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Abstract. This article presents some results on existence and uniqueness of mild solutions to
neutral stochastic functional evolution integrodifferential equations driven by a fractional
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1. Introduction

In this paper, we study the existence of mild solutions for a class of abstract stochastic
partial neutral functional integro-differential equations modeled in the form

dut  Gt,ut − rt  Atut  Gt,ut − rtdt

 
0

t Bt, sus  Gs,us − rsds  Ft,ut − t dt

 tdBHt for t ∈ 0,T,
u0.   , −  ≤ t ≤ 0,

1

where At is a linear operator which generates a linear evolution system Rt, s, t ≥ 0 on a
——————————
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Hilbert space X, Bt is a closed linear operator on X with domain DB ⊃ DA which is
independent of t, BH is a fractional Brownian motion on a real and separable Hilbert space Y.
The functions r, defined from0, into 0,  0 are measurable, and
G,F : 0,  X  X,  0,  L2

0Y,X are appropriate functions. Here L2
0Y,X

denotes the space of all Q-Hilbert-Schmidt operators from Y into X (see Section 2).
Neutral integro-differential equations arise in many areas of applied mathematics. For

instance, the system of rigid heat condition with finite wave speeds, studied in [6], can be
modeled in the form of integrodifferential equations of neutral type with delay, and for this
reason these equations (with an initial condition or a nonlocal condition) have received much
attention in the last few decades. One of the important techniques to discuss these topics is the
semigroup approach; see , for example [13, 8, 9]. In the paper [5], Caraballo and Diop
investigated the existence of solutions for the following stochastic functional differential
equation:

dut  Gt,ut − rt  Aut  Gt,ut − rtdt

 
0

t Bt, sus  Gs,us − rsds  Ft,ut − t dt

 tdBHt for t ∈ 0,T,
u0.   , −  ≤ t ≤ 0,

2

which differs from (1) only in its At, by using a semigroup approach and classical fixed point
arguments.

In this work, the linear part in our equation is an operator independent of time t and
generates a strongly continuous semigroup, so that the semigroup approach can be employed.
Our purpose in the present paper is to establish some results concerning existence and
uniqueness of the solutions for the non-autonomous stochastic integrodifferential equations
(1). A motivating example for this type of equations is the following non-autonomous
boundary problem:

∂
∂t xt,  gt,xt − 1,  ∂2

∂2  t, xt,  gt,xt − 1,

 
0

t bt − s ∂
2

∂2 xs,  gs,xs − 1,ds

 ft,xt − 2,  t dBH

dt t,

xt, 0  gt,xt − rt, 0  0 for t ≥ 0,
xt,  gt,xt − rt,  0 for t ≥ 0,
x,  x0,,s, .  ∈ L20,T, −  ≤  ≤ 0, 0 ≤  ≤ .

3

Such problems arise in the study of stochastic systems in the presence of hereditary
influences on the state variable. For example, stochastic integrodifferential systems which
cover a large area of system dynamics including reactor dynamics [4, 14, 16], heat transfer by
conduction and radiation [17, 15], mathematical modeling of system hysteresis [11, 14],
models of transmission of infection of diseases [3]. Therefore, it is meaningful to deal with 1
to acquire some results applicable to problem 3.
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As we know, non-autonomous evolution equations are much more complicated, to be dealt
with, than autonomous ones. Our approach here is to assume that At : t ≥ 0 is a family
of linear operators on X with dense domain such that it generates a linear evolution system.
The results in this paper are natural continuation and generalization of the results reported by
Caraballo and Diop [5].

Let us now describe the remaining contents of the paper. In Section 2, we introduce some
notations, concepts of resolvent operators, basic results about fractional Brownian motion and
Wiener integral over Hilbert space. In Section 3, we prove the existence and uniqueness of
mild solutions for the system (1). An example to illustrate our previous abstract results is
analyzed in Section 4.

2. Wiener Process and Deterministic Integrodifferential Equations

2.1. Wiener process

In this section we introduce the fractional Brownian motion as well as the Wiener integral
with respect to it. We also need to establish some important results which will be needed
throughout the paper. So, first, let ,F,P be a complete probability space.

Definition 2.1. Given H ∈ 0,1, a continuous centered Gaussian process Ht, t ∈ R, with
covariance function
RHs, t  EHtHs  1

2 t2H  s2H − |t − s|2H, t, s ∈ R,
is called a two-sided one-dimensional fractional Brownian motion (fBm), and H is the Hurst
parameter.

Now we aim at introducing the Wiener integral with respect to the one-dimensional fBm
H. Let T  0 and denote by  the linear space of R-valued step function on 0,T, that is
 ∈  if

t ∑
i1

n−1

xi 1ti,ti1t,

where t ∈ 0,T, xi ∈ R and 0  t1  t2    tn  T. For  ∈  we define its Wiener
integral with respect to H as


0

T
s dHs ∑

i1

n−1

xiHti1 − Hti.

Let H be the Hilbert space defined as the closure of  with respect to the scalar
product 〈10;t, 10;sH  RHt, s.Then the mapping

t ∑
i1

n−1

xi 1ti,ti1t → 
0

T
s dHs
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is an isometry between  and the linear space spanH, t ∈ 0,T, which can be extended to
an isometry between H and the first Wiener chaos of the fBm spanL2H, t ∈ 0,T (see
[21]). The image of an element  ∈ H by this isometry is called the Wiener integral of  with
respect to H. Our next goal is to give an explicit expression for this integral. To this
end, consider the Kernel

KHt, s  cHs 1
2 −H 

s

t
u − sH− 3

2 uH− 1
2 du ,

where cH  H2H−1
B̂2−2H, H− 1

2 
, with B̂ denoting the Beta function and t ≤ s. It is not difficult to

see that
∂KH
∂t t, s  cH

t
s

1
2 −Ht − sH− 3

2 .

Consider the linear operator KH
∗ :   L20,T given by

KH
∗s  

s

t
t ∂K

∂t t, sdt.

Then
KH
∗ 10;t s  KHt, s10;ts,

and KH
∗ is an isometry between  and L20,T that can be extended to  (see [1]).

Considering W  Wt, t ∈ 0,T defined by
Wt  HKH

∗ −110;t,
it turns out that W is a Wiener process and H has the following Wiener integral representation:

Ht  
0

t
KHt, s dWs.

In addition, for any  ∈ ,


0

T
s dHs  

0

T
KH
∗tdWt,

if and only if KH
∗ ∈ L20,T.

Also denoting LH2 0,T   ∈ , KH
∗ ∈ L20,T, since H  1

2 , allows for

L 1
H 0,T ⊂ LH2 0,T, 4

see [18]. Moreover, the following useful result holds.

Lemma 2.1. [19] For  ∈ L 1
H 0,T,

H2H − 1 
0

T 
0

T
|r||u||r − u|2H−2drdu ≤ cH‖‖

L
1
H 0,T

2 .

Next we are interested in considering a fBm with values in a Hilbert space and giving the
definition of the corresponding stochastic integral. Let X,‖.‖X, . , . X and Y,‖.‖Y, . , . Y be
separable Hilbert spaces. Let LX,Y denote the space of all bounded linear operator from X to
Y. Let Q ∈ LX,Y be a non-negative self-adjoint operator. Denote by L2

0Y,X the space of
 ∈ LY,X such that Q 1

2 is a Hilbert-Schmidt operator.The norm is given by
||L2

0Y,X
2  Q 1

2
HS

 trQ∗.
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Then  is called a Q-Hilbert-Schmidt operator from Y to X.
Let n

Htn∈N be a sequence of two-sided one-dimensional standard fractional Brownian
motions mutually independent on ,F,P. When one considers the following series

∑
n 1



n
Hten, t ≥ 0,

where enn∈N is a complete orthonormal basis in X, this series does not necessarily converge
in the space Y. Thus we consider a Y-valued stochastic process

BQ
Ht ∑

n 1



n
HtQ 1

2 en, t ≥ 0.

If Q is a non-negative self-adjoint trace class operator, this series converges in the space Y, that
is, it holds that BQ

Ht ∈ L2,Y. Then, we say that the above BQ
Ht is a Y-valued

Q-cylindrical fractional Brownian motion with covariance operator Q. For example, if nn∈N
is a bounded sequence of non-negative real numbers such that Qen  nen, assuming that Q is
a nuclear operator in Y (that is,∑n1

 n  ), then the stochastic process

BQ
Ht ∑

n 1



n
HtQ 1

2 en ∑
n 1



n n
Hten, t ≥ 0,

is well-defined as a Y-valued Q-cylindrical fractional Brownian motion.
Then let  : 0,T → LQ

0 Y,X such that

∑
n 1



KH
∗ Q 1

2 en L20,T;X
 . 5

Definition 2.2. Given H ∈ 0,1, and let  : 0,T → LH
0 Y,X satisfy (5). Then, its

stochastic integral with respect to the fBm BQ
H is defined, for t ≥ 0, as follows


0

t
sdBQ

Hs :∑
n 1




0

t
sQ 1

2 enn
Hs ∑

n 1




0

t
KH
∗ Q 1

2 ensdWs. 6

Notice that if

∑
n 1



‖Q 1
2 en‖L

1
H 0,T;X

 ,

then in particular (5) holds, which follows immediately from (4).
Now we end this subsection by stating the following result which is crucial for proving our

main result. It can be proved by similar arguments to those used in Lemma 2 in Caraballo et al.
[6].
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Lemma 2.2. If  : 0,T → L2
0X,Y satisfies 

0

T
‖‖L2

0
2 ds  , then the above sum in (6) is

well defined as a X-valued random variable and

E 
0

t
sdBHs

2
≤ 2H t2H−1 

0

t
‖s‖L2

0
2 ds.

Proof. See [2]. 

2.2. The stochastic convolution integral

Here we present some properties of the stochastic convolution integral of the form

R̃t  
0

t
Rt, ss dBHs, t ∈ 0,T,

where s ∈ L2
0X,Y and Rt, s, t ≥ 0 is an evolution system of operators.

The following result on the stochastic convolution integral R̃ should always hold.

Lemma 2.3. Suppose that  : 0,T → L2
0X,Y satisfies supt∈0,T‖t‖L2

0X,Y
2  , and

suppose that Rt, s, t ≥ 0 is an evolution system of operators satisfying
‖Rt, s‖ ≤ Me−t−s, for some constants   0 and M ≥ 1, for all t  s. Then

E 
0

t
Rt, ss dBHs

2
≤ CM2t2H

t∈0,T
sup ‖t‖L2

0X,Y
2 .

Proof. Let enn∈N be a complete orthonormal basis of Y and n
Hn∈N is a sequence of

independent, real-valued standard fractional Brownian motion each with the same Hurst
parameter H ∈  1

2 , 1. Thus, using the fractional Itô isometry one can write

E 
0

t
Rt, ssdBHs

2

∑
n 1



E 
0

t
Rt, ssendn

Hs
2

∑
n 1




0

t 
0

t
〈 Rt, ssen,Rt, rrenH2H − 1|s − r|2H−2dsdr

≤ H2H − 1 
0

t
‖Rt, ss‖ 

0

t
‖Rt, rr‖|s − r|2H−2dr ds

≤ H2H − 1M2 
0

t
e−t−s‖s‖L2

0X,Y 0

t
e−t−r|s − r|2H−2‖r‖L2

0X,Ydr ds.

Since  is bounded, one can then conclude that

E 
0

t
Rt, ssdBHs

2
≤ H2H − 1M2

t∈0,T
sup ‖t‖L2

0X,Y
2 2 

 
0

t
e−t−s 

0

t
e−t−r|s − r|2H−2dr ds.

Performing the change of variables v  t − s for the first integral, and u  t − r for the second
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one, we obtain

E 
0

t
Rt, ssdBHs

2
≤ H2H − 1M2

t∈0,T
sup ‖t‖L2

0X,Y
2 2 

 
0

t
e−v 

0

t
e−u|u − v|2H−2du dv.

From [29] it follows that

E 
0

t
Rt, ssdBHs

2
≤ CM2t2H

t∈0,T
sup ‖t‖L2

0X,Y
2 2,

and the proof is then complete. 

2.3. Partial integro-differential equations in Banach spaces

Let us recall some fundamental results needed to establish our results. The resolvent
operators play an important role to study the existence of solutions and to give a variation of
constants formula for nonlinear systems. We need to know when the linear system (7) has a
resolvent operator. For more details on resolvent operators, we refer the reader to [12]. The
following assumptions are:
∙ (i) At generates a strongly continuous semigroup of evolution operators.
∙ (ii) Suppose Y represents the Banach space DA equipped with the graph norm defined by

|y|Y : |Ay|  |y| for y ∈ Y.
At and Bt, s are in the set of bounded linear operators from Y to X, LY,X for 0 ≤ t ≤ T

and 0 ≤ s ≤ T respectively. At and Bt, s are continuous on 0 ≤ t ≤ T and 0 ≤ s ≤ t ≤ T,
respectively, into LY,X.
To obtain the results, we consider the following abstract integrodifferential Cauchy problem

dvt  Atvt  
0

t
Bt, svsds dt, for 0 ≤ s ≤ t ≤ T,

v0  v0 ∈ X.
7

Definition 2.3. [12] A resolvent operator for Eq(7) is a bounded linear operator valued
function Rt, s ∈ LX for 0 ≤ s ≤ t ≤ T, satisfying the following properties:
∙ (i) Rt, t  I and |Rt, s| ≤ Net−s, t, s ∈ 0,T for some constants N and .
∙ (ii) Rt, s is strongly continuous in s and t.
∙ (iii) For y ∈ Y, Rt, sy is continuously differentiable in s and t, and for 0 ≤ s ≤ t ≤ T,
∂
∂t Rt, sy  AtRt, sy  

s

t
Bt − rRr, sydr,

∂
∂s Rt, sy  −Rt, sAsy − 

s

t
Rt, rBr − sydr,

with ∂
∂t Rt, sy and ∂

∂s Rt, s are strongly continuous on 0 ≤ s ≤ t ≤ T. Here Rt, s can be
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extracted from the evolution operator of the generator At.

For the family of linear operators At : 0 ≤ t ≤ T, the following assumptions need to be
imposed:
∙ (H1) The domain DA of At : 0 ≤ t ≤ T is dense in X and independent of t; At is a
closed linear operator.
∙ (H2) For each t ∈ 0,T, the resolvent operator R̂,At exists for all  with Re ≤ 0 and
there exists K  0 such that ‖R̂,At‖≤ K

||1 .
∙ (H3) There exists 0   ≤ 1 and K  0 such that ‖At − AsA−1r‖≤ K|t − s| for all
t, s, r ∈ 0,T.
∙ (H4) For each t ∈ 0,T and some  ∈ At, the resolvent set of At, the resolvent
R̂,At, is a compact operator.
Under these assumptions, the family At : 0 ≤ t ≤ T generates a unique linear evolution
system, also called linear evolution operator.

Definition 2.4. [20] A two parameter family of bounded linear operators
Ut, s, 0 ≤ s ≤ t ≤ T, on X is called an evolution system if the following two conditions holds
∙ (i) Us, s  I, Ut, rUr, s  Ut, s, for 0 ≤ s ≤ r ≤ t ≤ T.
∙ (ii) t, s  Ut, s is strongly continuous for 0 ≤ s ≤ t ≤ T.

Lemma 2.4. [20] Assume that H1 − H3 hold. Then, there exist a unique evolution system
Ut, s, 0 ≤ s ≤ t ≤ T and a constant K  0 such that
∙ (i) Ut, s ≤ K for 0 ≤ s ≤ t ≤ T,
∙ (ii) for 0 ≤ s ≤ t ≤ T, Ut, s : X → Y and t → Ut, s is strongly differentiable in X. The
derivative ∂

∂t Ut, s belongs to LX and it is strongly continuous on 0 ≤ s ≤ t ≤ T. Moreover,
for all 0 ≤ s ≤ t ≤ T, it holds
∂
∂t Ut, s  AtUt, s  0,

∂
∂t Ut, s  ‖AtUt, s‖≤ K

t−s ,

‖AtUt, sAs−1‖≤ K,
∙ (iii) for each y ∈ Y and t ∈ 0,T, Ut, sy is differentiable with respect to s on 0 ≤ s ≤ t ≤ T
and ∂

∂t Ut, sy  Ut, sAsy.

Lemma 2.5. [10] Let At, t ∈ 0,T be a family of linear operators satisfying (H1)-(H4). If
Ut, s, 0 ≤ s ≤ t ≤ T is the linear evolution system generated by At, t ∈ 0,T, then
Ut, s, 0 ≤ s ≤ t ≤ T is a compact operator whenever t − s  0.

3. Existence of Mild Solutions for Eq (1)

In this section, we establish the existence and uniqueness of mild solutions of Eq (1) using
a contraction mapping principle. For this reason we introduce the following technical
assumptions.
∙ (H5) There exists a resolvent operator Rt, s which is compact and continuous in the uniform
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operator topology for t  s.
∙ (H6) The function F : 0,  X → X satisfies the following conditions: there exist positive
constants C1,C2 such that, for all t ∈ 0,T and x,y ∈ X
‖Ft,x − Ft,y‖ ≤ C1‖x − y‖,

‖Ft,x‖2 ≤ C21  ‖x‖2.
∙ (H7) The function G : 0,  X → X satisfies the following conditions: there exist
positive constants C3,C4, 0  C3  1 such that, for all t ∈ 0,T and x,y ∈ X
‖Gt,x − Gt,y‖ ≤ C3‖x − y‖,

‖Gt,x‖2 ≤ C41  ‖x‖2.
∙ (H8) The function G is continuous in the mean square sense. For all
x ∈ u ∈ C0,T,L2,X, it holds that limt→sE‖Gt,xt − Gs,xs‖2  0.
∙ (H9) The function  : 0, → L2

0Y,X satisfies


0

T
‖s‖L2

0
2 ds  , ∀T  0.

Moreover, we assume that  ∈ C−, 0,L2,X. Next, we introduce the concept of mild
solution for Eq (1).

Definition 3.1. An X-valued process ut, t ∈ −,T, is called a mild solution of Eq (1) if
u ∈ C−,T,L2,X,ut  t for t ∈ −, 0, and, for t ∈ 0,T, satisfies

ut  Gt,ut − rs  Rt, 00 − G0,−r0  
0

t
Rt, sFs,us − sds

 
0

t
Rt, ssdBHs P − a. s.

To prove our main results we first recall the next lemma, which is Lemma 1 of [7] by
Caraballo et al.

Lemma 3.1. [7] For x,y ∈ X and 0  c  1,
‖x‖X

2 ≤ 1
1− c ‖x − y‖X

2  1
c ‖y‖X

2 .

Theorem 3.1. Under the assumptions H1 − H9, for every  ∈ C−, 0,L2,X there
exists a unique mild solution u to Eq (1).

Proof. Assume that T  0 is a fixed time and let CT : C−,T,L2,X be the Banach
space of all continuous functions from −,T into L2,X equipped with the supremum norm
‖‖CT


z∈−,T
sup E‖z‖21/2, and let us consider the set

ST : u ∈ C−,T, L2,X : us  s, for s ∈ −, 0.
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ST is a closed subset of CT provided with the norm ‖. ‖CT
. Define the operator Γ on ST

by Γut  t for t ∈ −, 0, and for t ∈ 0,T

Γut  Rt, 00 − G0,−r0 − Gt,ut − rt

 
0

t
Rt, sFs,us − sds  

0

t
Rt, ssdBHs.

8

It is clear that, proving the existence of mild solutions to Eq (1) is equivalent to finding a fixed
point for the operator Γ.

Next we will show, by using the Banach fixed point theorem that Γ has a fixed point. We
split the proof into two steps.
Step 1: For arbitrary u ∈ ST, let us prove that t → Γut is continuous on the interval 0,T
in the L2,X-sense. Let 0  t  T and |h| be sufficiently small. Then, for any fixed
u ∈ ST, we have
‖Γut  h − Γut‖ ≤ ‖Rt  h, 0 − Rt, 00 − G0,−r0‖

 ‖Gt  h,ut  h − rt  h − Gt,ut − rt‖

 
0

th
Rt  h, sFs,us − sds − 

0

t
Rt, sFs,us − sds

 
0

th
Rt  h, ssdBHs − 

0

t
Rt, ssdBHs

 ∑
1≤i≤4

Iih.

Using the continuity of Rt, s, we obtain

h→0
lim Rt  h, 0 − Rt, 00 − G0,−r0  0.

From H4, we have
‖Rt  h, 0 − Rt, 00 − G0,−r0‖

≤ Neth  Net‖0 − G0,−r0‖L2.

Then, by the Lebesgue Majorant Theorem, we conclude that

h→0
lim E|I1h|2  0.

Moreover, assumption (H8) ensures that

h→0
lim E|I2h|2  0.

For the third term I3h, we suppose h  0 (similar estimates hold for h  0), then we have

I3h ≤ 
0

t
Rt  h, s − Rt, sFs,us − sds  

t

th
Rt, sFs,us − sds

≤ I31h  I32h,
and due to Hölder’s inequality,

E|I31h|2 ≤ t E 
0

t
‖Rt  h, s − Rt, sFs,us − s‖2ds.

Again exploiting the continuity of Rt, s, we have for each s ∈ 0, t,



Existence Results for Stochastic Neutral Functional Integrodifferential Equations 94

h→0
lim Rt  h, s − Rt, sFs,us − s  0,

and
‖Rt  h, s − Rt, sFs,us − sds‖ ≤ Ñ‖Fs,us − sds‖ ∈ L20, t  ,

where Ñ  2N2e−2th  2N2e−2t. Then, by the Lebesgue Majorant Theorem once more, we
conclude that

h→0
lim E|I31h|2  0.

Next, by Hölder’s inequality, it follows that

E|I32h|2 ≤ C2hN21 − e2h 
0

T
E‖us − s‖2  1ds,

and then

h→0
lim E|I32h|2  0.

Now, for the term I4h, we have

I4h ≤ 
0

t
Rt  h, s − Rt, ssdBHs  

t

th
Rt  h, ssdBHs

≤ I41h  I42h.
By lemma2.2,

E|I41h|2 ≤ 2Ht2H−1 
0

t
‖Rt  h, s − Rt, ss‖L2

0
2 d.

Since limh→0‖Rt  h, s − Rt, ss‖L2
0

2  0 and

‖Rt  h, s − Rt, ss‖L2
0 ≤ Ne−th  Ne−2t‖s‖L2

0
2 ∈ L10,T,ds,

the Lebesgue Majorant Theorem then implies that

h→0
lim E|I41h|2  0.

Again by lemma2.2, we obtain that

E|I42h|2 ≤ 2HN21 − e2ht2H−1 
t

th
‖s‖L2

0ds → 0 when h → 0.

The above arguments show that limh→0E‖Γut  h − Γut‖2  0. Hence, we conclude
that the function t → Γut is continuous on 0,T in the L2-sense.
Step 2: Now we show that Γ is a contracting mapping in ST1 for some small enough T1  T
For every u, v ∈ ST and t ∈ 0,T, by using lemma3.1 we have
‖Γut − Γvt‖2 ≤ 1

C3
‖Gt,ut − rt − Gt,vt − rt‖2

 1
1− C3


0

t
Rt, sFs,us − s − Fs,vs − sds

2
.

Owing to the Lipschitz properties of F and G combined with Hölder’s inequality, there holds
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E‖Γut − Γvt‖2 ≤ C3E‖ut − rt − vt − rt‖2

 1
1− C3

N2C1
2 1−e2t

2  
0

t
E‖us − s − vs − s‖2ds.

Hence

s∈−,t
sup E‖Γut − Γvt‖2 ≤ t

s∈−,t
sup E‖us − vs‖2,

where

t  C3  1
1− C3

N2C1
2 1−e2t

2 t.

By condition (iii) in (H4) we have 0  C3  1. Then there exists 0  T1 ≤ T such that
0  T1  1 and Γ is a contraction mapping on ST1 and therefore has a unique fixed
point, which is a mild solution of Eq. (1) on −,T1. This procedure can be repeated a finite
number of times in order to extend the solution to the entire interval −,T. This completes the
proof. 

4. Application

As we mentioned in the Introduction, neutral stochastic differential equations arise in many
real world problems such as physics, population dynamics, ecology, biological systems,
biotechnology, optimal control, theory of elasticity, electrical networks, etc. Now, to illustrate
our results, we consider the stochastic partial functional integrodifferential equation with finite
delays     i ≥ 0, i  1,2:

∂
∂t xt,  gt,xt − 1,  ∂2

∂2  t, xt,  gt,xt − 1,

 
0

t
bt − s ∂

2

∂2 xs,  gs,xs − 2,ds

 ft,xt − t,  t dBH

dt t

xt, 0  gt,xt − 1, 0  0 for t ≥ 0,
xt,  gt,xt − 1,  0 for t ≥ 0,
x,  x0,,s, .  ∈ L20,T, −  ≤  ≤ 0, 0 ≤  ≤ ,

9

where BH denotes a fractional Brownian motion, g, f : R  R → R, r, : 0, → 0,, and
b : R → R are continuous functions. Let X  L20, and
en : 2

 sinnx, n  1,2,3,. Then enn∈N is a complete orthonormal basis in X. Let
A  ∂2

∂z2 , whose domain is Y : DA  H20, ∩ H0
10,. Then, it is well known that

Az  ∑n1
 n2〈z,enen for any z ∈ X, and that A is the infinitesimal generator of a strongly

continuous semigroup of bounded linear operatorsRtt≥0 on X, which is given by
Rt  ∑n1

 e−n2t〈,enen,  ∈ DA.In addition, it follows that Rt is compact for every
t ≥ 0 and ‖Rt‖ ≤ e−t for every t ≥ 0.In order to define the operator Q : Y → Y, we choose a
sequence nn≥1 ⊂ R and set Qen  nen, and assume that trQ  ∑n1

 n  . Define
the process BHsby
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BH ∑
n 1



n nten,

where H ∈  1
2 , 1 and n

Hn∈N is a sequence of two-sided one-dimensional fractional
Brownian motions mutually independent. Now we define an operator At : DA ⊂ X → X
by
Atl  Al  t,l.

Let b be continuous and t, ≤ −  0, for every t ∈ R. Then, the system

x ′t  Atxt t  s
xs  x ∈ X

10

has an associated evolution family, given by

Ut, sx  Rt − ses
t , d

x s.

From the above expression, it follows that Ut, s is a compact operator for every t, s ∈ 0,T
with t  s and ‖Ut, s‖ ≤ e1t−s.
Suppose then that the following conditions hold:
∙ (A1) For t ≥ 0, ft, 0  gt, 0  0.
∙ (A2) There exist positive constants l1, l2, l3, l4, with 0  l3

2  1, such that
|ft,1 − ft,2| ≤ l1|1 − 2|;

|gt,1 − gt,2| ≤ l2K|1 − 2|.
∙ (A3)

|ft,| ≤ l31  ||2;

|gt,| ≤ l41  ||2,
for t ≥ 0 ∈ ,1,2 ∈ R.
∙ (A4) The function  : 0,→ L2

0L20,,L20, satisfies


0

T
‖s‖L2

0
2 ds  , ∀T  0.

Let C  C−, 0, X and define the operators F,G : R  C → X for  ∈ 0, by
Gt,  gt,−1;

Ft,  ft,−2.
If we put
ut  xt, for t ≥ 0 and  ∈ 0,,
  x0, for  ∈ −r, 0 and  ∈ 0,,

then Eq (10) takes the following abstract form
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dut  Gt,ut − 1  Atut  Gt,ut − 1dt

 
0

t
Bt − sus  Gs,us − 1ds  Ft,ut − 2 dt

 tdBHt for t ≥ 0,
ut  , t ∈ −, 0.

By assumption A1we have

‖Ft,1 − Ft,2‖X  
0


|Ft,1 − Ft,2|2d

1/2

 
0


|ft,1−2 − ft,2−2|2d

1/2

≤ l1 
0


|1−2 − 2−2|2d

1/2

≤ l1‖1 − 2‖X ,
demonstrating that Ft,x satisfies a Lipschitz condition. Further, by assuming A2 it follows
that

‖Ft,1‖X
2  

0


|Ft,1|2d

1/2

 
0


|ft,1−2|2d

1/2

≤ l3
2 

0


1  |1−2|2 d

1/2

≤ l3
2 1  ‖1‖X

2 .
The remaining conditions can be verified similarly.Thus, all the assumptions of theorem
3.1 are fulfilled.Therefore, the existence of a mild solutions for (9) is verified.
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