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Abstract. In this paper we describe some dynamical properties of a Morse
decomposition with a countable number of sets. In particular, we are able to

prove that the gradient dynamics on Morse sets together with a separation

assumption is equivalent to the existence of an ordered Lyapunov function
associated to the Morse sets and also to the existence of a Morse decomposition

-that is, the global attractor can be described as an increasing family of local
attractors and their associated repellers.

1. Introduction. The asymptotic behaviour of a system of (ordinary or partial)
differential equations modeling real phenomena from different areas of Science is
usually described by the analysis of their global attractors, a compact invariant
set for the associated semigroups attracting (uniformly) bounded sets forwards in
time. This subject has received much attention throughout the last decades (see,
for instance, [4], [9], [12], [16], [19], [18] or [20]). We recall now the definition of
global attractor associated to a semigroup.

First, let X be a metric space with metric d : X ×X → R+, where R+ = [0,∞),
and denote by C (X) the set of continuous maps from X into X. Given a subset A ⊂
X, the ε-neighborhood of A is the set Oε(A) := {x ∈ X : d(x, a) < ε for some a ∈
A}.

Definition 1.1. A family {T (t) : t ≥ 0} ⊂ C (X) is a semigroup in a complete
metric space X if:
• T (0) = IX , with IX being the identity map in X,
• T (t+ s) = T (t)T (s), for all t, s ∈ R+,
• R+ ×X 3 (t, x) 7→ T (t)x ∈ X is continuous.
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The notion of invariance plays a fundamental role in the study of the asymptotic
behavior of semigroups.

Definition 1.2. A subset A of X is said invariant under the semigroup {T (t) : t ≥
0} if T (t)A = A for all t ≥ 0.

Given A,B ⊂ X, the Hausdorff semidistance from A to B is given by

d(A,B) := sup
a∈A

inf
b∈B

d(a, b).

Definition 1.3. Given two subsets A,B of X we say that A attracts B under the
action of the semigroup {T (t) : t ≥ 0} if d(T (t)B,A) t→∞−→ 0.

We are now in a position to define global attractors.

Definition 1.4. A subset A of X is a global attractor for a semigroup {T (t) :
t ≥ 0} if it is compact, invariant under the action of {T (t) : t ≥ 0} and for every
bounded subset B of X we have that A attracts B under the action of {T (t) : t ≥ 0}.

Definition 1.5. The semigroup {T (t) : t ≥ 0} is eventually dissipative if for any
bounded set B there exists t∗ = t∗(B) ≥ 0 such that ∪t≥t∗T (t)B is bounded.

Remark 1.6. It is obvious that if T (t) possesses a global attractor, then it is even-
tually dissipative.

One of the main properties in the study of attractors is referred to the description
of their geometrical internal structure. Generically, a global attractor is character-
ized by a (finite or infinite) number of isolated invariant sets and the connecting
orbits among them. This fact leads to a Morse decomposition of the global attractor
in terms of a family of attracting-repeller pairs (see [8, 17, 11, 14, 15]). We now
introduce this concept.

Definition 1.7. Let {T (t) : t ≥ 0} be a semigroup on X. We say that an invariant
set E ⊂ X for the semigroup {T (t) : t ≥ 0} is an isolated invariant set if there is
an ε > 0 such that E is the maximal invariant subset of Oε(E).

Definition 1.8. A disjoint family of isolated invariant sets is a family {M1, · · · ,Mn}
of isolated invariant sets with the property that

Oε(Mi) ∩ Oε(Mj) = ∅, 1 ≤ i < j ≤ n,
for some ε > 0.

Definition 1.9. A global solution for a semigroup {T (t) : t ≥ 0} is a continuous
function ξ : R→ X with the property that T (t)ξ(s) = ξ(t+ s) for all s ∈ R and for
all t ∈ R+. We say that ξ : R → X is a global solution through x ∈ X if it is a
global solution with ξ(0) = x.

It is also well known that the global attractor is the union of all bounded complete
global solutions of the semigroup T.

Definition 1.10. Let {T (t) : t ≥ 0} be a semigroup which possesses a disjoint
family of isolated invariant sets M = {M1, · · · ,Mn}. A homoclinic structure asso-
ciated to M is a subset {Mk1 , · · · ,Mkp} of M (p ≤ n) together with a set of global
solutions {ξ1, · · · , ξp} such that

Mkj
t→−∞←− ξj(t)

t→∞−→ Mkj+1 , 1 ≤ j ≤ p,
where Mkp+1 := Mk1 .
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Remark 1.11. Here, ξ(t) t→±∞−→ M means that d(ξ(t),M)→ 0 as t→ ±∞.

We will study the dynamics of the semigroup inside the global attractor A. We
now define generalized dynamically gradient semigroups (see [6, 5]).

Definition 1.12. Let {T (t) : t ≥ 0} be a semigroup with a global attractor A and
a disjoint family of isolated invariant sets M = {M1, · · · ,Mn} in A. We say that
{T (t) : t ≥ 0} is a generalized dynamically gradient semigroup relative to M if:

a) For any global solution ξ : R→ A there are 1 ≤ i, j ≤ n such that

Mi
t→−∞←− ξ(t) t→∞−→ Mj .

b) There is no homoclinic structure associated to M .

Remark 1.13. The concept of generalized dynamically gradient semigroup is the
same as the concept of gradient-like semigroup as given in [1], [5].

To introduce the notion of a Morse decomposition for the attractor A of a semi-
group {T (t) : t ≥ 0} (see [8], [17] or [18]) we previously need the notion of attractor-
repeller pair. We recall that the omega-limit set of B ⊂ X is defined by

ω (B) = ∩t≥0∪s≥tT (s)B.

Definition 1.14. Let {T (t) : t ≥ 0} be a semigroup with a global attractor A. We
say that a non-empty subset A of A is a local attractor if there is an ε > 0 such that
ω(Oε(A)) = A. The repeller A∗ associated to a local attractor A is the set defined
by

A∗ := {x ∈ A : ω(x) ∩A = ∅}.
The pair (A,A∗) is called an attractor-repeller pair for {T (t) : t ≥ 0}.

Note that if A is a local attractor, then A∗ is closed and invariant.

Definition 1.15. Given an increasing family ∅ = A0 ⊂ A1 ⊂ · · · ⊂ An = A, of
n+1 local attractors, for j = 1, · · · , n, define Mj := Aj ∩A∗j−1. The ordered n-tuple
M := {M1,M2, · · · ,Mn} is called a Morse decomposition for A.

Definition 1.16. We will say that a semigroup {T (t) : t ≥ 0} with a global attractor
A and a disjoint family of isolated invariant sets M = {M1, · · · ,Mn} in A is a
gradient semigroup with respect to M , if there exists a continuous function V :
X → R such that [0,∞) 3 t 7→ V (T (t)x) ∈ R is non-increasing for each x ∈ X\M ,
V is constant in Mi for each 1 ≤ i ≤ n, and V (T (t)x) = V (x) for all t ≥ 0 if and

only if x ∈
n⋃
i=1

Mi.

V is called a Lyapunov function related to M.

It has been proved in [1] that given a disjoint family of isolated invariant sets
on the global attractor M = {M1, · · · ,Mn} for a semigroup T (t), the dynamical
property of being generalized dynamically gradient, the existence of an associated
ordered family of local attractor-repellers, and the existence of a Lyapunov func-
tional related to M, are equivalent properties. Many of the arguments in [1] make
a precise use of the fact that the number of Morse sets is finite. The aim of this
paper is to generalize this result to the case of a countable number of Morse sets.

Indeed, the general theory of Morse decomposition of invariant sets is generically
adapted to the existence of a finite number of isolated Morse sets. However, it is not
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unusual to have an infinite number of invariants in a global attractor. For instance,
consider the scalar differential equation

dy

dt
= f (y)

with

f (y) =


−y, if y ≤ 0,
(1− e−y)

∣∣∣sin(πy)∣∣∣ , if 0 < y ≤ 1,
1− y, if y ≥ 1.

Note that the equation possesses the following fixed points:

y1 = 1, y2 =
1
2
, y3 =

1
3
, ..., yk =

1
k
, ..., y∞ = 0,

with their respective associated unstable manifolds (see Definition 4.2)

Wu (1) = 1, Wu

(
1
2

)
= [

1
2
, 1), ..., Wu

(
1
k

)
= [

1
k
,

1
k − 1

), ..., Wu (0) = 0,

and as global attractor A = [0, 1]. In [3] the authors study a multivalued version of
the well-known Chafee-Infante equation, also leading to a global attractor with an
infinite number of equilibria, which actually has motivated the necessity of devel-
oping the theory in this paper. We will consider this application in a subsequent
work.

In Section 2 we recall some results on the dynamics related to an attractor-repeller
pair. In Section 3 we will generalize Definitions 1.12, 1.15 and 1.16 to the case of
an infinite number of disjoint isolated invariant sets M∞ = {Mi}∞i=1 ∪M∞ inside
the global attractor. In Sections 4, 5 and 6 we prove the main result of this paper,
the equivalence between a generalized dynamically gradient semigroup referred to
M∞ with a suitable separation assumption, the existence of an ordered Lyapunov
function associated to M∞, and the existence of a Morse decomposition on the
global attractor. This is done in several steps: first, we prove that the property of
the semigroup of being generalized dynamically gradient together with a separation
assumption implies that a Morse decomposition can be constructed; then we prove
that from a Morse decomposition related to M∞ an ordered Lyapunov function
can be defined; finally, we check that the existence of an ordered Lyapunov function
implies that the semigroup is generalized dynamically gradient semigroup referred
to M∞ and that the separation assumption holds.

2. Preliminary results on attractor-repeller pairs. The following results on
the dynamics on attractor-repeller pairs are taken from [1].

We recall that local attraction of A in A is equivalent to local attraction in X,
for which we firstly need the following result.

Lemma 2.1. Let {T (t) : t ≥ 0} be a semigroup in X with a global attractor A. If
A ⊂ A is a compact invariant set for {T (t) : t ≥ 0} and there is an ε > 0 such
that A attracts Oε(A) ∩ A, then given δ ∈ (0, ε) there is a δ′ ∈ (0, δ) such that
γ+(Oδ′(A)) ⊂ Oδ(A), where γ+(Oδ′(A)) =

⋃
x∈Oδ′ (A)

⋃
t≥0

{T (t)x}.

The next result generalizes for semigroups a known result for groups given in [8]
and shows that our definition of local attractor is equivalent to that one in [8, 17].
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Lemma 2.2. If {T (t) : t ≥ 0} is a semigroup in X with a global attractor A and
S(t) := T (t)|A, clearly {S(t) : t ≥ 0} is a semigroup in the metric space A. If A is
a local attractor for {S(t) : t ≥ 0} in the metric space A (that is, there exists ε > 0
with ω(Oε(A) ∩ A) = A), and K is a compact subset of A such that K ∩ A∗ = ∅,
then A attracts K. Furthermore A is a local attractor for {T (t) : t ≥ 0} in X.

We now describe the dynamics on an attractor-repeller pair.

Lemma 2.3. Let {T (t) : t ≥ 0} be a semigroup in X with a global attractor A and
(A,A∗) an attractor-repeller for {T (t) : t ≥ 0}. Then:

(i) If ξ : R→ X is a global bounded solution for {T (t) : t ≥ 0} through x /∈ A∪A∗,
then ξ(t) t→∞−→ A and ξ(t) t→−∞−→ A∗.

(ii) A global solution ξ : R → X of {T (t) : t ≥ 0} with the property that
ξ(t) ∈ Oδ(A∗) for all t ≤ 0 for some δ > 0 such that Oδ(A∗) ∩ A = ∅ must satisfy
d(ξ(t), A∗) t→−∞−→ 0.

(iii) If x ∈ X\A, then T (t)x t→∞−→ A ∪A∗.

Part (i) of the previous lemma is proved in Theorem 1.4 in [17]. Parts (ii) and
(iii) can be found in [1].

3. Generalized dynamically gradient semigroups. In this section we will in-
troduce the concepts of generalized dynamically gradient semigroups and Morse
decomposition for a countable set of isolated invariant sets.

Definition 3.1. A disjoint (countable) family of invariant sets is a family M∞ =
{Mi}∞i=1 ∪M∞ of invariant sets with the property that, given j ∈ N, there exists δj
such that

Oδj (Mj) ∩ Oδj (Mi) = ∅, for all i 6= j, i ∈ N ∪ {∞}. (3.1)

Definition 3.2. Let {T (t) : t ≥ 0} be a semigroup which possesses a disjoint
family of invariant sets M∞ = {Mi}∞i=1 ∪M∞ with Mj isolated for each j ∈ N. A
homoclinic structure associated to M∞ is a finite subset {Mk1 , · · · ,Mkp} of M∞
together with a set of global solutions {ξ1, · · · , ξp} such that

Mkj
t→−∞←− ξj(t)

t→∞−→ Mkj+1 , 1 ≤ j ≤ p,
where Mkp+1 := Mk1 .

Remark 3.3. The set M∞ is not assumed to be isolated. The reason is that typically
in applications M∞ is an accumulation set of the sequence Mn as n→∞. Hence,
it is not isolated. This is the case in the example given in the introduction, and
also, for instance, in the application for multivalued semiflows in [3].

Definition 3.4. Let {T (t) : t ≥ 0} be a semigroup with a global attractor A and
a disjoint family of invariant sets M∞ = {Mi}∞i=1 ∪M∞ in A with Mj isolated
for each j ∈ N. We say that {T (t) : t ≥ 0} is a generalized dynamically gradient
semigroup relative to M∞ if for any global solution ξ : R→ A such that ξ(t0) 6∈Mk,
for some t0 ∈ R and any k ∈ N ∪∞, it holds that

Mj
t→−∞←− ξ(t) t→∞−→ Mi, for 1 ≤ i < j ≤ ∞. (3.2)

Remark 3.5. It is obvious that condition (3.2) implies the following properties:
• For any global solution ξ : R→ A there are 1 ≤ i, j ≤ ∞ such that

Mj
t→−∞←− ξ(t) t→∞−→ Mi.
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• There is no homoclinic structure associated to M∞.
When the number of sets Mi is finite, then it is proved in [2] that these last two

properties imply (3.2) for a suitable rearrangement of the sets. In fact, Definition
3.4 is the way in which it is defined a Morse decomposition of a global attractor in
[18].

Note that, in particular, (3.2) implies that there is no global solution ξ(t) : R→ A
with ξ(t0) 6∈M1 for some t0 ∈ R such that

lim
t→−∞

d(ξ(t),M1) = 0.

The following lemma implies that an isolated invariant set inside a global attrac-
tor is compact.

Lemma 3.6. Let M be an isolated invariant set which is relatively compact. Then
M is compact.

Proof. We need to prove that M is closed. Let yn → y, where yn ∈ M. By the
continuity of T we have that T (t)yn → T (t)y for any t > 0. Hence, T (t)y ∈ M .
Thus, T (t)M ⊂ M for all t ≥ 0. On the other hand, as M is invariant, for any
t > 0 there exists zn ∈ M such that T (t)zn = yn. Since M is relatively compact,
passing to a subsequence we have zn → z ∈ M , and then T (t)z = y. Therefore,
M ⊂ T (t)M for all t > 0. It follows that M is invariant. As M is an isolated
invariant set, we get M = M .

As a consequence of the first statement in Lemma 2.3 we obtain the following.

Corollary 3.7. If {T (t) : t ≥ 0} is a semigroup in X with a global attractor A
and (A,A∗) is an attractor-repeller pair for {T (t) : t ≥ 0}, then {T (t) : t ≥ 0}
is a generalized dynamically gradient semigroup associated to the disjoint family of
isolated invariant sets {A,A∗}.

Note that (3.1) implies

Mi ∩M∞ = ∅, for each i ∈ N. (3.3)

Lemma 3.8. Condition (3.2) implies that there is no global solution ξ : R → A
with ξ (t0) ∈ A \M∞ for some t0 ∈ R such that

lim
t→+∞

d(ξ(t),M∞) = 0. (3.4)

Proof. It is obvious, as in (3.2), that the index i cannot be ∞.

Lemma 3.9. Let M∞ = {Mi}∞i=1 ∪M∞ be compact invariant sets such that Mj ∩
Mi = ∅ for i 6= j, i, j ∈ N ∪ ∞, and also suppose that the invariant compact set
M∞ ⊂ A is such that

lim
i→∞

d(Mi,M∞) = 0. (3.5)

Then M∞ is a disjoint family of invariant sets.

Proof. Take j ∈ N arbitrary. We have to check (3.1). There exists δ1 > 0 such that

Oδ1 (Mj) ∩ Oδ1 (M∞) = ∅.
In view of (3.5) there is N > j such that

Mi ⊂ O δ1
2

(M∞) if i > N.
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Hence,
Oδ1 (Mj) ∩ O δ1

2
(Mi) = ∅ if i > N.

Obviously, there exists δ2 > 0 for which

Oδ2 (Mj) ∩ Oδ2 (Mi) = ∅ for 1 ≤ i ≤ N , i 6= j.

Then the result follows for δj = min{δ1/2, δ2}.

We can now introduce the concept of a Morse decomposition referred to M∞.

Definition 3.10. Given an increasing family ∅ = A0 ⊂ A1 ⊂ · · · ⊂ An ⊂ · · ·A∞ =
A of local attractors, for j ∈ N define Mj := Aj∩A∗j−1, M∞ = ∩∞j=0A

∗
j . The ordered

countable set M∞ := {Mi}∞i=1 ∪M∞ is called a Morse decomposition of A.

The following properties of the sets Mj follow.

Lemma 3.11. M∞ ∩ Aj = ∅ for any j ∈ N. Hence, M∞ ⊂ A∞\ ∪∞j=1 Aj and
M∞ ∩Mj = ∅ for all j ∈ N.

Proof. Let y ∈M∞. Then y ∈ A∗j , for any j ∈ N, implies y 6∈ Aj for all j ∈ N.

Lemma 3.12. The sets Mj, j ∈ N ∪∞, are compact.

Proof. Since Mj ⊂ A, they are relatively compact. Also, as Mj are the intersection
of closed sets, they are closed.

We can also give the following characterization.

Proposition 3.13. Let {T (t) : t ≥ 0} be a semigroup with the global attractor A
and M∞ = {Mi}∞i=1 ∪M∞ a Morse decomposition for A with the family ∅ = A0 ⊂
A1 ⊂ · · · ⊂ A∞ = A of local attractors. Then,

∞⋂
j=0

(Aj ∪A∗j ) = (
∞⋃
j=1

Mj) ∪M∞.

Proof. If z ∈
∞⋃
j=1

Mj , let k ∈ N be such that z ∈ Mk = Ak ∩ A∗k−1. Hence

z ∈ Ak ⊂ Ak+1 ⊂ · · · ⊂ A∞ and z ∈ A∗k−1 ⊂ A∗k−2 ⊂ · · · ⊂ A∗0. Thus

z ∈ (
∞⋂
j=k

Aj) ∩ (
k−1⋂
j=0

A∗j ) ⊂

 ∞⋂
j=k

(Aj ∪A∗j )

 ∩
k−1⋂
j=0

(Aj ∪A∗j )

 =
∞⋂
j=0

(Aj ∪A∗j ),

proving that
∞⋃
j=1

Mj ⊂
∞⋂
j=0

(Aj ∪A∗j ). If z ∈M∞, then z ∈
∞⋂
j=0

A∗j ⊂
∞⋂
j=0

(Aj ∪A∗j ).

Conversely, we take z ∈
∞⋂
j=0

(Aj ∪ A∗j ). If z ∈
∞⋂
j=0

A∗j , then z ∈ M∞. Otherwise,

z ∈ Aj for some j ∈ N. Denote I := {i1, i2, · · · , ik, . . . } and J := {j1, j2, · · · , jl, . . . }
such that I∪J = Z+ with I∩J = ∅ and z ∈ Ai for all i ∈ I and z ∈ A∗j for all j ∈ J .
Clearly, if i := min I, necessarily I = {j ≥ i} and J = {0, 1, · · · , i−1}, consequently

z ∈ Ai and z ∈ A∗i−1. So, z ∈ Ai ∩ A∗i−1 = Mi, from which
∞⋂
j=0

(Aj ∪ A∗j ) ⊂
∞⋃
j=1

Mj .
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4. Construction of a Morse decomposition from the dynamics on M∞.
In this section we describe the construction of a Morse decomposition of the global
attractor A relative to the disjoint family of invariant sets M∞ = {Mi}∞i=1 ∪M∞
in A such that Mj is isolated if j ∈ N and satisfying (3.2). By Lemma 3.8 we have
that (3.4) does not hold.

The following lemma will play an important role in what follows.

Lemma 4.1. Let {T (t) : t ≥ 0} be a semigroup with a global attractor A and the
disjoint family of invariant sets M∞ = {Mi}∞i=1∪M∞ = {M1, . . . ,Mn, . . . ;M∞} in
A be such that Mj are isolated for j ∈ N. Assume that T is generalized dynamically
gradient relative to M∞. Then, M1 is a local attractor for {T (t) : t ≥ 0}.

Proof. We firstly prove that for all δ ∈ (0, δ1) there exists δ′ ∈ (0, δ) such that

γ+ (Oδ′ (M1)) ⊂ Oδ (M1) ,

where δ1 satisfies Oδ1(M1) ∩ Oδ1(Mi) = ∅ for i > 1 or i =∞.
If not, there exist 0 < δ < δ1 and sequences {tk}k∈N of positive times and {xk}k∈N

of points in X such that for all k

d(xk,M1) <
1
k
,

d(T (tk)xk,M1) = δ

and
d(T (t)xk,M1) < δ for t ∈ [0, tk).

Thus, if we define, for each k, ξk(t) := T (t+ tk)xk for t ∈ [−tk,∞), as tk →
k→∞

∞,
we conclude that there exists a global solution ξ : R→ X for T (·) such that ξk →

k→∞
ξ

uniformly in compact sets of times (see [7, Lemma 3.1]). Then, d(ξk(t),M1) ≤ δ for
t ∈ [−tk, 0] implies

d(ξ(t),M1) ≤ δ < δ1 for t ≤ 0.
But by (3.2) we have ξ(t)→Mj , with j > 1, as t→ −∞, a contradiction.
M1 is the maximal invariant set in Oε(M1) for some ε > 0. Thus, for δ <

min{ε, δ1} take δ′ ∈ (0, δ) such that

γ+(Oδ′(M1)) ⊂ Oδ(M1),

so that
ω(Oδ′(M1)) ⊂ Oδ(M1) ⊂ Oε(M1),

and then, as ω(Oδ′(M1)) is invariant,

ω(Oδ′(M1)) ⊂M1.

The other inclusion is trivial, so that M1 is a local attractor.

For M1 a local attractor, let M∗1 = {x ∈ A : ω(x) ∩M1 = ∅} be its associated
repeller, so each Mi, with i ≥ 2, is contained in M∗1 and more generally the orbit
ξ(R) of any global solution ξ : R→ A that converges to Mi, i ≥ 2, when t→ +∞, is
contained in M∗1 . Considering the restriction {T1(t) : t ≥ 0} of {T (t) : t ≥ 0} to M∗1
we have that {T1(t) : t ≥ 0} satisfies (3.2) in the space M∗1 with the invariant sets
{Mi}∞i=2 ∪M∞ and we may assume, by the last lemma, that M2 is a local attractor
for the semigroup {T1(t) : t ≥ 0} in M∗1 . If M∗2,1 is the repeller associated to the local
attractor M2 for {T1(t) : t ≥ 0} in M∗1 we may proceed and consider the restriction
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{T2(t) : t ≥ 0} of the semigroup {T1(t) : t ≥ 0} to M∗2,1 and then {T2(t) : t ≥ 0}
satisfies (3.2) in M∗2,1 with the associated invariant sets {Mi}∞i=3 ∪M∞.

Setting A =: M∗0,−1 and M∗1,0 := M∗1 , for j ≥ 1 we have that Mj is a local
attractor for the restriction of {T (t) : t ≥ 0} to M∗j−1,j−2 whose repeller will be
indicated by M∗j,j−1.

Definition 4.2. Let {T (t) : t ≥ 0} be a semigroup. The unstable set of an invariant
set M is defined by

W u(M) := {z ∈ X : there is a global solution ξ : R→ X

such that ξ(0) = z and lim
t→−∞

d(ξ(t),M) = 0}.

Define A0 := ∅, A1 := M1 and for j = 2, 3, · · · ,

Aj := Aj−1 ∪W u(Mj) =
j⋃
i=1

W u(Mi). (4.1)

Also, A∞ = A.
It is clear that A = ∪∞i=1W

u(Mi) ∪W u(M∞).

Lemma 4.3. Assume the conditions of Lemma 4.1. Then M∞ = ∩∞j=0A
∗
j .

Proof. Let z ∈ M∞. Then as M∞ is invariant, ω(z) ⊂ M∞. Then z cannot be in
Wu(Mj) for j ∈ N, as in such a case by (3.2) we would have ω(z) ∩Mi 6= ∅ for
some i ≤ j, a contradiction. Thus, by (4.1) we have that z 6∈ Aj for j ∈ N. Hence,
ω (z) ∩Aj = ∅, so that z ∈ ∩∞j=0A

∗
j .

Conversely, let z ∈ ∩∞j=0A
∗
j . Then ω(z) ∩ Aj = ∅ for all j ∈ N. If z 6∈ M∞, we

take a global solution ξ (·) such that ξ (0) = z. Then by condition (3.2) we have that
ξ(t)→Mi as t→ +∞ for some i ∈ N. But then ω(z)∩Ai 6= ∅, a contradiction.

Lemma 4.4. Assume the conditions of Lemma 4.1. Then the sets Mj, j ∈ N ∪∞,
are compact.

Proof. We note that Mj ⊂ A implies by Lemma 3.6 that the sets Mj are compact
if j ∈ N. Also, Lemma 4.3 implies that M∞ is closed, and then M∞ ⊂ A implies
that it is compact.

Lemma 4.5. Assume the conditions of Lemma 4.1. Suppose that, given j ∈ N,
there exists δj such that

Wu(Mj) ∩ Oδj (
∞⋃

i=j+1

Mi ∪M∞)) = ∅. (4.2)

Then,

Aj ∩ Oδj ((
∞⋃

i=j+1

Mi) ∪M∞) = ∅. (4.3)

Proof. For j = 1 the result follows since A1 = M1 = Wu(M1). Suppose (4.3) is
true for j − 1 and we will show it for j. If not, there exists a sequence {xk}k∈N in
Aj such that for all k

d(xk, (
∞⋃

i=j+1

Mi) ∪M∞) <
1
k
.

As Aj := Aj−1 ∪Wu (Mj) and we have (4.3) for j − 1, then xk ∈ Wu (Mj), from
which, by hypothesis, we get a contradiction.
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Remark 4.6. The separation condition (4.2) can be proved easily in the case of
a finite number of elements Mj. It is interesting to study whether this assumption
can be somehow avoided in the case of an infinte number of elements.

Corollary 4.7. Under the hypotheses of the previous lemma, given j ∈ N, there
exists δj such that

Oδj (Aj) ∩ ((
∞⋃

i=j+1

Mi) ∪M∞) = ∅. (4.4)

Theorem 4.8. Let {T (t) : t ≥ 0} be a semigroup with a global attractor A and
consider the disjoint family of invariant sets M∞ = {Mi}∞i=1 ∪ M∞ in A such
that Mj is isolated if j ∈ N. Assume that T is generalized dynamically gradient
relative to M∞ and such that (4.2) holds, so that each Mj is a local attractor for
the restriction of {T (t) : t ≥ 0} to M∗j−1,j−2. Then Aj defined in (4.1) is a local
attractor for {T (t) : t ≥ 0} in X, and

Mj = Aj ∩A∗j−1. (4.5)

As a consequence, M∞ = {Mi}∞i=1 ∪M∞ defines a Morse decomposition on the
global attractor A.

Proof. If we prove that for any 0 < δ < δj , there is δ′ < δ such that γ+(Oδ′(Aj)) ⊂
Oδ(Aj), then ω(Oδ′(Aj)) attracts Oδ′(Aj) and (as ω(Oδ′(Aj)) is invariant) is con-
tained in Aj proving that Aj is a local attractor.

Suppose there is j ∈ N for which there exist δ ∈ (0, δj) and sequences (tk)k∈N
with tk →∞ and (xk)k∈N in X such that

d (xk, Aj) <
1
k
,

d (T (tk)xk, Aj) = δ.

and
d (T (t)xk, Aj) < δ for t ∈ [0, tk).

Then, as in Lemma 4.1, we get a global solution ξ0 : R→ X satisfying

d (ξ0 (t) , Aj) ≤ δ for all t ≤ 0 (4.6)

with
d (ξ0 (0) , Aj) = δ. (4.7)

For this global solution, there exists Mi ∈M∞ such that

lim
t→−∞

d (ξ0 (t) ,Mi) = 0,

and since δ ∈ (0, δj) , with δj satisfying (4.4), it holds that i ≤ j, and so ξ0 (0) ∈
Wu (Mi) ⊂ Aj , which contradicts (4.7).

To prove that Mj = Aj ∩A∗j−1 note that

Aj =
j⋃
i=1

W u(Mi)

and A∗j−1 = {z ∈ A : ω(z) ∩ Aj−1 = ∅}. Hence, given z ∈ Aj ∩ A∗j−1 we have that
any global solution ξ : R→ A through z must satisfy that

∪ji=1Mi
t→−∞←− ξ(t) t→∞−→ ∪∞i=jMi.
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As a consequence of that and of the fact that {T (t) : t ≥ 0} satisfies (3.2) we obtain
that z ∈ Mj . This shows that Aj ∩ A∗j−1 ⊂ Mj . The other inclusion is immediate
from the definition of Aj and A∗j−1.

Finally, (4.5) and Lemma 4.3 imply that M∞ = {Mi}∞i=1 ∪M∞ defines a Morse
decomposition on the global attractor A.

Remark 4.9. As we suppose (3.2) for a dynamically gradient system, we get an
order in Morse sets by an energy level decomposition of the global attractor in the
sense of [2], in which the attractor is described by connecting global solutions among
the different levels in a decreasing way.

5. A Lyapunov function for a Morse decomposition. In this section we will
construct a Lyapunov function for semigroups having a Morse decomposition with
an infinite number of elements.

Definition 5.1. We say that a semigroup {T (t) : t ≥ 0} with a global attractor A
and a disjoint family of invariant sets M∞ = {Mi}∞i=1∪M∞ in A such that Mj are
isolated for j ∈ N is a generalized gradient semigroup with respect to M∞ if there
is a continuous function V : A → R such that:

(i) The real function [0,∞) 3 t 7→ V (T (t)x) ∈ R is non-increasing for each
x ∈ A \ ∪∞i=1Mi ∪M∞,

(ii) V is constant in Mi for each i ∈ N ∪∞,
(iii) V (T (t)x) = V (x) for all t ≥ 0 if and only if x ∈M∞.
A function V with the properties above is called a Lyapunov function for the

generalized gradient semigroup {T (t) : t ≥ 0} with respect to M∞.

The following result, which is proved in [1, Proposition 3.3], gives the existence
of a Lyapunov type functional for an attractor-repeller pair

Proposition 5.2. Let {T (t) : t ≥ 0} be a nonlinear semigroup in a metric space
(X, d) with the global attractor A, and let (A,A∗) be an attractor-repeller pair in A.
Then, for any γ > 0 there exists a function f : A → [0, 1] satisfying the following:

(i) f : A → [0, 1] is continuous in A.
(ii) f : A → [0, 1] is non-increasing along solutions.

(iii) f−1(0) = A and f−1(1) = A∗.
(iv) f(T (t)z) = f(z), for all t ≥ 0, if and only if z ∈ A ∪A∗.

We now prove that the existence of a Morse decomposition implies the existence
of a Lyapunov function

Proposition 5.3. Let {T (t) : t ≥ 0} be a semigroup with the global attractor A
and a disjoint family of invariant sets M∞ = {Mi}∞i=1∪M∞ in A such that Mj are
isolated for j ∈ N. If M∞ is a Morse decomposition, then {T (t) : t ≥ 0} is gradient
in the sense of the Definition 5.1 with respect to M∞. In addition, the Lyapunov
function V : A → R may be chosen in such a way that V (x) = 1− 1

2k−1 , for x ∈Mk,
k ∈ N, V (x) = 1, for x ∈M∞.

Proof. Let ∅ = A0 ⊂ A1 ⊂ · · · ⊂ An ⊂ . . .A be the sequence of local attractors
given in Definition 3.10 and ∅ = A∗∞ ⊂ . . . A∗n ⊂ · · · ⊂ A∗0 = A their corresponding
repellers such that for each j ∈ N we have Mj = Aj ∩A∗j−1, and M∞ = ∩∞j=0A

∗
j .

Let fj : X → R be the function from Proposition 5.2 for the attractor-repeller
pair (Aj , A∗j ), j ∈ N.
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Define the function V : A → R by

V (z) :=
∞∑
j=1

1
2j
fj(z), z ∈ A.

Then V : A → R is a Lyapunov function for the generalized gradient semigroup
{T (t) : t ≥ 0} with respect to M∞.

Indeed, since each fj : A → R, j ≥ 1, is non-increasing along solutions of
{T (t) : t ≥ 0}, V is also non-increasing along solutions of {T (t) : t ≥ 0}.

Now, if z ∈ A is such that V (T (t)z) = V (z) for all t ≥ 0, then, using that each
fj , j ≥ 0, are non-increasing along solutions of {T (t) : t ≥ 0}, we conclude that
fj(T (t)z) = fj(z) for all t ≥ 0 and for each j ∈ N. From part (iv) of Proposition 5.2,

we have that z ∈ (Aj ∪ A∗j ), for each j ∈ N; that is, z ∈
∞⋂
j=0

(Aj ∪ A∗j ). From

Lemma 3.13 we have that
∞⋂
j=0

(Aj ∪A∗j ) = (
∞⋃
j=1

Mj) ∪M∞,

and so z ∈
∞⋃
j=1

Mj ∪M∞.

If k ∈ N and z ∈Mk = Ak∩A∗k−1, it follows that z ∈ Ak ⊂ Ak+1 ⊂ · · · ⊂ A∞ = A
and z ∈ A∗k−1 ⊂ A∗k−2 ⊂ · · · ⊂ A∗0 = A. Hence fj(z) = 0 if k ≤ j and fj(z) = 1 if
1 6 j 6 k − 1. Hence,

V (z) =
∞∑
j=1

fj(z) =
k−1∑
j=1

fj(z) +
∞∑
j=k

fj(z) =
k−1∑
j=1

1
2j

= 1− 1
2k−1

.

If z ∈M∞, then z ∈ ∩∞j=1A
∗
j . Hence, fj(z) = 1, for all j ≥ 1, and then

V (z) =
∞∑
j=1

1
2j

= 1.

Finally, we prove the continuity of V . Since fj(z) ∈ [0, 1], for any ε > 0 there
exists N(ε) > 0 such that∑

j≥N

1
2j
fj(z) ≤

∑
j≥N

1
2j
≤ ε for all z ∈ A.

Then, as each fj is continuous, it is standard to prove the continuity of V.

6. Dynamically gradient semigroups via a Lyapunov function. We now
prove that the existence of an ordered Lyapunov function with respect to a family
M∞ = {Mi}∞i=1 ∪M∞ in A implies that the semigroup is generalized dynamically
gradient and that (4.2) holds. Hence, together with the previous results we will
obtain the equivalence of generalized dynamically gradient semigroups referred to
M∞ satisfying (4.2), the existence of an ordered Lyapunov function associated to
M∞ and the existence of a Morse decomposition of the global attractor.

As before, {T (t) : t ≥ 0} is a semigroup with the global attractor A and we
consider a disjoint family of isolated sets M∞ = {Mi}∞i=1 ∪M∞ in A such that Mj

are isolated for j ∈ N.
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Definition 6.1. We say that M∞ is ordered with respect to the generalized Lya-
punov function V , or that V is an ordered Lyapunov function for M∞, if

L1 ≤ L2 ≤ · · · ≤ Ln ≤ · · · < L∞,

where Lj = V (z) for z ∈ Mj . Moreover, there cannot be an infinite number of sets
Mj with the same value of V .

Remark 6.2. If Ln → L∞, then the last condition in Definition 6.1 holds. Also,
if (3.5) is satisfied, from the continuity of V it follows that Ln → L∞.

Proposition 6.3. Let {T (t) : t ≥ 0} be a semigroup with global attractor A and
a disjoint family of invariant sets M∞ = {Mi}∞i=1 ∪M∞ in A such that Mj are
isolated for j ∈ N. Let M∞ be ordered with respect to the generalized Lyapunov
function V . Then for any complete bounded trajectory ξ : R→ X,

i) either there exists i ∈ N such that ξ(t) ∈Mi, for all t ∈ R,
ii) or there exist Mj ,Mr ∈M∞ with r > j such that

lim
t→−∞

d (ξ (t) ,Mr) = 0, lim
t→+∞

d (ξ (t) ,Mj) = 0.

Proof. Suppose that i) is not true. The function t 7→ V (ξ (t)) is monotone. Since
ξ (t) ∈ A, it is also bounded. Hence, the following limits exist

L− = lim
t→−∞

V (ξ (t)) , L+ = lim
t→+∞

V (ξ (t)) .

Thus,

V (y) = L− for all y ∈ α (ξ) ,

V (y) = L+ for all y ∈ ω (ξ) ,

where α(ξ) is the alfa-limit set α(ξ) = ∩t≤0∪s≤tξ(s). It is well known that the sets
ω(ξ), α(ξ) are invariant and connected (see e.g. [18]).

As ω (ξ) is invariant, for any y ∈ ω (ξ) and t ≥ 0 we have that T (t) y ∈ ω (ξ) ,
and then V (y) = V (T (t) y) = L+. Thus, y ∈Mj for some j ∈ N ∪∞.

In fact, we shall prove that ω (ξ) ⊂ Mj . By contradiction assume that there
exists z ∈Mi ∩ω (ξ), i 6= j. This is not possible if j =∞, as in such a case we have
that Li < L+ = L∞. Assume then that j < ∞. The number of sets Mi such that
Li = L+ is finite. Denote by Ê1, ..., Êm ∈ M∞ the sets such that V (x) = L+ if
x ∈ Êk for some k ∈ {1, ...,m}. We can find ε > 0 for which Oε

(
Êk

)
∩ Oε

(
Êr

)
for all r 6= k ∈ {1, ...,m}. Since ω (ξ) is connected, there exists u ∈ ω (ξ) such that
u 6∈ ∪mk=1Oε

(
Êk

)
. But we have proved that any u ∈ ω (ξ) belongs to Mk for some

k ∈ N ∪∞, and then V (u) = L+ implies that u ∈ ∪mk=1Oε
(
Êk

)
, a contradiction.

Therefore, limt→+∞ d (ξ (t) ,Mj) = 0. Similarly, we prove α (ξ) ⊂ Mr for some
r ∈ N ∪ {∞}. Hence, limt→−∞ d (ξ (t) ,Mr) = 0.

Since L− ≥ L+, it is clear that r ≥ j. As we are in the case where i) does not
hold, the fact that if V is constant on a global solution ξ(t) implies that it belongs
to a fixed Mi prevents that r = j.

Corollary 6.4. Assume the conditions of Proposition 6.3. Then the sets Mj, j ∈
N ∪∞, are compact.
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Proof. By Proposition 6.3 condition (3.2) is satisfied. Then the result follows from
Lemma 4.4.

The existence of a Lyapunov function associated to an infinite number of invariant
sets gives, as in the case of a finite number of invariants, a characterization of the
global attractor as follows.

Proposition 6.5. Let {T (t) : t ≥ 0} be a semigroup with global attractor A and
a disjoint family of invariant sets M∞ = {Mi}∞i=1 ∪M∞ in A such that Mj are
isolated for j ∈ N. Let M∞ be ordered with respect to the generalized Lyapunov
function V . Then

A = ∪∞j=1W
u (Mj) ∪Wu (M∞) .

Proof. If x ∈ A, then x belongs to a bounded complete trajectory, so that Propo-
sition 6.3 implies x ∈ Wu (Mj) for some j ∈ N ∪ ∞. Thus, A ⊂ ∪∞j=1W

u (Mj) ∪
Wu (M∞) .

Conversely, let x ∈ Wu (Mj) for some j ∈ N ∪ ∞. Since Mj is bounded, there
exists t0 such that ∪t≤t0ξ (t) is bounded, where ξ (·) is a complete trajectory satisfy-
ing limt→−∞ d (ξ (t) ,Mj) = 0. From the definition of a complete trajectory and the
fact that T (t) is eventually dissipative (see Remark 1.6) it follows that ∪t≥t0ξ (t) is
also bounded. Thus, ξ (·) is a bounded complete trajectory. But then ξ (t) ∈ A for
all t ∈ R. In particular, x = ξ (0) ∈ A.

Note that Lemma 4.5 is also a consequence of the existence of a Lyapunov func-
tional.

Proposition 6.6. Let {T (t) : t ≥ 0} be a semigroup with the global attractor A
and a disjoint family of invariant sets M∞ = {Mi}∞i=1 ∪M∞ in A such that Mj

are isolated for j ∈ N. Let M∞ be ordered with respect to the generalized Lyapunov
function V . Then (4.2) holds, that is, for any j ∈ N there exists δj such that

Wu (Mj) ∩ Oδj (∪i≥j+1Mi ∪M∞) = ∅.

Proof. We note that by Corollary 6.4 the sets Mj are compact for j ∈ N ∪∞.
First, let kj be the first integer kj > j such that Lkj > Lj . We shall prove the

existence of δ′j for which Wu (Mj) ∩ Oδ′j (∪i≥kjMi ∪M∞) = ∅.
By contradiction assume the existence of j ∈ N and a sequence xn ∈ Wu (Mj)

such that
d(xn,∪i≥kjMi ∪M∞) <

1
n
.

Then, there exists yn ∈ ∪i≥kjMi ∪M∞ such that d (xn, yn) < 1
n . Since V (yn) ≥

Lkj > Lj , by the continuity of V there exist n, ε > 0 such that

V (xn) ≥ Lj + ε.

But xn ∈ Wu (Mj) implies the existence of a bounded complete trajectory ξ (t)
such that ξ (0) = xn and

lim
t→−∞

d (ξ (t) ,Mj) = 0.

By the definition of V we have that V (ξ (t)) ≥ Lj + ε for t ≤ 0. We take then
sequences tm → −∞, zm ∈Mj for which

lim
tm→−∞

d (ξ (tm) , zm) = 0.
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Since Mj is compact, we can assume that zm → z0 and then

lim
tm→−∞

d (ξ (tm) , z0) = 0.

Again, by the continuity of V we have that V (z0) ≥ Lj + ε and V (z0) = Lj , which
is a contradiction.

Further, considering a j for which kj − 1 > j, we will check that there exists δ′′j
such that Wu (Mj)∩Oδ′′j (∪kj−1

i=j+1Mi) = ∅. If not, then arguing as before we obtain

sequences xn ∈Wu (Mj) , yn ∈ ∪
kj−1
i=j+1Mi such that d (xn, yn) < 1

n . We can assume
passing to a subsequence that yn ∈ Mk for all n and some k ∈ {j + 1, ..., kj − 1}.
We take a bounded complete trajectory ξn (t) such that ξn (0) = xn and

lim
t→−∞

d (ξn (t) ,Mj) = 0.

We choose ε > 0 satisfying

Oε (Mr) ∩ Oε (Mi) = ∅ for all r, i ∈ {j, ..., kj − 1},
and take n for which 1

n < ε. Then xn ∈ Oε(Mk). Since t 7→ ξn (t) is continuous, it
follows the existence of tn > 0 such that

d(ξn (−tn) ,Mk) = ε,

d(ξn (t) ,Mk) < ε for all t ∈ (−tn, 0].

We define the functions ξn (t) = ξn (t− tn). Then d(ξn (0) ,Mk) = ε and ξn (tn) =
xn. There exists a complete trajectory ξ (·) (see [7, Lemma 3.1]) such that up to a
subsequence ξn (t)→ ξ (t) for all t ∈ R. We note that

V (ξn(t)) ≤ Lj for all t ∈ R,

and then by the continuity of V ,

V (ξ(t)) ≤ Lj for all t ∈ R.

We note that tn → +∞. Otherwise, if tn → t0, then as Mk is compact, we have
ξ (t0) = limn→∞ xn = x ∈Mk, so that V

(
ξ (t0)

)
= Lj . Hence,

V (ξ (t) ≥ V (ξ (t0)) = Lj for all t ≤ t0.

By the last two inequalities, we have that V (ξ (t)) = Lj for all 0 ≤ t ≤ t0. Also,
ξ(t) = T (t− t0)ξ(t0) if t ≥ t0, so that V (ξ (t)) = Lj for all t ≥ t0 as well. From the
definition of the Lyapunov function, we obtain that ξ (0) ∈Mk. But d(ξn (0) ,Mk) =
ε and ξn (0)→ ξ (0) imply that d(ξ (0) ,Mk) = ε, a contradiction.

Hence, it is clear that

d(ξ (t) ,Mk) ≤ ε for any t ≥ 0.

On the other hand,

V (xn) = V
(
ξn (tn)

)
≤ V

(
ξn (t)

)
≤ Lj for any 0 ≤ t ≤ tn.

Since xn → x ∈ Mk, the continuity of V implies that V (xn) → V (x) = Lj and
V
(
ξn (t)

)
→ V

(
ξ (t)

)
. Thus,

V
(
ξ (t)

)
= Lj for all t ≥ 0.

From the definition of a Lyapunov function, we have that ξ (t) ∈Mk for any t ≥ 0.
This is a contradiction, as d(ξn (0) ,Mk) = ε and ξn (0)→ ξ (0) .

Taking Oδj = Oδ′j ∪ Oδ′′j we obtain the required result.
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We can now conclude our main theorem.

Theorem 6.7. Let {T (t) : t ≥ 0} be a semigroup with global attractor A and
consider a disjoint family of invariant sets M∞ = {Mi}∞i=1 ∪M∞ in A such that
Mj are isolated for j ∈ N. Then, the following conditions are equivalent:

1. {T (t) : t ≥ 0} is a generalized gradient semigroup with respect to M∞ in the
sense of the Definition 5.1 and M∞ is ordered with respect to the respective
Lyapunov function.

2. {T (t) : t ≥ 0} is a generalized dynamically gradient semigroup with respect to
M∞ (as in Definition 3.4) satisfying (4.2).

3. M∞ is a Morse decomposition of A.

Proof. It is a straightforward consequence of Theorem 4.8 and Propositions 5.3, 6.3
and 6.6.

Corollary 6.8. Let {T (t) : t ≥ 0} be a semigroup with global attractor A and
consider a disjoint family of invariant sets M∞ = {Mi}∞i=1 ∪M∞ in A such that
Mj are isolated for j ∈ N. Assume that M∞ is a Morse decomposition of A. Then

A = ∪∞j=1W
u (Mj) ∪Wu (M∞) .

Proof. In view of Theorem 6.7, {T (t) : t ≥ 0} is a generalized gradient semigroup
with respect to M∞ in the sense of the Definition 5.1 and M∞ is ordered with
respect to the Lyapunov function. Hence, the result follows from Proposition 6.5.
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