet-getitem?mr=MR2279950&return=pdf) M. Patrao and Luiz A.B. San Martin, Semiflows on topological spaces: chain transitivity and semigroups, J. Dyn. Diff. Equations, 19 (1) (2007), 155–180.
- [\[16\]](http://www.ams.org/mathscinet-getitem?mr=MR1881888 &return=pdf) Robinson, J.C., Infinite-Dimensional Dynamical Systems. Cambridge University Press, Cambridge, England (2001).
- [\[17\]](http://www.ams.org/mathscinet-getitem?mr=MR0910097&return=pdf) K. P. Rybakowski, The homotopy index and partial differential equations, Universitext, Springer-Verlag (1987).
- [\[18\]](http://www.ams.org/mathscinet-getitem?mr=MR1873467&return=pdf) Sell, G.R. & You, Y., Dynamics of evolutionary equations. Applied Mathematical Sciences Vol. 143, Springer-Verlag, New York (2002).
- [\[19\]](http://www.ams.org/mathscinet-getitem?mr=MR1441312&return=pdf) R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, Berlin (1988; second edition 1996).
- [\[20\]](http://www.ams.org/mathscinet-getitem?mr=MR1215488&return=pdf) Vishik, M.I., Asymptotic behaviour of solutions of evolutionary equations, Cambridge University Press, Cambridge, England (1992).

E-mail address, T. Caraballo: caraball@us.es

E-mail address, J.C. Jara: jcjara@us.es

E-mail address, J.A. Langa: langa@us.es

E-mail address, J. Valero: jvalero@umh.es