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ABSTRACT.

let X be an infinite o-ficld of subsets of X. It is shown that there exists a
(inite real-valued nonnegative finitely additive measure g on 2 such that the
semimetric space (X, p) is not Baire, where p (A, B) =u (A A B).

1. INTRODUCTION.

The best known proof of the Vitali-llahn-Saks theorem [4, p. 158] is based
on the validity of the Baire category theorem for the semimetric space M (Z, u)
associated with the measure space (X, 2, p). This proof is due to Saks [9]. Ando
proved that the Vitali-1lahn-Saks theorem holds for finitely additive scalar - valued
measures, but he returned to the more primitive “sliding hump”™ arguments
formerly used by Lebesgue, Hahn and Nikodym.

In [3, p. 35] it is raised the problem wether M (Z, u) is a Baire space for
every finite nonnegative finitely additive measure u on a o-field ¥. Armstrong
and Prikry |2] solved this problem in the negative. In this paper it is proved,
using a different construction, that, on every infinite o-field X, there exits a
finite nonnegative finitely additive measure u such that M (X, y) is not a Baire
space.

2. NOTATIONS.

We denote by w the least non zero limit ordinal, by N the set of all positive
integers and by ¢ the least ordinal of cardinality of the continuum.
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If 2 is a o-ficld and ga {inite real-valued nonnegative finitely additive measure
pon 2, we denote by M (Z, u) the semimetric space that is obtained endowing X
with the semimetric d (A, B) = u (A A B) and by M (2, p) the metric space
determined by the canonical equivalence relation: A ~, B if and only if

d(A.B) - 0.

We consider the two elements space 2 = {0,1} endowed with the discrete
topology. which is a compact space. Let X be the measure defined on {0,1} by
Ao =X ({1} =172, and le1 g be the product measure defined on the o-field
$B(2°) of Borel subscts of 2€. Since u is countably additive, M ( B (2°), ) is a
complete metric space. We also have that M ( B (29). ) can he endowed with a
standard structure of complete Boolean algebra [10, S 17}, whose operations are
denoted by A, V. *, its orderin by < and its two designated elements by 0 and 1.
The measure induced on M (B (2°), u) by p will be denoted by u 1oo.

If s is a function such that dom(s)is a finite subset of ¢ and ran(p) C{0,11,
we shall denote by 1y the equivalence class of the Borel subset Bg of 2¢ defined
by

By={<xgq:a<c>: x4 = s(a)forevery acdom(s)}.

The sets I will be called cylinders and the class of all cylinders in

M (B (2°). u)
will be denoted by C .

For every cilinder Ig, we shall denote by | (Iy) the cardinal number of
dom(s) and we shall write dom(ly) = dom(s). If K e M ( B (2°), u), we define
1 (K) as the least n < c satisfying that there exists a cylinder <K and 1 (l) =n.
We shall write 1 (K) = w if there not exists a cylinder Iy < K. For a cylinder I,
the notation | (1) is unambigous.

3. MAIN RESULTS.

Recall that a family I' of subsets of w is said to be independent [12, p. 43]
if, for any mutually distinct sets Xy, ..., Xp. Y1,..., Y in T, we have
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In order 1o determine the cardinality of the dual of the Banach space
L™ [0.1]. Fichtenholz and Kantorovitch [5] proved that there exists an indepen-
dent family of subsets of w, whose cardinality is ¢. In Hausdorfi' |6] and in
Kuratowski, Mostowski [8, p. 303] there appears a more simple proof of this
fact. Using that result, we can easily prove that there exists a maximal lamily
{Ag: a<cl of independent subsets of X = F (w).

Set f (Ag) = Iga. where dom(s%) = {a} and s¥ (@) = 0. According to |12,
12.2], we can extend { to an homomorphism from the subalgebra of 2 generated
by 1Ag: a <cfto the algebra M ( B (2°). p). This extension will be denoted by
f too.

By the Sikorski extension theorem (cf. |11], [12, 33.1]), f can be extended
10 a Boolean algebra homomorphism. denoted by f again, from 2 to M ($B(2°), u)
as M (B(2€). ) is a complete Boolean algebra. Then a positive finitely additive
measure can be deflined on 2 by v (A) =u (f(A)).

Since the family {Ag: a < ci is maximal, for every B e %, there exist
ordinal numebrs oy, ..., an, By. ..., Bm < ¢ such that cither

BDAg, Moo Mg N(w\Ag)N...N(w\A, )

or

w\BDAal n...m..-\anm(w\,\ﬁ])n...m(w\.-\ﬁm).

llence there exists a cylinder I such that cither Iy < (B) or Iy < f(B)*.

With these notations. we have:
Proposition. M (2, v) is not a Baire space.

Proof. It is sufficient to prove that M (2, v) is not a Baire space. Since M (2. v)
is isometric to f () and [ (X) is dense in M (B (2°), w), we only need 1o prove
that {(2) is of first category in M (B (2°), w).

Denote by 4 the set of all K ¢ M (8 (2°), w) for which there exists 1 ¢ C
verifying cither I <K or | <K*. We shall prove that #t is of first category in
M (B (2°),. p).

Let A be the set of V e M (B (2°), 1) that can be represented by an open
set in 2€. Pui
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D={KeM(BQ)u):(VmeN)(Te>0)(VVev)
[u(KAV)<e .- [(V)>m]}

and D*F={K e M (B2, u):K¥e D}
Since A NDN D * = ¢, inorder to prove that 4 is of first category we shall
show that D N D * is residual. As the mapping * is an isometry, it is sufficient to

prove that ) is residual.

SinceD=NU D m» Where, [or every pair n, m of natural nunber,
m n ’

, \ ]
Dym={KeMBQ).m:(V Ver) WKAV) <=~ 1(V)>m)},
n
we shall sce that, for every m ¢ N, U D - is a densc open set.
“ s

. U D, . is open: Suppose that K e UD, . Then K e Dy, o for some
n 9 n ? A
i ]
neN.fu(KAL)L e we have L ¢ Dy, oy because u (LAV) <E—implies
2n ’ n

1 1 |
n(KAV) <—2— + P < = and, since K e Dy, 1(V)>m. Therefore the ball
n 2n n '

. 1
in M (B (2°), ) with center K and radius —7——is contained inU D .
2n n ’

2. U D, is dense: Since the set of all finite unions of cylinders is densc in
n ’

. . k
M (B(2°), u), we have only to prove that given e >0 and A = U I, where
i=1
Ij e C for | <i <k, there exists K eV D, o such that g (A AK) <e. We can
n H

assume that dom(l) = dom(lj) and 1(}) =1(lj) =r for every i, j <k.

Let s> m be a natural number such that (3) 2™ <e. and let a Ccbea
finite set satisfying a N dom(l;) = ¢ and card(a) =s.

If I ¢ C, dom(l) C a and {(1)=m, we choose an a (1) € C such that

dom(a(l))=aand a ()< L

Put B =V « (I) where the join is taken over all I € C such that 1 (I) = n and
|
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dom(DCa. Let K =AAB* Asp(KAA)<Zpu(a(l)) < (r';) 2M 2% g, it
remains to show that K e U Dy 1.

n

Let ne N and 1/n <275, We shall prove that K ¢ D Suppose

n,m-*

p(KAV)<1/Mn<25 1eC

andJ < V. Wehave JABSJAKFSVAK*<VAK,sou(J AB)<278,
Nevertheless, if card(dom(J) Na) =m; < m <s, we have

1
p(AB) > — M- my_—om 1) -
2](])-m1 —)S

Hence m <1(J).

Remark. Since in the space M (B (2°), 1) we have DN D * £ ¢, there exists a
K e M ($B(2°), ) such that, for every [ e G, 0<p (K A I)<p(I). This result
can not be obtained by the method used by Kirk [7] because the metric space
M (B (2°), u) is not separable.

Theorem, Let 2 be an infinite o-ficld of subscts of the set X. There exists a
(inite real valued nonnegative finjtely additive measure g on Z such that M (2, u)
is not a Baire spacc.

Proof. Using the Marczewski indicator £ 3™ XAq for a sequence of mutually
distinct clements of X, it is easy to construct a sequence <Bp:n<w>in X of
painvise disjoint sets. In this case, £ contains a sub-o-ficld isomorphic to & (w).
‘Therefore the construction of the proposition can be carried oul in this case.
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