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Extra virgin olive oil polyphenolic extracts
downregulate inflammatory responses in
LPS-activated murine peritoneal macrophages
suppressing NFkB and MAPK signalling pathways

A. Cárdeno, M. Sánchez-Hidalgo, M. Aparicio-Soto, S. Sánchez-Fidalgo
and C. Alarcón-de-la-Lastra*

Extra virgin olive oil (EVOO) is obtained from the fruit of the olive tree Olea europaea L. Phenolic

compounds present in EVOO have recognized anti-oxidant and anti-inflammatory properties. However,

the activity of the total phenolic fraction extracted from EVOO and the action mechanisms involved are

not well defined. The present study was designed to evaluate the potential anti-inflammatory

mechanisms of the polyphenolic extract (PE) from EVOO on LPS-stimulated peritoneal murine

macrophages. Nitric oxide (NO) production was analyzed by the Griess method and intracellular reactive

oxygen species (ROS) by fluorescence analysis. Moreover, changes in the protein expression of the pro-

inflammatory enzymes, inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and microsomal

prostaglandin E synthase-1 (mPGES-1), as well as the role of nuclear transcription factor kappa B (NFkB)

and mitogen-activated protein kinase (MAPK) signalling pathways, were analyzed by Western blot. PE

from EVOO reduced LPS-induced oxidative stress and inflammatory responses through decreasing NO

and ROS generation. In addition, PE induced a significant down-regulation of iNOS, COX-2 and mPGES-

1 protein expressions, reduced MAPK phosphorylation and prevented the nuclear NFkB translocation.

This study establishes that PE from EVOO possesses anti-inflammatory activities on LPS-stimulated

murine macrophages.
Introduction

Over the years, the so-called Mediterranean diet has become
widely associated with improved health and well-being as well
as protection against cardiovascular diseases and colon, breast
and skin cancers.1 Epidemiological and clinical studies have
demonstrated that low chronic disease risk observed in Medi-
terranean areas seems to be ascribed to high intake of fruits and
oils from the olive tree Olea europaea L.2 Among them, extra
virgin olive oil (EVOO) is obtained from the fruits solely by
mechanical or other physical means under conditions that do
not lead to oil alteration. Within this context, the benecial
effect of EVOO consumption has been ascribed to non-polar
lipids3 or its high monounsaturated fatty acid (MUFA) content
present in the major fraction of EVOO (98–99%).4 However,
EVOO also contains multiple minor components with impor-
tant biological properties. Nowadays, it is clear that many of
the benecial effects of ingesting EVOO are due to its minor
polyphenol compounds such as avonoids, lignans
harmacy, University of Seville, Profesor

pain. E-mail: calarcon@us.es; Fax: +34
(acetoxypinoresinol), secoiridoids (oleuropein-aglycone and
ligstroside aglycone) and their hydrolysis products hydroxytyr-
osol (HT) and tyrosol (Ty), respectively, among others. These
compounds have shown a broad spectrum of bioactive proper-
ties, including anti-oxidant, free radical scavenging, anti-
inammatory and chemopreventive effects.

The anti-inammatory effects of polyphenolic compounds
have been largely described and attributed primarily to their
capacity to scavenge and prevent both reactive oxygen species
(ROS) and nitrogen species formation.1,5 However, at cellular
level, the activity of the total phenolic fraction extracted from
EVOO and the plausible action mechanisms have not been
completely described.

Macrophages are major inammatory and immune effector
cells, having a key role in the pathogenesis and development of
inammatory chronic diseases.6–8 The exposition to bacterial
lypopolyssacharide (LPS), which acts as an endotoxin, drives the
macrophages to an activated state where an excess of inam-
matory mediators such as nitric oxide (NO) and prostaglandin
(PG)E2, as well as several pro-inammatory cytokines, including
tumor necrosis factor (TNF)-a, interleukin (IL)-1b, and IL-6, are
produced. In addition, enzymes for example, cyclooxygenase
(COX)-2 and inducible nitric oxide synthase (iNOS) are major
This journal is © The Royal Society of Chemistry 2014
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effectors of the inammation, which are well-regulated by
mitogen-activated protein kinase (MAPK) family activation and
nuclear transcription factor kappa B (NFkB) activation.9–11

Taking this background into account, the present study was
designed to investigate the antioxidant and anti-inammatory
effects of the total phenolic fraction extracted from EVOO (PE)
on LPS-stimulated murine macrophages. Also, we attempted to
characterize the cellular mechanisms underlying PE possible
anti-inammatory activities, evaluating NO production, intra-
cellular ROS and protein expression of COX-2, iNOS and
mPGES-1. Moreover, we studied the role of MAPK and NFkB
signalling pathways involved in these benecial effects.
Results
Effects of PE on cell viability in LPS-stimulated murine
peritoneal macrophages

Aer 18 h, our data demonstrated that cell viability was not
signicantly reduced at concentrations up to 100 mg mL�1 for
EVOO's PE on murine macrophages (data not shown). Based on
these results, subsequent assays were carried out at concen-
trations of 25 and 50 mg mL�1. The concentration of HT (50 mM)
was selected based on the HT concentration present in 50 mg
mL�1 of PE (41.71 mM).
PE inhibits LPS-induced intracellular ROS production in
murine peritoneal macrophages

Oxygen free radicals are suggested to be signalling messengers
in the LPS-mediated inammatory response. Thus, we tested
the effects of EVOO's PE and HT on LPS-induced intracellular
ROS production using the uorescent probe DCFH-DA, which
can be oxidized to the highly uorescent compound DCF. As
shown in Fig. 1, cells incubated using different treatments for
18 h exhibited signicant decreases in intracellular ROS
production; EVOO's PE (25 and 50 mg mL�1) (P < 0.01 vs. DMSO
Fig. 1 Intracellular ROS generation reduced by PE and HT. Intraperi-
toneal murine isolated macrophages pretreated with LPS were incu-
bated with PE (25 and 50 mg mL�1) or HT (50 mM) for 18 h. Then, cells
were harvested and incubated with 10 mM of DCFH-DA for 30 min at
37 �C in the dark. Results were expressed as mean fluorescence
intensity obtained � S.E.M. (n ¼ 3). +P < 0.05 vs. untreated cells and
*P < 0.05, **P < 0.01 vs. LPS–DMSO treated control cells. H2O2 was
used as the pro-oxidant positive control.

This journal is © The Royal Society of Chemistry 2014
control) and HT (50 mM) (P < 0.05 vs. DMSO control). H2O2

(100 mM) was used as the pro-oxidant positive control.
NO2
� production and iNOS expression are inhibited by PE in

LPS-stimulated murine peritoneal macrophages

In macrophages and invading immune cells, the high amount
of NO produced by iNOS in response to LPS and/or inamma-
tory cytokines plays a crucial role in inammation and cyto-
toxicity. Thus we examined whether EVOO's PE inhibited NO
release from activated macrophages. As shown in Fig. 2A, nitrite
production as an indicator of NO production was substantially
higher in cells treated with LPS than in those treated with the
vehicle control. However both EVOO's PE and HT treatments
signicantly exhibited lower NO2

� levels, 12.54% for 25 mg
mL�1, 9.09% for 50 mg mL�1 EVOO's PE (P < 0.001 vs. DMSO
control) and 20.06% for HT treated cells (P < 0.001 vs. DMSO
control). This diminution of NO2

� production suggested a
possible down-regulation of iNOS enzyme activity. Thus, this
hypothesis was assessed by measuring the iNOS protein
levels. Immunoblotting analysis demonstrated that the
decrease in NO2

� levels was paralleled by a signicant
decrease in iNOS protein levels aer incubation for 18 h using
Fig. 2 Effect of PE and HT on release of nitrite generation. (A) Nitrite
generation and (B) densitometric analysis of iNOS protein expression.
The plots represent the band intensity and weremeasured using Image
J software. b-Actin served as an equal loading control for normaliza-
tion. Each value represents the mean � S.E.M. for three independent
experiments. +++P < 0.001 vs. untreated cells, *P < 0.05, ***P < 0.001
vs. LPS–DMSO treated control cells and #P < 0.05, ###P < 0.001 vs.
LPS–DEX. Dexamethasone (1 mM) was used as the positive control.

Food Funct., 2014, 5, 1270–1277 | 1271
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both treatments, EVOO's PE (25 and 50 mg mL�1) (P < 0.001 vs.
DMSO control) and HT (50 mM) (P < 0.001 vs. DMSO control)
(Fig. 2B). Dexamethasone (1 mM) was used as the anti-
inammatory positive control. PE and HT treatments were
signicantly more efficient in inhibiting NO2

� production
and PE than dexamethasone treatment (P < 0.001 PE or HT vs.
DEX) (Fig. 2A). Moreover, statistical signicant differences
between data from cells treated with PE or DEX were found in
iNOS protein levels (P < 0.05 PE vs. DEX) (Fig. 2B).
PE produced down-regulation in COX-2 and mPGES-1
overexpression induced by LPS

We subsequently investigated the possible effects of EVOO's PE
and HT on COX-2 inammation-related enzyme. COX-2 protein
expression was markedly induced by LPS treatment (Fig. 3A).
However, a signicant down-regulation on this proin-
ammatory protein expression was observed in cells treated
with 50 mg mL�1 PE (P < 0.05 vs. DMSO control). Likewise, no
statistical signicant down-regulation from cells treated with
Fig. 3 PE inhibits COX-2 (A) and mPGES-1 (B) protein expression in
murine intraperitoneal isolated macrophages. Cells were treated with
PE (25 and 50 mg mL�1) or HT (50 mM) for 18 h in the presence of LPS.
As controls, cells were also treated with DMSO (solvent control) or left
untreated in the absence of LPS. The plots represent the band inten-
sity. b-Actin served as an equal loading control for normalization. Data
are represented as mean� S.E.M. +++P < 0.001 vs. untreated cells and
*P < 0.05 vs. LPS–DMSO treated control cells. Dexamethasone (1 mM)
was used as the positive control.

1272 | Food Funct., 2014, 5, 1270–1277
25 mg mL�1 PE or 50 mM HT on COX-2 expression was found.
However 50 mMHT seems to bemore active than 25 mgmL�1 PE.

Similarly, LPS stimulation resulted in a marked expression of
the mPGES-1 protein (P < 0.001 vs. untreated cells) (Fig. 3B).
Though, 50 mg mL�1 PE, but not 50 mM HT treatments prior to
LPS stimulation, resulted in signicant inhibition of LPS-induced
mPGES-1 protein expression (P < 0.05 vs. DMSO control).
PE reduces p38 and JNK phosphorylation in LPS-stimulated
murine peritoneal macrophages

To further explore the molecular mechanism underlying the
anti-inammatory effect of PE, we also determined its role in
MAPK activation by Western blot analysis using phosphospe-
cic MAPK antibodies. Cells were incubated in the absence or
presence of different concentrations of PE before LPS stimula-
tion. LPS induced the appearance of phosphorylated JNK and
p38 (P < 0.05 and P < 0.01 vs. untreated cells), whereas PE
treatment demonstrated to inhibit signicantly JNK and
p38 activation (25 mg mL�1, P < 0.05 and P < 0.01; 50 mg mL�1,
P < 0.05 and P < 0.01 vs. DMSO control, respectively) (Fig. 4).
However, aer 18 h, HT treatment demonstrated the inability to
inhibit the activation of JNK or p38 (Fig. 4).
PE inhibits NF-kB-mediated transcriptional activation and
IkBa degradation in murine peritoneal macrophages

Since NFkB activity is controlled by the steady state level of IkBa,
we further investigated IkB degradation in murine peritoneal
Fig. 4 Effects of PE and HT on pJNK and pp38 signalling pathways in
murine intraperitoneal isolated macrophages. The results are repre-
sentative of three independent experiments. Densitometry was per-
formed following normalization to the control (JNK and p38 house-
keeping genes, respectively). Data are expressed as the means �
S.E.M. +P < 0.05 and ++P < 0.01 vs. untreated cells and *P < 0.05 and
**P < 0.01 significantly different from LPS–DMSO treated control cells.
Dexamethasone (1 mM) was used as the positive control.

This journal is © The Royal Society of Chemistry 2014
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Fig. 5 PE treatment inhibits NFkB-mediated transcriptional activation
and IkBa degradation in murine intraperitoneal isolated macrophages.
Results are representative of three independent experiments. Densi-
tometry was performed following normalization to the control
(b-actin house-keeping gene). Data are expressed as the means �
S.E.M. +P < 0.05 vs. untreated cells, *P < 0.05 and **P < 0.01 vs. LPS–
DMSO treated control cells and #P < 0.05 vs. LPS–DEX. Dexametha-
sone (1 mM) was used as the positive control.
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macrophages. LPS stimulation produced IkBa degradation
which was consistent with an up-regulation of NFkB-binding
activity (Fig. 5) (P < 0.05 vs. untreated cells). In contrast, PE
treatment at 50 mg mL�1 prevented IkBa degradation and
subsequently ubiquitination (P < 0.01 vs. DMSO control).
Moreover, PE treatment caused a signicant parallel inhibition
of NFkB-mediated transcriptional activation, preventing the
nuclear translocation level of p65 protein in murine macro-
phages, which was previously increased aer LPS stimulation
(P < 0.05 vs. DMSO control). HT treatments did not produce any
change in IkBa or p65 protein expression. Dexamethasone
(1 mM) was used as the positive anti-inammatory control in all
protein assays. 50 mg mL�1 PE treatment was signicantly more
efficient in inhibiting IkBa degradation than dexamethasone
treatment (P < 0.05 PE vs. DEX) (Fig. 5).

Discussion

Our ndings have shown, for the rst time, that PE from EVOO
prevented the progression of cellular damage induced by LPS
reducing the ROS levels and acting as an effective anti-oxidant.

Balance disruption of the intracellular reduction–oxidation
state has been observed in activated macrophages, which leads
to oxidative stress characterized by a major shi in the cellular
redox balance and usually accompanied by ROS-mediated
damage. Besides, ROS are capable of eliciting a variety of
This journal is © The Royal Society of Chemistry 2014
pathological changes, including the peroxidation of lipids,
proteins, and DNA. Therefore, modulators of ROS production
and ROS-induced signalling pathways, especially in macro-
phages, could represent potential targets for anti-inammatory
intervention.12 Our ndings are in agreement with other in vitro
studies where EVOO-isolated polyphenols i.e. HT or oleuropein
showed strong anti-oxidant effects acting as powerful scaven-
gers of free radicals in a similar range and higher than those
tested in our study (50 to 100 mM).13,14

On the other hand, excess of NO acts as an intracellular
messenger which modulates the formation of endogenous ROS
that orchestrate the inammatory responses.12,15 It has been
reported that increased NO production in activated macro-
phages is due to increased levels of inducible iNOS expression,
which in turn increase the transformation of L-arginine to NO.16

In the present study we found that exposure of peritoneal
macrophages to LPS resulted in a signicant increase of nitrite/
nitrate levels as an indicator of NO production and an upregu-
lation of iNOS expression and PE and HT treatments signi-
cantly were able to inhibit these effects. These results are in
accordance with previous reports of Richard et al., (2011) where
HT prevented the up-regulation of iNOS. Similar data were
obtained by Zhang et al., (2009) in THP-1.17,18 Thus we suggest
that PE and HT may decrease intracellular oxidant stress by
direct ROS scavenging including reduced intracellular activa-
tion of redox-sensitive genes and subsequent downregulation of
iNOS.

In addition, blocking of inammatory enzymes like COX-2 or
mPGES-1 represents important pharmacological tools for the
treatment of inammatory related diseases.19 mPGES-1 is an
efficient downstream enzyme for the production of PGE2 in LPS-
activated macrophages, thus a selective inhibitor of mPGES-1
would be expected to inhibit PGE2 production induced by
inammation while sparing constitutive PGE2 production.20

Moreover, this enzyme is co-localized and functionally coupled
with COX-2 which catalyzes the two sequential steps in the
biosynthesis of PGs from arachidonic acid playing a critical role
in the inammatory response.21,22 The treatment of LPS-stimu-
lated murine macrophages with PE, but not with 50 mM of HT,
produced down-regulation of both mPGES-1 and COX-2, indi-
cating a potential dual action on these proteins and suggesting
an inammatory activity reduction. As such, the highest
concentration used of PE (50 mg mL�1) contents about 50 mM of
HT; we might propose that this dual down-regulation impli-
cated more olive oil polyphenols than HT.

MAPKs are a family of serine–threonine kinase enzymes
which includes extracellular signal-regulated kinases ERKs-1
and -2, JNKs and p38 MAPKs. These proteins orchestrate the
recruitment of gene transcription, protein biosynthesis, cell
cycle control, apoptosis, and differentiation and allow cells to
respond to oxidative stress and inammatory stimuli.23 Simi-
larly, the MAPK pathway is a critical axis essential for both
induction and propagation of the inammatory in the LPS-
activated macrophage response.24 LPS was found to induce the
appearance of phosphorylated JNK and p38, in contrast our
results demonstrated that JNK and p38 activation were reduced
by PE treatment, but not by HT. Although there are a few studies
Food Funct., 2014, 5, 1270–1277 | 1273
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about the effects of olive oil polyphenols in the MAPK pathway,
a recent study by our research group has also demonstrated that
a diet made with EVOO and enriched with PE downregulated
MAPK activation in an experimental ulcerative colitis model.25

The fact that we did not nd any effect onMAPK regulation aer
HT treatment while PE exerted a signicant inhibition in p38
and JNK-posporilation, even at 25 mg mL�1, may signicantly
suggest a possible synergic effect between different compounds
of PE.

NFkB signalling plays a key role in mediating inammation
and immune response through induction of pro-inammatory
cytokines, chemokines and other proteins. NFkB, as a dimeric
transcription factor composed of p65 (RelA), RelB, c-Rel, NFkB1
(p50/p105) or NFkB2 (p52/p100), exists in the cytoplasm as an
inactive complex with the inhibitory protein, IkBa. When cells
are challenged with pro-inammatory stimuli, for example LPS,
IkBa undergoes phosphorylation and subsequently ubiquiti-
nation, allowing NFkB to translocate to the nucleus. Conse-
quently, NFkB binds to kB enhancer elements present in the
promoter region of many pro-inammatory genes, for instance
iNOS and COX-2.26,27 Our data showed that 18 h aer LPS-
induction PE signicantly inhibited the degradation of IkBa
and blocked the translocation of p65 into the nuclei. This
capacity of regulating NFkB genes was also described by Bru-
nelleschi et al. (2007) who found that an EVOO extract partic-
ularly rich in phenolic compounds inhibited p50 and p65 NFkB
translocation in monocytes and monocyte-derived macro-
phages (MDM) isolated from healthy volunteers.28 On the other
hand, other research studies have shown that the anti-inam-
matory activity of HT is mediated, at least in part, by NFkB
signalling concentrations, however higher concentrations than
50 mM were needed. For instance, Maiuri et al. (2005) suggested
that HT at concentrations of 200 mM might block the NFkB
signalling pathway in J774 murine macrophages,29 as well as,
Zhang et al. (2009) proposed that 100 mM, but not 50 mM of HT
reduced NFkB-p65 nuclear protein expressions in human
monocytes THP-1.18 However, 50 mg mL�1 of PE reduced NFkB
translocation in LPS-stimulated macrophages suggesting that
more polyphenols than HT are involved in the regulation of the
NFkB pathway.

Together these data suggest that the total phenolic fraction
extracted from EVOO may exert differential inhibitory effects in
comparison with its isolated compounds, HT in this case, on
the inammatory response induced by LPS on murine
macrophages.

Experimental
Extraction and chemical characterization of EVOO–
polyphenol extract

EVOO (Olea europaea L, Picual variety, Aceite de las Valdesas,
Córdoba, Spain) batch number 10/32 was used as the matrix to
carry out PE. PE was obtained as Vazquez Roncero et al., (1997)30

described with some modications. Fiy grams of oil was
extracted with methanol : water (80 : 20, v/v, 125 mL). The
mixture was centrifuged at 5000g for 1 min and sonicated for
15 min. Aer decantation, the methanolic extract was
1274 | Food Funct., 2014, 5, 1270–1277
concentrated in a vacuum under a stream of nitrogen at <35 �C
until it reached a syrupy consistency; nally it was lyophilized
and stored at �80 �C until use. Quantitative and qualitative
analyses of PE were performed according to COI/T20/29doc
(International Olive Council) for olive oil based on direct
extraction of the phenolic minor polar compounds from olive
oil by means of a methanol solution and subsequent quanti-
cation by high-performance ternary gradient liquid chroma-
tography (HPLC). Aer direct extraction of the phenolic minor
polar compounds by means of a methanol solution, an aliquot
of the supernatant phase was taken and ltered through a 0.45
mm PVDF lter, injected into the HPLC system equipped with a
C18 reverse-phase column (4.6 mm � 25 cm), a type Spherisorb
ODS-2 5 mm, 100 Å, with a spectrophotometric UV detector at
280 nm and an integrator. The content of the phenols was
expressed inmg kg�1 of oil and was calculated bymeasuring the
sum of the areas of the related chromatographic peaks. The
composition of the isolated PE is detailed in Table 1.

Animals

Male swiss mice (Harlan Interfauna Ibérica, Barcelona, Spain)
weighing 20–30 g were placed in cages and maintained under
constant conditions of temperature (20–25 �C) and humidity
(40–60%) with a 12 h light/dark cycle and fed standard rodent
chow (Panlab A04, Panlab, Seville, Spain) and water ad libitum
throughout the experiment. All experiments were in accordance
with the recommendations of the European Union (Directive of
the European Counsel) regarding animal experimentation and
followed a protocol observed by the Animal Ethics Committee of
the University of Seville (approval no.: 86/609/EEC, 24 November
1986).

Isolation and culture of murine peritoneal macrophages

Mice were injected intraperitoneally with 1 mL of sterile thio-
glycollate medium (10% w/v) (Scharlau, Barcelone, Spain). Aer
3 days, murine peritoneal macrophages were isolated as
described previously by Cárdeno et al. (2013).31 Cells were
treated with 5 mg mL�1 LPS from E. coli (Sigma-Aldrich, St Louis,
MO, US) in the presence or absence of PE, HT, or dexametha-
sone for 18 h. HT (99% pure) was purchased from Extrasynthese
(Genay, France) and dexamethasone (99% pure) from Sigma-
Aldrich (St Louis, MO, US). Stock solutions were always freshly
prepared in dimethylsulfoxide (DMSO) (Panreac, Barcelone,
Spain) and diluted to a desired concentration directly in the
culture medium. The nal concentration of DMSO (Panreac,
Barcelona, Spain) in all experiments was always#1% and it had
not signicantly inuenced the cell response.

Cell viability

Cells seeded in 96-well plates (1 � 105 cells per well) were
incubated in the presence or absence of different PE concen-
trations for 18 h. At the end of the exposure time, the effect on
cell growth/viability was analyzed by sulforhodamine B (SRB)
assay. Cell survival was measured as the percentage of absor-
bance compared with that obtained in control cells (non-treated
cells).31
This journal is © The Royal Society of Chemistry 2014
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Table 1 Composition of the isolated EVOO polyphenolic extract using COI/T20/29doc

Phenol name
PE composition
ppm (mg kg�1)

mg phenol
(50 mg PE)

mM phenol
(50 mg PE per mL)

Hydroxytyrosol 45.00 6.43 41.71
Tyrosol 44.40 6.34 45.94
Vanillic acid 6.10 0.87 5.17
P-coumaric acid 4.00 0.57 3.47
Decarboxymethyl oleuropein aglycone (dialdehyde) 23.04 3.34 10.43
Tyrosyl acetate 6.40 0.91 5.05
Decarboxymethyl ligstroside aglycone (dialdehyde) 24.50 3.50 11.51
Pinoresinol 15.70 2.24 6.25
Cinnamic acid 6.80 0.97 6.54
Acetoxy-pinoresinol 18.40 2.63 6.32
Oleuropein aglycone, aldehyde form 88.20 12.60 39.37
Ligstroside aglycone, dialdehyde form 56.60 8.09 26.61
Luteolin 8.70 1.24 4.33
Apigenin 1.70 0.24 0.89
Total phenols expressed in tyrosol 350 ppm
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Measurement of intracellular ROS

Intracellular ROS production was measured using 2,7-dichlor-
uorescein-diacetate (DCFH-DA). DCFH-DA penetrates into the
cells and is hydrolyzed by intracellular esterases to the nonu-
orescent 2,7-dichlorouorescein (DCFH), which can be rapidly
oxidized to the highly uorescent 2,7-dichlorouorescein (DCF)
in the presence of ROS. Peritoneal macrophages were seeded at
1 � 106 cells per well in 24-well plates and incubated in the
absence or presence of EVOO's PE or HT and 30 min later, cells
were stimulated with LPS for 18 h. The uorescence intensity
was measured as described previously by Cárdeno et al. (2013).31

Aer the incubation time, cells were treated with 10 mM DCFH-
DA at 37 �C for 30 min and washed twice with PBS. The uo-
rescence intensity was measured with a plate reader (BioTek,
Bad Friedrichshall, Germany) with an excitation wavelength of
485 nm and an emission wavelength of 538 nm. The results
were expressed as the intracellular ROS production percentage
compared with LPS–DMSO control cells. H2O2 (100 mM) (30%
pure) (Panreac, Barcelone, Spain) was used as the pro-oxidant
positive control.
Measurement of nitrite production

Cells in a 24-well plate were untreated or treated with selected
concentrations of PE, HT or dexamethasone and 30 min later
they were stimulated with LPS for 18 h. The amount of nitrite, as
an index of NO generation, was determined as described
previously by Cárdeno et al. (2013).31 The results were expressed
as the nitrite production percentage compared with LPS control
cells (stimulated untreated cells). 1 mM dexamethasone 99%
(Sigma, St Louis, MO, USA) was used as the positive control.
Isolation of proteins and immunoblotting detection

Cells (1 � 106 cells per mL) were untreated or treated with
selected concentrations of PE, HT or dexamethasone, and
stimulated with LPS for 18 h. Aer incubation, the protein
concentration was determined following Bradford's
This journal is © The Royal Society of Chemistry 2014
colorimetric method.32 Aliquots of supernatant containing an
equal amount of protein (20 mg) were evaluated to determine
COX-2 iNOS, mPGES-1, IkBa, p65, pJNK, JNK, pp38, and p38
proteins by Western blot as described by Cardeno et al. (2014).31

The signals were analyzed and quantied by Image Processing
and Analysis in Java (Image J, Soonic). 1 mM dexamethasone
99% (Sigma, St Louis, MO, USA) was used as the positive
control.
Statistical analysis

All values in the gures and text are expressed as arithmetic
mean value � standard error (S.E.M). Data were evaluated with
GraphPad Prism® Version 5.01 soware. Comparison was done
using one-way analysis of variance (ANOVA) followed by Tukey
or Dunnett's test when appropriate. P values of <0.05 were
considered statistically signicant. The gures shown are
representative of at least three different experiments performed
on different days.
Conclusions

In conclusion, this study establishes for the rst time that the
total phenolic fraction extracted from EVOO (PE) inhibits LPS-
induced oxidative stress and inammatory responses via direct
downregulation of NO and ROS generation. These protective
effects seem to be due to downregulation of iNOS, mPGES-1 and
COX-2 expression via inhibition of MAPK activation and NFkB
signalling pathways.

Furthermore, our results suggest that HT plays an impor-
tant role in the PE anti-oxidant and anti-inammatory effects.
Nevertheless other minor bioactive compounds present in PE
such as oleuropein aglycone, tyrosol, pinoresinol or oleocan-
thal among others might contribute in synergy. In fact,
previous reports have described olive oil polyphenols as a kind
of natural product with antioxidant and anti-inammatory
properties.33–36
Food Funct., 2014, 5, 1270–1277 | 1275
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