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1 Introduction

Lattice dynamical systems often arise as an approximative system of infinite differential equations of a partial
differential equation in an unbounded domain, although they also appear as models of a variety of phenom-
ena such as image processing, pattern recognition, brain science, among others.

In the last years many authors have been interested in the asymptotic behaviour of solutions of such sys-
tems. As a result, a sheer number of papers have been published concerning the existence and properties of
global attractors in the autonomous, nonautonomous and stochastic cases; with or without uniqueness; in
weighted or unweighted spaces. Usually, the models under consideration are obtained by a spatial discretiza-
tion of a parabolic or a hyperbolic equation (see e.g. [1], [2], [4], [5], [8], [11] [12], [15], [16], [19], [20], [22], [23],
[26], [28], [29]).

The addition of a delay in the system, which appears naturally in real models, gives rise to new difficulties.
Retarded autonomous lattice dynamical systems were studied from the point of view of dynamical systems
in [25], [27], [24]. These results were improved later on by Caraballo et. al. [13].

Our main aim in this paper is to analyze the asymptotic behavior of the following nonautonomous re-
tarded lattice differential equation

d Ui .
q (U1 —2uj+ uj) + A+ fi (L uy) =0, t> 1, 1 € Z, "

u; (s) =y;(s), Vs € [t - h, 1,

Tomas Caraballo: Dpto. Ecuaciones Diferenciales y Analisis Numérico, Universidad de Sevilla, Apdo. de Correos 1160, 41080-
Sevilla, Spain, E-mail: caraball@us.es

Francisco Morillas: Department d’Economia Aplicada, Facultat d’Economia, Universitat de Valéncia, Campus del Tarongers
s/n, 46022-Valéncia, Spain, E-mail: Francisco.Morillas@uv.es

*Corresponding Author: José Valero: Centro de Investigacion Operativa, Universidad Miguel Hernandez, Avda. de la Universi-
dad, s/n, 03202-Elche, Spain, E-mail: jvalero@umh.es

[ T52T=Tl © 2015 Tomas Caraballo et al., licensee De Gruyter Open.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.



32 —— Tomés Caraballo, Francisco Morillas, and José Valero DE GRUYTER OPEN

where A € R. This model is obtained after a spatial discretization of the scalar retarded reaction-diffusion

equation:

2
%_37121+/\u+f(t,ut)=0, t>1,xeR,

u(s)=y(s),vselr-h,t.

Here u = (u;);cz, € %, 7 denotes the integers set and for a continuous function u : [t - h, T] — Y (where Y
is some space), u; denotes the segment of the solution, i.e., the element in C ([—h, o], Y) defined by u; (s) =
u(t+s),sel[-h,o0].

The existence and uniqueness of solutions for problem (1) were addressed in [13]. It is worth pointing
out that rather general assumptions on the nonlinear functions f; (just continuity and growth conditions) are
imposed, not ensuring any kind of compactness properties in the space ¢ for the corresponding Nemytskii
operator, which are necessary in order to apply the solvability results stated in other papers (see [14], [17], [21]).
Also, in the autonomous case, when f does not depend explicitely on ¢, the existence of global attractors was
established in both the multivalued and single-valued settings for a particular type of functions f;.

In the present paper we extend the results carried out in [13] to the nonautonomous case. For this aim we
apply the well-known theory of pullback attractors [7], [9].

The paper is organized in two parts. In Section 2 we recall briefly the general solvability theorems proved
in [13] and apply them to problem (1) under rather general assumptions on the nonlinear term f. In Section 3
we consider the particular case of a lattice dynamical system with a nonlinear term of the form

0
Fi(t, wie) = Fo.s (us (0) + Fug (u; (¢ - p(®))) + / bi(t, s, u (t + ) ds,
Zh

with p() € CY(R) and p(t) € [0, h] for all t € R. Under some dissipative and sublinear growth conditions
on the maps Fy ;, F1,;, bj, we define for this problem a multivalued process U and prove the existence of a
pullback attractor. Additionally, with extra Lipschitz conditions we obtain uniqueness of the Cauchy problem,
so that U is in fact a single-valued process.

2 Existence of solutions of a lattice differential equation with delay

2.1 Some results on the existence of solutions of differential equations with delay
in Banach spaces

Let us first recall some abstract results which were proved in [13] and which will be useful in the present case.
Let E be a real Banach space with dual E*, and let E; = C([-h, 0], E), with norms IIIls 111« and \|-||E0,
respectively, where ||@|| g, = max,c[_p g ¢ (D). Also,

Bx(yo,n) ={yeX:|y-yollx=<r},

where X = E or Ey, and (-, -) will denote the pairing between E and E".
Let us consider the following Cauchy problem for a functional differential equation in a Banach space:

% = F(t,up),
@
Ur = l,b € Ep,

where F : R x Eq — E. Also, for any u € C([t - h, +00), E), the function u; € Eo, t > 7, is defined by
ut(s)=u(t+s),s €[-h,0l.
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Let Ew be the space E endowed with the weak topology. We consider the space Eq ,, = C([-h, O], Ew). Let
Un, U € Eo,w. We say that un — uin Eo,, if

Un (Sn) — u(s) inEy forall s, — s € [-h, 0].

We will say that the function F is sequentially weakly continuous in bounded sets if t, — ¢, un — win Eo
and |[un||g, < M, for all n, imply F (tn, un) — F (¢, u) in Ew.

On the other hand, we will say that the function F is bounded if it maps bounded subsets of R x E onto
bounded subsets of E.

Definition 1. The map u : [t - h, T] — E is called a solution of problem (2) if ur = ¥, u(+) is continuous, once
weakly continuously differentiable in [t, T] and satisfies

t
u(t)=u(r)+ /f(s, us)ds, forallt e [1, T].

Remark 2. It follows from this definition that for any solution u of (2), the map t — u; € Eq is continuous.

Remark 3. We note that if F : R x Ey — E is sequentially weakly continuous in bounded sets and the map
t — u; € Ey is continuous, then t — F (t, u;) is weakly continuous, hence weakly measurable. If E is separable,
we obtain that t — F (t, uy) is strongly measurable. If we assume, moreover, that the map F is bounded, then we
have that F (-,u.) € L* (t, T; E).

IfF:RxEy — Eandt— u; € Ey are continuous, then the map t — F (t, u;) is continuous, hence strongly
measurable. If we assume, moreover, that the map F is bounded, then we have that F (-, u.) € L1 (r, T;E).

Then, we recall now some results ensuring the existence and uniqueness of solutions for problem (2), which
were proved in [13].

Theorem 4. Assume that E is reflexive and separable. Let f : R x Eq — E be sequentially weakly continuous
in bounded sets, and let F be a bounded map. Then, for each r > 0O, there exists a (r) > O such thatif i € Ey and
[¥||g, <, problem (2) possesses at least one solution defined on [0, a (r)]. Moreover, u (*) is a.e. differentiable
and % =f(t,ue)foraa.t e (0,a(r).

If we assume additionally that f : R x Eq — E is continuous, then u € C* ([O, al; E) and the separability of
E is not needed.

Theorem 5. Assume the conditions of Theorem 4. If a solution u (-) of (2) has a maximal interval of existence
[0, b) and there exists K > O such that ||u(t)|| < K, forall t € [0, b), then b = +oo, that is, u () is a globally
defined solution.

LetJ : E — 2F be the duality map, i.e. J(y) = {§ € E* : (v, &) = |ly|® = |I€]|I?}, Vy € E. We state a result
concerning uniqueness of solutions.

Theorem 6. Assume the hypotheses of Theorem 4. Also, suppose that, for any M > 0, there exists B (-, M) €
L}OC (R) such that B(t, M) = O for a.a. t € R and the following inequality holds:

(f(t,V) - f(tw), ) <BE M) |v-wlE, , €)

forallj € J(v(0)-w(0)),allv,w € Eq with ||V|g, , |lullg, < M, and a.a.t € R. Then, for eachr > 0, there exists
a(r) > Osuch thatif Y € Eo and |||, < r, problem (2) has a unique solution defined on [0, a (r)].
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2.2 Lattice dynamical systems with delay: setting of the problem

For a given T € R, consider the following first order lattice dynamical system with finite delay

% = (Ui-1 = 2u; + upg) + AU + fi (G u) = 0, £> 7, P € Z,
%)

ui (s)=y;(s-1), Vs e [t-h, ],

where A € R.

We consider the separable Hilbert space /> = {v = Vidiez * Diez v? < oo} with norm ||v|| = \/ ez Ve
and scalar product (w, v) = 37, _, w;v;, and also the Banach space (™ = {v = (v;);cz : SUP;cz |vi| < oo} with
norm ||v||, = supjez [Vil -

Further, we shall use the notation E = (2, Eo = C([-h,0],¢%), E1 = C([-h, 0], R), with the norms
lullg, = maxsep_p,op U (), l[ullp, = maxsei_p,o u(s)| Also, put Ees = C ([-h, 0], £) with norm [|u||z_ =
maxe[_p,o] |U ()||..- We note that Ey C Ew, as

() = u ($)llo = SUP i () ~ i (5)] < > i) - ui(s)* = u(t)-u(s)|, vt,s € [-h, 0],
! i€Z

2
u = max Ssup |uU; £ max Ui\~ = jju .
lul. = max, suplu < max |5 uif = ul

We consider the following conditions:

and

(H1) The operator f : R x Eqg — E given by the rule (f (t, v)); = fi (t, v;), i € Z, is well defined and bounded.
(H2) The maps f; : R x C([-h, 0], R) — R are continuous.

We shall first prove the existence of solutions for problem (4). For this aim we shall rewrite it in an abstract
form. We define the operator A : E — E by

(Av); = =Vi1 + 2Vi = Vi, 1 € Z.
Also, we define the operators B, B" : E — E by

(Bv)i =Viv1 — Vi, (B*V) =Vi1 — V.

1

It is easy to check that
A=B'B=BB,
(B'w, V) = (w, Bv).

Then the operator F : R x Eq — E is defined by
F(t,v) = -Av(0)-f(t,v) - Av (0)

and (4) can be rewritten as

%=F(t,u[), t>T,
5)

ur =1y, ie.u(s)=yY(s-1), vselr-h,1l.

Lemma 7. Let (H1)-(H2) hold. Thenthe map f : R x Eq — E is sequentially weakly continuous in bounded sets.
Also, the map A : E — E is weakly continuous.

Proof. Let tn — tin R, and v" — v € Eo,y, with Hv"HE0 < M, for all n, and let w € ¢? be arbitrary. For
any € > 0 we take Ko (¢) > 0 such that ZMEKO |w;|® < . Since f is bounded, there exists M, > 0 such that
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|f (tn, V") || < Ma, |If (t, V)|l < My, for all n. Also, as tn — t and v} — v; in C([-h, 0], R), for all i, (H2) implies
the existence of N(Ko, €) such that 3 ; \fi (tn, V') = fi (8, vl)| < £?if n = N. Hence,

[(F (eaV) = F V)W) < [ ST Ui (6 V) =i v IWI+ (UF W+ (IF (V™)) (S Iwil?
lil<Ko li|2Ko

<gl||w| +2M;e.

The result for the operator A can be proved similarly. This completes the proof. O

Theorem 8. Let (H1)-(H2) hold. For each r > O there exists a(r) > O such that if € Eo and |[Y|lg, < 1,

then problem (4) has at least one solution defined on [t, T + a(r)]. Moreover, u (-) is a.e. differentiable and

du
v F(t,ug) foraa.te (t,7+a(r)).

Proof. Lemma 7 implies that the operator F is sequentially weakly continuous in bounded sets. Since f is
bounded, F is also bounded. The result follows from Theorem 4. O

In order to obtain that the map f is continuous, we need an assumption which is stronger than (H1).

(H3) Theoperatorf : RxEq — E givenby (f (¢, v)); = fi (¢, v;), i € Z,is well defined, and for any (¢, v) € RxEy,
we have

Z Ifi(t, v <C (Ivllg,) max Z vi (s) + bg(t) | , forallK € Z*,
ik o jipk

where by (t) — 0" as K — oo uniformly in compact sets, and C (-) > O is a continuous non-decreasing
function.

Remark 9. Condition (H3) implies that the map f is bounded.
Lemma 10. Let (H2)-(H3) hold. Then, the map f : R x Ey — E is continuous.

Proof. Lett, — tin R, and v" — v in Ey. Then for any € > O there exists K (¢) such that

sg[lf}l),(o]HZK‘Vl (s)] <&, max HZKWI s)* <e.

Then by (H3) one can choose K; (€) = K (€) such that

Z [fi (t"’V?MZ < Re, Z Ifi (t, vi)|* < Re,

|i|=Ky |i|=K1

for some R > 0. On the other hand, by (H2) we obtain the existence of N (g, K) such that

Z ‘fi (t"’Vzn) - fi(t, Vi)|2 <eifn=N.

|i|<Kq

Thus,

STIR (V) = fi v < S (fi (VD) -6 v +2 Y [fi (VD[P +2 Y IR )

i€Z li|<Ky |i|2K1 [i]2Ky
<eg+2Rg,ifn=N.

O

Corollary 11. Under conditions (H2)-(H3), the solution given in Theorem 8 belongs to the space C* ([T, T+al; E) .
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In order to obtain the uniqueness of solutions we need an additional Lipschitz assumption.

(H4) Forany M > O there exists § (t, M) = O such that § (-, M) € L! (R) and

(f(t.2) = £ (t,v), 2(0) - v(0)) = =B (t, M) ||z - V||, »

if |12llg, , [V]g, <M, t € R.
Theorem 12. Assume (H1)-(H2) and (H4). Then the solution given in Theorem 8 is unique.

Proof. Letz,v € Eq, ||z||g, » [IV]|g, < M, and w = z-v.1t follows from (H4) and (Aw(0), w(0)) = (Bw(0), Bw(0)) >
0 that
(F(t,2) - F(t,v),2(0) - v(0)) = - (Aw(0), w(0)) - A ||wl|g, - (f (t,2) - f (t, V), w(0))
< B(t, M) [|wl|g, -

Then the result follows from Theorem 6. O

We now aim to study the asymptotic behaviour of solutions for problem (4). In particular, we will show the
existence of a non-autonomous attractor. When conditions (H1)-(H2), (H4) hold, if we assume that every so-
lution is global (this is true if we obtain an estimate of the solutions by Theorem 5), then we can define the
map U : RYx Eg — Eo, Ry = {(t, T) e R? : t > 1} hy

U(t’ T, I:b) = Ut,

where u (+) is the unique solution to (4) with u; = . Moreover, it is easy to prove, using (3) and Gronwall’s
lemma, that the map y — U(t, 7, 1) is continuous forany 7 < t. The map U is a process, that is, U(t, T, ) = ¢
and

ut,7,Y)=U(t,r,U(r,7,¢)) forallt<r<tandy € Eyp. (6)

On the other hand, if we assume only (H1)-(H2) and that every solution is global, then we can define a
multivalued semiflow by U : R x Eg — P (Eo) (P (Eo) is the set of all non-empty subsets of Eo) by

U(t, 1,9) = {u : u(:) is a solution of (4) with ur = }. 7)
Since we do not have uniqueness of the Cauchy problem, this map is in general multivalued. In a similar way
to the autonomous case [19, Lemma 13] one can prove that it is a multivalued process, that is:

1. U(t, T, ") = Id (the identity map);
2. U, 1, ) c Ut r,U(r,T,¢))forallp € Eg, T<r<t.

Moreover, it is strict, thatis, U (¢, 7, ) = U(t,r, U(r, 7,)) forally € Eg, T <1 < t.
Now, we will recall the main results from the theory of pullback attractors. First, let us consider the case
of a single-valued process [9], [10] (see also [18]).

Let X be a complete metric space. Suppose that D is a nonempty class of parameterized sets D= {D(t); t e
R} C P(X), where P(X) denotes the family of all nonempty subsets of X.

Definition 13. The process U is said to be pullback D-asymptotically compact if for any t € R, any D e D,
any sequence Tn — —oo, and any sequence yn € U(t, Tn, D(Tn))} is relatively compact in X.

Definition 14. It is said that B € D is pullback D-absorbing for the process U if for any t € R and any DeD,
there exists a To(t, D) < t such that

U(t,t,D(1)) C B(t) forallt < 1o(t, D).

Definition 15. The family A= {A(t); t € R} C P(X) is said to be a pullback D-attractor for U(-, -) if:



DE GRUYTER OPEN Attractors for non-autonomous retarded lattice dynamical systems = 37

1. A(t)is compact forall t € R,
2. A is pullback D-attracting, i.e.,

Tglpw dist(U(t, T, D(1)), A(t)) = O,

forall DeD,andallt € R,
3. A isinvariant, i.e.,
U(t,7,A(1)) = A(t), for—oco<T<t< +oo,

We have the following result.

Theorem 16. Suppose that the map Y — U(t, 7, ) is continuous for any T < t and that the process U is
pullback D-asymptotically compact. Let B € D be a family of pullback D-absorbing sets for U(-, -). Then, the
family A = {A(t); t € R} C P(X) defined by A(t) = A(B, t), t € R, where

AD, t) = ﬂ <U u(t, , D(T))) , foreach DeD,

sst \Ts<S

is a pullback D-attractor for U(-, -) which satisfies in addition that

A= |J AD, 0, fort € R.
DeD
Furthemore, A is minimal in the sense that if C = {C(t); t € R} c P(X) is a family of closed sets such that
lim; oo dist(U(t, T, B(1)), C(t)) = 0, then A(t) C C(t).

The family D is said to be inclusion-closed if D e Dand @ # B(t) c D(t), forall t ¢ R, implies B e D.Ifthe
family is inclusion-closed and the absorbing set B € D satisfies that the sets B(t) are closed, then A(t) C B(¢)
implies that the attractor A belongs to D.

Let us consider now the case of a multivalued process. The following result is proved in [7] (see also [6]
for a more general non-autonomous and random framework).

The definitions of pullback D-asymptotically compactness, pullback D-absorbing family and pullback
D-attraction are the same as in the single-valued case. For fixed T < t the mapping U(t, 7, -) is said to be
upper-semicontinuous if for any xo € X and for every neighborhood N in X of the set U(t, 7, xo), there exists
6 > O such that U(t, 7, y) ¢ N whenever dx(xo, y) < 8.

Definition17. A family?l = {A(t) ite R} C P(X) is said to be a global pullback D-attractor for the MNDS U
if A(t) is compact for any t € R, A is pullback D-attracting, and A is negatively invariant, i.e.,

A(t) c U(t, 7, A(1)), forany (t, T) € ]Rfi.
A is said to be a strict global pullback D-attractor if the invariance property in the third item is strict, i.e.,

A(t) = U(t, 7, A(1)), for (t, T) € Ri.

Theorem 18. Assume that the map  — U(t, T, ) is upper-semicontinuous and possesses closed values. Let
B= {B(t) ite R} € D be pullback D-absorbing and such that U is asymptotically compact with respect to B.
Then, the set A given by

A =4 (B,t) - Jult. 7, B@) teR, ®)
S<tT<S
is a pullback D-attractor for the MNDS U.
Moreover, suppose that D is inclusion-closed and that B(t) is closed in X for any t € R. Then the family A
defined by (8) belongs to D, and is the unique pullback D-attractor with this property. In addition, in this case,
if U is a strict MNDS, then Ais strictly invariant.
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3 A lattice system with sublinear non-autonomous retarded terms

We shall consider a function f : R x Eg — E given by the rule (f (¢, v)); = fi (¢, v;) and
0
fi(t,vi) = Fo i (t,vi (0)) + Fy; (t,v; (-p(1))) +/bi (t,s,vi(s))ds,
~h

where p(-) € CY(R) and p(t) € [0, ] for all t € R, that is, putting v = u; = u(t +-), problem (4) can be
rewritten as
% = (Ui = 2uj + Uj) + A + Fo i (t, ui () + Fy i (6w (t - p(t))
+ff)hb,-(t,s,u,-(t+s))ds=0,t>T,i€Z, ©)
ui (s)=y;(s-1), vse[r-h,l.
We consider the following conditions:

(C1) A>o0.
(C2) Fo,;: R* — R are continuous and satisfy that Fy ; (x) x = —=Co ;(t), Co € C(R; ¢*) and

t
/ Co (5)]| 2 €ds < oo, forall t € Rand 6§ > 0.

(C3) |Fo,i(t,x)| < H(|x]) x| + Cy,; (t), forall x € R, where C; € C(R; ¢?), and H (-) = 0 is a continuous and
non-decreasing function.

(C4) Fy;:R?* — R are continuous and satisfy that |F1,i (t, x)] < Ki|x] + C5; (1), for all x € R, where C; €
C(R; ¢?), Ky > 0 and

t
/ IC2 (5)]1%: €ds < oo, forall t € Rand 6 > 0.

(C5) |b;(t,s,x)| < mg;(t,s)+myq;(s)|x|, forallx € Randa.a.s € (-h, 0), where b; are Caratheodory in
the sense that it is measurable in s and continuous in (¢, x).
Also, mg; (t,+), my,; () € L' (-h,0), mg;(t,s), my;(s) = 0 and defining M ;(t) = f_oh mo; (¢, s)ds
and M, ; = ff)h my ; (s) ds we assume that M; := ziGZM%,i < oo, Mo(t) := ZieZMg’i(t) < oo,
My € C(R; R*) and

t
/(Mo (5))? €% ds < oo, forallt e Rand § > 0.

—o0

(C6) pe C*(R,[0,h])andp'(t)<p” < 1.

Let us check conditions (H1)-(H3). First, in order to obtain (H1) we prove that f is well defined and
bounded. We note that

0
Ifi (¢, vi)l < |Fo,i (t, vi (O)] + [Fyi (¢, vi (-p(D))) ] + / |b; (t, s, vi(s))| ds. (10)
“h

For the first term we have by (C3) that
[Fo,i (6, vi @) = 2 (H (vi @D vi ) + 14 (0) (an
< 2x(Ivllg,) [vi (0))* +2C3 ; (1),

where x(||v||g,) = max;cz, (H? (Jv; (0)])), which exists because H (-) is non-decreasing and v € Eo. Then,

S Foyi (6, vi )] < 2x(Ivilg,) VI3, +211C1 (01 (12)
i€Z
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As for the second term we obtain thanks to (C4) that
Z |Fi (t, vi (-p(1))) ‘2 < 2K? Z |vi (—p(t))‘2 +2]|C2 ()17
i€Z i€Z
< 2K7 |[vz, +21C2 (O)]I*. (13)
Now, for the term with the integral delay, taking into account (C5), we proceed as follows:
0
/\b (65 vi @) ds = [ (mo(s)+moi(©)1vi(5)) ds
-h
< Mo i(O) + ||[V|g_ My ;.

Then
2

( i (t,s, v,(s))ds) $2) Mg;+2]VIlE. Y Mi
i€Z

i€Z i€z
< 2Mo(6) + 2 ||v|3, Mi. (14)

Using (12)-(14) in (10) we obtain that f is well defined and bounded.

Now, we check (H2), i.e., that the maps f; : R x C([-h, 0], R) — R are continuous. We consider t, €
R, {v"}neN c C([-h, 0], R) and ¢, € R, v° € C([-h, 0], R) such that t, — to, vV* — v° in C([-h, 0], R). Now,
we have

fi (tn, V") - f; (to,vo) <

i (0 V" ©) = Foi (t0.V° 0))
#[Fri (6, V" (-p(t)) = Fui (f0,V° (-p(t0)) )|
0 0
+ /b,- (tn,s,v"(s)) ds - /bi (to,s,v0 (s)) ds|.
-h ~h
From (C2) and (C4), Fy ; and F; ; are continuous functions. Also, from (C5) and Lebesgue’s theorem, the last

term converges to 0. Thus, the continuity of f; follows.
To check (H3) we observe that

0
> (/|bi (t,s,vi (S))ds) <2y (/mo,i(s)ds) +23° (/ml,i(s)|vi (S)|d5)
' h

2

lizK \"}p [i|=K li|=K
<2 M) +2]v]E, Y M.
|i|=K li[zK

Also, by (10), (11) and (C4) we have

Zm(t,vozsR( Vlg) S v @F + 3 €0 +K Y [vi (-p®)

|i|=K |i|=2K |i|=2K |i|=K

D C0+ Y MO+ vIE, > M%,l-)

li|2K li|=K |i]2K

< C(Ivllg,) ( max Z Vi (s)+ bK(t)>

\IK

where by — 0" as K — oo uniformly in compact sets, and C (-) = O is a continuous non-decreasing function.
Thus, (H3) holds.

Then Theorem 8 and Corollary 11 imply that for any i € E, there exists, at least, one solution u(:) €
ct ([T, a), E) in a maximal interval [7, a). In order to obtain that every solution is globally defined we need
to prove some estimates. This will be done in the next section.



40 —— Tomaés Caraballo, Francisco Morillas, and José Valero DE GRUYTER OPEN

3.1 Estimate of solutions

Now, we shall obtain some estimates of solutions, which will imply the existence of a pullback D-absorbing
for a suitable class of sets D.

Proposition 19. Assume (C1)-(C5). Also, let

2Myeh < 1, (15)

2K <e ™A (A -1n) (1 —p*) , (16)

where 1 € (10, 11) and n; are the two solutions of the equation ne ™ = 2M;.
Then, every solution u (-) with ur = Y € Ey satisfies

lullg, < 2C 1Y)z, e* e DT+ R(T,0), vt € [r, T, 17)

where T" is the maximal time of existence and

L=2Me™" (18)
{._ onh ZK% 2nh
C:=e™+ A (Lop?) (1_p*)e , (19)
pio-en (? IC: O, Mo(O) 5, Ol ) 20)
t t
R(t,t) = [ B (s)ds + eL ! / e Dsp(s)ds, (21)

where € > 0 is a small constant depending on the parameters of the problem.

Remark 20. We note that (15) implies that ne™ > 2M; ifn € (o, N1), so that n > L. Also, (16) implies that
A>n.

Proof. We multiply (9) by u = (4;);cy, in ¢°. Then

%% ul|? + (Au, w) + A Jju ()] = —GZZFo,f (t, ui () i () - ;Fl,i (6 ui (¢ = p () wi (&)
0
—Z/bi (t, s, u; (t+5))ds u; (t). (22)
i€z,

Multiplying (22) by ", and using (Au, u) = ||Bul||> and (C1)-(C4), we have, for any € > 0 to be determined
later on,

(M uI?) = (- 24+ )€ u (o) + 26T [ Co(0)]

nt
# 25 (K [lu (e=p@) "+ 2 01
0
—2¢Mt Z b; (t, s, u; (t +s))ds u; (t). (23)
i€y
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Now, integrating the last inequality over (7, t) we obtain

t

t
e u ()] < & Hu(f)l\2+(n—2/1+e)/e”s Hu(s)||2ds+2/e"s 1Co (8)]| ds
T T
t

t
+2 /e'lS |Ca (s)H ds + 2K% /e'ls llu(s - p(s)|* ds

T T
t
—Z/e”s /b(sru(s+r))dru(s) ds.
T I€Z "y
We proceed to estimate the two last terms in (24). First, using - p @ < o e have

t t
[erue-ponrass [ €5 para
T T-h
t

et o e’ !
e VOl Ry R PTOTR
7-h

T
t

e 2 (ot _ gne-m) , €™ / M (D)2
< — - — D~ dl.
< iy IR (7 =)+ 15 [

T

Next, we analyze the last term in (24). By (C5),

/b (t, s, u; (t+5s))ds u;(t)| <

i€z “h

I€Z "y €LY
Now, we estimate the two terms in (26) separately. On the one hand,

Z/ Mo (t, ) s (B)]) ds = S Mo, ((6)[u; (6)] < [ (8)] Mo(®).

i€eZ “h i€z

On the other hand,

0
Z/ (o, () [us (¢ + )| | (O)]) ds < el > (/ (m1,:(5)) ds) Ju; (6)
i€z “h i€z h

< [Juellg,, My llu (6]l

< [|uel|, M-
Now, using (27) and (28), we have

t
Z/e (Z/b t,r,u;i(s+r))dru; (s))

i€Z h

<2 [ e (Ilu ()| Mos) + usl|f, M ) ds

[ =

<e [ e |u(s)®ds+

m>

/
/

t t
/ T M(s)ds + 2M, / e |lus||3, ds,
T T

Al

(24)

(25)

Z/ Mo (¢, 5) 1 () ds+2/ mai (8) lus £+ )] g (O] ds. (26)

@7)

(28)

(29)
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with € > 0 arbitrary. Using (25) and (29) in (24) we obtain

t
. 2KZeh
e u (8] < e ||u (1) + (n —2A+e+E+ 6‘(117—[))> /e”s lu(s)||* ds

T

t
[ e (RO M) gy, ) s

€

t

2](%671}1 2 T (-h) s 2
¢ 2O I, (1= 2ty [ e usl, ds.
en (1- o o
n(1-p7) /
Taking € = A, condition (16) implies thatn — A + € + % < O for € small enough. Then
t
2(|C2 () M3
e ol = e fu()+ [ e (GO 10 0, ) as (o)
T
2K3 e t

+ m HIIJHEO (em - e'l(r_h)) +2M; /ens ||u5|\1250 ds.

Let 6 € [-h, 0]. Replacing ¢ by ¢ + 6 in (30), using that [[u (t + 0)|| = [P (t+6)| < [[Pllg, if t + 6 < O, and
multiplying by e 1*9 we have

T

t+0

2 2
\|u(t+ G)HZ < e—n(t+9)enr HIIJH%?O i e—r[(t+9) / ells (2 ||C2/1(S)H + Moé(s) +2 ||C0 (S)Hp) ds
T

t+0

. 2K2eM" _ _
+e 10 2Ty (e’” — el h)) +2Mye 10 / " |lus|z, ds.
An (1-p%)

Using that 8 € [-h, 0] and neglecting the negative terms we get

T

t
2(C,(5)1>  Md(s
e, < e i, +ert [ e (2O IED 16, 5, ) as

T

2K3e21h
An (1-p%)

We can rewrite this expression as

t
112, e + 2M; e / e us |2, ds.
T

t t
e Jur|, < C ]2, e + / e"5p(s)ds + L / e lus|l3, ds, (31)
T T

where we have used the notation given in (18)-(20). Applying Gronwall’s inequality, Fubini’s theorem and
using 1 - L > 0 (see Remark 20) yields

t t s
e uelz, < Clplz, e + [ e™B(s)ds + Le™ / B (rydr+Cy Il " | e ds
T T T
¢ ¢
=C Hl/)szgo el + / eB(s)ds + C ||1/)||,250 (e“e"“ - 1) el™ + ekt / e"B () (e‘“ - e‘“) dr
T T
t t

< CIPI2, e + T2, e DT / e15p (s) ds + e / D3 B (s) di,

T T
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and then
t t

lullz, < ClIpllz, e e™ +Clpllz, e e+ e [ B (s)ds + e / eMsp(syds.  (32)
T T

From here (17) follows. O

Let Ry be the set of all functions r : R — (0, +o0) such that

lim e D2 = 0.
t—r—oco

Denote by D, the class of all families D= {Dt): teR} C P(¢?) such that D(t) ¢ B(0, r5(t)) for some

r5 € Ry, where B(0, rﬁ(t)) denotes the closed ball in ¢? centered at zero with radius rﬁ(t). The class Dy, is

inclusion-closed.

Corollary 21. Assuming the conditions of Proposition 19, Theorem 5 implies that every local solution of (4) can
be defined globally. Also, the map U defined by (7) is a strict multivalued process.

Corollary 22. The balls By(t) = B2 (0, Ry(t)), where R, (¢) is the nonnegative number given for each t € R by

t t

Ry =e™ / eSB(s) ds + elL™t / e 3B (s) ds + 1, (33)

form a family Eq which is pullback Dy-absorbing for the process U.

We are interested in proving that IA%, € Dy. For this aim we will need and additional assumption on the
function g (¢) (that is, on the functions C,, My, Co).

Lemma 23. In addition to the conditions of Proposition 19, assume that
t
lim e %! / eﬁzsﬁ (s)ds =0forall0 < §; < &,. (34)

t——oo
—00

Then ]§,1 € Dy.

Remark 24. Condition (34) is satisfied if

¢
/ﬁ(S)dS <ooforallt € R.

Indeed, for t — —oco we have

¢ t t
e_ﬁlt/eﬁzsﬁ(S) ds < /e‘ﬁz(t‘s)ﬁ(s)dss /ﬁ(s)dS—>0.

—oo —

Proof. By (34),n > L and ffw e"1)s B (s) ds < o we have

¢ t
tlim e hIRI(E) = tlim el-Dt (e”t e B (s)ds + el Mt / ehSp(s)ds + 1)
—>—0c0 —r—00

—oco —oco

t t
= Jim et [ e"B(s)ds + / e 3B (s)ds + et = 0,
—>—00

—oo —oco
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3.2 Estimate of the tails

In order to obtain the existence of a pullback attractor we need to obtain an estimate of the tails of solutions.

Lemma 25. We assume the conditions of Lemma 23. Let IABH € Dy be the pullback Dy-absorbing family given
above. Then, for any € > 0 and t; < t; there exist T (e, t1, to, Eq) <t, K (e, ty, ty, E,,) > 1 such that

max u-t+sz<e,VrsT,t€t,t . 35
Jmax /WZZK\ i(t+5) [t1, ta] (35

for any solution u (-) with ur € By(1).
Proof. Define a smooth function 0 satisfying

0,0ss¢<1,
0s)=< 0<6(s)<1, 1<5<2,
1, s=2.

Obviously ’0'(5) < C, for all s € R". For any solution u (), let v(t) := (v;(f));cz be given by v; (t) =

pk.iui (t), where pg ; := 6 (‘Tl(') . We multiply (9) by v. We note that u (-) € C* ([0, o) , E) implies

du t
ZdthKl|l| () vi (), V> 1.
i€eZ i€Z

Following now the arguments in [19, p.571] there exists a constant R, (depending on the parameters of the
problem) such that

Au (D), v (D) = -%

T<ts<t.
Note that (17), 7 — L > O and Eq € Dy imply the existence of R,(t,) (independent of 7) such that

||u(t)”2 <R (ty), VT <tsts.

Hence,
C(t
LIS Pl OF < -2 pis e (OF = 3 prcif a0+ S22,
i€Z i€Z i€Z
Then, arguing as in the proof of Proposition 19 we have
d
T (e’” > pr.ilug (t)|2> <el(m-20+€)> pr.ilui (0 (36)
i€z i€z
+ 26" Y priCoi (0 + 2D e
i€Z
2 2K?
+2ey priCoi®+ =Y pkilui (t=p (B)
i€z i€z

+Ze”thKl/|b (t, s, ui (t+5s)|ds |u;(t) .

i€z “h
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Integrating over the interval (7, t) we get

i (ZpK,iui(t)P) < €™ pri i (O + (1 - 2A+e)/e"52pz<l\ul(s)| ds 37)

i€z i€Z i€z
t

w2 fer (mecol(s)dw ), meczl(s)> ds

T i€z
ZK
I/e"SZpKllu (s—p () ds
i€Z
0
+2/e”SZpK1/|b (s, 1, u; (s + )| dr |u;(s)| ds.
i€Z “h

Next, we estimate the last two terms in (37). The first one, arguing as in (25), is estimated by

2
<erzr _ en(r—h))
Eo

ns l ds< ¢
/e ng =P dss o

/ €™ S prcs i (5) ds. (38)

1 P i€Z
As for the second term, using assumption (C5), in a similar way to that in (27)-(28), we have

t t

t
€ 1 2 1
[ S prilu (5)|/m01(5 ndrds=$ [ e |ofucs)| ds+2é/e"S€ZZpK,iMé,i(s)ds,
T 1

i€z T T

t t

/e’”meu, (s)|/m11(r)|u1 (s+r)|drds</e"$

T i€z T

pKlus Zp,ﬁ |u; (5)| My,; ds

2

t
le/e”S‘ %us . ds,
p 0
and
t
ns € ns 1 2 1 ns 2
/e ZpKl/\b (ryui (s+ 1)) dr |u;(s)|ds < 7/9 pKu(s)H ds+%/e ZpK,iMo’i(s)ds (39)
i€Z - T T i€Z
t 2
+M1/ens plf(usHEo ds.
T
Consequently,
nt nt 2K2 ns
&S prilus (O < €Y prilus (0 + (n-20+e e 20 /e S pxilus ()2 ds
i€z i€z icz
1 2
¢ 1
2 |lpgCa(s) Sy Pr.iM3 5 () 2 C(t2)
/ens H ¢ H + &Ik él 0.1 +2|pxCo (Sl 2 ds+ﬁ(em— UT) 7](2

T

t

2
’E (e'” - e”(T"h)) +2M; /e'z
0

T

2K2 et

2
ds.
A n(1-p9) E

0
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Taking € = A and using condition (16), we have

2 C(t
1S pri i (OF = € Y prilu () + 2 (e - 1) £
i€z i€Z

L ZHPI%Cz(S)HZ S PriM3 L (5)
+/e"s 4 ez Kél 0,i

+2lpxCo (S)llx | ds

A
T
K2 nh 2 f 2
2Ky e ‘ 3 ( nt n(ffh)) / ns || 3
+ s el" —e +2M; [ e 2u ds. 40
A rl(l—p*) pKl/) Eo ! Pictts Eo (40)
T
Let 6 € [-h, 0]. We replace t by t + 6 in (40), and use that ‘ pl%(u(t+ H)H = ‘ pl%(l,b(t+ 0)|| < pl%(l/) . ift+0<;
0
multiplying by e % we obtain
> prilui (t+ 0)* < eTe MO oy fus (1)
i€z i€z
t+6 1 2 L 2
2k )| [lpiMos)|
+e'”(”9)/e’75 K o I 5 +2lpkCo (8)||pn | ds
T
g n(t+6) _ _nt @ -n(t+6)
+’2 (e e ) T
2 olth o—n(t+6) 2 9 2
2K7 e™e” i s n(t-h) - (t+9)/ s|l .}
=1 - IM.e n 2 H ds,
" (=7 ’psz . (e e )+ 1€ e’ ||pgus . S
T
and
1 2 ZKZeZI]h 1 2
e”t’ Jul < |ey 21T ’ 2 H e’
Pictell, ( An (1-p*) Pic¥ Eo

1 2
PrC2 (S)H N S iez PK,iMG ; (S)
A ¢

o[
+e'l /e"s

T

+2|pgCo (S)llp | ds

t
+E—C(t2)e”t+2M1e”h /e”S
n K .

T

2
ds.

1
PiUs

Eo

We can rewrite this expression as
¢

t
1 2
pf(lpHEo e+ [ e™By, (s)ds+L/e’7S

T T

2 2C(t o2
<7Qeﬂf pius .

< ds, 1
gon K s (41)

0

nt || 2
e ‘Pf(ut

+C|

where we have used the notation
+ 271(%62%,
An (1-p%)

1 2
2|PkC2 O Siep Pk iM3 . (5)
Boc (8) = ™" | 1 | + SRR 4 2 Ik Co (D) |

C:=e

L:=2M,e"™.

Now, proceeding in a similar way to (32) and using 1 — L > O (see Remark 20) we obtain

|

t t
2 2C(t,) —nt ns (L-n)t (n-L)s
5t KG-D) +e e Bp (s)ds +e /e Boc (s)ds.  (42)

T T

1 2 A1
pf<”tHE < 2eUL-Mt -7 ¢ Py
0
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Now, it is convenient to keep in mind the definition of ,,, and its dependence on Cy, M and Cy. It follows
that
Boi(s) — 0as K — oo for any s.

Hence, Lebesgue’s Dominated Convergence Theorem implies that

t
/e5sﬁpK (s)ds — 0, as K — oo forany t € [tq, t], § > 0.

—o0

Thus, there exist T (e, t1, t7, Er[) <t, K (e, t1, t7, En) > 1 such that

max u; (t+5))? < max (Ui (t+8))?
%, [ 32 9 max, \/épm )

1
— 2
HpK Eo

<eg ift<T, telty,t].

3.3 Existence of the pullback attractor: general case

We know that under the assumptions of Proposition 19, the map U given by (7) is a strict multivalued process.
For any initial data i € Ey we denote

Dz () = {u(-) is a global solution of (9) with initial data ur = ¢} .

We will prove that the map ¢ — U(t, T, i) is upper-semicontinuous and has closed values, and also that
U is asymptotically compact with respect to the pullback Dy-absorbing family By defined in Corollary 22.
First, we obtain an auxiliary lemma.

Lemma 26. We assume the conditions of Lemma 23. Let " — p in Eq. Then:

1. For arbitrary € > 0, T < T there exists K (€, T, T) such that for any u" (-) € D+ (l,b") ,

2
max | E ut(t+s)|” <e vt er, T]. 43)
s€[-h,0] |i\22K‘ ! ( )} [ ] (

2. Letu" (-) € D¢ (Y"). Then there exists u (-) € Dr () and a subsequence {u"} of {u"} such that
u™ - uinC([r, T),E) forall T > 1. (44)
Proof. 1t follows from " — 1 in E, the existence of K; (€) > 0 such that

> ki | ()| < e,¥n, s € [-h, 0]
i€Z

Z PK.i

i€Z

" (s)’2 <€ Vs e [-h,0]

if K = K. Now, from (42) we obtain the existence of K (e, 7, T) = K; such that

t t
2 2 2C(T)

R Ak et / "By, (s)ds + et / ehsp, (s)ds <e,
0

PN 1
rast il - 22,

1
3, n
Piut
H K= g,
T T
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forall t € [7, T], where we have used S, (s) — 0 as K — oo for any s and the Lebesgue Dominated Conver-
gence Theorem. Therefore,

max Z (ul (t+ s))2 < max \/ZpK,i (ul (t+ s))2
iz

s€[-h,0] 2k s€[-h,0]

which proves (43). Next, from Proposition 19 we have that u} is bounded in Eq. Then, using (43) one can prove
in a standard way (see [13, p.71] for the details) that {u” (t)} is precompact in E for any ¢ € [1, T]. After that,

following the same lines as in [13, p.71], we can obtain the existence of u (-) € D+ () and a subsequence such
thatu™ () - u()inC([r, T],E)forall T > . O

1
2,,

ug
Pi E

<e,
0

As a direct consequence we have the following result. The proof is rather similar to that in [13, p.72].

Corollary 27. Assume the conditions of Lemma 23. Then, the multivalued map y — G (¢, 7, 1) possesses closed
graph and is upper semicontinous. Moreover, it has compact values.

Lemma 28. Assume the conditions of Lemma 23. Then, the multivalued process U is pullback Dy-asymptotically
compact. In particular, it is pullback asymptotically compact with respect to the pullback Dy-absorbing family
By.

Proof. We consider ¢" = ug € U(t, Tn, Y"), where u" (-) € Dr, (Y"), YP" € D(tn), and D = {D(t)} € Dy.In
view of Corollary 22, for n large enough we have u}' € By(t). Hence,

|uf (s)|| < C, Vs € [-h, 0],
for some C > 0. For fixed s € [-h, 0] we can find a subsequence (denoted again as u™) such that
u" (t+s) — wsin Ey.

Using a similar argument as in [13, p.71] (with the help of Lemma 25) we obtain that u" (t, +s) — ws in E.
Therefore, {u? (s)} is a precompact sequence for any s € [-h, O]. In order to apply the Ascoli-Arzela theo-
rem, we need to obtain the equicontinuity property. Using Proposition 19, the boundedness of the sequence
178 Héo e~D)n the fact that the operator F is bounded and the integral representation of solution we can
obtain that

t+§2
|u" (t+s2) —u" (t+51)]|| < / |F (r,ur)| dr
t+s1
<K(s;-5s1),if —h<s; <s;<0.
Then, the Ascoli-Arzela theorem implies that &™ is relatively compact in Eq. Since by Lemma 23 we have that

ﬁn € Dy, U is pullback asymptotically compact with respect to this family as well. O

The existence of the pullback attractor follows now from Proposition 19, Lemma 28, Corollaries 22, 27 and
Theorem 18.

Theorem 29. Assume the conditions of Lemma 23. Then, the multivalued process U possesses a unique pull-
back Dy-attractor A, which belongs to Dy. Moreover, it is strictly invariant.
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3.4 Existence of the pullback attractor: case of uniqueness
We can prove uniqueness of the solution of the Cauchy problem (9) if we assume the following extra assump-
tion:

(C6) Forany x,y € Rand s € [-h, 0] we have
|Fo,i (t, X) = Fo,i (t,¥)| < ko(t)C5 (Ix[, [y]) [x - ¥/,

|Fu,i(t, %) = Fui (t,y)| < ke (OCa (X[, [y [x - yI,
|bi (t’ S’X) - bi (t’ S, y)| < kZ(t)kB (S) CS (|X‘ ’ |y‘) |X_y| ’

where C; (-, -) 2 0 are continuous and non-decreasing functions in both variables and k; (-) € L
fori=0,1,2, ks (-) € L? (-h, 0).

(R)

2
loc

Lemma 30. If (C6) holds, the map f : R x Eqg — E satisfies the local Lipschitz assumption (H4) .

Proof. Letv,w € Eq be such that ||v||g, , [|[w||g, < M. On the one hand, we have that

2
S |Fo,i (6, v (0)) = Foi (t, w; (0)] < k3(8) (gtazx(@ (vi )], |w; (0)|))> > i (0) - w; (0)

i€Z i€Z

2002 2
< ko5 (VI » IWlig,) IV =Wl

2
> [FLi i (ho) = Fui O (R < 0 (rpeazx(a (1vi (-ho)l s [wi (—h1)|))) > Ivi(-ha) = wi(-ho)P

i€z icz
< k3O (IVIlg, » [Wllg,) v = Wi, »
where ; ([|[Vl[g, » [IWlg,) = MaXicz se(-n,01(Cj (Vi (S)] » [W; (5)])). On the other hand,

2

0
Z (/|bl (t,S,Vi (s))_bi (t’ S, Wi (S))‘ ds)
-h

i€Z

< (0 (

ie

2 0 g
Jmax (€5 (vi ()l wi (s)m) > ( / k3 () [vi (s) - w; (s)|ds)
h

€l- icz

0 0
< K00E (Vg W1,) 3 [ 166 ds [ i) = wi (5) ds
“h “h

i€Z

0 0
— K3OKE (Vlls, » Wllx,) / K3 (s) ds / S i () - wi ()2 ds
-h h

i€Z
0
< KBOK (IVllg, » [Wlg,) b / K3 (s)ds v - wl,
“h

where x5 (|[Vlg, » [Wllg,) = MaX;cz, se-n,0/(Cs (Vi (S)] Wi (5)])). The fact that the sum and the integral can be
exchanged follows easily using Lebesgue’s theorem. Thus, there exist K (M), B(-) € L} . (R) such that

loc
If (6, v) - £ (&, w)|I* < BOK (M) [[v - wl}, »

which proves the result. O
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Then, if we assume conditions (C1)-(C6) and (15)-(16), Theorems 5, 8, 12, Corollary 11 and Proposition 19 imply
that for any i € E there exists a unique global solution u (-) € C* ([T, o0), E) with u (1) = .

Hence, as shown in Section 2.2, we can define the process U by putting U (¢, 7, ) = u;, where u (+) is the
unique solution to (9) with ¥ = uy. Moreover, this map is continuous with respect to the initial data .

We obtain now the existence of a pullback attractor.

Theorem 31. Assume conditions (C1)-(C6) and (15)-(16), (34). Then, the process U possesses a pullback Dy-
attractor A, which belongs to Dy,.

Proof. Prop051t10n 19, Lemma 28, Corollary 22 and Theorem 16 imply the existence of the pullback Dy-
attractor A. Since the sets By (¢) of the absorbing family are closed and B;, € Dy, we obtain that Ae Dy. O
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