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1 Introduction
Lattice dynamical systems often arise as an approximative system of in�nite di�erential equations of a partial
di�erential equation in an unbounded domain, although they also appear as models of a variety of phenom-
ena such as image processing, pattern recognition, brain science, among others.

In the last years many authors have been interested in the asymptotic behaviour of solutions of such sys-
tems. As a result, a sheer number of papers have been published concerning the existence and properties of
global attractors in the autonomous, nonautonomous and stochastic cases; with or without uniqueness; in
weighted or unweighted spaces. Usually, themodels under consideration are obtained by a spatial discretiza-
tion of a parabolic or a hyperbolic equation (see e.g. [1], [2], [4], [5], [8], [11] [12], [15], [16], [19], [20], [22], [23],
[26], [28], [29]).

The additionof a delay in the system,whichappears naturally in realmodels, gives rise tonewdi�culties.
Retarded autonomous lattice dynamical systems were studied from the point of view of dynamical systems
in [25], [27], [24]. These results were improved later on by Caraballo et. al. [13].

Our main aim in this paper is to analyze the asymptotic behavior of the following nonautonomous re-
tarded lattice di�erential equation

dui
dt − (ui−1 − 2ui + ui+1) + λui + fi (t, uit) = 0, t > τ, i ∈ Z,

ui (s) = ψi (s) , ∀s ∈ [τ − h, τ],
(1)
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where λ ∈ R. This model is obtained after a spatial discretization of the scalar retarded reaction-di�usion
equation: 

du
dt −

∂2u
∂x2 + λu + f (t, ut) = 0, t > τ, x ∈ R,

u (s) = ψ (s) , ∀s ∈ [τ − h, τ].

Here u = (ui)i∈Z ∈ `2, Z denotes the integers set and for a continuous function u : [τ − h, T] → Y (where Y
is some space), ut denotes the segment of the solution, i.e., the element in C

(
[−h, 0], Y

)
de�ned by ut (s) =

u (t + s), s ∈ [−h, 0].
The existence and uniqueness of solutions for problem (1) were addressed in [13]. It is worth pointing

out that rather general assumptions on the nonlinear functions fi (just continuity and growth conditions) are
imposed, not ensuring any kind of compactness properties in the space `2 for the corresponding Nemytskii
operator,which are necessary in order to apply the solvability results stated in other papers (see [14], [17], [21]).
Also, in the autonomous case, when f does not depend explicitely on t, the existence of global attractors was
established in both the multivalued and single-valued settings for a particular type of functions fi.

In the present paper we extend the results carried out in [13] to the nonautonomous case. For this aimwe
apply the well-known theory of pullback attractors [7], [9].

The paper is organized in two parts. In Section 2 we recall brie�y the general solvability theorems proved
in [13] and apply them to problem (1) under rather general assumptions on the nonlinear term f . In Section 3
we consider the particular case of a lattice dynamical system with a nonlinear term of the form

fi(t, uit) = F0,i (ui (t)) + F1,i
(
ui
(
t − ρ(t)

))
+

0∫
−h

bi (t, s, ui (t + s)) ds,

with ρ(·) ∈ C1(R) and ρ(t) ∈ [0, h] for all t ∈ R. Under some dissipative and sublinear growth conditions
on the maps F0,i , F1,i, bi, we de�ne for this problem a multivalued process U and prove the existence of a
pullback attractor. Additionally,with extra Lipschitz conditionsweobtainuniqueness of theCauchyproblem,
so that U is in fact a single-valued process.

2 Existence of solutions of a lattice di�erential equation with delay

2.1 Some results on the existence of solutions of di�erential equations with delay
in Banach spaces

Let us �rst recall some abstract results which were proved in [13] andwhich will be useful in the present case.
Let E be a real Banach space with dual E*, and let E0 = C([−h, 0], E), with norms ‖·‖, ‖·‖* and ‖·‖E0 ,

respectively, where ‖φ‖E0 = maxt∈[−h,0] ‖φ (t)‖. Also,

BX(y0, r) = {y ∈ X : ‖y − y0‖X ≤ r},

where X = E or E0, and (·, ·) will denote the pairing between E and E*.
Let us consider the following Cauchy problem for a functional di�erential equation in a Banach space:

du
dt = F (t, ut) ,

uτ = ψ ∈ E0,
(2)

where F : R × E0 → E. Also, for any u ∈ C([τ − h, +∞), E), the function ut ∈ E0, t ≥ τ, is de�ned by
ut (s) = u (t + s), s ∈ [−h, 0].
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Let Ew be the space E endowed with the weak topology. We consider the space E0,w = C([−h, 0], Ew). Let
un , u ∈ E0,w. We say that un → u in E0,w if

un (sn)→ u (s) in Ew for all sn → s ∈ [−h, 0].

We will say that the function F is sequentially weakly continuous in bounded sets if tn → t, un → u in E0,w
and ‖un‖E0 ≤ M, for all n, imply F (tn , un)→ F (t, u) in Ew .

On the other hand, we will say that the function F is bounded if it maps bounded subsets of R × E0 onto
bounded subsets of E.

De�nition 1. The map u : [τ − h, T]→ E is called a solution of problem (2) if uτ = ψ, u (·) is continuous, once
weakly continuously di�erentiable in [τ, T] and satis�es

u (t) = u (τ) +
t∫
τ

f (s, us) ds, for all t ∈ [τ, T].

Remark 2. It follows from this de�nition that for any solution u of (2), the map t 7→ ut ∈ E0 is continuous.

Remark 3. We note that if F : R × E0 → E is sequentially weakly continuous in bounded sets and the map
t 7→ ut ∈ E0 is continuous, then t 7→ F (t, ut) is weakly continuous, hence weakly measurable. If E is separable,
we obtain that t 7→ F (t, ut) is strongly measurable. If we assume, moreover, that the map F is bounded, then we
have that F (·, u·) ∈ L1 (τ, T; E) .

If F : R × E0 → E and t 7→ ut ∈ E0 are continuous, then the map t 7→ F (t, ut) is continuous, hence strongly
measurable. If we assume, moreover, that the map F is bounded, then we have that F (·, u·) ∈ L1 (τ, T; E) .

Then, we recall now some results ensuring the existence and uniqueness of solutions for problem (2), which
were proved in [13].

Theorem 4. Assume that E is re�exive and separable. Let f : R × E0 → E be sequentially weakly continuous
in bounded sets, and let F be a bounded map. Then, for each r > 0, there exists a (r) > 0 such that if ψ ∈ E0 and
‖ψ‖E0 ≤ r, problem (2) possesses at least one solution de�ned on [0, a (r)]. Moreover, u (·) is a.e. di�erentiable
and dudt = f (t, ut) for a.a. t ∈

(
0, a(r)

)
.

If we assume additionally that f : R × E0 → E is continuous, then u ∈ C1
(
[0, a]; E

)
and the separability of

E is not needed.

Theorem 5. Assume the conditions of Theorem 4. If a solution u (·) of (2) has a maximal interval of existence
[0, b) and there exists K > 0 such that ‖u (t)‖ ≤ K, for all t ∈ [0, b), then b = +∞, that is, u (·) is a globally
de�ned solution.

Let J : E → 2E* be the duality map, i.e. J(y) = {ξ ∈ E* : (y, ξ ) = ‖y‖2 = ‖ξ‖2*}, ∀y ∈ E. We state a result
concerning uniqueness of solutions.

Theorem 6. Assume the hypotheses of Theorem 4. Also, suppose that, for any M > 0, there exists β (·,M) ∈
L1loc (R) such that β(t,M) ≥ 0 for a.a. t ∈ R and the following inequality holds:

(f (t, v) − f (t, w) , j) ≤ β (t,M) ‖v − w‖2E0 , (3)

for all j ∈ J (v (0) − w (0)), all v, w ∈ E0 with ‖v‖E0 , ‖u‖E0 ≤ M, and a.a. t ∈ R. Then, for each r > 0, there exists
a (r) > 0 such that if ψ ∈ E0 and ‖ψ‖E0 ≤ r, problem (2) has a unique solution de�ned on [0, a (r)].
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2.2 Lattice dynamical systems with delay: setting of the problem

For a given τ ∈ R, consider the following �rst order lattice dynamical system with �nite delay
dui
dt − (ui−1 − 2ui + ui+1) + λui + fi (t, uit) = 0, t > τ, i ∈ Z,

ui (s) = ψi (s − τ) , ∀s ∈ [τ − h, τ],
(4)

where λ ∈ R.
We consider the separable Hilbert space `2 = {v = (vi)i∈Z : ∑i∈Z v

2
i < ∞} with norm ‖v‖ =

√∑
i∈Z v2i

and scalar product (w, v) =
∑

i∈Z wivi , and also the Banach space `∞ = {v = (vi)i∈Z : supi∈Z |vi| < ∞} with
norm ‖v‖∞ = supi∈Z |vi| .

Further, we shall use the notation E = `2, E0 = C
(
[−h, 0], `2

)
, E1 = C([−h, 0],R), with the norms

‖u‖E0 = maxs∈[−h,0] ‖u (s)‖, ‖u‖E1 = maxs∈[−h,0] |u (s)|. Also, put E∞ = C
(
[−h, 0], `∞

)
with norm ‖u‖E∞ =

maxs∈[−h,0] ‖u (s)‖∞. We note that E0 ⊂ E∞, as

‖u (t) − u (s)‖∞ = sup
i∈Z
|ui (t) − ui (s)| ≤

√∑
i∈Z
|ui (t) − ui (s)|2 = ‖u (t) − u (s)‖ , ∀t, s ∈ [−h, 0],

and
‖u‖E∞ = max

s∈[−h,0]
sup
i∈Z
|ui| ≤ max

s∈[−h,0]

√∑
i∈Z
|ui|2 = ‖u‖E0 .

We consider the following conditions:

(H1) The operator f : R × E0 → E given by the rule (f (t, v))i = fi (t, vi), i ∈ Z, is well de�ned and bounded.
(H2) The maps fi : R × C([−h, 0],R)→ R are continuous.

We shall �rst prove the existence of solutions for problem (4). For this aimwe shall rewrite it in an abstract
form. We de�ne the operator A : E → E by

(Av)i := −vi−1 + 2vi − vi+1, i ∈ Z.

Also, we de�ne the operators B, B* : E → E by

(Bv)i := vi+1 − vi ,
(
B*v
)
i
:= vi−1 − vi .

It is easy to check that
A = B*B = BB*,(
B*w, v

)
= (w, Bv) .

Then the operator F : R × E0 → E is de�ned by

F (t, v) = −Av (0) − f (t, v) − λv (0)

and (4) can be rewritten as 
du
dt = F (t, ut) , t > τ,

uτ = ψ, i.e. u (s) = ψ (s − τ) , ∀s ∈ [τ − h, τ].
(5)

Lemma 7. Let (H1)-(H2) hold. Then the map f : R× E0 → E is sequentially weakly continuous in bounded sets.
Also, the map A : E → E is weakly continuous.

Proof. Let tn → t in R, and vn → v ∈ E0,w , with
∥∥vn∥∥E0 ≤ M1 for all n, and let w ∈ `2 be arbitrary. For

any ε > 0 we take K0 (ε) > 0 such that∑|i|≥K0 |wi|
2 < ε. Since f is bounded, there exists M2 > 0 such that
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∥∥f (tn , vn)∥∥ ≤ M2, ‖f (t, v)‖ ≤ M2, for all n. Also, as tn → t and vni → vi in C([−h, 0],R), for all i, (H2) implies
the existence of N(K0, ε) such that∑|i|<K0

∣∣fi (tn , vni ) − fi (t, vi)∣∣2 < ε2 if n ≥ N . Hence,

∣∣(f (tn , vn) − f (t, v) , w)∣∣ ≤√∑
|i|<K0

∣∣fi (tn , vni ) − fi (t, vi)∣∣2 ‖w‖ + (‖f (t, v)‖ + ∥∥f (tn , vn)∥∥)√∑
|i|≥K0

|wi|2

≤ ε ‖w‖ + 2M2ε.

The result for the operator A can be proved similarly. This completes the proof.

Theorem 8. Let (H1)-(H2) hold. For each r > 0 there exists a (r) > 0 such that if ψ ∈ E0 and ‖ψ‖E0 ≤ r,
then problem (4) has at least one solution de�ned on [τ, τ + a (r)]. Moreover, u (·) is a.e. di�erentiable and
du
dt = F (t, ut) for a.a. t ∈

(
τ, τ + a(r)

)
.

Proof. Lemma 7 implies that the operator F is sequentially weakly continuous in bounded sets. Since f is
bounded, F is also bounded. The result follows from Theorem 4.

In order to obtain that the map f is continuous, we need an assumption which is stronger than (H1).

(H3) Theoperator f : R×E0 → E givenby (f (t, v))i = fi (t, vi), i ∈ Z, iswell de�ned, and for any (t, v) ∈ R×E0,
we have ∑

|i|≥K
|fi (t, vi)|2 ≤ C

(
‖v‖E0

) max
s∈[−h,0]

∑
|i|≥K

v2i (s) + bK(t)

 , for all K ∈ Z+,

where bK (t) → 0+ as K → ∞ uniformly in compact sets, and C (·) ≥ 0 is a continuous non-decreasing
function.

Remark 9. Condition (H3) implies that the map f is bounded.

Lemma 10. Let (H2)-(H3) hold. Then, the map f : R × E0 → E is continuous.

Proof. Let tn → t in R, and vn → v in E0. Then for any ε > 0 there exists K (ε) such that

max
s∈[−h,0]

∑
|i|≥K

∣∣vni (s)∣∣2 < ε, max
s∈[−h,0]

∑
|i|≥K
|vi (s)|2 < ε.

Then by (H3) one can choose K1 (ε) ≥ K (ε) such that∑
|i|≥K1

∣∣fi (tn , vni )∣∣2 ≤ Rε, ∑
|i|≥K1

|fi (t, vi)|2 ≤ Rε,

for some R > 0. On the other hand, by (H2) we obtain the existence of N (ε, K) such that∑
|i|<K1

∣∣fi (tn , vni ) − fi (t, vi)∣∣2 < ε if n ≥ N .
Thus,∑

i∈Z

∣∣fi (tn , vni ) − fi (t, vi)∣∣2 ≤ ∑
|i|<K1

∣∣fi (tn , vni ) − fi (t, vi)∣∣2 + 2 ∑
|i|≥K1

∣∣fi (tn , vni )∣∣2 + 2 ∑
|i|≥K1

|fi (t, vi)|2

≤ ε + 2Rε, if n ≥ N .

Corollary 11. Under conditions (H2)-(H3), the solution given inTheorem8belongs to the space C1
(
[τ, τ + a]; E

)
.
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In order to obtain the uniqueness of solutions we need an additional Lipschitz assumption.

(H4) For any M > 0 there exists β (t,M) ≥ 0 such that β (·,M) ∈ L1 (R) and(
f (t, z) − f (t, v) , z(0) − v(0)

)
≥ −β (t,M) ‖z − v‖2E0 ,

if ‖z‖E0 , ‖v‖E0 ≤ M, t ∈ R.

Theorem 12. Assume (H1)-(H2) and (H4). Then the solution given in Theorem 8 is unique.

Proof. Let z, v ∈ E0, ‖z‖E0 , ‖v‖E0 ≤ M, andw = z−v. It follows from (H4) and
(
Aw(0), w(0)

)
=
(
Bw(0), Bw(0)

)
≥

0 that (
F (t, z) − F (t, v) , z(0) − v(0)

)
= −
(
Aw(0), w(0)

)
− λ ‖w‖E0 −

(
f (t, z) − f (t, v) , w(0)

)
≤ β (t,M) ‖w‖E0 .

Then the result follows from Theorem 6.

We now aim to study the asymptotic behaviour of solutions for problem (4). In particular, we will show the
existence of a non-autonomous attractor. When conditions (H1)-(H2), (H4) hold, if we assume that every so-
lution is global (this is true if we obtain an estimate of the solutions by Theorem 5), then we can de�ne the
map U : Rd × E0 → E0, R2

d = {(t, τ) ∈ R2 : t ≥ τ} by

U (t, τ, ψ) = ut ,

where u (·) is the unique solution to (4) with uτ = ψ. Moreover, it is easy to prove, using (3) and Gronwall’s
lemma, that themapψ 7→ U(t, τ, ψ) is continuous for any τ ≤ t. ThemapU is a process, that is,U(τ, τ, ψ) = ψ
and

U(t, τ, ψ) = U(t, r, U(r, τ, ψ)) for all τ ≤ r ≤ t and ψ ∈ E0. (6)

On the other hand, if we assume only (H1)-(H2) and that every solution is global, then we can de�ne a
multivalued semi�ow by U : R2

d × E0 → P (E0) (P (E0) is the set of all non-empty subsets of E0) by

U (t, τ, ψ) = {ut : u (·) is a solution of (4) with uτ = ψ}. (7)

Since we do not have uniqueness of the Cauchy problem, this map is in general multivalued. In a similar way
to the autonomous case [19, Lemma 13] one can prove that it is a multivalued process, that is:

1. U (τ, τ, ·) = Id (the identity map);
2. U (t, τ, ψ) ⊂ U (t, r, U (r, τ, ψ)) for all ψ ∈ E0, τ ≤ r ≤ t.

Moreover, it is strict, that is, U (t, τ, ψ) = U (t, r, U (r, τ, ψ)) for all ψ ∈ E0, τ ≤ r ≤ t.

Now, we will recall the main results from the theory of pullback attractors. First, let us consider the case
of a single-valued process [9], [10] (see also [18]).

Let X be a completemetric space. Suppose thatD is a nonempty class of parameterized sets D̂ = {D(t); t ∈
R} ⊂ P(X), where P(X) denotes the family of all nonempty subsets of X.

De�nition 13. The process U is said to be pullback D-asymptotically compact if for any t ∈ R, any D̂ ∈ D,
any sequence τn → −∞, and any sequence yn ∈ U(t, τn , D(τn))} is relatively compact in X.

De�nition 14. It is said that B̂ ∈ D is pullbackD-absorbing for the process U if for any t ∈ R and any D̂ ∈ D,
there exists a τ0(t, D̂) ≤ t such that

U(t, τ, D(τ)) ⊂ B(t) for all τ ≤ τ0(t, D̂).

De�nition 15. The family Â = {A(t); t ∈ R} ⊂ P(X) is said to be a pullbackD-attractor for U(·, ·) if:
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1. A(t) is compact for all t ∈ R,
2. Â is pullbackD-attracting, i.e.,

lim
τ→−∞

dist(U(t, τ, D(τ)), A(t)) = 0,

for all D̂ ∈ D, and all t ∈ R,
3. Â is invariant, i.e.,

U(t, τ, A(τ)) = A(t), for −∞ < τ ≤ t < +∞.

We have the following result.

Theorem 16. Suppose that the map ψ 7→ U(t, τ, ψ) is continuous for any τ ≤ t and that the process U is
pullback D-asymptotically compact. Let B̂ ∈ D be a family of pullback D-absorbing sets for U(·, ·). Then, the
family Â = {A(t); t ∈ R} ⊂ P(X) de�ned by A(t) = Λ(B̂, t), t ∈ R, where

Λ(D̂, t) =
⋂
s≤t

(⋃
τ≤s
U(t, τ, D(τ))

)
, for each D̂ ∈ D,

is a pullbackD-attractor for U(·, ·) which satis�es in addition that

A(t) =
⋃
D̂∈D

Λ(D̂, t), for t ∈ R.

Furthemore, Â is minimal in the sense that if Ĉ = {C(t); t ∈ R} ⊂ P(X) is a family of closed sets such that
limτ→−∞ dist(U(t, τ, B(τ)), C(t)) = 0, then A(t) ⊂ C(t).

The familyD is said to be inclusion-closed if D̂ ∈ D and ∅ = ̸ B(t) ⊂ D(t), for all t ∈ R, implies B̂ ∈ D. If the
family is inclusion-closed and the absorbing set B̂ ∈ D satis�es that the sets B(t) are closed, then A(t) ⊂ B(t)
implies that the attractor Â belongs toD.

Let us consider now the case of a multivalued process. The following result is proved in [7] (see also [6]
for a more general non-autonomous and random framework).

The de�nitions of pullback D-asymptotically compactness, pullback D-absorbing family and pullback
D-attraction are the same as in the single-valued case. For �xed τ ≤ t the mapping U(t, τ, ·) is said to be
upper-semicontinuous if for any x0 ∈ X and for every neighborhoodN in X of the set U(t, τ, x0), there exists
δ > 0 such that U(t, τ, y) ⊂ N whenever dX(x0, y) < δ.

De�nition 17. A family Â =
{
A(t) : t ∈ R

}
⊂ P(X) is said to be a global pullbackD-attractor for the MNDS U

if A(t) is compact for any t ∈ R, Â is pullbackD-attracting, and Â is negatively invariant, i.e.,

A(t) ⊂ U(t, τ, A(τ)), for any (t, τ) ∈ R2
d.

Â is said to be a strict global pullbackD-attractor if the invariance property in the third item is strict, i.e.,

A(t) = U(t, τ, A(τ)), for (t, τ) ∈ R2
d.

Theorem 18. Assume that the map ψ 7→ U(t, τ, ψ) is upper-semicontinuous and possesses closed values. Let
B̂ =

{
B(t) : t ∈ R

}
∈ D be pullbackD-absorbing and such that U is asymptotically compact with respect to B̂.

Then, the set Â given by

A(t) := Λ
(
B̂, t
)
=
⋂
s≤t

⋃
τ≤s
U(t, τ, B(τ)) t ∈ R, (8)

is a pullbackD-attractor for the MNDS U.
Moreover, suppose that D is inclusion-closed and that B(t) is closed in X for any t ∈ R. Then the family Â

de�ned by (8) belongs toD, and is the unique pullbackD-attractor with this property. In addition, in this case,
if U is a strict MNDS, then Â is strictly invariant.
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3 A lattice system with sublinear non-autonomous retarded terms
We shall consider a function f : R × E0 → E given by the rule (f (t, v))i = fi (t, vi) and

fi (t, vi) = F0,i (t, vi (0)) + F1,i
(
t, vi

(
−ρ(t)

))
+

0∫
−h

bi (t, s, vi (s)) ds,

where ρ(·) ∈ C1(R) and ρ(t) ∈ [0, h] for all t ∈ R, that is, putting v = ut = u (t + ·), problem (4) can be
rewritten as 

dui
dt − (ui−1 − 2ui + ui+1) + λui + F0,i (t, ui (t)) + F1,i

(
t, ui

(
t − ρ(t)

))
+
∫ 0
−h bi (t, s, ui (t + s)) ds = 0, t > τ, i ∈ Z,
ui (s) = ψi (s − τ) , ∀s ∈ [τ − h, τ].

(9)

We consider the following conditions:

(C1) λ > 0.
(C2) F0,i : R2 → R are continuous and satisfy that F0,i (x) x ≥ −C0,i(t), C0 ∈ C(R; `1) and

t∫
−∞

‖C0 (s)‖`1 e
δsds < ∞, for all t ∈ R and δ > 0.

(C3)
∣∣F0,i (t, x)∣∣ ≤ H (|x|) |x| + C1,i (t) , for all x ∈ R, where C1 ∈ C(R; `2), and H (·) ≥ 0 is a continuous and
non-decreasing function.

(C4) F1,i :R2 → R are continuous and satisfy that
∣∣F1,i (t, x)∣∣ ≤ K1 |x| + C2,i (t), for all x ∈ R, where C2 ∈

C(R; `2), K1 > 0 and
t∫

−∞

‖C2 (s)‖2`2 e
δsds < ∞, for all t ∈ R and δ > 0.

(C5) |bi (t, s, x)| ≤ m0,i (t, s) + m1,i (s) |x| , for all x ∈ R and a.a. s ∈ (−h, 0), where bi are Caratheodory in
the sense that it is measurable in s and continuous in (t, x).
Also, m0,i (t, ·) , m1,i (·) ∈ L1 (−h, 0), m0,i (t, s) ,m1,i (s) ≥ 0 and de�ning M0,i(t) =

∫ 0
−h m0,i (t, s) ds

and M1,i =
∫ 0
−h m1,i (s) ds we assume that M1 :=

√∑
i∈ZM2

1,i < ∞, M0(t) :=
√∑

i∈ZM2
0,i(t) < ∞,

M0 ∈ C(R;R+) and
t∫

−∞

(M0 (s))2 eδsds < ∞, for all t ∈ R and δ > 0.

(C6) ρ ∈ C1
(
R, [0, h]

)
and ρ′ (t) ≤ ρ* < 1.

Let us check conditions (H1)-(H3). First, in order to obtain (H1) we prove that f is well de�ned and
bounded. We note that

|fi (t, vi)| ≤
∣∣F0,i (t, vi (0))∣∣ + ∣∣F1,i (t, vi (−ρ(t)))∣∣ + 0∫

−h

|bi (t, s, vi (s))| ds. (10)

For the �rst term we have by (C3) that∣∣F0,i (t, vi (0))∣∣2 ≤ 2(H2 (|vi (0)|) |vi (0)|2 + C21,i (t)
)

(11)

≤ 2χ(‖v‖E0 ) |vi (0)|
2 + 2C21,i (t) ,

where χ(‖v‖E0 ) = maxi∈Z
(
H2 (|vi (0)|)

)
, which exists because H (·) is non-decreasing and v ∈ E0. Then,∑

i∈Z

∣∣F0,i (t, vi (0))∣∣2 ≤ 2χ(‖v‖E0 ) ‖v‖2E0 + 2 ‖C1 (t)‖2 . (12)
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As for the second term we obtain thanks to (C4) that∑
i∈Z

∣∣F1,i (t, vi (−ρ(t)))∣∣2 ≤ 2K21∑
i∈Z

∣∣vi (−ρ(t))∣∣2 + 2 ‖C2 (t)‖2
≤ 2K21 ‖v‖2E0 + 2 ‖C2 (t)‖

2 . (13)

Now, for the term with the integral delay, taking into account (C5), we proceed as follows:
0∫

−h

|bi (t, s, vi (s))| ds ≤
0∫

−h

(
m0,i (s) + m1,i (s) |vi (s)|

)
ds

≤ M0,i(t) + ‖v‖E∞ M1,i.

Then

∑
i∈Z

 0∫
−h

|bi (t, s, vi (s))| ds

2

≤ 2
∑
i∈Z

M2
0,i + 2 ‖v‖2E∞

∑
i∈Z

M2
1,i

≤ 2M2
0(t) + 2 ‖v‖2E0 M

2
1. (14)

Using (12)-(14) in (10) we obtain that f is well de�ned and bounded.
Now, we check (H2), i.e., that the maps fi : R × C([−h, 0],R) → R are continuous. We consider tn ∈

R,
{
vn
}
n∈N ⊂ C([−h, 0],R) and t0 ∈ R, v0 ∈ C([−h, 0],R) such that tn → t0, vn → v0 in C([−h, 0],R). Now,

we have ∣∣∣fi (tn , vn) − fi (t0, v0)∣∣∣ ≤ ∣∣∣F0,i (tn , vn (0)) − F0,i (t0, v0 (0))∣∣∣
+
∣∣∣F1,i (tn , vn (−ρ(tn))) − F1,i (t0, v0 (−ρ(t0)))∣∣∣

+

∣∣∣∣∣∣
0∫

−h

bi
(
tn , s, vn (s)

)
ds −

0∫
−h

bi
(
t0, s, v0 (s)

)
ds

∣∣∣∣∣∣ .
From (C2) and (C4), F0,i and F1,i are continuous functions. Also, from (C5) and Lebesgue’s theorem, the last
term converges to 0. Thus, the continuity of fi follows.

To check (H3) we observe that

∑
|i|≥K

 0∫
−h

|bi (t, s, vi (s))| ds

2

≤ 2
∑
|i|≥K

 0∫
−h

m0,i (s) ds

2

+ 2
∑
|i|≥K

 0∫
−h

m1,i (s) |vi (s)| ds

2

≤ 2
∑
|i|≥K

M2
0,i(t) + 2 ‖v‖2E0

∑
|i|≥K

M2
1,i .

Also, by (10), (11) and (C4) we have

∑
|i|≥K
|fi (t, vi)|2 ≤ R

χ(‖v‖E0 )∑
|i|≥K
|vi (0)|2 +

∑
|i|≥K

C21,i(t) + K21
∑
|i|≥K

∣∣vi (−ρ(t))∣∣2
+
∑
|i|≥K

C22,i (t) +
∑
|i|≥K

M2
0,i(t) + ‖v‖2E0

∑
|i|≥K

M2
1,i


≤ C
(
‖v‖E0

) max
s∈[−h,0]

∑
|i|≥K

v2i (s) + bK(t)

 ,

where bK → 0+ as K → ∞ uniformly in compact sets, and C (·) ≥ 0 is a continuous non-decreasing function.
Thus, (H3) holds.

Then Theorem 8 and Corollary 11 imply that for any ψ ∈ E0 there exists, at least, one solution u (·) ∈
C1
(
[τ, α), E

)
in a maximal interval [τ, α). In order to obtain that every solution is globally de�ned we need

to prove some estimates. This will be done in the next section.
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3.1 Estimate of solutions

Now, we shall obtain some estimates of solutions, which will imply the existence of a pullbackD-absorbing
for a suitable class of setsD.

Proposition 19. Assume (C1)-(C5). Also, let

2M1eh < 1, (15)

2K21 < e−ηhλ (λ − η)
(
1 − ρ*

)
, (16)

where η ∈ (η0, η1) and ηj are the two solutions of the equation ηe−ηh = 2M1.
Then, every solution u (·) with uτ = ψ ∈ E0 satis�es

‖ut‖2E0 ≤ 2Ĉ ‖ψ‖
2
E0 e

(L−η)te(η−L)τ + R (τ, t) , ∀t ∈ [τ, T*), (17)

where T* is the maximal time of existence and

L = 2M1eηh (18)

Ĉ := eηh + 2K21
λη
(
1 − ρ*

) e2ηh , (19)

β (t) = eηh
(
2 ‖C2 (t)‖2

λ + (M0 (t))2
ϵ̂ + 2 ‖C0 (t)‖`1

)
. (20)

R (τ, t) = e−ηt
t∫
τ

eηsβ (s) ds + e(L−η)t
t∫
τ

e(η−L)sβ (s) ds, (21)

where ϵ̂ > 0 is a small constant depending on the parameters of the problem.

Remark 20. We note that (15) implies that ηe−ηh > 2M1 if η ∈ (η0, η1), so that η > L. Also, (16) implies that
λ > η.

Proof. Wemultiply (9) by u = (ui)i∈Z in `2. Then

1
2
d
dt ‖u‖

2 + (Au, u) + λ ‖u (t)‖2 = −
∑
i∈Z

F0,i (t, ui (t)) ui (t) −
∑
i∈Z

F1,i (t, ui (t − ρ (t))) ui (t)

−
∑
i∈Z

0∫
−h

bi (t, s, ui (t + s)) ds ui (t) . (22)

Multiplying (22) by eηt , and using (Au, u) = ‖Bu‖2 and (C1)-(C4), we have, for any ϵ > 0 to be determined
later on,

d
dt
(
eηt ‖u (t)‖2

)
≤ (η − 2λ + ϵ) eηt ‖u (t)‖2 + 2eηt

∥∥C0(t)∥∥`1
+ 2 e

ηt

ϵ
(
K21
∥∥u (t − ρ(t))∥∥2 + ‖C2 (t)‖2)

− 2eηt
∑
i∈Z

0∫
−h

bi (t, s, ui (t + s)) ds ui (t) . (23)
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Now, integrating the last inequality over (τ, t) we obtain

eηt ‖u (t)‖2 ≤ eητ ‖u (τ)‖2 + (η − 2λ + ϵ)
t∫
τ

eηs ‖u (s)‖2 ds + 2
t∫
τ

eηs ‖C0 (s)‖`1 ds

+ 2
ϵ

t∫
τ

eηs
∥∥C2(s)∥∥2 ds + 2K21

ϵ

t∫
τ

eηs ‖u (s − ρ (s))‖2 ds

− 2
t∫
τ

eηs
∑
i∈Z

0∫
−h

bi (s, r, ui (s + r)) dr ui (s)

 ds. (24)

We proceed to estimate the two last terms in (24). First, using 1
1−ρ′(t) ≤

1
1−ρ* we have

t∫
τ

eηs ‖u (s − ρ (s))‖2 ds ≤
t∫

τ−h

eη(l+h)
1 − ρ* ‖u (l)‖

2 dl

= eηh
1 − ρ*

τ∫
τ−h

eηl ‖u (l)‖2 dl + eηh
1 − ρ*

t∫
τ

eηl ‖u (l)‖2 dl

≤ eηh

η
(
1 − ρ*

) ‖ψ‖2E0 (eητ − eη(τ−h)) + eηh
1 − ρ*

t∫
τ

eηl ‖u (l)‖2 dl. (25)

Next, we analyze the last term in (24). By (C5),∣∣∣∣∣∣
∑
i∈Z

0∫
−h

bi (t, s, ui (t + s)) ds ui (t)

∣∣∣∣∣∣ ≤
∑
i∈Z

0∫
−h

(
m0,i (t, s) |ui (t)|

)
ds +

∑
i∈Z

0∫
−h

(
m1,i (s) |ui (t + s)| |ui (t)|

)
ds. (26)

Now, we estimate the two terms in (26) separately. On the one hand,

∑
i∈Z

0∫
−h

(
m0,i (t, s) |ui (t)|

)
ds =

∑
i∈Z

M0,i(t) |ui (t)| ≤ ‖u (t)‖M0(t). (27)

On the other hand,

∑
i∈Z

0∫
−h

(
m1,i (s) |ui (t + s)| |ui (t)|

)
ds ≤ ‖ut‖E∞

∑
i∈Z

 0∫
−h

(
m1,i (s)

)
ds

 |ui (t)|
≤ ‖ut‖E∞ M1 ‖u (t)‖
≤ ‖ut‖2E0 M1. (28)

Now, using (27) and (28), we have∣∣∣∣∣∣2
t∫
τ

eηs
∑
i∈Z

0∫
−h

bi (t, r, ui (s + r)) dr ui (s)

∣∣∣∣∣∣ ds
≤ 2

t∫
τ

eηs
(
‖u (s)‖M0(s) + ‖us‖2E0 M1

)
ds

≤ ϵ̂
t∫
τ

eηs ‖u (s)‖2 ds + 1
ϵ̂

t∫
τ

eηsM2
0(s)ds + 2M1

t∫
τ

eηs ‖us‖2E0 ds, (29)
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with ϵ̂ > 0 arbitrary. Using (25) and (29) in (24) we obtain

eηt ‖u (t)‖2 ≤ eητ ‖u (τ)‖2 +
(
η − 2λ + ϵ + ϵ̂ + 2K21eηh

ϵ(1 − ρ*)

) t∫
τ

eηs ‖u (s)‖2 ds

+
t∫
τ

eηs
(
2 ‖C2 (s)‖2

ϵ + M
2
0 (s)
ϵ̂ + 2 ‖C0 (s)‖`1

)
ds

+ 2K21eηh
ϵη
(
1 − ρ*

) ‖ψ‖2E0 (eητ − eη(τ−h)) + 2M1

t∫
τ

eηs ‖us‖2E0 ds.

Taking ϵ = λ, condition (16) implies that η − λ + ϵ̂ + 2K2
1e

ηh

λ(1−ρ*) < 0 for ϵ̂ small enough. Then

eηt ‖u (t)‖2 ≤ eητ ‖u (τ)‖2 +
t∫
τ

eηs
(
2 ‖C2 (s)‖2

λ + M
2
0 (s)
ϵ̂ + 2 ‖C0 (s)‖`1

)
ds (30)

+ 2K21eηh
λη
(
1 − ρ*

) ‖ψ‖2E0 (eητ − eη(τ−h)) + 2M1

t∫
τ

eηs ‖us‖2E0 ds.

Let θ ∈ [−h, 0]. Replacing t by t + θ in (30), using that ‖u (t + θ)‖ = ‖ψ (t + θ)‖ ≤ ‖ψ‖E0 if t + θ < 0, and
multiplying by e−η(t+θ) we have

‖u (t + θ)‖2 ≤ e−η(t+θ)eητ ‖ψ‖2E0 + e
−η(t+θ)

t+θ∫
τ

eηs
(
2 ‖C2 (s)‖2

λ + M
2
0 (s)
ϵ̂ + 2 ‖C0 (s)‖`1

)
ds

+ e−η(t+θ) 2K21eηh
λη
(
1 − ρ*

) ‖ψ‖2E0 (eητ − eη(τ−h)) + 2M1e−η(t+θ)
t+θ∫
τ

eηs ‖us‖2E0 ds.

Using that θ ∈ [−h, 0] and neglecting the negative terms we get

eηt ‖ut‖2E0 ≤ e
ηheητ ‖ψ‖2E0 + e

ηh
t∫
τ

eηs
(
2 ‖C2 (s)‖2

λ + M
2
0 (s)
ϵ̂ + 2 ‖C0 (s)‖`1

)
ds

+ 2K21e2ηh
λη
(
1 − ρ*

) ‖ψ‖2E0 eητ + 2M1eηh
t∫
τ

eηs ‖us‖2E0 ds.

We can rewrite this expression as

eηt ‖ut‖2E0 ≤ Ĉ ‖ψ‖
2
E0 e

ητ +
t∫
τ

eηsβ (s) ds + L
t∫
τ

eηs ‖us‖2E0 ds, (31)

where we have used the notation given in (18)-(20). Applying Gronwall’s inequality, Fubini’s theorem and
using η − L > 0 (see Remark 20) yields

eηt ‖ut‖2E0 ≤ Ĉ ‖ψ‖
2
E0 e

ητ +
t∫
τ

eηsβ (s) ds + LeLt
t∫
τ

 s∫
τ

eηrβ (r) dr + Ĉ2 ‖ψ‖2E0 e
ητ

 e−Lsds
= Ĉ ‖ψ‖2E0 e

ητ +
t∫
τ

eηsβ (s) ds + Ĉ ‖ψ‖2E0
(
eLte−Lτ − 1

)
eητ + eLt

t∫
τ

eηrβ (r)
(
e−Lr − e−Lt

)
dr

≤ Ĉ ‖ψ‖2E0 e
ητ + Ĉ ‖ψ‖2E0 e

Lte(η−L)τ +
t∫
τ

eηsβ (s) ds + eLt
t∫
τ

e(η−L)sβ (s) ds,
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and then

‖ut‖2E0 ≤ Ĉ ‖ψ‖
2
E0 e

−ηteητ + Ĉ ‖ψ‖2E0 e
(L−η)te(η−L)τ + e−ηt

t∫
τ

eηsβ (s) ds + e(L−η)t
t∫
τ

e(η−L)sβ (s) ds. (32)

From here (17) follows.

Let Rη be the set of all functions r : R→ (0, +∞) such that

lim
t→−∞

e(η−L)tr2(t) = 0.

Denote by Dη the class of all families D̂ =
{
D(t) : t ∈ R

}
⊂ P(`2) such that D(t) ⊂ B(0, rD̂(t)) for some

rD̂ ∈ Rη, where B(0, rD̂(t)) denotes the closed ball in `2 centered at zero with radius rD̂(t). The class Dη is
inclusion-closed.

Corollary 21. Assuming the conditions of Proposition 19, Theorem 5 implies that every local solution of (4) can
be de�ned globally. Also, the map U de�ned by (7) is a strict multivalued process.

Corollary 22. The balls Bη(t) = Bl2 (0, Rη(t)), where Rλ1 (t) is the nonnegative number given for each t ∈ R by

R2η(t) = e−ηt
t∫

−∞

eηsβ (s) ds + e(L−η)t
t∫

−∞

e(η−L)sβ (s) ds + 1, (33)

form a family B̂η which is pullbackDη-absorbing for the process U.

We are interested in proving that B̂η ∈ Dη. For this aim we will need and additional assumption on the
function β (t) (that is, on the functions C2, M0, C0).

Lemma 23. In addition to the conditions of Proposition 19, assume that

lim
t→−∞

e−δ1 t
t∫

−∞

eδ2sβ (s) ds = 0 for all 0 < δ1 < δ2. (34)

Then B̂η ∈ Dη.

Remark 24. Condition (34) is satis�ed if
t∫

−∞

β(s)ds < ∞ for all t ∈ R.

Indeed, for t → −∞ we have

e−δ1 t
t∫

−∞

eδ2sβ (s) ds ≤
t∫

−∞

e−δ2(t−s)β(s)ds ≤
t∫

−∞

β(s)ds → 0.

Proof. By (34), η > L and
∫ t
−∞ e

(η−L)sβ (s) ds < ∞ we have

lim
t→−∞

e(η−L)tR2η(t) = lim
t→−∞

e(η−L)t
e−ηt t∫

−∞

eηsβ (s) ds + e(L−η)t
t∫

−∞

e(η−L)sβ (s) ds + 1


= lim
t→−∞

e−Lt
t∫

−∞

eηsβ (s) ds +
t∫

−∞

e(η−L)sβ (s) ds + e(η−L)t = 0.
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3.2 Estimate of the tails

In order to obtain the existence of a pullback attractor we need to obtain an estimate of the tails of solutions.

Lemma 25. We assume the conditions of Lemma 23. Let B̂η ∈ Dη be the pullback Dη-absorbing family given
above. Then, for any ϵ > 0 and t1 ≤ t2 there exist T

(
ϵ, t1, t2, B̂η

)
≤ t1, K

(
ϵ, t1, t2, B̂η

)
≥ 1 such that

max
s∈[−h,0]

√∑
|i|>2K

|ui (t + s)|2 < ϵ, ∀τ ≤ T, t ∈ [t1, t2], (35)

for any solution u (·) with uτ ∈ Bη(τ).

Proof. De�ne a smooth function θ satisfying

θ(s) =


0, 0 ≤ s ≤ 1,
0 ≤ θ(s) ≤ 1, 1 ≤ s ≤ 2,
1, s ≥ 2.

Obviously
∣∣∣θ′(s)∣∣∣ ≤ C, for all s ∈ R+. For any solution u (·) , let v (t) := (vi (t))i∈Z be given by vi (t) =

ρK,iui (t) , where ρK,i := θ
(
|i|
K

)
. We multiply (9) by v. We note that u (·) ∈ C1

(
[0,∞

)
, E) implies

1
2
d
dt
∑
i∈Z

ρK,i |ui|2 =
∑
i∈Z

dui (t)
dt vi (t) , ∀t > τ.

Following now the arguments in [19, p.571] there exists a constant R1 (depending on the parameters of the
problem) such that

(Au (t) , v (t)) ≥ −R1K
∥∥u(t)∥∥2 , ∀ τ ≤ t ≤ t2.

Note that (17), η − L > 0 and B̂η ∈ Dη imply the existence of R2(t2) (independent of τ) such that∥∥u(t)∥∥2 ≤ R2(t2), ∀ τ ≤ t ≤ t2.
Hence,

1
2
d
dt
∑
i∈Z

ρK,i |ui (t)|2 ≤ −λ
∑
i∈Z

ρK,i |ui (t)|2 −
∑
i∈Z

ρK,i fi (uit) ui (t) +
C(t2)
K .

Then, arguing as in the proof of Proposition 19 we have

d
dt

(
eηt
∑
i∈Z

ρK,i |ui (t)|2
)
≤ eηt (η − 2λ + ϵ)

∑
i∈Z

ρK,i |ui (t)|2 (36)

+ 2eηt
∑
i∈Z

ρK,iC0,i (t) +
2C(t2)
K eηt

+ 2
ϵ e

ηt∑
i∈Z

ρK,iC22,i (t) +
2K21
ϵ
∑
i∈Z

ρK,i |ui (t − ρ (t))|2

+ 2eηt
∑
i∈Z

ρK,i
0∫

−h

|bi (t, s, ui (t + s))| ds |ui (t)| .
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Integrating over the interval (τ, t) we get

eηt
(∑
i∈Z

ρK,i |ui (t)|2
)
≤ eητ

∑
i∈Z

ρK,i |ui (τ)|2 + (η − 2λ + ϵ)
t∫
τ

eηs
∑
i∈Z

ρK,i |ui (s)|2 ds (37)

+ 2
t∫
τ

eηs
(∑
i∈Z

ρK,iC0,i (s) ds +
C(t2)
K + 1

ϵ
∑
i∈Z

ρK,iC22,i (s)
)
ds

+ 2K21
ϵ

t∫
τ

eηs
∑
i∈Z

ρK,i |ui (s − ρ (s))|2 ds

+ 2
t∫
τ

eηs
∑
i∈Z

ρK,i
0∫

−h

|bi (s, r, ui (s + r))| dr |ui (s)| ds .

Next, we estimate the last two terms in (37). The �rst one, arguing as in (25), is estimated by
t∫
τ

eηs
∑
i∈Z

ρK,i |ui (s − ρ (s))|2 ds ≤
eηh

η
(
1 − ρ*

) ∥∥∥ρ 1
2
Kψ
∥∥∥2
E0

(
eητ − eη(τ−h)

)

+ eηh
1 − ρ*

t∫
τ

eηs
∑
i∈Z

ρK,i |ui (s)|2 ds. (38)

As for the second term, using assumption (C5), in a similar way to that in (27)-(28), we have
t∫
τ

eηs
∑
i∈Z

ρK,i |ui (s)|
0∫

−h

m0,i (s, r) dr ds ≤
ϵ̂
2

t∫
τ

eηs
∥∥∥ρ 1

2
Ku (s)

∥∥∥2 ds + 1
2ϵ̂

t∫
τ

eηs
∑
i∈Z

ρK,iM2
0,i (s) ds,

t∫
τ

eηs
∑
i∈Z

ρK,i |ui (s)|
0∫

−h

m1,i (r) |ui (s + r)| dr ds ≤
t∫
τ

eηs
∥∥∥ρ 1

2
K,ius

∥∥∥
E∞

∑
i∈Z

ρ
1
2
K,i |ui (s)|M1,i ds

≤ M1

t∫
τ

eηs
∥∥∥ρ 1

2
Kus
∥∥∥2
E0
ds,

and
t∫
τ

eηs
∑
i∈Z

ρK,i
0∫

−h

|bi (r, ui (s + r))| dr |ui (s)| ds ≤
ϵ̂
2

t∫
τ

eηs
∥∥∥ρ 1

2
Ku (s)

∥∥∥2 ds + 1
2ϵ̂

t∫
τ

eηs
∑
i∈Z

ρK,iM2
0,i (s) ds (39)

+M1

t∫
τ

eηs
∥∥∥ρ 1

2
Kus
∥∥∥2
E0
ds.

Consequently,

eηt
∑
i∈Z

ρK,i |ui (t)|2 ≤ eητ
∑
i∈Z

ρK,i |ui (τ)|2 +
(
η − 2λ + ϵ + ϵ̂ + 2K21

ϵ
(
1 − ρ*

) eηh) t∫
τ

eηs
∑
i∈Z

ρK,i |ui (s)|2 ds

t∫
τ

eηs

2
∥∥∥ρ 1

2
KC2 (s)

∥∥∥2
ϵ +

∑
i∈Z ρK,iM

2
0,i (s)

ϵ̂ + 2 ‖ρKC0 (s)‖`1

 ds + 2
η
(
eηt − eητ

) C(t2)
K

+ 2K21
λ

eηh

η
(
1 − ρ*

) ∥∥∥ρ 1
2
Kψ
∥∥∥2
E0

(
eητ − eη(τ−h)

)
+ 2M1

t∫
τ

eηs
∥∥∥ρ 1

2
Kus
∥∥∥2
E0
ds.
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Taking ϵ = λ and using condition (16), we have

eηt
∑
i∈Z

ρK,i |ui (t)|2 ≤ eητ
∑
i∈Z

ρK,i |ui (τ)|2 +
2
η
(
eηt − eητ

) C(t2)
K

+
t∫
τ

eηs

2
∥∥∥ρ 1

2
KC2 (s)

∥∥∥2
λ +

∑
i∈Z ρK,iM

2
0,i (s)

ϵ̂ + 2 ‖ρKC0 (s)‖`1

 ds
+ 2K21

λ
eηh

η
(
1 − ρ*

) ∥∥∥ρ 1
2
Kψ
∥∥∥2
E0

(
eητ − eη(τ−h)

)
+ 2M1

t∫
τ

eηs
∥∥∥ρ 1

2
Kus
∥∥∥2
E0
ds. (40)

Let θ ∈ [−h, 0]. We replace t by t + θ in (40), and use that
∥∥∥ρ 1

2
Ku (t + θ)

∥∥∥ = ∥∥∥ρ 1
2
Kψ (t + θ)

∥∥∥ ≤ ∥∥∥ρ 1
2
Kψ
∥∥∥
E0

if t + θ < τ;

multiplying by e−η(t+θ) we obtain∑
i∈Z

ρK,i |ui (t + θ)|2 ≤ eητe−η(t+θ)
∑
i∈Z

ρK,i |ui (τ)|2

+ e−η(t+θ)
t+θ∫
τ

eηs

2
∥∥∥ρ 1

2
KC2 (s)

∥∥∥2
λ +

∥∥∥ρ 1
2
KM0 (s)

∥∥∥2
ϵ̂ + 2 ‖ρKC0 (s)‖`1

 ds
+ 2
η
(
eη(t+θ) − eητ

) C(t2)
K e−η(t+θ)

+ 2K21
λ
eηhe−η(t+θ)

η
(
1 − ρ*

) ∥∥∥ρ 1
2
Kψ
∥∥∥2
E0

(
eητ − eη(τ−h)

)
+ 2M1e−η(t+θ)

t+θ∫
τ

eηs
∥∥∥ρ 1

2
Kus
∥∥∥2
E0
ds,

and

eηt
∥∥∥ρ 1

2
Kut
∥∥∥2
E0
≤
(
eηh + 2K21e2ηh

λη
(
1 − ρ*

))∥∥∥ρ 1
2
Kψ
∥∥∥2
E0
eητ

+ eηh
t∫
τ

eηs

2
∥∥∥ρ 1

2
KC2 (s)

∥∥∥2
λ +

∑
i∈Z ρK,iM

2
0,i (s)

ϵ̂ + 2 ‖ρKC0 (s)‖`1

 ds
+ 2
η
C(t2)
K eηt + 2M1eηh

t∫
τ

eηs
∥∥∥ρ 1

2
Kus
∥∥∥2
E0
ds.

We can rewrite this expression as

eηt
∥∥∥ρ 1

2
Kut
∥∥∥2
E0
≤ 2η

C(t2)
K eηt + Ĉ

∥∥∥ρ 1
2
Kψ
∥∥∥2
E0
eητ +

t∫
τ

eηsβρK (s) ds + L
t∫
τ

eηs
∥∥∥ρ 1

2
Kus
∥∥∥2
E0
ds, (41)

where we have used the notation

Ĉ := eηh + 2K21
λη
(
1 − ρ*

) e2ηh,
βρK (t) := eηh

2
∥∥∥ρ 1

2
KC2 (t)

∥∥∥2
λ +

∑
i∈Z ρK,iM

2
0,i (s)

ϵ̂ + 2 ‖ρKC0 (t)‖`1

 ,

L := 2M1eηh.

Now, proceeding in a similar way to (32) and using η − L > 0 (see Remark 20) we obtain

∥∥∥ρ 1
2
Kut
∥∥∥2
E0
≤ 2e(L−η)te(η−L)τ Ĉ

∥∥∥ρ 1
2
Kψ
∥∥∥2
E0
+ 2C(t2)
K (η − L) + e

−ηt
t∫
τ

eηsβρK (s) ds + e(L−η)t
t∫
τ

e(η−L)sβρK (s) ds. (42)
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Now, it is convenient to keep in mind the de�nition of βρk , and its dependence on C0, M0 and C2. It follows
that

βρK (s)→ 0 as K →∞ for any s.

Hence, Lebesgue’s Dominated Convergence Theorem implies that

t∫
−∞

eδsβρK (s) ds → 0, as K →∞ for any t ∈ [t1, t2], δ > 0.

Thus, there exist T
(
ϵ, t1, t2, B̂η

)
≤ t1, K

(
ϵ, t1, t2, B̂η

)
≥ 1 such that

max
s∈[−h,0]

√∑
|i|≥2K

(ui (t + s))2 ≤ max
s∈[−h,0]

√∑
i∈Z

ρK,i (ui (t + s))2

=
∥∥∥ρ 1

2
Kut
∥∥∥
E0

≤ ϵ, if τ ≤ T, t ∈ [t1, t2].

3.3 Existence of the pullback attractor: general case

We know that under the assumptions of Proposition 19, themap U given by (7) is a strict multivalued process.
For any initial data ψ ∈ E0 we denote

Dτ (ψ) =
{
u (·) is a global solution of (9) with initial data uτ = ψ

}
.

Wewill prove that the map ψ 7→ U(t, τ, ψ) is upper-semicontinuous and has closed values, and also that
U is asymptotically compact with respect to the pullbackDη-absorbing family B̂η de�ned in Corollary 22.

First, we obtain an auxiliary lemma.

Lemma 26. We assume the conditions of Lemma 23. Let ψn → ψ in E0. Then:

1. For arbitrary ϵ > 0, τ ≤ T there exists K (ϵ, τ, T) such that for any un (·) ∈ Dτ
(
ψn
)
,

max
s∈[−h,0]

√∑
|i|≥2K

∣∣uni (t + s)∣∣2 ≤ ϵ, ∀t ∈ [τ, T] . (43)

2. Let un (·) ∈ Dτ
(
ψn
)
. Then there exists u (·) ∈ Dτ (ψ) and a subsequence

{
unk
}
of
{
un
}
such that

unk → u in C ([τ, T] , E) for all T > τ. (44)

Proof. It follows from ψn → ψ in E0 the existence of K1 (ϵ) > 0 such that∑
i∈Z

ρK,i
∣∣ψni (s)∣∣2 < ϵ, ∀n, s ∈ [−h, 0]

∑
i∈Z

ρK,i
∣∣∣ψ0

i (s)
∣∣∣2 < ϵ, ∀s ∈ [−h, 0] ,

if K ≥ K1. Now, from (42) we obtain the existence of K (ϵ, τ, T) ≥ K1 such that

∥∥∥ρ 1
2
Ku

n
t

∥∥∥2
E0
≤ 2e(L−η)te(η−L)τ Ĉ

∥∥∥ρ 1
2
Kψ

n
∥∥∥2
E0
+ 2C(T)
K (η − L) + e

−ηt
t∫
τ

eηsβρK (s) ds + e(L−η)t
t∫
τ

e(η−L)sβρK (s) ds ≤ ϵ,
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for all t ∈ [τ, T], where we have used βρK (s) → 0 as K → ∞ for any s and the Lebesgue Dominated Conver-
gence Theorem. Therefore,

max
s∈[−h,0]

√∑
|i|≥2K

(
uni (t + s)

)2 ≤ max
s∈[−h,0]

√∑
i∈Z

ρK,i
(
uni (t + s)

)2
=
∥∥∥ρ 1

2
Ku

n
t

∥∥∥
E0
≤ ϵ,

which proves (43). Next, fromProposition 19we have that unt is bounded in E0. Then, using (43) one can prove
in a standard way (see [13, p.71] for the details) that

{
un (t)

}
is precompact in E for any t ∈ [τ, T]. After that,

following the same lines as in [13, p.71], we can obtain the existence of u (·) ∈ Dτ (ψ) and a subsequence such
that un (·)→ u (·) in C ([τ, T] , E) for all T > τ.

As a direct consequence we have the following result. The proof is rather similar to that in [13, p.72].

Corollary 27. Assume the conditions of Lemma23. Then, themultivaluedmapψ 7→ G (t, τ, ψ)possesses closed
graph and is upper semicontinous. Moreover, it has compact values.

Lemma 28. Assume the conditions of Lemma23. Then, themultivaluedprocessU is pullbackDη-asymptotically
compact. In particular, it is pullback asymptotically compact with respect to the pullbackDη-absorbing family
B̂η .

Proof. We consider ξ n = unt ∈ U(t, τn , ψn), where un (·) ∈ Dτn
(
ψn
)
, ψn ∈ D(τn), and D̂ = {D(t)} ∈ Dη. In

view of Corollary 22, for n large enough we have unt ∈ Bη(t). Hence,∥∥unt (s)∥∥ ≤ C, ∀s ∈ [−h, 0] ,
for some C > 0. For �xed s ∈ [−h, 0] we can �nd a subsequence (denoted again as un) such that

un (t + s)→ ωs in Ew.

Using a similar argument as in [13, p.71] (with the help of Lemma 25) we obtain that un (tn + s) → ωs in E.
Therefore,

{
unt (s)

}
is a precompact sequence for any s ∈ [−h, 0]. In order to apply the Ascoli-Arzelà theo-

rem, we need to obtain the equicontinuity property. Using Proposition 19, the boundedness of the sequence∥∥ψn∥∥2E0 e(η−L)τn , the fact that the operator F is bounded and the integral representation of solution we can
obtain that

∥∥un (t + s2) − un (t + s1)∥∥ ≤ t+s2∫
t+s1

∥∥F (r, unr )∥∥ dr
≤ K (s2 − s1) , if − h ≤ s1 < s2 ≤ 0.

Then, the Ascoli-Arzelà theorem implies that ξ n is relatively compact in E0. Since by Lemma 23 we have that
B̂η ∈ Dη, U is pullback asymptotically compact with respect to this family as well.

The existence of the pullback attractor follows now from Proposition 19, Lemma 28, Corollaries 22, 27 and
Theorem 18.

Theorem 29. Assume the conditions of Lemma 23. Then, the multivalued process U possesses a unique pull-
backDη-attractor Â, which belongs toDη. Moreover, it is strictly invariant.
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3.4 Existence of the pullback attractor: case of uniqueness

We can prove uniqueness of the solution of the Cauchy problem (9) if we assume the following extra assump-
tion:

(C6) For any x, y ∈ R and s ∈ [−h, 0] we have∣∣F0,i (t, x) − F0,i (t, y)∣∣ ≤ k0(t)C3 (|x| , |y|) |x − y| ,∣∣F1,i (t, x) − F1,i (t, y)∣∣ ≤ k1(t)C4 (|x| , |y|) |x − y| ,
|bi (t, s, x) − bi (t, s, y)| ≤ k2(t)k3 (s) C5 (|x| , |y|) |x − y| ,

where Cj (·, ·) ≥ 0 are continuous and non-decreasing functions in both variables and ki (·) ∈ L2loc (R)
for i = 0, 1, 2, k3 (·) ∈ L2 (−h, 0).

Lemma 30. If (C6) holds, the map f : R × E0 → E satis�es the local Lipschitz assumption (H4) .

Proof. Let v, w ∈ E0 be such that ‖v‖E0 , ‖w‖E0 ≤ M. On the one hand, we have that

∑
i∈Z

∣∣F0,i (t, vi (0)) − F0,i (t, wi (0))∣∣2 ≤ k20(t)(max
i∈Z

(C3 (|vi (0)| , |wi (0)|))
)2∑

i∈Z
|vi (0) − wi (0)|2

≤ k20(t)χ23
(
‖v‖E0 , ‖w‖E0

)
‖v − w‖2E0 ,

∑
i∈Z

∣∣F1,i (vi (−h1)) − F1,i (wi (−h1))∣∣2 ≤ k21(t)(max
i∈Z

(C4 (|vi (−h1)| , |wi (−h1)|))
)2∑

i∈Z
|vi (−h1) − wi (−h1)|2

≤ k21(t)χ24
(
‖v‖E0 , ‖w‖E0

)
‖v − w‖2E0 ,

where χj
(
‖v‖E0 , ‖w‖E0

)
= maxi∈Z,s∈[−h,0](Cj (|vi (s)| , |wi (s)|)). On the other hand,

∑
i∈Z

 0∫
−h

|bi (t, s, vi (s)) − bi (t, s, wi (s))| ds

2

≤ k22(t)
(

max
i∈Z,s∈[−h,0]

(C5 (|vi (s)| , |wi (s)|))
)2∑

i∈Z

 0∫
−h

k3 (s) |vi (s) − wi (s)| ds

2

≤ k22(t)χ25
(
‖v‖E0 , ‖w‖E0

)∑
i∈Z

0∫
−h

k23 (s) ds
0∫

−h

|vi (s) − wi (s)|2 ds

= k22(t)χ25
(
‖v‖E0 , ‖w‖E0

) 0∫
−h

k23 (s) ds
0∫

−h

∑
i∈Z
|vi (s) − wi (s)|2 ds

≤ k22(t)χ25
(
‖v‖E0 , ‖w‖E0

)
h

0∫
−h

k23 (s) ds ‖v − w‖2E0 ,

where χ5
(
‖v‖E0 , ‖w‖E0

)
= maxi∈Z,s∈[−h,0](C5 (|vi (s)| , |wi (s)|)). The fact that the sum and the integral can be

exchanged follows easily using Lebesgue’s theorem. Thus, there exist K (M) , β (·) ∈ L1loc (R) such that

‖f (t, v) − f (t, w)‖2 ≤ β(t)K (M) ‖v − w‖2E0 ,

which proves the result.
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Then, if we assume conditions (C1)-(C6) and (15)-(16), Theorems 5, 8, 12, Corollary 11 and Proposition 19 imply
that for any ψ ∈ E0 there exists a unique global solution u (·) ∈ C1

(
[τ,∞), E

)
with u (τ) = ψ.

Hence, as shown in Section 2.2, we can de�ne the process U by putting U (t, τ, ψ) = ut , where u (·) is the
unique solution to (9) with ψ = u0. Moreover, this map is continuous with respect to the initial data ψ.

We obtain now the existence of a pullback attractor.

Theorem 31. Assume conditions (C1)-(C6) and (15)-(16), (34). Then, the process U possesses a pullback Dη-
attractor Â, which belongs toDη.

Proof. Proposition 19, Lemma 28, Corollary 22 and Theorem 16 imply the existence of the pullback Dη-
attractor Â. Since the sets Bη(t) of the absorbing family are closed and Bη ∈ Dη, we obtain that Â ∈ Dη.
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