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Model of high-temperature plastic deformation of nanocrystalline materials:
Application to yttria tetragonal zirconia
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The possibility of the influence of segregation-induced local electric fields in the bulk diffusion of the
species controlling the plastic deformation of nanocrystalline materials has been pointed out. Until now, there
is only a model applicable to the case of a monodimensional system. In spite of its simplicity, it predicts a
significative influence of a local electric field in creep. Our work develops a different model applicable to
three-dimensional systems. It takes as a starting point the diffusional model, and it can be generalized to those
systems in which the grain-boundary sliding model accommodated by diffusional processes accurately de-
scribes plasticity in the submicron range of grain size. The range of validity, as well as the different behavior
of nanocrystalline materials from the submicron ones is discussed. Preliminary results are in good agreement
with the published data for yttria tetragonal zircof¥@l'ZP) nanocrystalline ceramics.
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[. INTRODUCTION grain boundaries are treated as infinite thin films. Diffusion

takes place along a direction normal to the interface. This

Nanocrystalline materials are a field of very active re-simplification permits the exact resolution of both diffusion
search activity in materials science. From a practical point ofind electric-field equations. Some of the hypotheses consid-
view, miniaturization is a basic requirement to continue theered in that model have been saved in ours, although we

rapid improvement of electronic devices in the 21st Century.have tried to give a step forward to a realistic three-
This effort is concentrated not only on metallic nanocrystal-dimensional one, and consequently, some other improve-

line systems, but also on nonmetallic ones, particularly ceMents have been made.

ramics to be used in industry under extreme conditions. Re- NO model is really useful unless it can account for the
garding ceramics, another main goal is the search for th roperties of real materials. In this paper we have focused on

optimum conditions for processing of complex pieces, i.e the explanation of the high-temperature creep behavior of

superplastic ceramic materials capable of being deformed gtttna tetragonal zirconia polycrystal¥ TZP's) whose grain

) . Sizes range from submicron to the nanometer scale. There are
high strain rates and at moderate temperatures. Nanoceram-

: : o : mple publications on the high-temperature plasticity fea-
ics can play a crucial role, as it is supposed that their sma ures of submicron-sized YTZP ceramidfsr a review, see
grain sizes can induce high strain-rate plasticity, without 0S¢ 4 and & However, when going down to nanbmeter
of the favorable properties of (_:eraml?cs. _ _ size, the number of publications decreases. This is mainly
In the case of nanocrystalline ceramics the modeling ofye 1o the fact that well densified polycrystals have been
the deformation mechanisms controlling their plasticity isgyailable only very recently. Domguez-Rodguez et al®
critical to understanding and tailoring microstructures togng Gutierez-Mora,  Jimeez-Melendo, Dormguez-
meet mattering requirements. This is a very difficult andRodfgueZ’ and Chaiﬁ']ha\/e recenﬂy reported creep data on
challenging task, because the leading influence of graifully dense nano-YTZP. Quiet astonishingly, YTZP nanoc-
boundaries is difficult to model. In particular, in many ce- rystals seem to exhibit an improved creep resistance when
ramic materials, grain boundaries are sinks and sources @bmpared with that of the submicron-sized onés., the
some chemical species, whose influence in creep and diffistrain rate is lower than expected by extrapolation to the
sion can be crucial. This work develops a model to explaimanometric scale of the results measured in submicrometric
the high-temperature creep behavior of nanoceramics ispecimenk In addition to that, the strain rate has a power-
which grain-boundary segregation of some chemical specidaw dependence with the mean grain size, with an exponent
is important. close to—1 instead of—2, as would be expected from a
The existence of segregation of charged chemical iongolume diffusion controlled creep mechanism. A strong tem-
produces a local electric field; as a consequence, ion diffuperature dependence is found, with an activation energy for
sion should be significatively affected. As diffusion is a basicdiffusion much higher compared with the activation energy
ingredient of the principal high-temperature deformationfor bulk cationic diffusion. These properties are in disagree-
mechanisms, changes in the effective diffusion coefficient oment with the values reported for plastic deformation in the
the different diffusing species can be detected by their effectsubmicron-ranged YTZP ceramidshe power-law depen-
on plasticity. The influence of those local electric fieldsdence of the strain rate with the mean grain size fits to an
should become more significant for smaller grain sizes.  exponent—2 and the activation energy is that of bulk cat-
A modef exists to relate diffusion and deformation, but it ionic diffusion).
uses as a starting point a monodimensional system in which On the other hand, the existence of yttrium segregation at
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the grain boundaries in YTZP polycrystals is well such a microstructure is not a fully dense spatial configura-
documented! Conrad? and Conrad and Yang for the tion. Real grains are polyhedral. However, a spherical grain
model-case of MgO have pointed out the possible role ofwvill be an “average” approximation to a polyhedral one with
segregation in the mechanical properties of oxides, particumany faces. In real grains, the local electric field is a func-
larly when they are nanostructured. As a consequence of alion of the three spherical coordinates: 4, and ¢. The
of this, YTZP is revealed as an excellent system in which thespherical grain is the limit case in which the local electric
main predictions of our model can be developed and comfield E(r, 6, ¢) is given by
pared with experiment.

The main features of our model will be presented in the

K . . L . 1 2w T

following section. As the applicability of the model will be (E(r))= _f d¢J dosinbE(r, 6, ), (1)
tested in YTZP nanoscaled ceramics, our main assumptions 4w Jo 0
will be always referred to the case of this particular ceramic

system. i.e., the electric field in a spherical grain is the resultant field
when all the orientational dependencies have been averaged:
Il. MODELING (E(r)). The polar axis is chosen as the loading direction.
) i o Consequently, this field is spherically symmetric.
A. Grain-boundary segregation and local electric field In accordance with this symmetry, several implications

The most important driving force for dopant segregationcan be made(i) The charge density(r) at the grain bound-
to interfaces is the strain energy relaxation. The existence afries will be spherically symmetric. Assuming that the seg-
segregation of dopants whose electric charge is differentegation layer is thin enough the charge density can be mod-
from that of the parent ions accounts for the existence otled by a step function:
local electric fields. In the case of YTZP the accumulation of
yttrium ions at the interfacé® induces a local density of
negative charge produced by tlig, defects. This local elec-
tric field produces a gradient of the oxygen vacancies be-
tween the grain bulk and the boundaries. These oxygen va-. . . .
cancies have a screening effect on the electric field. | ii) Grains can be treated as isolated when calculating the

consequence, once a critical depth, close to the boundaries,%ecmc field |n§|de them. Th|s is due to.the fact that inter-
reached inside the graiin which the oxygen vacancy con- granular space is charged with an opposite charge in order to

centration is higher than that in the bulthe electric field ~9duarantee the neutrality of the system. Our system can be

becomes negligible. According to electrodynamics, the thickpicwre.d asa set.of spherical gra!ns with a .segr_egation Ia_yer
ness of the layer where the electric field is not zero is knowrfil (Neir boundaries embedded in a matrix with opposite

as the Debye attenuation length. From now on, we will Iabthane' di lassical el d isthe electri
that distance ak. For most materiala at room temperature _c<|:\c;r Ing to IC azswahe ecr:]tro yr(;aml_ ﬁ € ecr:”(;] pg .
it is in between 1 and 10 nisee Ref. R tential V(r) is related to the charge density through the Pois-

The picture described above may be significantly alterefO" €duation for spherically symmetric systems:
when amorphous integranular phases are present. This is due
to the possible additional screening effect of those phases. In 1 9 ( ) ,9\/) p(r)
_2 — — =
ar

what follows, no glassy phases will be supposed to exist. ar T 3

[0 if 0=r<R-\, ,
PN=1p if R-A=<r=R. 2

r
B. Electric potential inside the grains wheree is the dielectric constant of the material under study.

The electric potential inside the grain is a complicatedThe Poisson equation can be solved according to standard
function depending on the boundary conditions, i.e., theprocedures of electrodynamics: both the electric field and the
grain shape, and an analytical expression is not possible i@lectric potential must be continuous functions and the elec-
the general case. Therefore our model will consist of a polytric potential vanishes very far from the grain boundary.
crystal of perfectly spherical grains whose radiufRidn a  Once those boundary conditions are taken into account, the
real crystal, grains cannot be perfectly spherical, becausllowing mathematical solutions are achieved:

pR? p(R—N)? p(R—N)2

S—(R—-\)3 if 0<r<R—A\,
6e 26 T 3eR T 3griN (RO
V(r)= 4
p(Rz_r2)+ﬁ(R—>\)3 11 + P RS- (R-N)?] if R—A=r=R
6e 3e R r 3eggR '
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C. Constitutive equations for creep

Consider the application of a uniaxial mechanical stress:
the only nonzero stress component of the stress tensor is
T33= 0. In the framework of the diffusional creep models,
deformation takes place as a consequence of the existence of
mass fluxes induced by the gradient of the chemical potential
around the grain. As a final result, the mass fluxes generated
in the steady state are responsible for the constant strain rate
measured during plastic deformation at a constant stress.

If a local electric field is present close to the grain bound-
aries, and the charge carriers responsible for diffusion are
depleted, a significant creep resistance would be expected. In
the case of YTZP, the charge carrier controlling diffusion,
and plastic deformation, is Zf (see Refs. 4 and 17-19
These cations tend to locate in the regions where the electric
potential reaches a minimum; i.e., around the grain center.
Consequently, the grain-boundary concentration 48f Zve-
comes smaller. The diffusion coefficient of these cations
from the center to the grain boundaries should decrease due
to the presence of the local electric field next to the grain
boundaries. We shall refer to the magnitudes linked to this
cation with the subscriptD” from now on.

In the case of local electric potential resulting from seg-
regation, local concentration can be related to the local elec-

FIG. 1. Profile of the electric potential inside a grain as a resulty ;- potential. In effect, according to thermodynamics, in the

of the density of charge.

where gq is the dielectric constant of vacuum. Notice that
the electric potential is a constant along the interval
0<r<R-—A\. From now on, we will denote to this constant
value asV;,;. Making use of Eq(4), two useful results can

be obtained. First, the electric potential at the interfd¢R)
is straightforwardly calculated by substitutionref R in Eq.
(4). That will give us the following expression:

V(R)= 57—

N 3
3,1 |1TR

In the limiting casex <R, a Taylor expansion of Eq5) up
to the first order il\/R will yield

pR?

. (5

V(R)z@

at r=R;for A<R. (6)
€0

Second, the mean value of the electric potenti@)j in the
interval R—A<r=<R is usually defined as

1 (R
(V)zXfRﬂV(r)dr. (7)

The mean value can be calculated from E); and after the
Taylor expansion, retaining the lowest ordemnifR, the fol-
lowing results:

(V)=Vin— 8

1 pR? (N2
6 ¢ |R/ "

The dependence &f(r) with the distance to the grain center

is plotted in Fig. 1, as well as the values\¢fR) and(V).

Equations(6) and (8) will be repeatedly used along this

model.

limit of dilute solid solutions, the chemical potential of one
component has the following dependence on its concentra-
tion and electric potenti’

cp(r)
cp(0)

+2pe[V(r) = Vind,
(€)

uD<c,T,¢>=M%+len(

wherez is the valence of the componemtjs the electron
charge, ancp% is the chemical potential at the center of the
grain[where no segregation exists, and the concentration of
the component igp(0)]. As denoted previously;, is the
electric potential in the region where there is no segregation.
When equilibrium inside the grains is reachex:ﬁ):,ug and
hence

- \ _Vin
cD(r):cD(O)exp( zoel k('lr') d .

(10

Assume that Eq.(10) is valid during deformation even
though the plastic deformation is not a thermodynamical
state of equilibrium. This assumption is made in all diffu-
sional creep models.

We are going to proceed according to the standard proce-
dure developed in the Nabarro-HerriflgH) model and the
extension carried out for segregation in a monodimensional
systent?! The generalization for our three-dimensional sys-
tem is described in the Appendix. According to the NH
model, the creep equation can be written as

16 o

€= 3 [T Def (11
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whereD  is the effective diffusion coefficient of the diffus- 16 o0 D st
ing species taking into account all the possible diffusion T 3 KT R N ~Z5eV(R) A , (16)
paths,d= 2R is usually called as the “grain size,” and is 1+4— ex;{D— —) —1}
given by d 3e,kT d
R2/2 wheree, =¢/eq is the relative dielectric constant of the ma-
- e (12)  terial under study.
Cp
fR—=—"rdr
0 co(r) D. Generalization for the case of a grain-boundary sliding

Equations(11) and (12) are the key equations to critically controlling mechanism accommodated by diffusion

analyze the physical implications of segregation. The factor In the preceeding section, the diffusion creep model has

labeled as &” plays a major role in determining the behav- been used for the sake of simplicity as a starting point for the

ior of the system. In effect, if we consider a system in whichdevelopment of our model. However, the same reasoning can

no segregation exists; i.ec(r)=cy; then no depleted thin be repeated if a model in which grain-boundary sliding

layer is found in the graingy=1, and(11) takes the form (GBS9) is the deformation-controlling mechanism. In effect,
diffusion is the rate-controlling procé€seven in the GBS'’s

16 o) in order to maintain the contact between grains while defor-

=3 kTd Dei (13 mation takes place. In the GBS model, deformation is deter-

S . . mined by the relative displacement between grains. The
which is nothmg bu_t the \{vell-knqwn result optalned by Na- stress is relieved, and the subsequent condition of contact
barro and Herring in their classical workiNotice that the

donalit tant d q th v of arai between grains is obtained by the flux of matter. This trans-
proportionalily constant depends on the geometry o gralnsport of matter is driven by the gradient of chemical potential.

For other grain shapes, values as high as 40 are reported. 5,0 yhe chemical potential is calculated, the same reasoning
. A S|gn|f|c_ant change IS obtained if the. carrier concentra-app”ed in the previous sections can be repeated yielding an
tion controlling both diffusion and so plasticity is depleted. If effective diffusion coefficient. In the case of GBS in metals
this is the casegp(r) is significantly reduced in a thin layer Sherby and Wadsworth found that the constitutive creep '
close to the grain boundary, ant1, in consequence, the equation is given by

strain rate would be much smaller, i.e.; the creep resistance Is
improved. Gb( 0)2

In accordance with Eq10), the parameter [Eq. (12)] é:Aﬁ

€

G

b 2
a) De (17)
can be evaluated by means of the equation
R2/2 where A is an empirical constant; is the shear modulus,
a= and D is the effective diffusion coefficient. Equatidf?)
R F(ZDQ[V(Y) _Vint]) dr is extended for the case of YTZP according to the following

for ex KT expression given below:
R?/2 Gb[o—075\?(b\?
= . L 7 TS ~ 7r
E(R—)\)Z—i—fR rex;{ ZDe<V>_ZDeVint)dr e=2X10 kT G ) (d) Dlattr (18)
2 R KT

whereb is the Burgers vectors of dislocations in zirconia,

(14 4gis a threshold stress for plasticity, abd, is the lattice

In this equation, it is assumed that<R so that the electric  diffusion coefficient for zirconium. Equatiofi8) has been
potential can be approximated by its mean val\@ in the confirmed experimentally and analyzed thoroughly by

regionR—A<r<R. Jimenez-Melendcet al* for YTZP. _
After some algebra, it is possible to write the following ~ The extension for nanoceramics can be made with the
expression for: followmg statements: First, the th_reshold stress is negligible
in the case of YTZP nanoceramitsSecond, the effect of
1 segregation has been proved to be a modification of the ef-
a= NI Z06(V)— 2p€ Vi fective diffusion coefficient controlling GBS accommoda-
1+4—|e ;< )- } tion. This effect is quantitatively described by the factor
d| kT [see Eq(15)].
1 Consequently, it is reasonable to accept the following ex-
= - 5 . (15  pression for the constitutive creep equation of TZP nanocer-
A —ZDep)\ H .
1+4— exp(—) —1} amics:
d| 6ekT
\/ 2 2
Finally, making use of Eq(), it is possible to eliminate the ,— 2x10 G_b(g) (E) DZ..
charge density in Eq(15) and the substitution of this last 1+4£[exp( —zpeV(R) i) B } kT1G/ \d
equation fora into Eq. (11) allows us to conclude that the d 3e,kT d
constitutive equation for creep is (19

144101-4



MODEL OF HIGH-TEMPERATURE PLASTC. .. PHYSICAL REVIEW B 67, 144101 (2003

64 . L TABLE |. Experimental inputs needed for determination of the
‘ | theoretical results in the case of YTZ.

62
) ‘ Value adopted
% o N L Quantity Experimental values in this work
B Relative dielectric 4.58-4.71 4.65
-5 58 constantér) (see Refs. 25 and 26
St
=N
= Thickness of the 2-10(see Ref. 11 5
S 56— b N i
E deplectionlayer
o ‘ ‘ (\, in nm) 2—4(see Ref. B

54— - roooo- e ;

L ! ‘ ! Electric potential at Between—1 and—2 -15
| L the grain boundaries (see Ref. 2y
52— : J :
1000 1100 1200 1300 1400 1500 [ed(R) ineV]

Temperature (in °C)

FIG. 2. The critical size, or maximum value of the grain size atThe critical grain siz€i.e., the minimum value of the grain
which the segregation effects have still some influence on mechansize at which the micron-sized behavior is still measured
cal behavior, as a function of temperature. versus the temperature is shown in that figure. It is clear that

this critical size is around 60 nm and is not very sensitive to
Notice that Eq.(19) converges to Eq(18) whend>\ and  temperature. The dependence with temperature is consistent
o>ors. In order to compare the mechanical behavior ofwith the fact that segregation effects tend to vanish when
YTZP nanoceramicgin which ors=0) and conventional temperature rises. Notice that, for values of the grain size
submicrometric YTZP polycrystalén which ors does not  smaller than the critical value at a fixed temperature, the
vanish at all, all reported data will correspond to the high- deviation is much higher than 10%. The critical value given

stress limit,o> ors. here defines the upper limit for observation of segregation
effects at the current temperature. In effect, for 1200 °C and
IIl. RESULTS AND DISCUSSION an average grain size equal to 50 nm, the relative deviation

) . o . . (20) is higher than 55%. This means that a remarkable hard-

Equation(19) is the constitutive equation for creep in ma- gning effect should be expected for such conditions. This fact
terials where a local electric potential due to segregation ofs in agreement with the data reported by Guge-Mora,
cations with an effective ionic charge at the grain boundariegimgez-Melendo, Dormguez-Rodguez, and Chaim, in

plays a significant role in high-temperature diffusion. A ri- yhich the predicted hardening effect has been experimen-
gourous analysis of its range of validity, as well as the im-ta|ly observed.

plications on the plastic deformation parameters can be per-
formed. First of all, it is essential to notice that no adjustable
parameters are required to make quantitative estimations.
Only the potentialV(R) and the thickness of the depletion 1. Grain-size exponent
layer \ are requireq. Both parameters can be experimentally The grain-size exponent is defined as
determined. Experimental inputs for YTZRefs. 25—2Yare

summarized in Table I. ([7 In&

p=—

dind/
A. Range of validity of this model 7
In general, the effect of the segregation layer is enhanceffO" diffusional creep modelp=2 (or ShI'f diffusion ”anng
if either temperature or the average grain size is decreasefl@in boundaries becomles importanthis is lasua y ob-
Assuming that a quantitative estimation of the range of temS€"ved in YTZP superplastic ceramics in the submicron

peratures and grain sizes at which a significant deviatiofia"g€- In order to explore the predictions of our model, the
from the\/d—0 limit takes place is derivative given in Eq(22) was performed for the case of

our constitutive equation, yielding the following result:

B. Influence on mechanical parameters

(22)

%so.lo. (20 42 _izDeV(R)}ex%—_lizDeV(R))_4§
d d 3ekT 3e, d KT d
This arbitrary assumption restricts the relative deviation from P~ 2= \ —1zpeV(R) A
the A/d—0 limit up to 10%. Using Eq(19) gives rise to 1+4a ex 3s, kT d
N[ ~20eV(R) A @3
4H[EXP<W a) _1%0-10- (21)  The exponent can be calculated using values from Table 1.

The results are shown in Fig. 3. Tipeexponent decreases
Application of this assumption in YTZP is shown in Fig. 2. with decreasing grain size: from the expected value of 2
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Grain size exponent (p)
Activation energy (Q) (eV/atom)

\
0 100 200 300 400 500 200 300 400 500
Grain size (nm) Grain size (nm)

FIG. 3. Predicted grain-size exponent versus the grain size at FIG. 4. Predicted activation energy versus the grain size at
1200 °C for YTZP. Experimental valugRefs. 4 and Hare also 1200 °C for YTZP. Experimental resul{Refs. 4 and pare plotted
plotted in the figure. also.

usually measured for submicron YTZP ceramics, to valueg ayo-Lea® in submicron YTZP specimens in the limit

plose to 1 for grain sizes I(_Jwer than 50lnm. This prediction iS>U'TS- These data are in reasonable agreement with the pre-
in excellent agreement with the experimental data measuregctions of the modelFig. 4). Very recently, Lorenzo-Mai

by ~ Jimejez-Melendo, Donmguez-Rodguez,  and gt 4128 have reported the same tendency in YTP nanocrystals
Bravo-Lear" (for submicron YTZR and Domnguez-  geformed at 1150 °C with grain size around 50 nm, even

Rodrguezet al® in which ap value of 1.4 was found fod  \yhen a certain amount of a glassy phase is present.
around 50 nm at 1200 °(Fig. 3).

2. Stress exponents (n) and activation energies (Q) 3. Strain rate dependence with the grain size

As cited previously, a significant improvement in creep
resistance has been reporfed.Experimentally it has been
observed that the strain rate normalized by the grain size

, (29 (£¢d?) decreases one order of magnitude when the grain size
Td is approximately 40 nni{see Ref. Y. This can be qualita-

_ tively explained by means of the model: the valuexah the
_ |9 Ine o5 creep equatiohEg. (16)] gives rise to a significant hardening
B B (25 (the normalized strain rate is one order of magnitude lower
' than expectedfor grain sizes lower than 40 niiiorizontal
whereB=1/KT. According to our modeln is not a function line in Fig. 5. However, the numerical agreement is not
of the grain size #.” This means thatn should be 2 for
superplastic behavidior 1 if the NH model is operating at

These magnitudes are defined as follows:

dine
“\dlno

very high temperaturgsindependent of grain size. This
seems to be the case in YTZP.
The activation energy does, however, depend on grain
size. After algebraic operation, it can be shown that ’_
k-
A2 VIR -1\ zpeV(R) <
_ 3g,\d) ®° (Rexd 34 &k
Q=Qo 1+4>\ -1\ zpeV(R) L ’ 5
d/ P 3, d kT =
(26)
where Qp is the activation energy of the Arrhenius depen-
dence of the cationic diffusion coefficient. Damuez- 0 40 80 120 160 200
Rodrguezet al® have reported a dependence@fvith the Grraiin size (ani)
grain size. In their resultsQ=7.0+0.2 eV/atom ford
=50 nm; and it decreases @~ 5.2+=0.2 eV/atom for sub- FIG. 5. Strain rate versus the grain size predicted by this model

micron YTZP ceramics. This last value has been also refor two different values of. The horizontal line corresponds to the
ported by Jimaez-Melendo, Donmguez-Rodguez, and hardening found experimentally for nano-YTZ&=50 nm).
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completely satisfactory. This disagreement can be due to twlux along the compression axXig, (r,6#=0)] is given by
facts: (i) The hardening is quite sensitive to the value of the

screening length. This is emphasized in Fig. 5 in a second R kTXp
plot for the hardening expected far=10 nm. In this second . Ju(r,6=0) mdr=ﬂ(0,9=0)—M(R,0=0),
case, the theoretical predictions are closer to the experimen- € (A1)

tal results. Moreover, the Debye screening length is a func-
tion of temperaturéwith a T2 dependende’ As the experi-  where ¢, is the number of lattice defects responsible for
mental values ol are determined at room temperature, adeformation per unit volumeX is the molar fraction of the
more accurate comparison should be made if the temperatuoantrolling species)], (r,0=0) is the mass flux along the
correction is introduced into the equations. When this isoading axis,D.¢ is the effective diffusion coefficientin
made, the agreement with the experimental results is mucihich all the different diffusion paths are consider&tand
better for the hardening ratio, as well as both fhandQ  w is the chemical potential of the whole systdiNotice that
experiments(ii) It is important to note that the model pre- the mass flux and the chemical potential should be a function
dicts a very pronounced dependence of the hardening ratiof r and 6. The loading axis is a rotation symmetry axis. In
versus the grain size that implies that an accurate comparis@onsequence, the mass flux is not spherically symmetric, as
can be made only if a wide range of mean grain sizes arexpected, because the existence of a uniaxial loading axis
measured. This should be a future endeavor. breaks the spherical symmetry of the system. The strain rate
It is essential to realize that the origin of this hardeningis controlled by the deformation along the loading axis. This
effect is not due to the change of the grain-size exponenfact justifies the use of th&,(r,6=0) in Eq. (Al).] Notice
Besides, if the origin of this effect were the change in thethat the integral in Eq(A1) is extended from the center to
value ofp from 2 to 1.4 as reporte@bee Ref. ¥, the expected the surface along the diameter parallel to the loading axis.
tendency would be an increase of the strain rate, in contraEquation(1) is an integral version of the general Fick diffu-
diction with the existence of the hardening effect. This factsion law®?
shows clearly that the origin of the hardening is only under- If the chemical potential is known inside the grain as a
stood by the change in the effective diffusion coefficient as gunction of the position, the mass flux can be calculated rig-
result of segregation. Mathematically, it is the tesinthat is  orously, and this one can be related to the strain rate of the
responsible for this change in the diffusion coefficient thatsystem. The chemical potential must satisfy the Laplace
accounts for the hardening. equation, with the boundary condition given belé:

IV. CONCLUSIONS w(R,0)=po— 0y Qp=pmo—Qpcos 6,  (A2)

A model for high-temperature plastic deformation of where)y is the atomic volume of the lattice defect involved
polycrystals has been proposed. This model introduces thie the diffusion process, and, is the normal component of
effect of the existence of a charged layer of segregated dophe stress on the surface grain.
ants at the grain boundaries on diffusion, and in conse- It is easy to verify that the solution for the chemical po-
quence, on high-temperature plasticity. The model predicts tential in agreement with the boundary conditions imposed in
grain-size exponentfor d<50 nm) p<2. The model has Eqg.(A2) is
been compared to experimental results for YTZP nanocrys-

tals. It agrees quantitatively with most of the high- _ 1oQp , _, 0Qp ,

temperature plasticity features. Future work should be con- m=not 3 gz (M=R)=—r cos 6. (A3)
ducted in other ceramics to validate experimentally the

model in more cases. There is a relationship between the mass flux on the surface

(atr=R) and the strain raté’
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by the Spanish Ministerio de Ciencia y Tecndghrough Equation(Al) can be rewritten as function pf the mass fIl_Jx
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tory, lllinois) during the writing of the manuscript. His cor-
rections of the English style and his suggestions on some of
the physical assumptions made in the model have certainly
improved the quality of our work.

J“(R,HZO)
—1I.

Jy(r,0=0)= R

(A5)

This condition is obtained as a consequence of the fact that
V-j=0 (see Ref. 3presulting in

APPENDIX
In the framework of the NH model, deformation takes (RJ;(R) kTXp Ji(R)  kTXp R cp(0)
place as a consequence of the existence of mass fluxes inf, R rcD(r)Deﬁ ™R cp(0)Degt Jo r cpo(r)

duced by the gradient in the chemical potential all around the
grain. For the case of a perfectly spherical grain, the mass =u(0,00— u(R,0). (AB)
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A direct use of Eq(A6) with Egs.(A5) and(Al) gives rise
to the following result:

16 O'QD
BERAT

€

(A7)

whered=2R and « is given by
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R?/2
)

= (A8)
R
IOCD(I‘) rdr
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