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Abstract

This paper is concerned with the existence and asymptotic stability in the p-th moment
of mild solutions of nonlinear impulsive stochastic delay neutral partial functional
integro-differential equations. We suppose that the linear part possesses a resolvent
operator in the sense given in [8], and the nonlinear terms are assumed to be Lipschitz
continuous. A fixed point approach is used to achieve the required result. An example
is provided to illustrate the theory developed in this work. .
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1 Introduction

Neutral stochastic differential equation occurs in many areas of science and engineer-
ing having received much attention over the past decades. Partial integro-differential
equations have wide applications in the field of mechanics, electricity, etc (see [8] for
more details). For abstract models of partial integro-differential equations with resolvent
operators, see for instance [3, 5, 8]. The deterministic model often fluctuates due to
noise, and for this reason, it is sensible to use stochastic model problems instead of
deterministic ones. For more specific details the reader is referred to [1, 4, 6, 12].

In recent years, impulsive differential equations have been used to model interesting
problems from applications, see [19]. Considerable work in the field of fixed impulsive
type equations may be found in [9, 16] and the references therein. The study of impulsive
stochastic differential equations (ISDEs) is a new area of research and few publications
on that subject can be found in the literature. For example, non-autonomous and random
dynamical systems perturbed by impulses are investigated in [20]. Jun Yang et al. [22]
studied the stability analysis of ISDEs with delays, Zhiguo Yang et al. [23] analyzed the
exponential p-th stability of ISDEs with delays, while in [17, 18], R. Sakthivel and J. Luo
investigated the existence and asymptotic stability in the p-th moment of mild solutions
to ISDEs, with and without infinite delays, through the fixed point theory. Motivated
by the works [14, 15, 17, 18] we study in this paper the existence and asymptotic
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stability in the p-th moment of mild solutions of nonlinear neutral impulsive stochastic
integro-differential equations (ISNIDEs) with delays under Lipschitz conditions.

Here we shall apply the Banach fixed point principle to investigate the existence and
asymptotic stability of mild solutions of this class of equations.

The rest of the paper is organized as follows. In Section 2, we summarize several
important working tools on the Wiener process and deterministic integro-differential
equations that will be used to develop our results. Section 3 is devoted to the existence
and asymptotic stability of mild solutions. Finally, in Section 4, we provide an example
to illustrate our main approach.

2 Preliminaries

2.1 Wiener process

Throughout this work, H and K are two real separable Hilbert spaces; we denote by
〈·, ·〉H,〈·, ·〉K their inner products and by |·|H , |·|K their associated norms, respectively.
L(H,K) denotes the space of all bounded linear operators from H into K, equipped with
the usual operator norm ‖·‖. In the sequel, we use the same symbol ‖·‖ to denote the
norms of operators regardless of the spaces potentially involved when no confusion
possibly arises. Moreover, let (Ω,F , {Ft}t≥0 ,P) be a complete probability space with
a normal filtration {Ft}t≥0 satisfying the usual conditions (i.e. it is increasing and
right-continuous while F0 contains all P−null sets).

Let {w(t) : t ≥ 0} denote a K-valued Wiener process defined on the probability space
(Ω,F , {Ft}t≥0,P), with covariance operator Q, that is, E 〈w(t), x〉K 〈w(s), y〉K = (t ∧
s) 〈Qx, y〉K, for all x, y ∈ K, where Q is a positive, self-adjoint, trace class operator
on K. In particular, we denote by w(t) a K-valued Q-Wiener process with respect
to {Ft}t≥0. To define the stochastic integrals with respect to the Q-Wiener process
w(t), we introduce the subspace K0 = Q1/2K of K endowed with the inner product
〈u, v〉K0

=
〈
Q−1/2u,Q−1/2v

〉
K

as a Hilbert space. We assume that there exist a complete
orthonormal system {ei} in K, a bounded sequence of nonnegative real numbers λi
such that Qei = λiei, i = 1, 2, ... , and a sequence {βi(t)}i>1 of independent standard
Brownian motions such that

w(t) =

∞∑
i=1

√
λiβi(t)ei for t ≥ 0

and Ft = Fwt , where Fwt is the σ-algebra generated by {w(s) : 0 ≤ s ≤ t}. Let L0
2 =

L2(K0,H) be the space of all Hilbert-Schmidt operators from K0 to H, which turns out
to be a separable Hilbert space equipped with the norm ‖v‖L0

2
= tr((vQ1/2)(vQ1/2)∗) for

any v ∈ L0
2. For any bounded operator v ∈ L0

2, its norm is reduced to ‖v‖2L0
2

= tr(vQv∗).

2.2 Partial integro–differential equations in Banach spaces

In the present section, we recall some definitions, notations and properties needed in
the sequel. Let Z1 and Z2 denote two Banach spaces. We denote by L(Z1, Z2) the Banach
space of bounded linear operators from Z1 into Z2 endowed with the operator norm and
we abbreviate this notation to L(Z1) when Z1 = Z2.
In what follows, H will denote a Banach space, A and B(t) are closed linear operators
on H. Y represents the Banach space D(A), the domain of operator A, equipped with
the graph norm

|y|Y := |Ay|+ |y| for y ∈ Y.
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The notation C([0,+∞);Y ) stands for the space of all continuous functions from [0,+∞)

into Y . We then consider the following Cauchy problem v′(t) = Av(t) +

∫ t

0

B(t− s)v(s)ds for t ≥ 0,

v(0) = v0 ∈ H.
(2.1)

Definition 2.1. ([8]) A resolvent operator for Eq. (2.1) is a bounded linear operator
valued function R(t) ∈ L(H) for t ≥ 0, satisfying the following properties :

(i) R(0) = I and ‖R(t)‖ ≤ Neβt for some constants N and β.

(ii) For each x ∈ H, R(t)x is strongly continuous for t ≥ 0.

(iii) For x ∈ Y, R(·)x ∈ C1([0,+∞);H) ∩ C([0,+∞);Y ) and

R′(t)x = AR(t)x+

∫ t

0

B(t− s)R(s)xds

= R(t)Ax+

∫ t

0

R(t− s)B(s)xds for t ≥ 0.

For additional details on resolvent operators, we refer the reader to [8, 13]. The
resolvent operator plays an important role to study the existence of solutions and to
establish a variation of constants formula for nonlinear systems. For this reason, we
need to know when the linear system (2.1) possesses a resolvent operator. Theorem 2.2
below provides a satisfactory answer to this problem.

In what follows we suppose the following assumptions:

(H1) A is the infinitesimal generator of a C0-semigroup (T (t))t≥0 on H.

(H2) For all t ≥ 0, B(t) is a continuous linear operator from (Y, | · |Y ) into (H, | · |H).
Moreover, there exists an integrable function c : [0,+∞)→ R+ such that for any y ∈ Y ,
y 7→ B(t)y belongs to W 1,1([0,+∞),H) and∣∣∣∣ ddtB(t)y

∣∣∣∣
H

≤ c(t)|y|Y for y ∈ Y and t ≥ 0.

Theorem 2.2. ([8]) Assume that hypotheses (H1) and (H2) hold. Then Eq. (2.1) admits
a resolvent operator (R(t))t≥0.

Theorem 2.3. ([11]) Assume that hypotheses (H1) and (H2) hold. Let T (t) be a
compact operator for t > 0. Then, the corresponding resolvent operator R(t) of Eq. (2.1)
is continuous for t > 0 in the operator norm, namely, for all t0 > 0, it holds that
limh→0 ‖R(t0 + h)−R(t0)‖ = 0.

In the sequel, we recall some results on the existence of solutions for the following
integro–differential equation v′(t) = Av(t) +

∫ t

0

B(t− s)v(s)ds+ q(t) for t ≥ 0,

v(0) = v0 ∈ H,
(2.2)

where q : [0,+∞[→ H is a continuous function.

Definition 2.4. ([8]) A continuous function v : [0,+∞)→ H is said to be a strict solution
of Eq. (2.2) if
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(i) v ∈ C1([0,+∞);H) ∩ C([0,+∞);Y ),

(ii) v satisfies Eq. (2.2) for t ≥ 0.

Remark 2.5. From this definition we deduce that v(t) ∈ D(A), and the function
B(t− s)v(s) is integrable, for all t > 0 and s ∈ [0,+∞).

Theorem 2.6. ([8]) Assume that (H1)-(H2) hold. If v is a strict solution of Eq. (2.2),
then the following variation of constants formula holds

v(t) = R(t)v0 +

∫ t

0

R(t− s)q(s)ds for t ≥ 0. (2.3)

Accordingly, we can establish the following definition.

Definition 2.7. ([8]) A function v : [0,+∞)→ H is called a mild solution of (2.2), for
v0 ∈ H, if v satisfies the variation of constants formula (2.3).

The next theorem provides sufficient conditions ensuring the regularity of solutions of
Eq. (2.2).

Theorem 2.8. ([8]) Let q ∈ C1([0,+∞);H) and let v be defined by (2.3). If v0 ∈ D(A),
then v is a strict solution of Eq. (2.2).

In this paper we will examine the impulsive stochastic semilinear neutral differential
equations with delays of the form

d [u(t) +H(t, u(t− τ(t)))] = A [u(t) +H(t, u(t− τ(t)))] dt

+

[∫ t

0

B(t− s)[u(s) +H(s, u(s− τ(s)))]ds+ F (t, u(t− τ(t)))

]
dt,

+G(t, u(t− τ(t)))dw(t) t ≥ 0, t 6= tk,

∆u(tk) = u(t+k )− u(t−k ) = Ik(u(tk)) t = tk, k = 1, 2, ...,

u0(·) = φ ∈ DF0([−r, 0];H), r > 0,

(2.4)

Here A : D(A) ⊂ H→ H is a closed linear operator, for all t ≥ 0, B(t) is a closed linear
operator with domain D(B(t)) ⊃ D(A).
Let DF0 := DF0([−r, 0];H) be the space of all almost surely bounded F0-measurable
function φ from [−r, 0]× Ω into H that are almost surely continuous everywhere except
for a finite number of points s at which the left and right limits, φ(s−) and φ(s+), exist,
with φ(s−) = φ(s), and which is equipped with the supremum
norm‖φ‖0 = essupω∈Ω supt∈[−r,0] |φ(t)(ω)|H. Moreover, u(t+k ) and u(t−k ) denote the
right-hand and left-hand limits of u(t) at t = tk, respectively and the fixed moments of
time tk satisfy 0 < t1 < ... < tk < ....... < .... and limk→∞ tk =∞; ∆(u(tk)) = u(t+k )− u(t−k )

denotes the jump in the state u at time tk with Ik(·) : H→ H(k = 1, 2, · · · ) determining
the size of the jumps; the mappings F : R+ ×H→ H , G : R+ ×H→ L0

2(K,H) and
H : R+ ×H→ H are all Borel measurable, and τ : [0,+∞)→ [0, r] is continuous.

Let us recall the definition of mild solution for the stochastic system (2.4) and recall the
definitions of p-th moment stability and asymptotically stability in the p-th moment.

Definition 2.9. An H-valued stochastic process {u(t), t ≥ 0} is called a mild solution to
Eq. (2.4) if

(a) u(t) is adapted to Ft and

∫ T

0

|u(t)|pH dt < +∞ almost surely;
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(ii) u(t) has càdlàg paths on [0,+∞[ almost surely, and for t ∈ [0,+∞[, u(t) satisfies the
following integral equation

u(t) +H(t, u(t− τ(t))) = R(t) [φ(0) +H(0, φ)] +

∫ t

0

R(t− s)F (s, u(s− τ(s)))ds

+

∫ t

0

R(t− s)G(s, u(s− τ(s)))dw(s) (2.5)

+
∑

0<tk<t

R(t− tk)Ik(u(tk)), for t ≥ 0,

and the initial value condition u0(·) = φ ∈ DF0
, a.s.

Definition 2.10. Let p ≥ 2 be an integer and assume that u ≡ 0 is solution to Eq. (2.4).
It is said that the zero solution to Eq. (2.4) is stable in p-th moment if for arbitrary given
ε > 0 there exists a δ > 0 such that ‖φ‖0 < δ guarantees that

E (|u(t)|pH) < ε, for all t ≥ 0,

where E denotes expectation with respect to the probability measure P and u is the mild
solution of Eq. (2.4) corresponding to the initial value φ ∈ DF0

.

Definition 2.11. Let p ≥ 2 be an integer and assume that u ≡ 0 is solution to Eq. (2.4).
It is said that the zero solution to Eq. (2.4) is asymptotically stable in p-th moment if it is
stable in p-th moment and for any φ ∈ DF0 ,

lim
t→∞

E (|u(t)|pH) = 0.

where u is the mild solution of Eq. (2.4) corresponding to the initial value φ ∈ DF0 .

In order to obtain our main result, we need to impose the following assumptions:

(H3) The resolvent operator given by Theorem 2.2 satisfies the following condition:

‖R(t)‖ ≤Me−at for t ≥ 0, where M ≥ 1 and a > 0.

(H4) The functions F,G and H satisfy Lipschitz conditions, and there exists a constant
K > 0 such that for every t ≥ 0 and η, ζ ∈ H

|F (t, ζ)− F (t, η)|H ≤ K |ζ − η|H ,

‖G(t, ζ)−G(t, ζ)‖L0
2
≤ K |ζ − ζ|H ,

|H(t, ζ)−H(t, η)|H ≤ K |ζ − η|H .

(H5) Ik ∈ C(H,H) and there exists a constant qk such that

|Ik(ζ)− Ik(η)|H ≤ qk |ζ − η|H for each η, ζ ∈ H (k = 1, 2, ..., )

Now, let us state the following well-known lemma (Da Prato and Zabczyk, 1992), which
will be used in the proofs of our main results.

Lemma 2.12. ([4]) For any l ≥ 1, and for arbitrary L0
2-valued predictable process φ

sup
0≤s≤t

E

∣∣∣∣∫ s

0

φ(l)dw(l)

∣∣∣∣2l
H

≤ Cr
(∫ t

0

E ‖φ(s)‖2lL0
2
d(s)

)l
(2.6)

where Cl = (l(2l − 1))l
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3 Existence and Asymptotic Stability for Eq. (2.4)

In this section, using definitions and lemmas stated in Section 2, we will prove the
existence of mild solution for (2.4), and will also consider the asymptotic stability in p-th
moment of mild solutions. We shall assume that for any
t ≥ 0, F (t, 0) ≡ 0, G(t, 0) ≡ 0, H(t, 0) ≡ 0, and Ik(0) ≡ 0 (k = 1, 2, · · · , ). In this case,
when φ ≡ 0, it is easy to see that Eq. (2.4) has a trivial solution and we can prove the
following result.

Theorem 3.1. Let p ≥ 2. In addition to hypotheses (H1)-(H5), assume that the
following conditions are also satisfied:

(i) there exists a constant q̃ such that qk ≤ q̃(tk − tk−1), k = 1, 2, · · · ,

(ii) 4p−1
(
Kp +MpKpa−p +MpKpCp(2a)−p/2 +Mpq̃pa−p

)
< 1, where Cp =

(
p(p−1)

2

) p
2

.

Then, the zero solution of Eq. (2.4) is asymptotically stable in the p-th moment.

Proof of Theorem 3.1. Given φ ∈ DF0 , denote by S the space of all Ft-adapted processes
Ψ(t, ω) : [−r,∞[×Ω→ H which are almost surely continuous in t 6= tk (k = 1, 2, · · · ) for
fixed ω ∈ Ω, limt→t−k

Ψ(t) and limt→t+k
Ψ(t) exist, and limt→t−k

Ψ(t) = Ψ(tk).

Moreover, Ψ(s, ω) = φ(s) for s ∈ [−r, 0] and E |Ψ(t, ω)|pH → 0 as t→∞. If we define

|Ψ(·, ·)|S := sup
s≥0

E |Ψ(s, ω)|pH , (3.1)

then S becomes a complete metric space with respect to the distance induced by (3.1).
We will use now the contraction mapping principle for a suitable mapping defined on the
space S. Indeed, let us define operator π : S → S by (πu)(t) = φ(t) for t ∈ [−r, 0], and,
for all t ≥ 0,

(πu)(t) = R(t)[φ(0) +H(0, φ)]−H(t, u(t− τ(t))) +

∫ t

0

R(t− s)F (s, u(s− τ(s)))ds

+

∫ t

0

R(t− s)G(s, u(s− τ(s)))dw(s) +
∑

0<tk<t

R(t− tk)Ik(u(tk))

=

5∑
i=1

∆i(t). (3.2)

Now, we will split the proof into three steps.
Firstly, we prove that π is continuous in the p-th moment on [0,∞[. Let u ∈ S, t1 ≥ 0

and |γ| be sufficiently small, then

E |(πu)(t1 + γ)− (πu)(t1)|pH ≤ 5p−1
5∑
i=1

E |∆i(t1 + γ)−∆i(t1)|pH .

We can easily see that E |∆i(t1 + γ)−∆i(t1)|pH → 0, i = 1, 2, 3 as γ → 0. For the case
i = 5, taking into account assumption (i), we have
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E|∆5(t1 + γ)−∆5(t1)| ≤ E

( ∑
0<tk<t

qk‖R(t1 + γ − tk)−R(t1 − tk)‖
∣∣u(t−k )

∣∣
H

)p

≤ E

( ∑
0<tk<t

q̃‖R(t1 + γ − tk)−R(t1 − tk)‖
∣∣u(t−k )(tk − tk−1)

∣∣
H

)p

≤ E

(∫ t

0

q̃‖R(t1 + γ − s)−R(t1 − s)‖ |u(s)|H ds
)p

≤ q̃ptp−1 |u|S
∫ t

0

‖R(t1 + γ − s)−R(t1 − s)‖pds. (3.3)

Using the norm continuity of R(t) for t > 0 and applying Lebesgue’s dominated
convergence theorem, it follows that E|∆5(t1 + γ)−∆5(t1)| → 0 as γ → 0.

Moreover, by using Hölder’s inequality and Lemma 2.12, we obtain

E |∆4(t1 + γ)−∆4(t1)|pH ≤ 2p−1cp

[ ∫ t1

0

(E |(R(t1 + γ − s)−R(t1 − s))G(t, u(s− τ(s)))|pH)
2
p ds
] p

2

+2p−1cp

[ ∫ t1+γ

t1

(E |(R(t1 + γ − s)G(t, u(s− τ(s)))|pH)
2
p ds
] p

2

(3.4)

→ 0 (3.5)

as γ → 0, where Cp =
(

(p(p−1)
2

) p
2

.Thus, π is indeed continuous in the p-th mean on

[0,∞[. Next, we show that π(S) ⊂ S. It follows from (3.2) that

E |(πu)(t)|pH ≤ 5p−1E |R(t)[φ(0) +H(0, φ)]|pH + 5p−1E |H(t, u(t− τ(t)))|pH

+5p−1E

∣∣∣∣∫ t

0

R(t− s)F (s, u(s− τ(s)))ds

∣∣∣∣p
H

+5p−1E

∣∣∣∣∫ t

0

R(t− s)G(s, u(s− τ(s)))dw(s)

∣∣∣∣p
H

(3.6)

+5p−1
∑

0<tk<t

E |R(t− s)Ik(u(tk))|pH

=: 5p−1(J1 + J2 + J3 + J4 + J5).

Now, we estimate the terms on the right-hand side of (3.6). From assumption (H3) we
obtain

J1 ≤Mpe−apt2p−1
(

1 +Kp
)
E ‖φ‖p0 → 0 as t→∞. (3.7)

By assumption (H4) it follows that

J2 ≤ KpE |u(t− τ(t))|pH → 0 as t→∞.
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Now from assumptions (H3), (H5) and Hölder’s inequality we have

J3 ≤ E

∣∣∣∣∫ t

0

Me−a(t−s)F (s, u(s− τ(s)))ds

∣∣∣∣p
H

≤ MpKp
(∫ t

0

e−a(t−s)ds
)p−1

∫ t

0

e−a(t−s)E |u(s− τ(s))|pH ds

≤ Mpa1−pKp

∫ t

0

e−a(t−s)E |u(s− τ(s))|H ds. (3.8)

For any u ∈ S, and any ε > 0, there exists a t1 > 0, such that E |u(t− τ(t))|pH < ε, for
t ≥ t1. Thus from (3.8), we obtain

J3 ≤Mpa1−pKpe−at
∫ t1

0

easE |u(s− τ(s))|H ds+MpKpa−pε. (3.9)

As e−at → 0 as t→∞, by (ii), there exists a t2 ≥ t1 such that, for t ≥ t2, we have

Mpa1−pKP e−at
∫ t

0

easE |u(s− τ(s))|H ds ≤ ε−M
pKpa−pε. (3.10)

From (3.9) and (3.10), we obtain for any t ≥ t2

J3 < ε.

In other words,

J3 → 0 as t→∞. (3.11)

Now, for any u ∈ S, t ∈ [0,∞[, we obtain

J4 ≤ CpMpKp
(∫ t

0

e−2a(t−s)
(
E |u(s− τ(s))|pH

) 2
p

ds
) p

2

. (3.12)

Further, similar to the proof of (3.11), from (3.12), we have

J4 → 0 as t→∞. (3.13)

Now, we estimate the impulsive term, from the condition (i), we obtain

J5 ≤ E

( ∑
0<tk<t

Me−a(t−tk)qk
∣∣u(t−k )

∣∣
H

)p

≤ E

( ∑
0<tk<t

Me−a(t−tk)q̃
∣∣u(t−k )(tk − tk−1)

∣∣
H

)p

≤ E

(∫ t

0

Me−a(t−s)q̃ |u(s)|H ds
)p

≤ Mpq̃p
(∫ t

0

e−a(t−s)ds

)p−1 ∫ t

0

e−a(t−s)E |u(s)|pH ds. (3.14)

From (3.14) we obtain J5 → 0 as t→∞. Using (3.7), (3.14), (3.11) and (3.13) in (3.6),
we obtain E |(πu)(t)|p → 0 as t→∞. Thus, we conclude that π(S) ⊂ S.

Next, we prove that π is a contraction mapping. To see this, let u, v ∈ S. Then, for
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t ∈ [0, T ] we obtain

sup
t∈[0,T ]

E |(πu)(t)− (πv)(t)|pH (3.15)

≤ 4p−1 sup
t∈[0,T ]

E |H(t, u(t− τ(t)))−H(t, v(t− τ(t)))|pH

+4p−1 sup
t∈[0,T ]

E

∣∣∣∣∫ t

0

R(t− s)
(
F (s, u(s− τ(s)))− F (s, v(s− τ(s)))

)
ds

∣∣∣∣p
H

+4p−1 sup
t∈[0,T ]

E

∣∣∣∣∫ t

0

R(t− s)
(
G(s, u(s− τ(s)))−G(s, v(s− τ(s)))

)
dw(s)

∣∣∣∣p
H

+4p−1 sup
t∈[0,T ]

E

∣∣∣∣∣ ∑
0<tk<t

R(t− tk) (Ik(u(tk))− Ik(v(tk)))

∣∣∣∣∣
p

H

≤ 4p−1
(
Kp +MpKpa−p +MpKpCp(2a)−p/2 +Mpq̃pa−p

)
sup
t≥0

E |u(t)− v(t)|pH ,

and as this holds for arbitrary T > 0 and the right-hand side of (3.15) is independent of
T , thanks to condition (ii), it follows that π is a contraction. Thus, applying the Banach
fixed point principle, it follows that there exists a unique u ∈ S which is a mild solution
of Eq. (2.4).

To obtain the asymptotic stability, we have to prove that the zero solution to (2.4) is
stable in p-th moment.
Let ε > 0 be given and choose δ̂ > 0 such that

5p−1

{
Mp2p−1(1 +Kp) +

1

4p−1

}
δ̂ < ε.

If u(t) = u(t, 0, φ) is a mild solution of (2.4) with ‖φ‖p0 < δ̂, then π(u)(t) = u(t) defined
in (2.5). We claim that E |u(t)|pH < ε for all t ≥ 0. Indeed, noticing that E |u(t)|pH < ε on
t ∈ [−r, 0], if there exists t∗ > 0 such that E |u(t∗)|pH = ε and E |u(t)|pH < ε for −r ≤ s < t∗,
then it easily follows from (3.6), taking into account assumption (ii), that

E |u(t∗)|pH ≤ 5p−1
{
Mp2p−1(1 +Kp) +Kp +MKpa−p +MpKpCp(2a)−p/2 +Mpq̃pa−p

}
δ̂

≤ 5p−1

{
Mp2p−1(1 +Kp) +

1

4p−1

}
δ̂

< ε,

which contradicts the definition of t∗. This shows that the mild solution of (2.4) is
asymptotically stable in the p-th moment if assumption in Theorem 3.1 holds. This
completes the proof.

Remark 3.2. In particular, if m = 0, then system (2.4) reduces to



d[u(t) +H(t, u(t− τ(t)))] = A[u(t) +H(t, u(t− τ(t)))]dt

+

[∫ t

0

B(t− s)
(
u(s) +H(s, u(s− τ(s)))

)
ds+ F (t, u(t− τ(t)))

]
dt

+G(t, u(t− τ(t)))dw(t) for t ≥ 0

u0(·) = φ ∈ CbF0
([−r, 0];H), r > 0.

(3.16)
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By applying Theorem 3.1 under the hypotheses (H1)-(H4), the existence and
asymptotic stability of system (3.16) are guaranted.

In particular, when p = 2, from Theorem 3.1 we obtain

Corollary 3.3. Suppose that assumptions (H1)-(H5) hold. Then, the trivial solution to
Eq. (2.4) is mean square asymptotically stable if

4
(
K2 +M2K2a−2 +M2K2(2a)−1

)
< 1. (3.17)

4 Application

Impulsive dynamical systems exhibit the various evolutionary processes, including those
in engineering, biology and population dynamics, undergo abrupt changes in their state
at certain moments between intervals of continuous evolution, since many evolution
process, optimal control models in economics, stimulated neutral networks,
frequency–modulated systems and some motions of missiles or aircrafts are
characterized by that impulsive dynamical behavior.
To illustrate our abstract results we consider the following model

∂

∂t
[x(t, ξ) + h(t, x(t− δ(t), ξ))] =

∂2

∂ξ2
[x(t, ξ) + h(t, x(t− δ(t), ξ))]

+

∫ t

0

b(t− s) ∂
2

∂ξ2
[x(s, ξ) + h(s, x(s− δ(s), ξ))] ds

+f(t, x(t− δ(t), ξ))dt+ g(t, x(t− δ(t), ξ))dw(t) for t 6= tk and t ≥ 0

∆x(tk) = x(t+k )− x(t−k ) = Ik(x(tk)) for t = tk, k = 1, 2, · · · ,

x(t, 0) + h(t, x(t− δ(t), 0)) = 0 for t ≥ 0,

x(t, π) + h(t, x(t− δ(t), π)) = 0 for t ≥ 0,

x(θ, ξ) = x0(θ, ξ) for θ ∈ [−r, 0] and ξ ∈ [0, π],
(4.1)

where h, f, g : R+ ×R→ R, δ : [0,+∞)→ [0, r], and |x0|0 <∞.

Let H = L2([0, π]) and en :=
√

2
π sin(nx), (n = 1, 2, 3, · · · ) denote the complete

orthonormal basis in H. Let w(t) :=
∑∞
n=1

√
λnβn(t)en (λn > 0), where βn(t) are one

dimensional standard Brownian motions mutually independent on a usual complete
probability space (Ω,F , {Ft}t≥0,P).

Define A : D(A) ⊂ H→ H by A = ∂2

∂z2 , with domain D(A) = H2([0, π]) ∩H1
0 ([0, π]).

A is the infinitesimal generator of a strongly continuous semigroup {T (t)}t≥0 on H,

which is given by T (t)φ =
∑∞
n=1 e

−n2t < φ, en > en, φ ∈ D(A).
Let B : D(A) ⊂ H→ H be the operator defined by

B(t)(z) = b(t)Az for t ≥ 0 and z ∈ D(A).

We suppose that

(A1) For t ≥ 0, = f(t, 0) = g(t, 0) and Ik(0) = 0 for k = 1, 2, · · · ,.
(A2) There exist positive constants l1, l2, lH, lk, k = 1, 2, · · · , such that

|f(t, ζ1)− f(t, ζ2)| ≤ K|ζ1 − ζ2|,
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|g(t, ζ1)− g(t, ζ2)| ≤ K|ζ1 − ζ2|,

|h(t, ζ1)− h(t, ζ2)| ≤ K|ζ1 − ζ2|,

for t ≥ 0 and ζ1, ζ2 ∈ R,

and

|Ik(ζ1)− Ik(ζ2)| ≤ hk|ζ1 − ζ2| for k = 1, 2, · · · , and ζ1, ζ2 ∈ R.

Let D = D([−r, 0],H), for t ≥ 0 and φ ∈ H, define the operators H,F,G : R+ ×D → H

for ξ ∈ [0, π] by
F (t, φ)(ξ) = f(t, φ(−τ1)(ξ)),

G(t, φ)(ξ) = g(t, φ(−τ1)(ξ)),

H(t, φ)(ξ) = h(t, φ(−τ1)(ξ)).

If we put {
u(t)(ξ) = x(t, ξ) for t ≥ 0 and ξ ∈ [0, π]

ϕ(θ)(ξ) = x0(θ, ξ) for θ ∈ [−r, 0] and ξ ∈ [0, π],

then Eq. (4.1) takes the following abstract form

d [u(t) +H(t, u(t− τ(t)))] = A [u(t) +H(t, u(t− τ1))] dt

+

[∫ t

0

B(t− s)[u(s) +H(s, u(s− τ1))]ds+ F (t, u(t− τ1))

]
dt

+G(t, u(t− τ1))dw(t) for t ≥ 0, t 6= tk

∆u(tk) = x(t+k )− x(t−k ) = Ik(u(tk)) for t = tk, k = 1, 2, ...,

u0(·) = φ ∈ DF0([−r, 0];H), r > 0,

Moreover, if b is bounded and C1 function such that b′ is bounded and uniformly
continuous, then (H1) and (H2) are satisfied and hence, by Theorem 2.2, Eq. (4.1) has
a resolvent operator (R(t))t≥0 on H. As a consequence of the continuity of f and g and
assumption (A1) it follows that F and G are continuous. By assumption (A2), we have

|F (t, φ1)− F (t, φ2)| ≤ K |φ1 − φ2| ,

|G(t, φ1)−G(t, φ2)| ≤ K |φ1 − φ2| ,

|H(t, φ1)−H(t, φ2)| ≤ K |φ1 − φ2| ,

and
|Ik(ζ)− Ik(η)| ≤ qk |ζ − η| for k = 1, 2, ..., .

Moreover, if we suppose that

‖R(t)‖ ≤ Ne−at for t ≥ 0, where N ≥ 1 and a > 0,
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then all the assumptions of Theorem 3.1 are fulfilled. Therefore, Eq (4.1) has a unique
mild solution which is asymptotically stable in the p-th moment provided

4p−1
(

3pKp +Mp3pKpa−p +Mp3pKpcp(2a)−p/2 +Mpq̃pa−p
)
< 1,

where Cp =
(
p(p−1)

2

) p
2

.
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