NON BAIRE MEASURE SPACES

by

J. ARIAS DE REYNA*

ABSTRACT.

Let Σ be an infinite σ -field of subsets of X. It is shown that there exists a finite real-valued nonnegative finitely additive measure μ on Σ such that the semimetric space (Σ, ρ) is not Baire, where $\rho(A, B) = \mu(A \Delta B)$.

1. Introduction.

The best known proof of the Vitali-Hahn-Saks theorem [4, p. 158] is based on the validity of the Baire category theorem for the semimetric space $M(\Sigma, \mu)$ associated with the measure space (X, Σ, μ) . This proof is due to Saks [9]. Ando proved that the Vitali-Hahn-Saks theorem holds for finitely additive scalar-valued measures, but he returned to the more primitive "sliding hump" arguments formerly used by Lebesgue, Hahn and Nikodým.

In [3, p. 35] it is raised the problem wether M (Σ, μ) is a Baire space for every finite nonnegative finitely additive measure μ on a σ -field Σ . Armstrong and Prikry [2] solved this problem in the negative. In this paper it is proved, using a different construction, that, on every infinite σ -field Σ , there exits a finite nonnegative finitely additive measure μ such that M (Σ, μ) is not a Baire space.

2. NOTATIONS.

We denote by ω the least non zero limit ordinal, by N the set of all positive integers and by c the least ordinal of cardinality of the continuum.

* Mathematics subject classification (1980). Primary 28A05, 28A60; Secondary 54E52. Key words and phrases. Measure spaces, Topological Baire spaces, Finitely additive measure.

If Σ is a σ -field and μ a finite real-valued nonnegative finitely additive measure μ on Σ , we denote by M (Σ , μ) the semimetric space that is obtained endowing Σ with the semimetric d (Λ , B) = μ (Λ Δ B) and by M (Σ , μ) the metric space determined by the canonical equivalence relation: $\Lambda \sim$ B if and only if

$$d(A,B)=0.$$

We consider the two elements space $2 = \{0,1\}$ endowed with the discrete topology, which is a compact space. Let λ be the measure defined on $\{0,1\}$ by λ ($\{0\}$) = λ ($\{1\}$) = 1/2, and let μ be the product measure defined on the σ -field $\mathfrak{B}(2^c)$ of Borel subsets of 2^c . Since μ is countably additive, M ($\mathfrak{B}(2^c)$, μ) is a complete metric space. We also have that M ($\mathfrak{B}(2^c)$, μ) can be endowed with a standard structure of complete Boolean algebra [10, \$17], whose operations are denoted by Λ , V, *, its orderin by \leq and its two designated elements by 0 and 1. The measure induced on M ($\mathfrak{B}(2^c)$, μ) by μ will be denoted by μ too.

If s is a function such that dom(s) is a finite subset of c and ran(p) $\subset \{0,1\}$, we shall denote by I_s the equivalence class of the Borel subset B_s of 2^c defined by

$$B_s = \{ \langle x_{\alpha} : \alpha \langle c \rangle : x_{\alpha} - s(\alpha) \text{ for every } \alpha \in \text{dom } (s) \}.$$

The sets Is will be called cylinders and the class of all cylinders in

$$M(\mathcal{B}(2^{c}), \mu)$$

will be denoted by C .

For every cilinder I_s , we shall denote by $I(I_s)$ the cardinal number of dom(s) and we shall write dom(I_s) = dom(s). If $K \in M$ ($\mathfrak{B}(2^c)$, μ), we define I(K) as the least $n < \omega$ satisfying that there exists a cylinder $I_s \le K$ and $I(I_s) = n$. We shall write $I(K) = \omega$ if there not exists a cylinder $I_s \le K$. For a cylinder I_s , the notation $I(I_s)$ is unambigous.

3. MAIN RESULTS.

Recall that a family Γ of subsets of ω is said to be independent [12, p. 43] if, for any mutually distinct sets $X_1,\ldots,X_n,Y_1,\ldots,Y_m$ in Γ , we have

$$X_1 \cap \ldots \cap X_n \cap (\omega \setminus Y_1) \cap \ldots \cap (\omega \setminus Y_m) \neq \phi$$
.

In order to determine the cardinality of the dual of the Banach space L^{∞} [0,1], Fichtenholz and Kantorovitch [5] proved that there exists an independent family of subsets of ω , whose cardinality is c. In Hausdorff [6] and in Kuratowski, Mostowski [8, p. 303] there appears a more simple proof of this fact. Using that result, we can easily prove that there exists a maximal family $\{\Lambda_{\Omega}: \alpha < c\}$ of independent subsets of $\Sigma = \mathcal{F}(\omega)$.

Set $f(A_{\alpha}) = I_{S}\alpha$, where $dom(s^{\alpha}) = \{\alpha\}$ and $s^{\alpha}(\alpha) = 0$. According to [12, 12.2], we can extend f to an homomorphism from the subalgebra of Σ generated by $\{A_{\alpha}: \alpha < c\}$ to the algebra M ($\mathcal{B}(2^{c}), \mu$). This extension will be denoted by f too.

By the Sikorski extension theorem (cf. [11], [12, 33.1]), f can be extended to a Boolean algebra homomorphism, denoted by f again, from Σ to M ($\mathfrak{B}(2^c)$, μ) as M ($\mathfrak{B}(2^c)$, μ) is a complete Boolean algebra. Then a positive finitely additive measure can be defined on Σ by $v(A) = \mu(f(A))$.

Since the family $\{A_{\alpha}: \alpha < c\}$ is maximal, for every $B \in \Sigma$, there exist ordinal numeers $\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_m < c$ such that either

$$B \supset \Lambda_{\alpha_1} \cap \ldots \cap \Lambda_{\alpha_n} \cap (\omega \setminus \Lambda_{\beta_1}) \cap \ldots \cap (\omega \setminus \Lambda_{\beta_m})$$

or

$$\omega \setminus B \supset A_{\alpha_1} \cap \ldots \cap A_{\alpha_m} \cap (\omega \setminus A_{\beta_1}) \cap \ldots \cap (\omega \setminus A_{\beta_m}).$$

Hence there exists a cylinder I_s such that either $I_s \le f(B)$ or $I_s \le f(B)^*$.

With these notations, we have:

Proposition. M (Σ, v) is not a Baire space.

Proof. It is sufficient to prove that $M(\Sigma, v)$ is not a Baire space. Since $M(\Sigma, v)$ is isometric to $f(\Sigma)$ and $f(\Sigma)$ is dense in $M(\mathcal{B}(2^c), \mu)$, we only need to prove that $f(\Sigma)$ is of first category in $M(\mathcal{B}(2^c), \mu)$.

Denote by \mathcal{A} the set of all $K \in M$ ($\mathcal{B}(2^c)$, μ) for which there exists $I \in \mathbb{C}$ verifying either $I \leq K$ or $I \leq K^*$. We shall prove that \mathcal{A} is of first category in M ($\mathcal{B}(2^c)$, μ).

Let $\mathfrak V$ be the set of $V \in M$ ($\mathfrak B$ (2^c), μ) that can be represented by an open set in 2^c . Put

$$\mathfrak{D} = \{ K \epsilon M (\mathfrak{B}(2^{c}), \mu) : (\forall m \epsilon N) (\exists \epsilon > 0) (\forall V \epsilon v)$$

$$[\mu (K \Delta V) < \epsilon \rightarrow 1(V) > m] \}$$

and $\mathfrak{D}^* = \{ K \in \widetilde{M} (\mathfrak{B}(2^c), \mu) : K^* \in \mathfrak{D} \}.$

Since $A \cap D \cap D^* = \phi$, in order to prove that A is of first category we shall show that $D \cap D^*$ is residual. As the mapping * is an isometry, it is sufficient to prove that D is residual.

Since $\mathfrak{D} = \bigcap_{\substack{m \\ n}} \mathfrak{D}_{n,m}$, where, for every pair n, m of natural number,

$$\mathfrak{D}_{n,m} = \{ K \in M (\mathfrak{B}(2^{c}), \mu) : (\forall V \in v) (\mu (K \Delta V) < \frac{1}{n} \rightarrow I(V) > m) \},$$

we shall see that, for every m ϵ N, $\bigcup_{\mathfrak{n}} \mathfrak{D}_{\mathfrak{n},\mathfrak{m}}$ is a dense open set.

1. $\bigcup_{n} \mathfrak{D}_{n,m}$ is open: Suppose that $K \in \bigcup_{n} \mathfrak{D}_{n,m}$. Then $K \in \mathfrak{D}_{n,m}$ for some $n \in \mathbb{N}$. If μ ($K \triangle L$) $< \frac{1}{2n}$, we have $L \in \mathfrak{D}_{2n,m}$ because μ ($L \triangle V$) $< \frac{1}{2n}$ implies μ ($K \triangle V$) $< \frac{1}{2n} + \frac{1}{2n} < \frac{1}{n}$ and, since $K \in \mathfrak{D}_{n,m} I(V) > m$. Therefore the ball in M (\mathfrak{B} (\mathfrak{D}^{c}), μ) with center K and radius $\frac{1}{2n}$ is contained in $\bigcup_{n} \mathfrak{D}_{n,m}$.

2. $\bigcup_{n} \mathfrak{D}_{n,\,m}$ is dense: Since the set of all finite unions of cylinders is dense in M ($\mathfrak{B}(2^c)$, μ), we have only to prove that given $\epsilon > 0$ and $\Lambda = \bigcup_{i=1}^k l_i$, where $l_i \in \mathbb{C}$ for $1 \le i \le k$, there exists $K \in \bigcup_{n} \mathfrak{D}_{n,\,m}$ such that μ ($A \triangle K$) $\le \epsilon$. We can assume that $dom(l_i) = dom(l_i)$ and $l(l_i) = l(l_j) = r$ for every $i, j \le k$.

Let s > m be a natural number such that $\binom{s}{m} 2^{m-s} < \epsilon$, and let $a \subset c$ be a finite set satisfying $a \cap \text{dom}(l_1) = \phi$ and card(a) = s.

If $l \in \mathbb{C}$, dom(1) \subset a and l(1) = m, we choose an $\alpha(1) \in \mathbb{C}$ such that

$$dom(\alpha(1)) = a \text{ and } \alpha(1) \leq 1.$$

Put B = $\bigvee_{I} \alpha(I)$ where the join is taken over all $I \in \mathbb{C}$ such that I(I) = n and

 $\operatorname{dom}(I) \subset a$. Let $K = A \wedge B^*$. As $\mu(K \wedge A) \leq \Sigma \mu(\alpha(I)) \leq \binom{s}{m} 2^m 2^{-s} < \epsilon$, it remains to show that $K \in \bigcup_{n \to \infty} \mathfrak{D}_{n,m}$.

Let n ϵ N and $1/n < 2^{-s}$. We shall prove that K ϵ $\mathfrak{D}_{n,m}$. Suppose

$$\mu (K \triangle V) < 1/n < 2^{-8}$$
, $J \in \mathbb{C}$

and $J \le V$. We have $J \land B \le J \land K^* \le V \land K^* \le V \land K$, so $\mu(J \land B) \le 2^{-s}$. Nevertheless, if $card(dom(J) \cap a) = m_1 \le m \le s$, we have

$$\mu(J \wedge B) \ge \frac{1}{2^{J(J)-m_1}} 2^{m-m_1} \frac{1}{2^s} = 2^m 1^{J(J)-s}.$$

Hence m < l(J).

Remark. Since in the space \dot{M} ($\mathcal{B}(2^c)$, μ) we have $\mathfrak{D} \cap \mathfrak{D} * \neq \phi$, there exists a K \in M ($\mathcal{B}(2^c)$, μ) such that, for every $I \in \mathcal{C}$, $0 < \mu$ (K \wedge I) $< \mu$ (I). This result can not be obtained by the method used by Kirk [7] because the metric space M ($\mathcal{B}(2^c)$, μ) is not separable.

Theorem. Let Σ be an infinite σ -field of subsets of the set X. There exists a finite real valued nonnegative finitely additive measure μ on Σ such that $M(\Sigma, \mu)$ is not a Baire space.

Proof. Using the Marczewski indicator Σ 3⁻ⁿ χ_{A_n} for a sequence of mutually distinct elements of Σ , it is easy to construct a sequence $\langle B_n : n < \omega \rangle$ in Σ of pairwise disjoint sets. In this case, Σ contains a sub- σ -field isomorphic to $\mathfrak{F}(\omega)$. Therefore the construction of the proposition can be carried out in this case.

REFERENCES

- T. Ando, Convergent sequences of finitely additive measures, Pacific J. Math. 11 (1961), 395-404.
- T. E. Armstrong and K. Prikry, On the semimetric on a Boolean algebra induced by a finitely additive probability measure, Pacific J. Math. 99 (1982), 249-264.
- J. Diestel and J. J. Uhl, Vector measures, Amer. Math. Soc., Providence, Rhode Island, (1977).
- 4. N. Dunford and J. T. Schwartz, Linear operators I (General Theory), Interscience, New York, (1958).
- 5. G. Fichtenholz and L. Kantorovitch, Sur les opérations linéaires dans l'espace des fonctions bornées, Studia Math. 5 (1934), 70-98.
- F. Hausdorff, Uber zwei Sätze von G. Fichtenholz und L. Kantorovitch, Studia Marh. 6 (1936), 18-19.
- R. B. Kirk, Sets which split families of measurable sets, Amer. Math. Monthly, 79 (1972), 884-886.
- 8. K. Kuratowski and A. Mostowski, Set theory, North Holland, Amsterdam, (1968).
- S. Saks, Addition to the note on some functionals, Trans, Amer. Math. Soc. 35 (1933), 965-970.
- Z. Semadeni, Banach spaces of continuous functions I, Polish Scientific Publishers, Warszawa, (1971).
- R. Sikorski, A Theorem on extension of homomorphism, Ann. Soc. Pol. Math. 21 (1948), 332-335.
- 12. R. Sikorski, Boolean algebras (2nd edition), Springer, Berlin, (1964).

Facultad de Matematicas, Universidad de Sevilla C/. Tarfia, s/n. Sevilla-12, Spain.