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Abstract

The freight-transport industry has made enormous progress in the development and application of
logistics techniques that has transformed its operation, giving raise to impressive productivity gains
and improved responsiveness to its consumers. While the separation of passenger and freight traffic
is a relatively new concept in historic terms, recent approaches point out that most freight-logistics
techniques are transferable to the passenger-transport industry. In this sense, passenger logistics can
be understood as the application of logistics techniques in urban contexts to the passenger-transport
industry. The design of an urban logistic network integrates decisions about the emplacement, number
and capacities of the facilities that will be located, the flows between them, demand patterns and
cost structures that will validate the profitability of the process. This strategic decision settles
conditions and constraints of latter tactical and operative decisions. In addition, different criteria
are involved during the whole process so, in general terms, it is essential an exhaustive analysis, from
the mathematical point of view, of the decision problem. The optimization models resulting from
this analysis require techniques and mathematical algorithms in constant development and evolution.
Such methods demand more and more a higher number of interrelated elements due to the increase
of scale used in the current logistics and transportation problems.

This PhD dissertation explores different topics related to Mathematical models for the design and
planning of transportation on demand in urban logistics networks. The contributions are divided into
six main chapters since and, in addition, Chapter 0 offers a basic background for the contents that
are presented in the remaining six chapters.

Chapter 1 deals with the Transit Network Timetabling and Scheduling Problem (TNTSP) in a public
transit line. The TNTSP aims at determining optimal timetables for each line in a transit network by
establishing departure and arrival times of each vehicle at each station. We assume that customers
know departure times of line runs offered by the system. However, each user, traveling later of before
their desired travel time, will give rise to an inconvenience cost, or a penalty cost if that user cannot
be served according to the scheduled timetable. The provided formulation allocates each user to the
best possible timetable considering capacity constraints. The problem is formulated using a p-median
based approach and solved using a clustering technique. Computational results that show useful
applications of this methodology are also included.

Chapter 2 deals with the TNTSP in a public transit network integrating in the model the passengers’
routings. The current models for planning timetables and vehicle schedules use the knowledge of
passengers’ routings from the results of a previous phase. However, the actual route a passenger will
take strongly depends on the timetable, which is not yet known a priori. The provided formulation
guarantees that each user is allocated to the best possible timetable ensuring capacity constraints.

Chapter 3 deals with the rescheduling problem in a transit line that has suffered a fleet size reduction.
We present different modelling possibilities depending on the assumptions that need to be included
in the modelization and we show that the problem can be solved rapidly by using a constrained max-
cost-flow problem whose coefficient matrix we prove is totally unimodular. We test our results in a
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testbed of random instances outperforming previous results in the literature. An experimental study,
based on a line segment of the Madrid Regional Railway network, shows that the proposed approach
provides optimal reassignment decisions within computation times compatible with real-time use.

In Chapter 4 we discuss the multi-criteria p-facility median location problem on networks with positive
and negative weights. We assume that the demand is located at the nodes and can be different for
each criterion under consideration. The goal is to obtain the set of Pareto-optimal locations in the
graph and the corresponding set of non-dominated objective values. To that end, we first characterize
the linearity domains of the distance functions on the graph and compute the image of each linearity
domain in the objective space. The lower envelope of a transformation of all these images then gives
us the set of all non-dominated points in the objective space and its preimage corresponds to the
set of all Pareto-optimal solutions on the graph. For the bicriteria 2-facility case we present a low
order polynomial time algorithm. Also for the general case we propose an efficient algorithm, which
is polynomial if the number of facilities and criteria is fixed.

In Chapter 5, Ordered Weighted Average optimization problems are studied from a modeling point
of view. Alternative integer programming formulations for such problems are presented and their
respective domains studied and compared. In addition, their associated polyhedra are studied and
some families of facets and new families of valid inequalities presented. The proposed formulations
are particularized for two well-known combinatorial optimization problems, namely, shortest path
and minimum cost perfect matching, and the results of computational experiments presented and
analyzed. These results indicate that the new formulations reinforced with appropriate constraints
can be effective for efficiently solving medium to large size instances.

In Chapter 6, the multiobjective Minimum cost Spanning Tree Problem (MST) is studied from a
modeling point of view. In particular, we use the ordered median objective function as an averaging
operator to aggregate the vector of objective values of feasible solutions. This leads to the Ordered
Weighted Average Spanning Tree Problem (OWASTP), which we study in this work. To solve the
problem, we propose different integer programming formulations based in the most relevant MST
formulations and in a new one. We analyze several enhancements for these formulations and we test
their performance over a testbed of random instances. Finally we show that an appropriate choice will
allow us to solve larger instances with more objectives than those previously solved in the literature.
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Preface

The freight-transport industry has made enormous progress in the development and application of

logistics techniques that has transformed its operation, giving raise to impressive productivity gains

and improved responsiveness to its consumers. While the separation of passenger and freight traffic

is a relatively new concept in historic terms, recent approaches point out that most freight-logistics

techniques are transferable to the passenger-transport industry. In this sense, passenger logistics can

be understood as the application of logistics techniques in urban contexts to the passenger-transport

industry. The design of an urban logistic network integrates decisions about the emplacement, number

and capacities of the facilities that will be located, the flows between them, demand patterns and

cost structures that will validate the profitability of the process. This strategic decision settles

conditions and constraints of latter tactical and operative decisions. In addition, different criteria

are involved during the whole process so, in general terms, it is essential an exhaustive analysis, from

the mathematical point of view, of the decision problem. The optimization models resulting from

this analysis require techniques and mathematical algorithms in constant development and evolution.

Such methods demand more and more a higher number of interrelated elements due to the increase

of scale used in the current logistics and transportation problems.

Transportation on Demand (TOD) copes with a set of transportation requests that are formulated

between pickup and delivery points (origins and destinations respectively) and must be served by

vehicles of a given capacity. In addition, time windows are usually specified in both pickup and

delivery locations. TOD has been usually applied to the transportation of elderly and disabled as

well as to transportation in rural areas. However, this perspective of social and economical interests

is migrating to a more general passenger logistics framework. For example, the recent development of

smartphones allows to collect personal and microscopic information about the preferences and habits

of each passenger that can be later analyzed with Big Data tools. In the recent years TOD systems

have gained popularity and interesting methodologies have been developed. The high cost of door-

to-door transportation and the lack of flexibility of fixed route systems suggest the implementation

of intermediate systems that allow serving transportation requests in centralized nodes. A relevant

tactical decision consists of locating transfer nodes that let moving passengers between vehicles of

different routes shortening the routes and decreasing transportation costs.

Even when it is possible to obtain high quality solutions for each sub-problem of a logistic network,

sequential approaches lead to solutions that do not necessarily guarantee a cohesive solution for the
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planning problem as a whole. To overcome this situation, recent studies address the integration of

two or more sub-problems at a time. There are two common approaches to integrate two or more

problems: solving partial integrated formulations that consider some characteristics of one problem

while taking decisions of other subproblems and defining complete integrated formulations and/or

solution approaches that jointly determine the decisions of the problems. Since complete integrations

consider all degrees of freedom of each sub-problem, they are more difficult to define and handle.

From another perspective, failures and interruptions are not usually considered in the planning phase

of a logistic network so, even if correctly designed, it can be affected by big perturbations after an

unexpected event (interruptions, accidents, etc) or during time intervals with a peak of demand.

The existing uncertainty in many of the elements that take part in the problem, as the nature of the

demand or supplies, the variability of transportation and operation costs, the reliability of the network,

etc, suggest to propose robust solutions including random elements to the optimization problem or

protecting the system against adverse or risky situations. A first possibility consists of designing

auction protocols for each possible adverse scenario. A more conservative perspective searches robust

solutions that fit in all scenarios. Recent developments point at providing on-line solutions as a

response to disruptions within minutes.

The strategic planning is the starting phase of analysis in a Logistic Network and, therefore, location

models play a key role at this stage. Broadly speaking, these models consider regions where a set of

clients is established and their demand require to be satisfied with the location of one or several types

of facilities. Besides, many real-world applications are concerned with finding an optimal location for

one or more new facilities on a network (road network, power grid, etc.) minimizing a function of the

distances between these facilities and a given set of existing facilities (clients, demand points), where

the latter typically coincide with vertices. This is the case for example of the location of centralized

nodes that could be used to serve transportation requests. The majority of research focuses on the

minimization of a single objective function that is increasing with distance. However, in the process of

locating a new facility usually more than one decision maker is involved. This is due to the fact that

often the cost incurred with the decision is relatively high. Furthermore, different decision makers

may (or will) have different (conflicting) objectives. An additional difficulty is that we are usually

dealing with conflicting criteria and a single optimal solution does not always exist (which would be an

optimal solution for each of the criteria). Despite its intrinsic interest, the multicriteria multi-facility

location problem on networks has received little or none attention in the literature.

Multiobjective combinatorial optimization deals with problems considering more than one viewpoint

or scenario. The problem of aggregating multiple criteria to obtain a globalizing objective function is

of special interest when the number of Pareto solutions becomes considerably large or when a single,

meaningful solution is required. For these reasons, more involved decision criteria have been proposed

in the field of multicriteria decision making. These include objectives focusing on one particular

compromise solution, which, for tractability and decision theoretic reasons, seem to be better suited

when an appropriate aggregation operator is available. Ordered Weighted Average or Ordered Median

operators are very useful when preferential information is available and objectives are comparable since

they assign importance weights not to specific objectives but to their sorted values.
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Contributions

This PhD dissertation is divided into six main chapters. Chapter 0 offers a basic background for the

contents that are presented in the remaining chapters. The main contributions of this PhD dissertation

are the following:

Chapter 1. This chapter deals with the Transit Network Timetabling and Scheduling Problem

(TNTSP) in a public transit line. The TNTSP aims at determining optimal timetables for

each line in a transit network by establishing departure and arrival times of each vehicle at

each station. We assume that customers know departure times of line runs offered by the

system. However, each user, traveling later of before their desired travel time, will give rise

to an inconvenience cost, or a penalty cost if that user cannot be served according to the

scheduled timetable. The provided formulation allocates each user to the best possible timetable

considering capacity constraints. The problem is formulated using a p-median based approach

and solved using a clustering technique. Computational results that show useful applications of

this methodology are also included.

Chapter 2. The Transit Network Timetabling and Scheduling Problem (TNTSP) aims at determin-

ing optimal timetables for each line in a transit network by establishing departure and arrival

times at each station allocating a vehicle to each timetable. The current models for planning

timetables and vehicle schedules use the knowledge of passengers’ routings from the results

of a previous phase. However, the actual route a passenger will take strongly depends on the

timetable, which is not yet known a priori. This chapter deals with the TNTSP in a public transit

network integrating in the model the passengers’ routings. The provided formulation guarantees

that each user is allocated to the best possible timetable ensuring capacity constraints.

Chapter 3. Public transportation systems in metropolitan areas carry a high density of traffic daily,

heterogeneously distributed, and exposed to the negative consequences derived from service

disruptions. Breakdowns, accidents, strikes, require on-line operation adjustments to address

these incidents in order to reduce their side effects, such as passenger extra-waiting times,

complaints, potential operational dangers, etc. The Rescheduling Problem consists of defining a

new schedule for a set of previously scheduled trips, given that one/several trips cannot be carried

out. This chapter deals with the rescheduling problem in a transit line that has suffered a fleet size

reduction. We present different modelling possibilities depending on the assumptions that need

to be included in the modelization and we show that the problem can be solved rapidly by using a

constrained max-cost-flow problem whose coefficient matrix we prove is totally unimodular. We

test our results in a testbed of random instances outperforming previous results in the literature.

An experimental study, based on a line segment of the Madrid Regional Railway network, shows

that the proposed approach provides optimal reassignment decisions within computation times

compatible with real-time use.

Chapter 4. In this chapter we discuss the multi-criteria p-facility median location problem on

networks with positive and negative weights. We assume that the demand is located at the
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nodes and can be different for each criterion under consideration. The goal is to obtain the set

of Pareto-optimal locations in the graph and the corresponding set of non-dominated objective

values. To that end, we first characterize the linearity domains of the distance functions on

the graph and compute the image of each linearity domain in the objective space. The lower

envelope of a transformation of all these images then gives us the set of all non-dominated points

in the objective space and its preimage corresponds to the set of all Pareto-optimal solutions on

the graph. For the bicriteria 2-facility case we present a low order polynomial time algorithm.

Also for the general case we propose an efficient algorithm, which is polynomial if the number

of facilities and criteria is fixed.

Chapter 5. In this chapter, Ordered Weighted Average optimization problems are studied from a

modeling point of view. Alternative integer programming formulations for such problems are

presented and their respective domains studied and compared. In addition, their associated

polyhedra are studied and some families of facets and new families of valid inequalities

presented. The proposed formulations are particularized for two well-known combinatorial

optimization problems, namely, shortest path and minimum cost perfect matching, and the

results of computational experiments presented and analyzed. These results indicate that the

new formulations reinforced with appropriate constraints can be effective for efficiently solving

medium to large size instances.

Chapter 6. In this chapter, we study the multiobjective Minimum cost Spanning Tree Problem

(MST) from a modeling point of view. In particular, we use the ordered median objective

function as an averaging operator to aggregate the vector of objective values of feasible solutions.

This leads to the Ordered Weighted Average Spanning Tree Problem (OWASTP), which we study

in this chapter. To solve the problem, we propose different integer programming formulations

based in the most relevant MST formulations and in a new one. We analyze several enhancements

for these formulations and we test their performance over a testbed of random instances. Finally

we show that an appropriate choice will allow us to solve larger instances with more objectives

than those previously solved in the literature.
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Chapter 0

Preliminaries

0.1 Public transport systems

The search of consumer goods, job opportunities, studies centers, leisure and other services offered

by modern society are the main motivators for the mobility of citizens. Transportation is considered

a key component in the processes of production and distribution of material and cultural goods of

society. In practice, no human activity can be conceived without performing displacement of people or

objects, hence the dedication to solve transportation problems has been along the history a constant

challenge for all models of human organization.

In the vast majority of existing urban contexts, it is commonly accepted that private modes do not

provide by themselves a solution to the transportation problem in the long term, so that a significant

portion of the trip demand must be satisfied by public modes. Consequently, public transport systems

play a key role in the mobility of people for cities of medium and large size and they constitute the

basic components for unifying the social and economic structure. The term “urban public transport”

is commonly used to identify the commercial services for passengers who must pay a preset fare. A

public transport system holds regular expeditions along determined routes, with known schedules and

points of access. In these public transport systems, different actors can be distinguished:

• Users (passengers): People with transportation needs who are willing to spend time and money

to meet it.

• Operators (Transport business): companies that provide users of transportation by means of

vehicles, fuel, crew and maintenance.

• Additionally, certain agents can act as regulatory entities (local, regional and national

governments), responsible for ensuring social service of transportation to city residents.

Logistics consists of planning and managing the movement and placement of goods or people, as well

as the related supporting activities, all within a system designed to achieve specific objectives. When

1
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planning a transportation system, it is necessary to initially establish if the service to be provided

can be considered as public or private and if the elements to be transported are people or objects. In

private companies a key objective is to obtain economic benefits as a result of their activity. Therefore,

transport resources will be offered only if there is a (short, medium or long term) reliable expected

return. Conversely, in public companies, profit is a secondary objective and other different criteria

make sense such as population coverage, the fight against social exclusion, sustainability, etc. Possible

losses of profitability are assumed in the public infrastructure projects and typically the objective is

to maintain an affordable level of public deficit.

0.1.1 Users’ behaviour and equilibrium.

In many existing transport networks, the “non-cooperative” user behavior aggravates the problem of

congestion. In general, travelers select their route from an origin to a destination in order to minimize

their own travel cost (travel time). Although this choice is optimal from the perspective of the

individual user, the results derived from the application of this criterion by each user can individually

produce a negative effect on the community. The well-known Braess paradox illustrates this fact.

In 1968, Braess published in the journal “Unternehmensforschung” the document “Über ein aus der

Paradoxon Verkehrsplanung”, a reflection on the difference between the concept of optimal choice for

the user and optimal situation from the perspective of the system. It seems logical that if more roads

were built and the number of vehicles were increased, the traffic should be more fluid. However, in

Braess’s network (see Figure 1) we can see how the expansion of its configuration with adding new

connection, without introducing any change in the behavior of travel demand, would cause that all

travelers would incur in a higher travel cost.

Figure 1: Braess’s network

Suppose that 4000 drivers want to go from START to END in the minimum time possible. The

numbers on the edges of the figure (45) indicate a fixed travel time of 45 minutes, while the labels

T/100 express that the time in minutes required for traversing depends on the number of vehicles that

circulate divided by 100. Assume now that there is a highway that connects the intermediate points

A and B and allows a negligible travel time (0 minutes) in comparison to the total travel time. If

we assume that 4000 drivers were unsupportive (i.e., they minimize their owun travel time without

considering a collective vision), then they would choose the path START-A-B-END, employing a total

of 80 minutes. But if 2000 drivers chose traveling through one of these two routes (START-A-END)
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and the other 2000 drivers took the alternative route(START-B-END), we would have a total travel

time for each driver of 65 minutes (2000/100 + 45 = 20 + 45 = 65). Therefore, a collective strategy

would be more beneficial to individual users. This is the reason for the existence of a central controller

that makes decisions regarding the volume of flows that should be assigned to the edges of the network

so as to minimize the total transportation cost.

0.1.2 Demand assignment models

Passenger assignment models aim to describe the way users of a public transportation system employ

the available infrastructure for traveling between different origins and destinations in the network.

Several models have been proposed, differing with respect to the assumptions on passenger behavior,

network structure, and modeling of congestion (Cominetti and Correa, 2001).

One important concept in demand assignment is the determination of the minimum cost path.

Important elements in defining the attributes of cost include:

1. The characterization of time-dependence and stochastic attributes in the minimum cost path.

2. The characterization of a solution as: (i) a single path, including only a route or combination

of routes; (ii) a path that can include a set of common lines (Cominetti and Correa, 1999),

including cases where multiple routes may overlap on some part of the shortest path; or (iii) a

strategy, allowing passengers to choose their own boarding rules as they travel from origin to

destination (Spiess and Florian, 1989).

3. The effect of capacity and congestion in the transit network.

Demand behaviour has been deeply studied in passenger assignment models in order to describe the

way users of a public transportation system employ the available infrastructure for traveling between

different origins and destinations (Pel et al., 2014). Two families of assignments models are usually

used to predict user’s behaviour inside a transportation network: frequency-based and schedule-based

models.

Frequency-based models (FBM) are based in the statement that passengers choose their strategies

according to the level of frequencies established in the lines of the network since frequencies determine

waiting times and load in vehicles (Cepeda et al., 2006). Two main drawbacks have been shown in

this approach. First, the behaviour of passengers vary according to waiting times. Small frequencies

lead users to arrive randomly to stations but when frequencies are bigger, users tend to follow strictly

timetables, arriving only few minutes before the departure. In this sense, frequency-based models do

not allow computing user’s schedule costs (Small, 1982) that is, deviations from desired and actual

travel time, and allocations to lines are made by distributions or probabilities. The second drawback

comes from the fact that FBM are not sufficient to face the dynamic nature of the capacity problem,

so it is often required to deal with fail-to-board probabilities (Schmöcker et al., 2008) that only allow

obtaining average line loadings over the modeling period, instead of line loadings for specific services.

The main advantage of frequency-based approaches is that less detailed input data are required.
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In the last 20 years, schedule-based models have been used for detailed operational planning of services

with low frequencies (Nuzzolo et al., 2012; Hamdouch et al., 2011, 2014). The computational demand of

schedule-based models has often been a major obstacle; however, recent computational improvements

also made it possible to use schedule-based models for larger networks and/or for networks with a high

density of services, like metropolitan subway networks (Poon et al., 2004). The inherent advantage

of schedule-based over frequency-based models is that schedule-based approaches always consider

dynamic effects and allow tracking the time at which passengers pass each node on their way from

their origin to their destination.

0.2 The global transportation planning process

A public transportation design involve decisions in three different scopes:

1. Demand forecasting. Implies the study and updating of present and future user’s flows between

different points of a city.

2. Mode choice. That is, selection of the mean of transport that will operate between different

locations. This decision, should take into account, speed, capacities, constraints related to

geographical, environmental and economical restrictions as well as compatibilities with other

means of transport already in use.

3. Transportation planning. Includes routes design, stations and depots location and transport

policies regarded with the level of service determined.

Ceder and Wilson (1986) establish five steps in the global transportation planning process: line

planning, frequencies setting, timetabling, vehicle scheduling and crew rostering. Some transportation

systems require first a traditional network design problem consisting of selecting edges (rails, roads,

etc) and nodes (stations, depots, parkings, etc). Over this infrastructure, lines and routes are defined.

Figure (2) shows the whole planning process as a systematic decision sequence. It is obvious that the

order and independence of this activities exist only in the diagram, since any decision made in upper

leves will have consequences in lower levels.

Some authors, treat this process as sequence of three levels of decision (Van de Velde, 1999):

1. The strategic level, that comprises long-term decisions (5 years approximately) such as decisions

in network design and line planning.

2. The tactical level, that comprises decisions valid in medium-term (1-2 years) such as the

frequencies setting and the timetabling.

3. The operational level, that implies short-term decisions, taken once a day/month, like the vehicle

scheduling and crew rostering.



Chapter 0. Preliminaries 5

Lines design

Frequencies
settings

Timetabling

Vehicle
Scheduling

Crew Rostering

Network Design
Strategical Level

(long-term)

Tactical Level
(medium-term)

Operative Level
(short-term)

Figure 2: Global planning process

The main goal of most transit operators is to offer to the population a service of good quality that

allows passengers to travel easily at a low fare. The operators thus have a social mission which

aims at reducing pollution and traffic congestion, as well as increasing the mobility of the population

(Desaulniers and Hickman, 2007). In most cases, the goal is usually not to make profits, as is the case

for almost all other transportation organizations such as airlines, railroads, and trucking companies.

They are, however, subject to budgetary restrictions that force them to manage expensive resources

such as buses, drivers, maintenance facilities and bus depots as efficiently as possible. Briefly stated,

the global problem faced by the agencies consists of determining how to offer a good-quality service

to the passengers while maintaining reasonable asset and operating costs.

0.2.1 Strategic Level

Transit network design

Given a potential network, the Transit Network Design Problem (TNDP) consists basically of selecting

a subset of nodes (access and exit nodes to network) and edges (connections) that will allow a potential

demand traveling between the nodes of the network. The accessibility to the network increases with the

number of stations but, on the other hand, the commercial speed between an origin and a destination

decreases according to the number of intermediate stops (Murray, 2003; Schöbel, 2005). The biggest

constraint over the number of edges selected comes from the kind of network in study (bus, tram,

subway) and the type of construction (surface, tunnel, raised platforms). The line planning step

with/without the frequencies setting can be included in the TNDP or they can be left to be solved in

as subsequent problems.

From the user’s perspective, a transit network should cover a large service area, being easily accessible

and offering a large number of possible trips in order to meet globally the demand. On the other hand,

the number of stations and the network size should be restricted in order to control operator’s costs.

Building a transit network can be an expensive and complex task where a widespread variety
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of decision-makers have influence; such as urban planners, traffic and civil engineers, politicians,

geologists, environmentalists and citizen interest groups. None of the available methods can claim

to provide a complete and definite solution to an outstanding planning problem (metro, rail, roads)

as there are just too many players, criteria and uncertainties present in such projects. However,

operational research can be useful in generating and assessing alternative solutions and in solving

specific subproblems. As an example, the construction of a metro link under the historical centre of

a city leads to a multi-criteria optimization problem where alignments should be far from fragile

buildings, to reduce the effects of vibrations, without deviating too much from the most direct

trajectory (Laporte et al., 2009).

0.2.2 Tactic level

Line planning and frequency setting

The Transit Network Frequencies Setting Problem (TNFSP), consists of determining a set of lines

and associated frequencies for a given infrastructure network and a demand pattern. Objectives

and constraints are usually related with the directness of the routes, the service coverage and the

operational costs.

Yu et al. (2005) claim that the design of lines and the frequencies setting should not be treated

simultaneously, since the line network is a component more stable than a flexible parameter as the

frequency. However, it is of special interest to relate both problems in order to get better results,

especially when demand is assumed to be endogenous and determined as an equilibrium problem, in

which the flows are a function of the network design (see e.g., Gao et al., 2004). With the origin-

destination flows and an assignment of these flows to routes, the set of routes and their frequencies

must be determined.

From the users’ perspective, the layout of the lines should cover a large service area, offering a big

number of direct trips close as possible to shortest paths and it should meet the global demand.

Complementary, the number of stations and the total length of the network should stay below an upper

bound in order to reduce operator’s costs. In addition, an appropriate frequencies assignment for each

line should be adequate for each time period of the day, week or season of the year. Furthermore, the

service should be regular enough in order to satisfy the users’ demand but sparse enough so as to limit

the required fleet size and therefore, the operational costs.

Timetable design

The Transit Network Timetabling Problem (TNTP) consists of establishing a timetable for each

(predetermined) line of the transit network by means of departure and arrival times at each station.

This process can be dependant on a preestablished set of frequencies, or it can be independent to

determine jointly frequencies and timetables. In addition, the policy of headways could be given

implying a minimum/maximum frequency imposed as constraints in the timetables.
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With the aim of reducing waiting times at interchange zones, transfers can be coordinated especially

when headways are long (Guihaire and Hao, 2008). In this case, losing a connection may incur in

big delays but the lack of synchronization may discourage users, avoiding such transport system if

possible. On the other hand, high frequencies incur just waiting few minutes in case of losing a

connection (Chakroborty et al., 2001) and, in case of congestion, a transfer coordination may lead to

unreliable transfers.

There are two main timetable variants. One variant is the periodic (or cyclic) timetable that is

repeated every given time period, for example every hour, with only slight differences between peak

hours and off-peak hours. The other variant is the non-periodic timetable, that allows to follow the

passenger demand with the frequencies of the trains. In both cases the timetable is usually repeated

every day, although there may be differences between weekdays and weekend days. Periodic timetables

are suitable for rapid transit systems, where the frequency of the vehicles is high and their departures

are equally spaced. In the case of low frequency transportation systems, periodic timetables are easy

for the passengers to remember. Assuming constant demand, periodic timetables provide minimum

waiting times (Larson and Odoni, 1981). However, a periodic timetable applied to a general demand

case leads to unbalanced levels of occupancy of the trains and higher waiting times. Conversely,

demand behaviour also depends on the level of frequencies/timetables. Narrow headways lead users

to arrive randomly to stations giving rise to a waiting cost for the user. On the other hand, when

headways are wider, customers tend to strictly follow timetables, arriving only few minutes before the

departure time. This last situation does not provoke a waiting cost for the user but an inconvenience

cost to fit desired travel time to actual timetables (Grosfeld-Nir and Bookbinder, 1995; Fosgerau,

2009). The concept of schedule delay (Small, 1982) arises with the fact that arriving early is likely

to involve some wasted time while for most users, arriving late has more severe repercussions. In this

way, timetabling can be seen as a p-median problem (Hakimi, 1964) where the objective is to minimize

the time/distance between passenger desired departure times and actual ones (Mesa et al., 2013).

Demand satisfaction in the TNTP can be measured in terms of travel time (since timetable setting

permits to compute passengers travel time for the first time in the process), transfers (in both terms

of possibilities and synchronization) and schedule delays. From the operator’s point of view, a proper

timetable setting may help to reduce the required fleet size.

0.2.3 Operational level

Operational level I: Vehicle scheduling

The Vehicle Scheduling Problem (VSP) consists of allocating vehicles to a given set of timetables,

considering some practical requirements such as multiple depots, types of vehicles and other extensions.

An optimal vehicle schedule minimizes the fleet size as well as the operational costs. More precisely,

given a set of travel times for predetermined trips (with established departure and arrival times) as

well as starting and finishing locations, the VSP is to find the vehicle allocation to trips such that:

(1) each trip is performed once, (2) each vehicle performs a feasible sequence of trips and (3) the total
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costs are minimized. The total costs can be divided in fixed costs of vehicles (as investments and

maintenance) and operational costs (as fuel and wear). Operational costs can be also understood in

different ways taking into account travel distances, travel times or even waiting times. The VSP has

been widely studied in the last 40-50 years (see, e.g., Törnquist, 2007; Bunte and Kliewer, 2009).

Operational level II: Crew rostering

The crew rostering problem consists of allocating a set of drivers to a set timetabled trips in order to

minimize the cost of duties and satisfy labor regulations constraints. The Driver Scheduling Problem

defines the generic daily duties whereas the Driver Rostering Problem determines the assignment of

drivers to the daily duties yielded by the Driver Scheduling Problem solution for a specific planning

period, e.g. a month. This assignment, called roster, must comply with labor rules and the company’s

regulations (e.g. maximum working days in a row). Further information on crew scheduling and

rostering is analyzed in Wren and Rousseau (1995).

0.2.4 Strategies for managing interruptions and the rescheduling problem

Railway systems in metropolitan areas carry a high density of traffic daily, heterogeneously distributed,

and exposed to the negative consequences derived from service disruptions. Some examples of possible

disruptions are: (1) interruptions coming from severe weather conditions, accidents, and the blockage

of road or tracks sections or (2) fleet size reductions coming from vehicle breakdowns, drivers’ and crew

strikes or vehicle reallocations made to reinforce other sections of the transit network. In particular, a

scheduled timetable may become infeasible simply due to a heavy passenger flow (Mesa et al., 2009).

To address these incidents, operation adjustments are required in order to reduce the side effects

of emergency incidents, such as passenger waiting/traveling times, complaints, potential operational

dangers, etc. The rescheduling problem consists of defining a new schedule for a set of previously

scheduled trips, given that one or several trips have been severely disrupted. While many objectives

and constraints remain from the timetabling problem, new requirements and objectives arise in this

context. In terms of transportation of people, the main decisions concern to the minimization of the

deviations from the initial timetable in operation and delay costs.

Rescheduling is the process of updating an existing production plan in response to disturbances or

disruptions (Vieira et al., 2003). Customers plan their trips based on a known timetable, and can

be greatly inconvenienced if the service does not arrive or depart at the expected time. When a

disturbance occurs, like a train breakdown in a certain line, the system operator must make a decision

about rescheduling the remainder vehicles which are normally operating along the network in order to

reduce the loss of service quality perceived by the users. An important difference between the planning

stage and the rescheduling stage during disruptions is that in the latter case less time is available for

rescheduling. In principle, solutions are expected within minutes (on-line). For the resources, another

important difference is that in general there is less flexibility in the rescheduling stage, since many

resource duties have already started at the time of the disruption when the rescheduling is carried
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out, and cannot be easily diverted. In addition, the solution space is bounded by the remaining time

until the end of the rescheduling horizon, which is usually the end of the day. Hence, if the disruption

happens in the evening, then the solution space is much smaller than in case the disruption happens

in the morning. For example, a straight forward myopic strategy consists in canceling those services

that serve to the least number of users. This methodology would not introduce any change/delay in

the remaining timetables. Nevertheless, a seminal paper by Mesa et al. (2013) has shown that if real

time control strategies are applied along a transit corridor (i.e., by allowing delays at some services of

the initial schedules), then the demand satisfaction after rescheduling can be increased significantly.

Altay and Green (2006) suggest that emergency response efforts consist of two stages; pre-event

and post-event response. Pre-event tasks include predicting and analyzing potential dangers and

developing necessary action plans for mitigation. Post-event response starts while the disaster is still

in progress. At this stage the challenge is locating, allocating, coordinating, and managing available

resources. In these terms, we focus next on robust design and rescheduling operations.

The adequateness of a transport system to accommodate itself to perturbations or disruptions is

defined as the robustness of a transit network. Often, changes in the initial plan take place within a

transit network, giving rise to incidences ranging from small deviations to long interruptions. However,

transit systems for the optimization of itineraries and frequencies do not usually consider the possible

appearance of changes in the demand pattern or failures in the system performance. Therefore, even

if correctly designed, a transit network can collapse after an incidence in a node or arc (station or

road/tracks) leaving unfulfilled the objectives for which the network was initially designed (Wirasinghe,

2003). Therefore, the analysis of the infrastructures vulnerability and their robust design are areas of

strong interest.

A first approach to the study the vulnerability of a network consists of studding its robustness against

random failures (Altay and Green, 2006) such as breakdowns (failures of vehicles, signaling, blockage

of network edges) human actions (accidents, strikes) or natural disasters (flooding, earthquakes, etc).

Another point of view for disruption management consists of its study against attacks and worst

case scenarios (Matisziw and Murray, 2009) in the network infrastructure (e.g. as a consequence

of strikes, sabotages or terrorist attacks). Many network design techniques stress their interest in

including some kind of redundance in the network topology providing extra connectivity to keep

the performance against failures (Lozano et al., 2008). Besides, the design of a new alignment can

keep some construction-safety criteria (Laporte et al., 2009) or it can be done providing an extra

connectivity to the network in a worst case scenario (Mesa et al., 2008).

Delays and interruptions management (Liebchen et al., 2010) is an important task in the operations

control of every public transport company. The partial or complete cancellation of services implies a

special care in the decision making to decide how to reschedule the existing resources in order to offer

a service as similar as possible to the one before the incidence (Mesa et al., 2013). In addition, a set

of external vehicles can be coordinated in order to face emergencies (Arriola et al., 2009) or a heavy

passenger flow for example at peak hours, massive events, etc (Mesa et al., 2009).

The common strategies for managing disturbances and disruptions are the following:
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• Reduction of travel times between stations. Timetables often include buffer times along a line

run that can be reduced as needed.

• Deadheading. It is a control strategy that consists of skipping a number of stops (usually with

low demand) at the beginning of the line when the vehicle is still empty.

• Express service. Skips a set of intermediate stations along a transit line. Passengers must be

informed about which destinations will not be reachable.

• Short turning. Consists in changing the direction of a vehicle before reaching a terminal station

shortening the cycle performed by the vehicle along the transit line. In this case, passengers

must be informed about which station will be the last destination.

• Coordination with other alternative means of transport.

• Delay of some services. If the fleet supply after a disruption is not enough to cover all trips,

one possibility is to delay some services in order to serve more demand. This strategy should

take into consideration the capacity level of vehicles and connections with other lines or means

of transport.

• Cancelation of services. When the presence of disturbances make not possible to keep the same

level of service as before the disruption, it becames crucial to decide which services have to be

cancelled.

The development of algorithmic real-time railway rescheduling methods is currently still mainly an

academic field, where the research is still far ahead of what has been implemented in practice.

Unfortunately, the public transport industry has never been a quick adopter of newly available and

innovative methods and concepts. Nevertheless, there are signals that show the interest for the added

value that can be provided by real-time rescheduling methods, based on the successes that have been

achieved by the application of optimization methods in the railway planning stage.
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0.3 Location theory

A location problem consists of determining the position of one or more facilities in order to optimize

a measure of effectiveness with respect to a set of known demand locations. Location theory, as any

other discipline in Operations Research, develops mathematical models to reflect, as good as possible,

the real situation being studied, with adequate solutions to the problem under study. This area of

research has already a long history and it is now in full expansion since a lot of methods and procedures

can successfully be exported in order to solve complex problems belonging to other knowledge areas.

Location problems can be classified into three categories: discrete location, location on networks

and continuos location. Discrete location imposes that the set of candidate locations for placing

the new facility(ies) is finite. Network location problems assume demand points within a graph and

facilities have to be located in the nodes or edges of the graph. Finally, continuos location considers

problems where demand points are within a continuos space, typically an Euclidean space. This

section is mainly focused on discrete location and location on networks problems, that will appear in

the subsequent chapters. Excellent references that cover these fields in Location Theory are Larson

and Odoni (1981); Mirchandani and Francis (1990); Daskin (1995, 2013) and other references covering

all fields are Drezner (1995); Drezner and Hamacher (2002); Puerto (1996); Laporte et al. (2015).

In order to get a better understanding of the location problems structure, we briefly describe next the

common elements to all of them.

The solution space:

The solution space is the framework where the problem is defined. It contains as elements existing

facilities and the new facility(ies). The choice of an appropriate solution space is crucial, because it

determines aspects as important as the accuracy and solvability of the model. Some usual solution

spaces are:

- Discrete spaces: When there exists a finite number of potential locations for the new facilities.

- Networks: The solution candidates lie within a graph, usually representing a communication

network. Nodes represent important elements, such as cities or crossroads. Arcs represent

connections between nodes, like roads, streets, cables, etc. A kind of network that has received

considerable attention is the “tree network”. This is due mainly to the uniqueness of a path

between pairs of points.

- Euclidean space Rn: It is used when the problem presents regional aspects that cannot be

discretized. In addition, it can be used to approximate networks when the number of nodes and

arcs is quite big.

The cases n = 2 and n = 3 have a clear physical meaning. Cases where n ≥ 4 have been used to

model and solve estimation problems in statistics.

- Sphere: It is useful for those real situations that cope with large scale distances.
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- Embedded network in a continuos space: This is the solution space where a network, that

represents high speed connections, overlaps an Euclidean space or a sphere.

Existant locations:

In terms of Location Theory, existing facilities are the users that require to be served. Therefore, they

are called demand points. Usually, they are modelled by means of a set D and an intensity function

to weight the elements of D.

There exist two different ways of representing demand in the solution space: by a finite set of points

and by regions. In the first case, a set of points D = {d1, . . . , dM} is considered as well as a set

of weights {w1, . . . , wM} that represent the importance (or intensity) of the demand generated at

each point. In the regional model, demand is represented by means of a region R (not necessarily

connected) included in the solution space and it is a probability measure which gives importance to

each measurable subset of R.

The new facility(ies):

The location of the new facility is the decision variable of the general location problem. This variable

is characterized by

a) Number and quality of the service provided. If more than one facility is to be located, it will

be necessary to specify the characteristics of each one of them. When they are identical, as

for instance mail boxes, we face with a multifacility problem; otherwise as in the case of health

services, we can find hierarchical location problems.

b) Nature of the service. Not all the services are attractive for the community where they will

be located. For instance, nuclear plants, solid waste disposals or garbage plants are usually

refused by population. Therefore, in modelling a problem it is very important to determine the

attractiveness of the service.

The objective function:

Location problems mentioned in this section have the following objective function in common:

opt
X=(x1,...,xp)⊂S

F
(
d(X, a)a∈D

)

where

F is a globalizing function,

“opt” means optimize, either minimize or maximize,
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S is the solution space,

X = {x1, . . . , xp} ⊂ S is the new facility(ies), either single p = 1 or multiple p > 1.

D is the set of existing facilities (demand points),

a is a general existing facility

d(·, ·) is a mesure of distances. In general, d(X, a) stands for the distance between demand a

and the set of facilities (x1, . . . , xd).

The determination of which objective function has to be used is sometimes a hard task. It should be

noted that the final solution strongly depends on that choice. Therefore, it is important to devote

some effort to this part of the modelling process.

1. The p-median problem or “minisum”. The p-median problem (Hakimi, 1964, 1965) searches

for the location of p facilities with the opjective of minimizing the weighted sum of distances

between the demand points and the facilities to which they are located. A general p-median

formulation is the following:

min
X⊂S

∑

a∈D
d(X, a)

The contribution of mean distance models can be interpreted as the search of an efficient objective

for example when an economical criterion is imposed.

2. The p-center problem problem or minmax. The p-center problem assumes that all the demand is

covered with p facilities and minimizes the coverage distance for doing so, that is, the maximum

weighted distance between a demand and its nearest facility is minimized as follows:

min
X⊂S

max
a∈D

d(X, a)

The minmax model can be interpreted as a quality criterion of the developed service in terms of

equity.

3. Centdian problem. Given a positive scalar λ ∈ (0, 1), the objective function corresponds now

to a convex combination of the criteria minisum and minmax. That is, the problem is:

min
X⊂S

(λ
∑

a∈D
d(X, a) + (1− λ) max

a∈D
d(X, a))

The cent-dian model corresponds to a compromise between the center and median criteria, that

are conflicting criteria in most of the cases.

4. Ordered median problem.
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Given a finite number of existing facilities D = {a1, . . . , aM} and weights λ1, . . . , λM , the

objective is to find the location of X minimizing an ordered sum of distances, i.e.,

min
X⊂S

p∑

i=1

λid(i)(X).

Here, d(i)(X) = d(X, aσi) is the i-th element in the list of sorted distances

d(X, aσ1) ≤ . . . ≤ d(X, aσM )

where σ is a permutation of {1, ...,M}. Note that this objective function is point-wise defined,

because it expression changes when the order between distances is modified. This function is

somehow similar to the p-median, but is more general because it includes as particular instances

the minsum, minmax and centdian (among others not referenced in this list).

5. Set covering problem. In this problem, the number of facilities to be located is not fixed a priori,

that is, the cardinality of X (denoted by |X|) has to be minimized and determined together with

its elements. Each existing facility s should be within a specified distance from at least a new

facility ra. The objective is to find the lowest number of facilities and their location verifying

the above constraint. Thus, the problem can be written as:

min
X⊂S:d(X,a)≤ra,a∈D

|X|.

6. Maximal covering problem. The objective of this problem is to have as many existing facilities

within a specified distance, called the covering distance, from a nearest facility. Unlike the set

covering model, the set of new facilities is fixed to p. Let us consider δ(d(X, a)) = 1 iif d(X, a) ≤
rs; 0 otherwise. The problem is:

max
X⊂S

∑

a∈D
δ(d(X, a))

7. Multiobjective problem.

The previous objectives establish a priori the criteria used to locate the new facility(ies).

However, there exist real situations where it would be reasonable to use simultaneously several

criteria. This imply to find solutions that are optimal to several criteria at the same time. This

type of problems are called multiobjective location problems. Given that the different criteria

are usually in conflict, the “ideal” solution rarely exists and, therefore, one has to decide which

concept of “optimality” to choose. For example, the non-dominated solutions are those that

cannot be improved for all objectives by any other solution.

For a detailed discussion on the nature of multiobjective location problems we refer to Nickel

et al. (2005) and Nickel et al. (2015). We provide more insight in multiobjective optimization in

the following section.
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0.4 Multiobjective optimization

Many real-world applications are concerned with finding an optimal location for one or more new

facilities minimizing a function of the distances between these facilities and a given set of existing

facilities (clients, demand points). Most of the existing research focuses on the minimization of a

single objective function that is increasing with distance. However, in the process of locating a new

facility usually more than one decision maker is involved. This is due to the fact that often the cost

incurred with the decision is relatively high. Furthermore, different decision makers may (or will) have

different (conflicting) objectives. Therefore it will be very probable that a locational decision is made

by a group of q decision makers (DM). Even if each DM chooses the same objective function to evaluate

the quality of a new location, the weights assigned to clients may differ a lot. In other situations,

different scenarios must be compared due to uncertainty of data or still undecided parameters of the

model. One way to deal with these situations is to apply scenario analysis. Another way of reflecting

uncertainty in the parameters is to consider different replications of the objective function. Hence,

there exists a large number of real-world problems which can only be modelled suitably through a

multicriteria approach, especially when locating public facilities.

Multicriteria analysis of location problems has received considerable attention within the scope of

continuous, network, and discrete models in the last years. For an overview of general methods as well

as for a more bibliographic overview of the related location literature the reader is referred to Ehrgott

(2005), Nickel et al. (2005) and Nickel et al. (2015). Presently, there are several problems that are

accepted as classical ones: the point-objective problem (see, e.g., Wendell and Hurter, 1973; Hansen,

1980; Carrizosa et al., 1993), the continuous multicriteria min-sum facility location problem (see, e.g.,

Hamacher and Nickel, 1996; Puerto and Fernández, 1999), the network multicriteria median location

problem (see, for instance, Hamacher et al., 1999) and the multicriteria discrete location problem (see,

e.g., Fernández and Puerto, 2003), among others.

The goal in a multicriteria location problem is to optimize simultaneously a family of objective

functions F (X) = (F 1(X), . . . , F k(X)). Therefore, the formulation of the problem is:

v-min
X∈S

F (X)

where v-min stands for vector minimization, X is the new facility to be located and S is the solution

space.

Observe that we get points in a k-dimensional objective space so, in contrast to problems with only

one objective, we do not have a natural ordering in higher dimensional objective spaces. Therefore,

in multicriteria optimization one has to decide which concept of “optimality” to choose.

Accordingly, for this type of problems, different concepts of solution have been proposed in the

literature We assume the usual definition of Pareto-optimality or efficiency (Ehrgott, 2005). That

is, a solution X is called efficient or Pareto-optimal, if there exists no solution X ′ which is at least as

good as X with respect to all objective function values and strictly better for at least one value, i.e.,
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6 ∃X ′ : F q(X ′) ≤ F q(X), ∀ q ∈ Q = {1, ..., k}, and ∃q ∈ Q : F q(X ′) < F q(X). If X is Pareto-optimal,

F (X) ∈ Rk will be called a non-dominated point. We denote by X̃ the set of all Pareto-optimal

solutions. If F q(X) ≤ F q(X ′) ∀ q ∈ Q and ∃q ∈ Q : F q(X) < F q(X ′) we say X dominates X ′ in the

decision space and F (X) dominates F (X ′) in the objective space.

Alternative solution concepts are weak Pareto-optimality and strict Pareto-optimality. A solution X

is called weak Pareto location (or weakly Pareto-optimal), if there exists no solution X ′ which is at

least as good as X with respect to all objective functions, i.e., 6 ∃X ′ : F q(X ′) < F q(X), ∀ q ∈ Q. We

denote by X̃w the set of all weak Pareto-optimal solutions. A solution X is called strict Pareto location

(or strictly Pareto-optimal), if there exists no solution X ′ 6= X at least as good as X with respect to

all objective functions, i.e., 6 ∃X ′ : F q(X ′) ≤ F q(X), ∀ q ∈ Q. We denote by X̃s the set of all strict

Pareto-optimal solutions. Note that X̃s ⊆ X̃ ⊆ X̃w and in case we are considering strictly convex

functions these three sets coincide. Finally, we recall that Warburton (1983) proved the connectedness

of the set X̃ when the functions are convex.

0.4.1 Discrete Location Problems

Planar and network multicriteria location problems have been widely developed from a methodological

point of view so that important structural results and algorithms are known to determine solution sets

(Nickel and Puerto, 2005). On the contrary, multicriteria analysis of discrete location problems has

attracted less attention. In spite of that, several authors have dealt with problems and applications of

multicriteria decision analysis in this field. An annotated bibliography with many references up to 2005

can be found in Nickel et al. (2005). In general, very few papers focus in the complete determination of

the whole set of Pareto-optimal solutions. Nevertheless, there are some exceptions, such as the paper

by Ross and Soland (1980) that gives a theoretical characterization but does not exploit its algorithmic

possibilities, as well as the work by Fernández and Puerto (2003) that addresses the computation of

the entire set of Pareto-optimal solutions of the multiobjective uncapacitated plant location problem.

Nowadays, Multi-Objective Combinatorial Optimization (MOCO) (see Ehrgott and Gandibleux 2000;

Ulungu and Teghem 1994) provides an adequate framework to tackle various types of discrete

multicriteria problems such as, for instance, the p-Median Problem (p-MP). Within this emergent

research area, several methods are known to handle different problems. It is worth noting that most of

MOCO problems are NP-hard and intractable (see Ehrgott and Gandibleux 2000, for further details).

Even in most of the cases where the single objective problem is polynomially solvable the multiobjective

version becomes NP-hard. This is the case of spanning tree problems and min-cost flow problems,

among others. In the case of the p-MP, the single objective version is already NP-hard. This ensures

that the multiobjective formulation is not solvable in polynomial time unless P=NP. In this context,

when time and efficiency become a real issue, different alternatives can be used to approximate the

Pareto-optimal set. One of them is the use of general-purpose MOCO heuristics (Gandibleux et al.

2000). Another possibility is the design of “ad hoc” methods based on one of the following strategies:

1) computing supported non-dominated solutions; and 2) performing partial enumerations of the

solutions space. Obviously, the second strategy does not guarantee the non-dominated character of
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all the generated solutions although the reduction in computation time can be remarkable.

Model and Notation Let I = {1, . . . ,M} and J = {1, . . . , N} respectively denote the sets of

indices for demand points and for plants, and Q = {1, . . . , k} denote the set of indices for the considered

criteria. For each criterion q ∈ Q , let (cqij)i∈I,j∈J be the allocation costs of demand points to plants.

The multicriteria p-median location problem is:

v-min


∑

i∈I

∑

j∈J
c1
ijxij , . . . ,

∑

i∈I

∑

j∈J
ckijxij


 (1)

subject to
∑

j∈J
xij = 1, i ∈ I, (2)

xij ≤ yj , i ∈ I, j ∈ J, (3)
∑

j∈J
yj = p, (4)

xij ∈ {0, 1}, yj ∈ {0, 1}, i ∈ I, j ∈ J. (5)

As it is usual, v-min stands for vector minimum of the considered objective functions. Here variable

yj takes the value 1 if plant j is open and 0 otherwise. The binary variable xij is 1 if the demand

point i is assigned to plant j and 0 otherwise. Constraints (2), together with integrality conditions on

the x variables, ensure that each demand point is assigned to exactly one plant, while constraints (3)

guarantee that no demand point is assigned to a non-open plant. Finally, constraint (4) ensures that

exactly p plants are opened.

Recall that in the single criterion case the integrality conditions on the x variables need not be explicitly

stated. The reason is that when xij represents the proportion of demand of client i satisfied by plant

j (i.e. 0 ≤ xij ≤ 1), there exists an optimal solution with xij = 0, 1, i ∈ I, j ∈ J . This property is not

necessarily true when multiple criteria are considered because, in general, there might be undominated

solutions with non-integer values and even non-supported undominated integer solutions.

0.4.2 Network Location Problems

Problem definition

Let G = (V,E) be an undirected connected graph with node set V = {v1, . . . , vn} and edge set

E = {e1, . . . , em}. Each edge e ∈ E has a positive length `(e), and is assumed to be rectifiable. Let

A(G) denote the continuum set of points on edges of G. We denote a point x ∈ e = [u, v] as a pair

x = (e, t), where t (0 ≤ t ≤ 1) gives the relative distance of x from node u along edge e. For the

sake of readability, we identify A(G) with G and A(e) with e for e ∈ E. Let k ≥ 1 be the number

of criteria of the problem and define Q = {1, . . . , k}. Each vertex vi ∈ V has a real-valued weight

wqi ∈ R, q ∈ Q. Let J = {1, . . . , p}, where p is the number of facilities to be located. We denote by
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X = (x1, . . . , xp) the vector of locations of the facilities, where xj ∈ G, j ∈ J . (Note that in order

to allow co-location, which is quite common in location problems with negative weights, we have to

represent the facility locations using a vector.) In the remainder, we use the notions location vector

and solution synonymously.

We denote by d(x, y) the length of the shortest path connecting two points x, y ∈ G. Let vi ∈ V

and x = ([vr, vs], t) ∈ G. The distance from vi to x entering the edge [vr, vs] through vr (vs)

is given as D+
i (x) = d(vr, x) + d(vr, vi) (D−i (x) = d(vs, x) + d(vs, vi)). Hence, the length of a

shortest path from vi to x is given by Di(x) = min{D+
i (x), D−i (x)}. As d(vr, x) = t · `(e) and

d(vs, x) = (1 − t) · `(e), the functions D+
i (x) and D−i (x) are linear in x and Di(x) is piecewise linear

and concave in x, cf. Drezner (1995). The distance from vi to its closest facility is finally defined as

Di(X) = minj∈J Di(xj) = minj∈J{D+
i (xj), D

−
i (xj)}. In the following, we call the functions D

+/−
i (x)

and Di(X) distance functions of node vi. Moreover, we say that Da
i (xj), a ∈ {+,−}, is active for X,

if Da
i (xj) = Di(X).

We consider the objective function F (X) = (F 1(X), . . . , F k(X)), where each F q(X), q ∈ Q, is a

median function defined as:

F q(X) =
∑

i∈V
wqi Di(X) .

The k-criteria p-facility median location problem on networks, denoted by (k, p)-MLPN, is now defined

as the problem of determining the set of all Pareto-optimal solutions on the graph:

v-min
X∈G× p...×G

F (X) , (6)

where v-min stands for vector minimization. We denote by X̃ the set of all Pareto-optimal solutions.

As mentioned in the introduction, we are interested in obtaining a description of the complete sets

of Pareto-optimal solutions (in the decision space) and the non-dominated points (in the objective

space). Hereby, the set of Pareto-optimal solutions comprises all alternative location vectors for the p

facilities that are suitable candidates to choose from, because no other point can give rise to objective

values that dominate them component-wise.

Let h = (eh1 , . . . , ehp) be a p-tuple of not necessarily distinct edges, where ehj ∈ E, j ∈ J . Then, the

(k, p)-MLPN can be equivalently formulated as:

v-min{F (X) | X ∈ eh1 × . . .× ehp , h ∈ E × . . .× E} .

Note that because of symmetry it is sufficient to consider only p-tuples h for which h1 ≤ · · · ≤ hp.

Solution approaches so far

Concerning the methodological aspects of multicriteria network location problems, Hamacher et al.

(1999) discuss the network 1-facility problem with median objective functions. They show that for
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Pareto-optimal locations on undirected networks no node dominance result can be proven. Hamacher

et al. (2002) provide a polynomial time algorithm for the 1-facility problem when the objectives

are both weighted median and anti-median functions. The method is generalized for any piecewise

linear objective function. Zhang and Melachrinoudis (2001) develop a polynomial algorithm for the

2-criteria 1-facility network location problem maximizing the minimum weighted distance from the

service facility to the nodes (maximin) and maximizing the sum of weighted distances between the

service facility and the nodes (maxisum). Skriver et al. (2004) introduce two sum objectives and criteria

dependent edge lengths for the 1-facility 2-criteria problem. Nickel and Puerto (2005) solve the 1-

facility problem when all objective functions are ordered medians. Colebrook and Sicilia Colebrook and

Sicilia (2007a,b) provide polynomial algorithms for solving the cent-dian 1-facility location problem

on networks with criteria dependent edge lengths and facilities being attractive or obnoxious.

Despite its intrinsic interest as discussed above, to the best of our knowledge there are no papers

discussing the multicriteria p-facility median location problem on networks and no results are known

until the moment to obtain the set of Pareto-optimal solutions.

Other Multicriteria Location Problems on Networks In the recent survey Nickel et al. (2015)

an overview on other location problems can be found. In Hamacher et al. (2002) an extension to

1-facility center problems as well as to positive and negative weight vectors on the nodes is developed.

Those ideas have been further extended to problems with criteria dependent lengths in Skriver et al.

(2004). A unified framework for multicriteria ordered median functions can be found in Nickel and

Puerto (2005). In Colebrook and Sicilia (2007b) the location of undesirable facilities on multicriteria

networks is looked into by using convex combinations of two objective functions. Some complexity

analysis for the cent-dian location problem has been developped by Colebrook and Sicilia (2007a).

Most approaches to the (in general NP-hard) multi-facilty case are treated as discrete location

problems. Only recently Kalcsics et al. (2015) started looking into polynomial cases of multi-facility

multicriteria location problems on networks.
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Chapter 1

Locating optimal timetables and

vehicle schedules in a transit line.

ABSTRACT

This chapter deals with the Transit Network Timetabling and Scheduling Problem (TNTSP) in a

public transit line. The TNTSP aims at determining optimal timetables for each line in a transit

network by establishing departure and arrival times of each vehicle at each station. We assume that

customers know departure times of line runs offered by the system. However, each user, traveling after

or before than their desired travel time, will give rise to an inconvenience cost, or a penalty cost if

that user cannot be served according to the scheduled timetable. The provided formulation allocates

each user to the best possible timetable considering capacity constraints. The problem is formulated

using a p-median based approach and solved using a clustering technique. Computational results that

show useful applications of this methodology are also included.

Keywords: Timetabling; vehicle scheduling; schedule delay; location-allocation.

1.1 Introduction

The Transit Network Timetabling and Scheduling Problem (TNTSP) aims at determining optimal

timetables for each line in a transit network by establishing departure and arrival times of each vehicle

at each station. The TNTSP is based on the following general input: An infrastructure of a transport

system described by a node set (network stations) and an edge set (tracks between adjacent stations),

a trip demand matrix between pairs of nodes of the infrastructure, a set of transit lines with associated

frequencies which have already been determined in order to satisfy such trip demand and, finally, a

vehicle fleet with specific characteristics. The objective of the TNTSP consists of finding arrival and

departure times of each vehicle at each station such that the demand satisfaction, required fleet size

and vehicle capacities can be optimized/bounded.

25
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The TNTSP integrates two stages of the global transit planning process, that is usually divided in a

sequence of five steps (Ceder and Wilson, 1986): line planning, frequencies setting, timetabling, vehicle

scheduling and crew rostering. Even separately, solving each of these problems implies a challenge in

terms of computational complexity (Magnanti and Wong, 1984; Quak, 2003); however, a considerable

amount of work points out the integration of several of these planning stages (Guihaire and Hao,

2008), in order to achieve interaction and feedback in the process as well as better quality results.

The TNTSP might be solved under different time contexts: for the strategic context (e.g. promoting

the extension of the network infrastructure by means of including new line segments between stations),

in the tactical planning (where regular vehicle scheduling for a given frequency -daily or weekly- is

determined) and in real-time scenarios (where dispatchers must manage the traffic by making optimal

decision about which vehicles to stop and where, according to data about vehicle positions that are

continuously subject to an updating process).

Timetabling is the process of implementing the service frequency on each fixed route, providing

arrival/departure times at each station. Timetables can be periodic (e.g. Liebchen et al., 2010) if they

are repeated in time intervals. Although periodicity makes timetables easy-to-remember, non-periodic

timetables (e.g. de Palma and Lindsey, 2001) can be implemented to more adequately fit within the

current time-dependent demand pattern. Two different types of infrastructures can be analyzed to

implement timetables: a single corridor (see, e.g., Brannlund et al., 1998, Caprara et al., 2002, Zhou

and Zhong, 2007) or an entire network including transfers (see, e.g., Caprara et al., 2006). In both

scenarios, the main objectives that are usually taken into consideration are addressed at maximizing

the transfer synchronization, in order to minimize waiting times at transfers (e.g. Guo and Wilson,

2011) and minimizing the schedule delay (Small, 1982). The concept of schedule delay arises with

the fact that arriving early is likely to involve some wasted time while for most users, arriving late

has more severe repercussions. In this way, timetabling can be seen as a p-median problem (Hakimi,

1964) where the objective is to minimize the time/distance between passenger desired departure times

and actual ones. Narrow headways lead users to arrive randomly to stations giving rise to a waiting

cost for the user. On the other hand, when headways are wider, customers tend to strictly follow

timetables, arriving only few minutes before the departure time. This last situation does not provoke

a waiting cost for the user but an inconvenience cost to fit desired travel time to actual timetables

(Grosfeld-Nir and Bookbinder, 1995; Fosgerau, 2009).

The vehicle scheduling problem consists of allocating a set of vehicles to a set of timetables, taking

into consideration some practical requirements like depot/s location/s, vehicle features (speed, size,

maintenance costs, fuel costs) and other extensions. An optimal schedule minimizes the fleet size as

well as operational costs. Vehicle scheduling problems have received considerable attention in the

literature considering a single corridor (see, e.g., Higgins et al., 1996, Oliveira and Smith, 2000, Zhou

and Zhong, 2005) and an entire network (Cai and Goh, 1994, Chew et al., 2001). A recent overview

in vehicle scheduling problem has been provided by Bunte and Kliewer (2009).

Dealing with the scheduling problem separately from the timetabling problem implies that fleet size

requirements cannot be bounded, only minimized. Moreover, if timetables are too plentiful for a

small fleet size, a feasible vehicle schedule cannot even be guaranteed. In this sense, little work has
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been developed searching for the integration of timetabling and vehicle scheduling (Guihaire and Hao,

2010). One of the first approaches that integrates both timetabling and vehicle scheduling problem is

the one provided by Chakroborty et al. (2001), where periodic timetables are determined in order to

minimize waiting times at transfer stations as well as the required fleet size. Castelli et al. (2004) deal

with non periodic timetables assuming that routes, means of transport and quality of services are fixed

in advance. The operator’s main objective is to minimize their costs, while serving, at the same time,

as many customers as possible. The solution procedure schedules a single line at a time, possibly

re-optimizing or correcting the previous decisions at each step. Chang and Chung (2005) consider

a single, one-way track train timetabling problem for a rapid transit system. Liu and Shen (2007)

integrate timetabling and vehicle scheduling by using a bilevel formulation, where the upper level is

referred to the operators’ objectives while the lower level reflects the user interests. Guihaire and

Hao (2010) develop an integrated approach without considering periodic timetables but they include

evenness of the line headways as one of the optimization criterion. Finally, Cadarso and Maŕın (2012)

integrate railway timetabling and scheduling updating the frequencies known from the railway line

planning problem. Frequencies for some arcs are maintained in a determined frequency window as

well as headways that are maintained for every train line in the network.

This chapter deals with a customer-oriented timetabling-scheduling model applied to the setting of

a public transit corridor with two lines (one per each direction). A pre-set number of line runs

(vehicle expeditions along a line) will be located in each line along the time horizon, under constraints

determined by the fleet size and the maximum number of allowed line runs. Additionally, we will

assume non-periodic timetables that will be known by users in advance. Therefore, timetables will

be determined in order to optimally serve the existing demand by considering that those individuals,

traveling later than or ahead of their desired travel time, will suffer a user’s inconvenience cost.

Customers are supposed to suffer an inconvenience cost, if their preferred pickup/delivery times vary

from the actual ones, and a penalty cost, if the requests are not served in a time window. In this

sense, the user behavior, explained by means of inconvenience costs, is motivated from the contexts of

the vehicle routing problem with time windows (Cordeau et al., 2007b) and transportation on demand

(Cordeau et al., 2007a), where disaggregated demand and the human factor acquire great significance.

To the best of our knowledge, inconvenience costs have not been considered in the TNTSP literature.

Additionally, since we are dealing with a public transportation system where users choose freely in

which vehicle they want to board, the situation where users are freely allocated to vehicles, ignoring

capacity levels, will be studied.

The remainder of this chapter is structured as follows. Section 1.2 is devoted to describing the context

where the model is formulated. In Section 1.3 a variation of the p-median problem is proposed to

optimally locate a number of line runs ensuring vehicle schedules. In order to decrease the size of the

problem, a clustering algorithm is described in Section 1.4. Computational experiments are provided

in Section 1.5 in order to show the usefulness and applicability of this methodology. The extension of

this methodology to transportation networks composed of several transit lines is described in Section

1.6. Finally, conclusions will be described in Section 1.7.
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1.2 Problem description

1.2.1 Infrastructure

Let L be a transit corridor consisting of a node set S (stations) and an edge set E (tracks). Let l ∈ L
be the set of feasible lines in L. For the setting considered in this chapter, L only will contain two lines;

that is, L = {1, 2}, where l = 1 is a directed transit line running along L and l = 2 is also running

along L but in the opposite direction. We denote by 〈s, l〉 the station in position s ∈ {1, ..., |Sl|}
belonging to the set of stations Sl ⊆ S of a given line l ∈ L. Additionally, let El be the subset of

E that contains all edges used by line l. Each identical vehicle will operate along L during a time

horizon that will be discretized into a set of time slots t ∈ T = {1, ..., |T |}. Each vehicle performs a

number of line runs or expeditions along a line. Line runs have to be located in time for each line.

The total number of line runs to locate in line l (ρl), the vehicle capacity (Q) and the fleet size κ of

each line will be assumed to be input data of the problem.

1.2.2 Demand

Let I be the set of transportation requests formulated by customers of transit corridor L. Each request

i ∈ I involves the following information:

1. A pair of origin and destination stations, denoted by 〈si, li〉 and 〈s′i, li〉, respectively. Such

stations must be associated to a line li with edges e ∈ Eli that will be used as a path to satisfy

request i. With this, it can be defined a parameter mie equal to one if edge e ∈ Eli is used when

request i ∈ I is served or equal to zero otherwise.

2. A preferred departure time ti to locate a line run in station 〈1, li〉. Furthermore, ti ∈ [t−i , t
+
i ],

which denotes the earliest and the latest times that are admissible for serving request i.

3. A penalization cost ci that will be paid if the corresponding request is not served.

4. Trips along the transit line are direct and travel times are known in advance, so the users’

inconvenience with respect to the arrival time can be obviated. Denoting by Ti = {t−i , t−i +

1, ..., t+i } the set of feasible time slots where a line run can be located in order to serve request i,

parameter ϕit will compute the relative cost of allocating request i to the line run which departs

from station 〈1, li〉 at time t ∈ Ti. The total inconvenience cost of a transportation request is

defined as ciϕit if i is allocated to a line run in t, or ci if i is not allocated to any line run.

5. Following previous definitions, Ilt denotes the subset of requests that can be served locating a

line run for line l in the time slot t, that is Ilt = {i ∈ I : t ∈ Ti ∧ li = l}.

1.2.3 Timetables and vehicle schedules

The concept of timetable must be formalized as follows. Given the set of line runs r ∈ Rl defined in

line l, with |Rl| = ρl, a timetable Θ along partition T is defined as the set of arrival/departure times
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at each station for each line run: Θ = {(θ+
〈s,l〉r, θ

−
〈s,l〉r), l ∈ L, 〈s, l〉 ∈ Sl, r ∈ Rl}.

Potentially, all timetables can be generated over the three defined sets. However, the number of fea-

sible timetables can be highly reduced by means of the following result:

Property 1.1- Assuming that:

1. stopping time at each station is known/prefixed for all line runs:

θ−〈s,l〉r − θ
+
〈s,l〉r = λ〈s,l〉, l ∈ L, 〈s, l〉 ∈ Sl, r ∈ Rl

2. travel times between consecutive stations is known/prefixed for all line runs:

θ+
〈s+1,l〉r − θ

−
〈s,l〉r = µ〈s,l〉, l ∈ L, 〈s, l〉 ∈ Sl : s < |Sl|, r ∈ Rl

the following properties can be stated:

• a fixed travel time τl can be assumed in order to complete a line run:

θ+
〈|Sl|,l〉r − θ

−
〈1,l〉r = τl, l ∈ L, r ∈ Rl

• timetables can be redefined as follows:

Θ ≡ x = {xlt, l ∈ L, t ∈ T}
where xlt ∈ {0, 1} is equal to 1 if and only if a line run departs from the first station of line l at

time t.

Note that the number of vehicles required to perform the timetable cannot be greater than the fleet

size, even when a vehicle can perform several line runs in the time period under consideration. For

this reason, we must characterize when a timetable can be performed by the given fleet size.

Definition 1.1- A timetable x is a feasible κ-vehicle schedule if the number of vehicles required to

perform x is less or equal than the fleet size κ of each line, thus

0 ≤
t∑

t′=1

x1t′ −
t−τ2∑

t′=1

x2t′ ≤ κ t ∈ T (1.1)

0 ≤
t∑

t′=1

x2t′ −
t−τ1∑

t′=1

x1t′ ≤ κ t ∈ T. (1.2)

This definition ensures that between time slots t = 1 and t = τl no more than κ vehicles leave the

depot of any line. Note that when t < τ2, the second sum in (1.1) does not count any term. After

t = τl, vehicles that arrive to the end of one line can be used by the other, but at any moment the

difference between those vehicles which have left a depot and those which have arrived to such a depot

cannot be negative nor greater than κ. This will lead us to a characterization between an optimal
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timetable and an optimal vehicle schedule.

Property 1.2- Assuming that before starting a line run, vehicles are always empty, they can remain

stopped as long as necessary without any additional cost. Therefore, an optimal timetable x satisfying

(1.1) and (1.2) is also an optimal vehicle schedule.

1.3 Formulation

1.3.1 The ρ-median problem

Two sets of binary variables are considered in the formulation:

xlt ∈ {0, 1} equal to 1 when a vehicle starts a line run in line l at time t

yit ∈ {0, 1} equal to 1 when request i is allocated to a vehicle which starts a line run at time t.

The mathematical model that describes our problem is defined as follows:

z = min
∑

i∈I
[
∑

t∈Ti
ciϕityit +

∑

t∈Ti
ci(1− yit)] (1.3a)

s.t.:
∑

t∈T
xlt ≤ ρl l ∈ L (1.3b)

∑

t∈Ti
yit ≤ 1 i ∈ I (1.3c)

yit − xlit ≤ 0 i ∈ I, t ∈ Ti (1.3d)

0 ≤
t∑

t′=1

x1t′ −
t−τ2∑

t′=1

x2t′ ≤ κ t ∈ T (1.3e)

0 ≤
t∑

t′=1

x2t′ −
t−τ1∑

t′=1

x1t′ ≤ κ t ∈ T (1.3f)

∑

i∈Ilt
yitmie ≤ Qxlt l ∈ L, e ∈ El, t ∈ T (1.3g)

xlt ∈ {0, 1} l ∈ L, t ∈ T (1.3h)

yit ∈ {0, 1} i ∈ I, t ∈ Ti. (1.3i)

Objective function (1.3a) minimizes the total users’ inconvenience. For the sake of understandability,

we present (1.3a) as defined in Section 1.2.2. Constraint (1.3b) ensures that no more than ρl line runs

are located in line l. Constraint (1.3c) guarantees that request i is not allocated to more than one line

run, avoiding negative terms in the second part of the objective function. Constraint (1.3d) ensures

that requests can only be allocated to time slots where a line run has been located. Constraints (1.3e)
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and (1.3f) forces that no more than κ vehicles are used on each line. Constraint (1.3g) guarantees that

no more than Q requests use edge e of line l in a line run located at time t.

The provided formulation exhibits significant similarities with the classic p-median problem (Hakimi

(1964, 1965)), where the total sum of weighted distances between a given set of customers, and a set

of locations for potential facilities is minimized. In our formulation, facilities are line-runs, customers

are travelers and distances are measured by scheduled delays (we recall Section 1; Small, 1982). In

our model, a request i can be refused in exchange for the penalty cost ci, and deviations from desired

travel times are penalized by using the discrete parameter ϕit. Additionally, constraints for controlling

schedules and capacities have been stated.

1.3.2 Public context for the ρ-median problem

Since the access to vehicles is performed inside stations, all the infomation regarding timetables is

availlable for passengers so they are free to choose between those line runs that better fit into their

own interests. This idea contrasts with other transport systems where the operator is the unique

decision maker who can choose which request should be served, when and using which vehicle. In

order to emphasize the importance of the passenger point-of-view in the modelization, additional

constraints can be added. First, we impose that a passenger must be allocated to a line run if there

is at least one line run located in Ti:

∑

t∈Ti
xlit ≤ ρli

∑

t∈Ti
yit i ∈ I. (1.3j)

Additionally, constraint (1.3k) ensures that each request is allocated to a line run if and only if such

line run is the one with lowest inconvenience cost in Ti:

∑

t′∈Ti
ϕit′>ϕit

yit′ + xlit ≤ 1 i ∈ I, t ∈ Ti. (1.3k)

Constraint (1.3k) is adapted from Wagner and Falkson (1975) and belongs to the so called closest

assignment constraints. According to Espejo et al. (2012), this kind of constraints can be modelled

in many different ways, giving rise to better/worse linear programming relaxations. As shown in

that paper, the constraint provided by Wagner and Falkson (1975) can be strengthened by using the

fixed numbers of facilities (line runs) to locate. Even with such improvements, we must note that the

inclusion of this constraint together with (1.3j) considerably increases the computational complexity

of the proposed model. In order to provide good solutions within a reasonable time of computation,

a request clustering algorithm is introduced in the next section in order to reduce the number of

variables and constraints of the model.
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1.4 Clustering algorithm

The number of requests |I| can be highly reduced considering subsets of requests Īlt ⊆ I with a

common preferred departure time for a line run, thus Īlt = {i ∈ I : li = l ∧ ti = t}). We define a new

set of clustered requests j ∈ J in such a way that each subset Īlt is identified with a transportation

request j weighted by a factor qj . In this way, we can solve the problem by using the set j ∈ J instead

of i ∈ I. Note that clustered requests can be built if |I| > |T | or if ∃ l ∈ L, t ∈ T such that |Īlt| > 1.

In order to define the clustering algorithm, we require the following parameters:

• t̄j : preferred departure time for clustered request j in order to locate a line run in station 〈1, lj〉

• c̄j : penalization cost that will be paid if the corresponding clustered request is not served

• m̄je: number of requests in I that are grouped in j and use edge e (we denote mi =

[mi1,mi2, ...,mi|Eli |] and m̄j = [m̄j1, m̄j2, ..., m̄j|Elj |])

• qmax: maximum weight for a clustered request, that is qj ≤ min{qmax, Q}.

Algorithm 1 describes how these parameters are constructed.

Algorithm 1: Clustering requests

input : Requests i ∈ I, clusters J := { }, parameters ci,mie and maximum weight qmax for a
clustered request

output: Clustered requests j ∈ J , and parameters t̄j , c̄j , m̄j

1 for each request i ∈ I do
2 if @ j ∈ J clustered request such that t̄j = ti and qj < qmax then
3 Create the clustered request j = |J |+ 1: [J, qj , c̄j , m̄j ] := [J ∪ {j}, 1, ci,mi];
4 else
5 Update [qj , c̄j , m̄j ] := [qj + 1, c̄j + ci, m̄j +mi]

For each request, we have to check if there exists a clustered request such that t̄j = ti and qj ≤ qmax.

Since we can obviate searching along requests j ∈ J such that qj = qmax, in the worst case we check

as many requests as time slots in T . Thus, the complexity of Algorithm 1 is O(|I||T |).

Next, in order to solve the ρ-median problem with clustered requests (c-ρ-median problem), we apply

the following procedure:

Procedure 1: (c-ρ-median problem)

1. Solve (1.3a)–(1.3k) considering the set of clustered requests J instead of I. Let x′ be the timetable

solution returned.

2. Solve (1.3a)–(1.3k) considering the set of requests I and fixing x variables as x := x′ (thus,

only variables y and z have to be found). Let zUB be the best (smallest) upper bound
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returned and let y′ be the request assignment. The solution given by the c-ρ-median problem is

{z = zUB, x = x′, y = y′}.

3. Let zLB be the best lower bound returned by the ρ-median problem. The gap induced by the

c-ρ-median problem can be obtained by means of

c-gap =
100(zUB − zLB)

zLB
.

Note that without considering capacity constraints, optimal solutions for the c-ρ-median and ρ-median

problems are equivalent. On the other hand, under capacity constraints clusters cannot be split and

only complete clusters can be allocated/rejected. Consequently, requests within a cluster cannot be

allocated to different line-runs with equal inconvenience costs. Therefore, the solution provided by

the c-ρ-median problem is an upper bound of the ρ-median problem.

1.5 Computational experience

In order to show the applicability of the previous model and algorithm, a scenario composed of

one transit corridor with two lines (each one running on a different direction) along eight stations

has been considered. A random instance of |I| = 1000 requests has been generated in the

time interval with desired arrival times following a uniform probability distribution. All requests

have been assumed to have equal penalization costs ci and inconvenience costs (ϕit) defined in

Ti = {max{0, ti− 4}, ...,max{0, ti− 1}, ti,min{|T |, ti + 1}, ...,min{|T |, ti + 4}} that is, |Ti| ' 9 options

for each i ∈ I. The discretized inconvenience function (see Figure 1.1) has been taken as follows:

ϕit = min

{
1,

(
max{0, ti − t}

max{1, ti − t−i }

)2

+

(
max{0, t− ti}

max{1, t+i − ti}

)2
}
.

ϕit

t

1

titi − 4 ti + 4

Figure 1.1: Discrete inconvenience costs under consideration.

The time horizon has been split into 60 time slots (|T | = 60) of standardized length ‖t‖ (for instance,

‖t‖ = 1 and |T | = 60 implies a time horizon of 1 hour whereas ‖t‖ = 2 and |T | = 60 implies a time

horizon of 2 hours). Distances (in time) between stations are considered equal to 4.5‖t‖ and a time

for boarding and alighting equal to 0.5‖t‖ will be required. Fleet sizes (κ) will be assumed equal to 2,
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3 and 4. Line runs will vary in ρ=1, 2, 3, 4, 5, 6, 8, 10, 12, that would provide in a time interval of

60‖t‖ an approximate frequency of 60, 30, 20, 15, 12, 10, 7.5 and 5 time (measured in time units of

length ‖t‖).

The computational experience also includes different scenarios depending on the capacity requirements

established. Scenario S1 assumes the version of the problem without capacity constraints. In scenarios

S2(Q), Q ∈ {40, 45} constraint (1.3g) is activated for establishing a version of selective capacity in the

problem. In scenarios S3(Q), Q ∈ {40, 45} constraints (1.3j) and (1.3k) are activated for establishing

the optimal timetable choices for single requests. Finally, scenarios S3
(qmax)
(Q) , Q ∈ {40, 45}, qmax ∈

{3, 5} show that constraints (1.3j) and (1.3k) are activated and requests have been clustered considering

a maximum cluster size equal to qmax.

All instances have been solved using ILOG CPLEX 12.2 on a personal computer with an Intel(R)

Core(TM)i7 CPU 3.4 GHz processor and 16 GB RAM. Default solver values were used for all

parameters.

S1 S2(45) S3(45) S2(40) S3(40)

κ ρ θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2 θ1 θ2
2 1 18.27 29.2 16.26 22.4 9.97 15.4 15.7 21.8 6.6 13.1
2 2 35.97 55.5 31.72 42.6 25.87 35.3 30.39 40.8 23.26 31.1
2 3 49.13 73.2 44.71 58.2 34.35 49.1 42.81 55.4 28.03 40.9
2 4 49.13 73.2 46.01 59.2 36.55 51 45.02 56.4 28.03 40.9
2 5 49.13 73.2 46.01 59.2 36.55 51 45.02 56.4 28.03 40.9
2 6 49.13 73.2 46.01 59.2 36.55 51 45.02 56.4 28.03 40.9
2 8 49.13 73.2 46.01 59.2 36.55 51 45.02 56.4 28.03 40.9
2 10 49.13 73.2 46.01 59.2 36.55 51 45.02 56.4 28.03 40.9
2 12 49.13 73.2 46.01 59.2 36.55 51 45.02 57.1 28.03 40.9
3 1 18.27 29.2 16.26 22.4 9.97 15.4 15.7 21.8 6.6 13.1
3 2 35.97 55.5 31.72 42.6 25.87 35.3 30.39 40.8 23.26 31.1
3 3 52.4 81 46.89 61.4 37.84 50.2 44.84 58 35.19 44.3
3 4 66.38 91.3 59.73 76.4 45.57 61 57.11 72.7 39.92 54.2
3 5 66.38 91.3 61.29 78.9 48.83 62.7 59.55 74.9 42.57 52.8
3 6 66.38 91.3 61.29 78.9 48.34 59.5 59.55 74.9 43.72 52.5
3 8 66.38 91.3 61.29 78.9 48.76 65.6 59.55 74.9 42.91 52.1
3 10 66.38 91.3 61.29 78.9 48.6 63.6 59.55 74.9 43.72 52.5
3 12 66.38 91.3 61.29 78.9 48.6 63.6 59.55 74.9 43.33 52.1
4 1 18.27 29.2 16.26 22.4 9.97 15.4 15.7 21.8 6.6 13.1
4 2 35.97 55.5 31.72 42.6 25.87 35.3 30.39 40.8 23.26 31.1
4 3 52.4 81 46.89 61.4 37.84 50.2 44.84 58 35.19 44.3
4 4 68.09 97.5 61.08 77.2 47.02 59.1 58.37 73 41.11 54
4 5 79.59 100 73.7 89.7 56.08 70.8 70.77 85.2 48.61 61.5
4 6 79.94 100 75.33 92.1 63.15 81.7 73.16 88.8 52.23 60.1
4 8 79.94 100 75.33 92.1 60.33 75.5 73.16 88.8 53.77 69.8
4 10 79.94 100 75.33 92.1 60.34 74.8 73.16 88.8 53.04 60.9
4 12 79.94 100 75.33 92.1 61.48 80.5 73.16 88.8 53.88 63.7

Table 1.1: Demand coverage for the different scenarios.

Table 1.1 shows the comparative objective values obtained for different scenarios, varying the fleet

size, line runs and vehicle capacities. For the sake of favoring the comparison of results arising from

heterogeneous contexts, the initial objective value z has been normalized and complemented by means

of the function θ1 ≡ 100(1 − z/|I|). Moreover, the percentage of covered requests with any level of

satisfaction has been also included by means of the function θ2 ≡ 100(1−(
∑

i

∑
|Ti|)yit/|I|). Logically,

the inconvenience perception determines the level of satisfaction attained, holding in all scenarios

θ2 ≥ θ1. Additionally, the coverage level increases as long as Q, ρ or κ increase. However, θ1 and θ2
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cannot improve at a certain level without including more vehicles. Irregularities in objective values for

scenarios S3(45) and S3(40) at κ = 4, ρ = 6, 8, 10, 12 are due to the fact that optimality is not reached

before the time limit (3600 seconds) under consideration.

Tables 1.2 and 1.3 show running times in seconds (sec) and gaps (gap, c-gap) obtained for the different

scenarios. We denote as gap, the relative gap computed with the best lower bound obtained by Cplex

within a time limit of 3600 seconds and the best upper bound obtained by Cplex within a time limit of

3600 seconds or 1200 seconds (indicated in the table). Additionally, c-gap denotes the gap induced by

the clustering algorithm as described in Section 1.4 taking as reference the best upper bound provided

by Cplex for S3(Q) within a time limit of 3600s.

time limit=3600s time limit=1200s

S2(45) S3(45) S3(45) S3
(3)
(45)

S3
(5)
(45)

κ ρ sec gap sec gap sec gap sec c-gap sec c-gap
2 1 4 0 0 0 0 0 0 0 0 0
2 2 2.3 0 60.6 0 59.8 0 9.1 0 18.4 0
2 3 2 0 301.1 0 300.9 0 36.9 0 31.3 0
2 4 2.5 0 1946.6 0 1200 0 28 0 14.8 0
2 5 2.5 0 308.6 0 308 0 79.2 0 46 0
2 6 2.5 0 1329.3 0 1200 0 36.9 0 44.8 0
2 8 2.5 0 1088.9 0 1090 0 75.5 0 61.6 0
2 10 2.6 0 2656.8 0 1200 0.01 30.6 0 29.4 0
2 12 2.5 0 1307.2 0 1200 0 30.7 0 29.2 0
3 1 4 0 0 0 0 0 0 0 0 0
3 2 2 0 68.6 0 68.7 0 10.7 0 24.5 0
3 3 2.4 0 2141.1 0 1200 0 141.1 0 23.6 0
3 4 2.8 0 3600 1.73 1200 1.99 412.3 1.99 223.8 1.99
3 5 2.9 0 3600 1.52 1200 1.88 328.7 1.77 109.5 1.77
3 6 2.7 0 3600 1.92 1200 2.92 166.3 2.23 118.6 2.23
3 8 3.1 0 3600 1.42 1200 1.7 369.6 1.62 244 1.62
3 10 3 0 3600 1.05 1200 1.2 277.6 1.09 120.1 1.09
3 12 2.8 0 3600 1.88 1200 2.31 327.2 2.22 295.9 2.22
4 1 3.8 0 0 0 0 0 0 0 0 0
4 2 2 0 380.7 0 381 0 11.5 0 5 0
4 3 2.4 0 2527.5 0 1200 0.06 184.4 0 60.7 0
4 4 3.9 0 3600 0.63 1200 0.87 441.8 0.65 464.8 0.65
4 5 3.3 0 3600 2.72 1200 4.34 1200 4.08 1200 3.81
4 6 3.7 0 3600 2.61 1200 5.14 1200 3.9 1200 4.24
4 8 3.6 0 3600 3.15 1200 5.98 1200 3.89 1200 4.3
4 10 3.9 0 3600 3.2 1200 5.13 1200 3.9 427 3.98
4 12 3.8 0 3600 2.84 1200 5.56 1200 3.99 242.8 3.68

Table 1.2: Running times and gaps obtained for the different scenarios and Q = 45.

Note first that we do not report running times or gaps for S1 since all instances were solved to

optimality in less than 0.2 seconds. Even S2(Q) can be solved for each instance in a few seconds. We

remark that theoretical scenarios S1 and S2 are interesting for establishing a comparative analysis on

values reached in the objective function. On the other hand, scenario S3 is closer to the real operability

although obtaining optimal solutions for that context requires a considerable computational effort.

In order to assess the time consumed within the computation of optimal solutions for scenario S3,

different scenarios for maximum running times of 3600 seconds and 1200 seconds have been analyzed.

As mentioned in the introduction (third paragraph), the TNTSP might be called to solve decision

problems in contexts characterized by strict limitations of time, going from those where speed might
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time limit=3600s time limit=1200s

S2(40) S3(40) S3(40) S3
(3)
(40)

S3
(5)
(40)

κ ρ sec gap sec gap sec gap sec c-gap sec c-gap
2 1 3.3 0 0 0 0 0 0 0 0 0
2 2 2.3 0 62 0 61.9 0 14.7 0 5.6 0
2 3 2.5 0 206.4 0 206.4 0 34.8 0 20 0
2 4 3 0 1186.4 0 1190.6 0 85.5 0 41.3 0
2 5 2.9 0 561.1 0 560.5 0 119.5 0 31.8 0
2 6 2.7 0 190.6 0 190.6 0 71.8 0 37.9 0
2 8 2.9 0 846.3 0 846.8 0 102.4 0 16.7 0
2 10 3.7 0 248.4 0 247.9 0 91.8 0 39.3 0
2 12 3.6 0 2017.3 0 1200 0 92.2 0 39.5 0
3 1 3.1 0 0 0 0 0 0 0 0 0
3 2 2.3 0 61.3 0 61.7 0 15 0 5.9 0
3 3 2.7 0 967.8 0 967.9 0 72 0 30.8 0
3 4 3.6 0 3600 1.42 1200 1.72 443.9 1.57 91.2 1.57
3 5 5.4 0 3600 2.06 1200 3.3 316.5 2.33 118.9 2.33
3 6 4.5 0 3600 1.52 1200 2.1 210.8 1.8 213.5 1.8
3 8 4.9 0 3600 1.35 1200 1.86 1051.7 1.49 132.4 1.49
3 10 5.1 0 3600 1.56 1200 2.73 537.9 1.92 171.4 1.92
3 12 5 0 3600 1.43 1200 1.75 176.6 1.62 153.4 1.62
4 1 3.1 0 0 0 0 0 0 0 0 0
4 2 2.3 0 67.1 0 67 0 11 0 6 0
4 3 2.5 0 1239.4 0 1200 0 237.8 0 35.8 0
4 4 3 0 3581.9 0 1200 0.14 365.3 0 173.9 0
4 5 4.2 0 3600 3.1 1200 4.87 1200 4.55 198 4.55
4 6 5.7 0 3600 3.72 1200 5.8 1200 5.22 271.9 5.22
4 8 5.9 0 3600 3.5 1200 5.48 1200 5.11 659.1 5.4
4 10 6.5 0 3600 3.54 1200 5.53 1200 4.72 542.4 5.23
4 12 6.7 0 3600 3.42 1200 5.53 1200 4.72 1050.3 5.37

Table 1.3: Running times and gaps obtained for the different scenarios and Q = 40.

not be important to those where a fast solution might be required.

Under a time limit of 3600 seconds Cplex is able to solve to optimality all instances for κ = 2

leaving small gaps for κ = {3, 4}. Note that these gaps are due to the effect of capacities and closest

assignment. Decreasing the time limit to 1200 seconds the gaps increase around a 2%. Under a time

limit of 1200 seconds, the resolution of S3
(3)
(Q) reaches optimality in all instances for κ = 2 increasing

slightly the gaps of S3(Q) after 3600 seconds for κ = {3, 4}. However, S3
(3)
(Q) outperforms S3(Q) under

a time limit of 1200 seconds in terms of gap and running time. The same observation can be made

for S3
(5)
(Q) with lower running times.

In conclusion, Tables 1.2 and 1.3 prove the usefulness of introducing the clustering algorithm in scenario

S3, because running times become considerably reduced in exchange for a small increase of the gap

and, sometimes, even improves the actual ones. This methodology is of special interest for solving

bigger size instances not considered in this chapter. In addition cluster sizes allow an adaptation of

the procedure in accordance with the instance size.

Summarizing, Table 1.4 provides the results obtained for Scenario 3. In this table, we include averages

and maximum values of computational times (sec, sec∗), gaps (gap, gap∗) and clustering gaps (c-gap,

c-gap∗) computed for different values of κ and all values of ρ.
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time limit=3600s time limit=1200s time limit=1200s

κ S3(45) S3(40) S3(45) S3(40) S3
(3)
(45)

S3
(3)
(40)

S3
(5)
(45)

S3
(5)
(40)

sec 999.9 590.94 728.74 500.52 sec 36.32 68.08 30.61 25.79
2 sec∗ 2656.8 2017.3 1200 1200 sec∗ 79.2 119.5 61.6 41.3

gap 0 0 0 0 c-gap 0 0 0 0
gap∗ 0 0 0.01 0 c-gap∗ 0 0 0 0
sec 2645.52 2514.34 940.97 914.4 sec 225.94 313.82 128.89 101.94

3 sec∗ 3600 3600 1200 1200 sec∗ 412.3 1051.7 295.9 213.5
gap 1.06 1.04 1.33 1.5 c-gap 1.21 1.19 1.21 1.19
gap∗ 1.92 2.06 2.92 3.3 c-gap∗ 2.23 2.33 2.23 2.33
sec 2723.13 2543.16 975.67 940.78 sec 737.52 734.9 533.37 326.38

4 sec∗ 3600 3600 1200 1200 sec∗ 1200 1200 1200 1050.3
gap 1.68 1.92 3.01 3.04 c-gap 2.27 2.7 2.3 2.86
gap∗ 3.2 3.72 5.98 5.8 c-gap∗ 4.08 5.22 4.3 5.4

Table 1.4: Summary of the results obtained for Scenario 3

1.6 Extension to transportation networks composed of several

transit lines

Previous sections describe how to jointly plan timetables and vehicle schedules along a single transit

line for potential customers traveling between origin and destinations of such a line. The extension of

the scenario of a single transit line to the more general case where multiple lines are considered in the

network can be performed including two new kinds of transportation requests coming from previous

lines or going towards other lines.

• Case 1: Let i be a transportation request going from 〈si, li〉 towards 〈s′i, li〉. If we assume that i

requires to transfer to a second line at 〈s′i, li〉, then ti is the time slot that minimizes the waiting

time at 〈s′i, li〉. However, i cannot arrive to 〈s′i, li〉 later than the departure time of the second

vehicle. Thus, the inconvenience costs of this kind of request is maximum after ti as depicted in

Figure 1.2.

ϕit

t

1

titi − 4 ti + 4

Figure 1.2: Inconvenience costs for a transportation request i, going from station 〈si, li〉 towards 〈s′i, li〉,
that requires a transfer at 〈s′i, li〉.

• Case 2: Let i be a transportation request going from station 〈si, li〉 towards 〈s′i, li〉. If we

assume that i comes from a previous line and has transferred at 〈si, li〉, then ti is the time slot

that minimizes the waiting time at 〈si, li〉. However, a line run located earlier than ti cannot
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serve request i. Thus, the inconvenience costs of this kind of request is maximum before ti as

depicted in Figure 1.3.

ϕit

t

1

titi − 4 ti + 4

Figure 1.3: Inconvenience costs for a transportation request i, going from station 〈si, li〉 towards 〈s′i, li〉,
requiring a transfer at 〈si, li〉.

According to the survey conducted by Stern (1996) on various transit agencies in the US, it is infrequent

that passengers use more than a single transfer during their origin-destination trips on the regional

transit network. In these circumstances, it is reasonable to classify requests into two subsets: requests

that use a single line to reach their destinations and those that require to perform a single transfer in

order to achieve the final destination. For the first type, the symmetrical function shown in Figure

1.1 can be applied to assess the user’s inconvenience and, for the second type of request, the previous

asymmetrical functions can provide an extension to the scenario where the presence of transfers can

be treated with the methodology developed throughout the chapter. Moreover, the penalization costs

associated to the non-served requests can be weighted according to the case where the affected user

belongs.

1.7 Conclusions

A new approach for jointly planning timetables and vehicle schedules along a single transit line has

been developed by emphasizing the point of view of potential customers. The setting analyzed in

this chapter assumes a model of fully disaggregated demand for a scenario that includes capacity

constraints and demand behavior according to different criteria. A p-median based formulation has

been proposed including specific constraints for the scheduling problem for a given fleet size of vehicles.

In addition, demand behavior is associated with the inclusion of closest assignment type constraints.

A clustering algorithm has been developed in order to provide an alternative methodology for solving

instances of the problem when computational time must be limited. The performed computational

experience shows the difficulty of including closest assignment constraints in a transportation problem

and the advantages of deriving a clustering algorithm that allows an appropriate preprocessing of the

information.

The infrastructure analyzed in the chapter consists of a single corridor. However, we have developed

some hints on how to extend our methodology to more general transportation networks where multiple
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transit lines operate. In those contexts, transfers between lines required by the passengers can modify

the cost associated to the user’s inconvenience. The optimization model is shown as a consistent

approach, since its applicability remains despite of the change of the network infrastructure.
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1.8 Appendix 1: Notation

Data:

L transit corridor

S node set (stations)

e ∈ E edge set (tracks)

l ∈ L set of feasible lines in L (L = {1, 2})
l = 1 directed transit line running along L

l = 2 directed transit line running along L in the opposite direction of l = 1

Sl ⊆ S set of stations for a given line l ∈ L
〈s, l〉 ∈ Sl station in position s ∈ {1, ..., |Sl|}
El ⊂ E subset that contains all edges used by line l

t ∈ T set of time slots (T = {1, ..., |T |})
ρl number of line runs to locate

Q vehicle capacity

κ fleet size of a line

i ∈ I set of transportation requests

li line used by request i

〈si, li〉,
〈s′i, li〉

origin and destination stations for request i

mie parameter equal to one if edge e ∈ Eli is used when request i ∈ I is served or equal

to zero otherwise

ti preferred departure time for request i to locate a line run in station 〈1, li〉
t−i , t

+
i earliest and latest times that are admissible for serving request i

ci penalization cost that will be paid if request i is not served

Ti ⊆ T set of feasible time slots where a line run can be located in order to serve request i

(Ti = {t−i , t−i + 1, ..., t+i })
ϕit relative cost of allocating request i to the line run which departs from station 〈1, li〉

at time t ∈ Ti
Ilt ⊂ I subset of requests that can be served locating a line run for line l in time slot t

r ∈ Rl set of line runs defined in line l (|Rl| = ρl)

Θ timetable along partition T

θ+
〈s,l〉r, θ

−
〈s,l〉r arrival/departure times at station 〈s, l〉 for line run r ∈ Rl in line l ∈ L

λ〈s,l〉 stopping time required at station 〈s, l〉
µ〈s,l〉 travel time between stations 〈s, l〉 and 〈s+ 1, l〉
τl fixed travel time required to complete a line run in line l

Decision Variables:
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xlt ∈ {0, 1} binary variable equal to 1 if and only if a line run is allocated to line l at time slot t

yit ∈ {0, 1} binary variable equal to 1 if and only if request i is allocated to a vehicle which

starts a line run at time t

Clustering algorithm data:

Īlt ⊂ I subset of requests with a common preferred departure time for locating a line run

in line l at the time slot t

j ∈ J set of clustered requests

qj weight of a clustered request

qmax maximum weight for a clustered request

t̄j preferred departure time for request i to locate a line run in station 〈1, li〉
c̄j penalization cost that will be paid if the clustered request j is not served

mi edge usage of request i (mi = [mi1,mi2, ...,mi|Eli |])

m̄je number of requests in I that are grouped in j and use edge e (m̄j =

[m̄j1, m̄j2, ..., m̄j|Elj |])
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Cadarso, L. and Maŕın, A. (2012) “Integration of timetable planning and rolling stock in rapid transit networks”.
Annals of Operations Research, vol. 199(1): 113–135.

Cai, X. and Goh, C. J. (1994) “A fast heuristic for the train scheduling problem”. Computers & Operations
Research, vol. 21(5): 499–510.

Caprara, A., Fischetti, M. and Toth, P. (2002) “Modeling and solving the train timetabling problem”. Operations
Research, vol. 50(5): 851–861.

Caprara, A., Monaci, M., Toth, P. and Guida, P. L. (2006) “A Lagrangian heuristic algorithm for a real-world
train timetabling problem”. Discrete Applied Mathematics, vol. 154(5): 738–753.

Castelli, L., Pesenti, R. and Ukovich, W. (2004) “Scheduling multimodal transportation systems”. European
Journal of Operational Research, vol. 155(3): 603–615.

Ceder, A. and Wilson, N. H. M. (1986) “Bus network design”. Transportation Research Part B: Methodological,
vol. 20(4): 331–344.

Chakroborty, P., Deb, K. and Sharma, R. K. (2001) “Optimal fleet size distribution and scheduling of transit
systems using genetic algorithms”. Transportation Planning and Technology, vol. 24(3): 209–226.

Chang, S.-C. and Chung, Y.-C. (2005) “From timetabling to train regulation–a new train operation model”.
Information and Software Technology, vol. 47(9): 575–585.

Chew, K., Pang, J., Liu, Q., Ou, J. and Teo, C. (2001) “An optimization based approach to the train operator
scheduling problem at Singapore MRT”. Annals of Operations Research, vol. 108(1): 111–118.

Cordeau, J.-F., Laporte, G., Potvin, J.-Y. and Savelsbergh, M. W. (2007a) “Chapter 7: Transportation on
Demand”. In C. Barnhart and G. Laporte, eds., Transportation, vol. 14 of Handbooks in Operations Research
and Management Science, pp. 429–466. Elsevier.

Cordeau, J.-F., Laporte, G., Savelsbergh, M. W. and Vigo, D. (2007b) “Chapter 6: Vehicle Routing”.
In C. Barnhart and G. Laporte, eds., Transportation, vol. 14 of Handbooks in Operations Research and
Management Science, pp. 367–428. Elsevier.

de Palma, A. and Lindsey, R. (2001) “Optimal timetables for public transportation”. Transportation Research
Part B: Methodological, vol. 35(8): 789–813.
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Chapter 2

Integrating timetables, vehicle

schedules and passenger routings in a

transit network

ABSTRACT

The Transit Network Timetabling and Scheduling Problem (TNTSP) aims at determining an optimal

timetable for each line in a transit network by establishing departure and arrival times at each station

and allocating a vehicle to each timetable. The current models for planning of timetables and vehicle

schedules use the a priori knowledge of passengers’ routings. However, the actual route choice of a

passenger depends on the timetable. This paper solves the TNTSP in a public transit network by

integrating passengers’ routings in the model. The proposed formulation guarantees that each user is

allocated to the best possible timetable, while satisfying capacity constraints.

Keywords: Timetabling; vehicle scheduling; schedule delay; location-allocation.

2.1 Introduction

The Transit Network Timetabling and Scheduling Problem (TNTSP) aims at determining an optimal

timetable for each line in a transit network by establishing departure and arrival times at each station

and allocating a vehicle to each timetable. The input data consist of a Public Transportation Network

(PTN) made up of a set of stations and links between them, a set of lines, a fleet of capacitated

vehicles, a fixed budget for line runs and an origin/destination matriz. The output data consist of

a set of arrival and departure times at the stations for the vehicles. Several criteria can be taken

into consideration in these problems, for example waiting times, short transfers, fleet size, travel time,

load factor, customer utilization and, in general terms, users’ and operators’ costs. Traditionally,

the Transit Network Timetabling Problem (TNTP) has been studied as a preliminary step for the

Vehicle Scheduling Problem (VSP), where the TNTP output is an input for the VSP. Unfortunately,

this approach leads to a suboptimal solution for the TNTSP. In this chapter we solve the TNTSP by

45
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integrating the TNTP and VSP.

The scheduled delay (see, e.g., Small, 1982; de Palma and Lindsey, 2001; Mesa et al., 2014) can be

defined as the deviation between desired departure and arrival times and actual ones. We assume that

while arriving early is involves some wasted time, arriving late typically has more severe consequences.

We define a strategy as a combination of an itinerary and a potential timetable that a passenger could

choose to travel in a PTN. If we first assume uncapacitated vehicles, each passenger may freely choose

the strategy that minimizes his scheduled delay. This means that a suboptimal shortest path in the

PTN with a convenient timetable may lead to a user’s scheduled delay lower than that corresponding to

a shortest path with an inconvenient timetable. If we now include vehicle Capacity Constraints (CC)

the PTN operator may have to assign specific itineraries to passengers in order to avoid overloading

the vehicles. If this option is not available (as it happens in many bus or metro networks where

users freely choose their routes) the PTN operator may have to design the timetables and allocate

the vehicles in such a way that capacities are respected in the event when all passengers choose their

optimal strategy. This gives rise to a leader-follower behaviour: demand allocation depends on the

timetables and vice versa. The constraints we impose to guarantee these conditions are called optimal

assignment constraints.

Example 2.1- Consider a user who aims to travel from station A to station B (Figure 2.1) departing

from A at 8:30 and reaching B at 9:10. There are two itineraries A → B and A → C → B, but in

fact this user may choose between three strategies: (1) depart from A at 8:10 to arrive at B at 8:50

(2) depart from A at 8:45 to arrive at B at 9:25 and (3) depart from A at 8:25 to arrive at C at 8:40

and from C at 8:45 to arrive at B at 9:15. In option 1 would 20 minutes are wasted for boarding in

advance while option 2 leads to 15 minutes of lateness. Option 3 generates five wasted minutes for

boarding in advance and five minutes of lateness. If all these strategies are inconvenient for the user,

he can choose an alternative mode of transportation.

A B

C

8:30 9:10
8:10-8:50

8:45-9:25

8:
25
-8
:4
0 8:45-9:15

Figure 2.1: Three strategies for traveling from A at 08:30 to B at 9:10.

We define several subproblems of the TNTSP depending on the types of constraints imposed. First, the

Vehicle Scheduling Constraints (VSC) impose that the timetables can be operated with the available

fleet size. This problem reduces to the Transit Network Timetabling Problem (TNTP) that involves

different problems according to how CC are imposed. If there are no CCs, passengers will travel in the

PTN by following optimal strategies. This problem is called the User TNTP (TNTPU ). If there are

vehicle capacities and the transit operator is able to route passengers in the network, the problem is

called Operator TNTP (TNTPO). However, it is also possible to impose CCs and let passengers choose

their path. We call this problem the System TNTP (TNTPS). Imposing the VSC in the previous
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subproblems, we obtain respectively the User TNTSP (TNTSPU ), the Operator TNTSP (TNTSPO)

and the System TNTSP (TNTSPS). It is obvious that the solution spaces of these problems are

embedded as illustrated in Figure 2.2.

TNTSPS TNTSPO TNTSPU

TNTPS TNTPO TNTPU

TNTSP

⊆ ⊆

⊆ ⊆

⊆ ⊆ ⊆

Figure 2.2: Inclusion relationships between the solution spaces of the TNTSP
subproblems.

In this chapter, we study the TNTSP and its variants as described above. After reviewing the

main contributions to the TNTSP, we define all items involved in the different subproblems and,

in particular, we describe how to compute the available strategies for a transportation request in a

PTN. Timetables and vehicle schedules are usually computed assuming the knowledge of passengers’

routings from the results of a previous phase. However, the actual route a passenger will take depends

on the timetable which is not yet known a priori. In this chapter we integrate passenger route choices

within the TNTSP which, as far as we are aware, is a new scientific contribution. This new solution

framework is flexible and allows us to optimally allocate transportation requests under vehicle capacity

constraints. The six TNTSP subproblems previously defined and their solution spaces are compared.

A testbed of randomly generated instances is generated over different network configurations available

in the literature and computational results are reported.

The remainder of this chapter is structured as follows. Section 2.2 reviews the most relevant

contributions related to this chapter. Section 2.3, provides the description of the problem and the

information required to compute itineraries and strategies in a transit network made up of several lines.

Section 2.4 presents the mathematical formulation for the integrated TNTSP and for the subproblems

just described. Computational results are presented in Section 2.5 followed by conclusions in Section

2.6.

2.2 Background

Our literature review focuses on contributions that integrate the timetabling and the vehicle scheduling

problems. For reviews on the TNTP we refer the reader to Cacchiani and Toth (2012); Caprara et al.

(2007, 2011), and Lusby et al. (2011). For reviews on the VSP see Törnquist (2007), and Bunte and

Kliewer (2009).

New research in transportation planning has focused on the benefits that can be obtained through

the integration of different stages belonging to the transit planning process, known as network design,

line planning, frequency setting, timetabling, vehicle scheduling and crew rostering (Guihaire and

Hao, 2008b). However, not much research has been developed on the integration of timetabling and

vehicle scheduling (Ibarra-Rojas et al., 2014). Since the VSP is easy to solve, it is straightforward

to implement iterative approaches which modify the current timetable and then, solves the VSP. If a
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complete integration is desired, the departure times of trips would be decision variables. In this case,

network flow formulations and algorithms for the VSP would be difficult to implement since the model

lacks a fixed network. Instead, it deals with a set of potential networks that depend on timetabling

decisions.

Solution approaches for integrating the two subproblems of the planning process can be divided

into two types: sequential integration and complete integration. Sequential integration considers the

characteristics of one subproblem while the other one is optimized. However, a sequential approach

may lead to suboptimal solutions. We refer to Ceder (2001), van den Heuvel et al. (2008), Guihaire

and Hao (2008a), Ceder (2011) and Petersen et al. (2013), for partial integrations related to the

TNTSP. On the other hand, a complete integration defines a formulation or a solution methodology

to determine the decisions of two or more subproblems simultaneously.

Complete integrations of the timetabling problem with the vehicle scheduling problem have been

considered in only a few papers. As far as we know, the first study on a timetabling problem that

includes the number of required vehicles in the objective function, is that of Chakroborty et al.

(2001). Here, the transit network is made up of multiple lines with a single transfer node. Castelli

et al. (2004) deal with non-periodic timetables assuming that routes, means of transport and quality

of services are fixed in advance. The operator’s main objective is to minimize cost while serving as

many users as possible. These authors integrate constraints on the number of available vehicles in

the transit network timetabling problem. Liu and Shen (2007), have proposed a bilevel optimization

problem consisting of a hierarchical formulation, where one problem (lower level decisions) is embedded

within another (upper level decisions). The upper level solves the vehicle scheduling problem with the

objective of minimizing the fleet size and the deadheading time, while the lower level optimizes the

timetabling decisions in order to minimize the total transfer time for passengers. Fleurent and Lessard

(2009) established a measure function for the timetabling problem that incorporates key elements of

synchronization, such as the number of passengers transferring from one line to another and the related

waiting time. These authors include vehicle scheduling decisions and other measures, such as vehicle

usage costs. Guihaire and Hao (2010) integrate the timetabling and vehicle scheduling problems

through an optimization model with a weighted objective function that considers the quantity and

quality of transfers, the evenness of headway times, the fleet size, and the length of the deadheads.

One of the assumptions is the existence of an initial timetable and feasible time intervals for departures

and arrivals. This information serves to design line and trip shift movements that are used to modify

the feasible timetable and then find the optimal vehicle schedule.

More recently, Ibarra-Rojas et al. (2014) proposed a bi-objective optimization problem to jointly solve

the single depot VSP and the bus timetabling problem by considering time windows for departure times

and assuming constant demand. The objectives are the maximization of the number of passengers

who benefit by well-timed transfers, and the minimization of the fleet size. The authors implemented

an ε-constraint algorithm to obtain Pareto-optimal solutions. Numerical results show that in some

instances using one more vehicle leads to significant reductions in the number of passenger transfers.

Customer-oriented optimization of public transport requires data about the passengers in order to

obtain realistic models. Current models take passenger data into account by using the following two-
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phase approach. In a first phase, routes for the passengers are determined. In a second phase, the

actual planning of timetables takes place using the knowledge of which routes passengers wish to

travel given the results of the first phase. However, the actual route a passenger will take strongly

depends on the timetable, which is not yet known in the first phase. Hence, the two-phase approach

often yields non-optimal solutions. Almost all available models assume that passenger routes are fixed

before the design of a timetable starts but this topic has recently received more attention (see Siebert

and Goerigk, 2013; Schmidt and Schöbel, 2015b,a and references therein).

Combining information on timetables, vehicle scheduling and passenger choices, Mesa et al. (2014)

presented an integrated approach for jointly planning timetables and vehicle schedules along a single

transit line while emphasizing the point of view of potential users. The setting analyzed assumes a

model of fully disaggregated demand for a scenario that includes capacity constraints and demand

behavior according to different criteria. These authors propose a p-median-based formulation is

proposed that includes specific constraints for the VSP. Demand behavior is handled through the

inclusion of closest assignment type constraints. The authors developed a clustering based algorithm

in order to provide an alternative methodology for solving instances of the problem when computational

time is limited. Their computational experiments show the difficulty of including closest assignment

constraints in a transportation problem and the advantages of deriving a clustering algorithm that

allows an appropriate preprocessing and handling of the data.

This chapter differs significantly from previous research. First, we develop a framework for integrating

the TNTP, the VSP and passenger routings. As far as we now, the integration of these three problems

has never previously been studied. Our approach not only pursues transfer coordination but also

users’ preferences in terms of departure and arrival times for a fully disaggregated demand. Moreover,

each transportation request is treated individually, considering hard time windows constraints for trip

duration, departure and arrival times, as well as inconvenience costs related to deviations from these

times. Second, we formulate the TNTSP starting from the TNTP and adding constraints regarding

to capacities, optimal passenger assignment and fleet size. Finally, these formulations are tested and

compared on a testbed of random instances and on different networks as similarly proposed in previous

studies in the literature.

2.3 Problem description and formulation

We now formally define and formulate the problem. The reader is referred to Appendix A for a full

list of the notation used.

2.3.1 Infrastructure

We first distinguish between the infrastructure network and the network containing all lines and

walking corridors for transferring between different lines. A Public Transportation Network (PTN)

is a graph G = (S,A) with a set of nodes S representing stations and a set of arcs A, where each

arc represents a direct connection between two stations of S. Given a PTN, G = (S,A), a Public
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Transportation Line (PTL) is a connected directed graph l ≡ (Sl, Al) where l belongs to a set of lines

L and is identified with a set of nodes Sl ⊆ S, representing stations, and a set of arcs Al ∈ A, where

each arc represents a direct connection between two stations using line l. We distinguish between two

types of lines. The set of directed path lines L ⊆ L and a set of directed cycle lines L̊ ⊆ L. Moreover,

the set of lines L can be split into the set of lines going forward,
−→L ⊆ L and the set of lines going

backwards,
←−L ⊆ L. Therefore, it is obvious that L = L∪L̊ =

−→L ∪←−L and, in addition, each line l ∈ −→L
is identified with its corresponding line l′ ∈ ←−L (running in opposite direction) by means of l′ = l+ |−→L |.
A terminal station is a station where line runs can start and finish, so it can be stated that path lines

have two terminal stations (at both ends of the line) and cyclic lines have only one terminal station.

Example 2.2- Figure 2.3 shows a PTN of 4 nodes S = {1, 2, 3, 4} and 8 arcs A =

{(1, 2), (2, 1), (2, 4), (2, 3), (3, 2), (3, 4), (4, 2), (4, 3)}.

1 2

34

Figure 2.3: A PTN with four nodes (stations) and eight arcs.

In the graph of Figure 2.3 we define lines L = {1, 2, 3, 4} where A1 = {(1, 2), (2, 3)}, A2 =

{(2, 3), (3, 4), (4, 2)}, A3 = {(3, 2), (2, 1)}, A4 = {(2, 4), (4, 3), (3, 2)}. In addition we can define sets

L = {1, 3}, L̊ = {2, 4}, −→L = {1, 2}, ←−L = {3, 4}.

�

Given a PTN G = (S,A), the associated Change&Go Network (CGN) is a graph G defined in order

to include transfer activities between lines (see Schöbel and Scholl, 2006). It can be denoted as

G = (N ∪ N̈ ,A∪A(tra)), where (l, i) ∈ N is the set of nodes of each line, N̈ = {|S|+ 1, ..., |N̈ |} is the

set of transfer nodes between lines, (l, i, j) ∈ A is the set of arcs of all lines l ∈ L and (l, i, n) ∈ A(tra)

is the set of transfer edges between lines.

Basically, the CGN replicates each node of the PTN once for each line and analogously with the arcs.

In addition, transfer nodes are added to the CGN as well as transfer edges for each line.

Example 2.3- Given the PTN and the linepool defined in Example 2.2, the associated CGN is

depicted in Figure 2.4.

In the graph of Figure 2.4 with corresponding line nodes N = {(1, 1), (3, 1), (1, 2), (2, 2), (3, 2),

(4, 2), (1, 3), (2, 3), (3, 3), (4, 3), (2, 4), (4, 4)}, transfer nodes N̈ = {5, 6}, line arcs A = {(1, 1, 2),

(1, 2, 3), (2, 2, 3), (2, 3, 4), (2, 4, 2), (3, 3, 2), (3, 2, 1), (4, 2, 4), (4, 4, 3), (4, 3, 2)} and transfer arcs

A(tra) = {(1, 2, 5), (1, 5, 2), (2, 2, 5), (2, 5, 2), ..., (4, 3, 6), (4, 6, 3)}.
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1, 1

3, 1

1, 2

2, 2

4, 2

3, 2

3, 3

4, 3

2, 3

1, 3

4, 4

2, 4

5

6

l1

l3

l2

l4

Figure 2.4: Change&Go Network associated to the network of Figure 2.3.

2.3.2 Timetables and vehicle schedules

Given a transit line l ∈ L, a line run is an expedition made up by a vehicle making stops for boards and

alights at every station along the line. A discretization T of the continuous time interval is assumed

in order to assign departures of the κ available vehicles to the set of time slots t ∈ T . Since all vehicles

will have the same circulation speed and stopping time at every (non terminal) station along l, one

can assume a fixed travel time τl to complete a line run on l. We denote by cl the cost of implementing

a line run in l and a maximum cost ρ is allowed to implement all line runs. All vehicles have the same

capacity Q.

A vehicle allocated to l ∈ −→L can start a line run at any time slot t ∈ T . The transit line requires

a travel time τl (including intermediate stops) to be traversed in one direction. Once the line run is

completed, the associated vehicle becomes part of the fleet size of the line l + |−→L | (l − |−→L| if l ∈ ←−L ),

and a new line run can be started in any time slot t′ ∈ T such that t′ ≥ t + τl. Circular lines, are

similar to path lines except that it has only one terminal station. Therefore, any itinerary that involves

traversing the terminal station will require a transfer at that station.

Example 2.4- (cont) In the graph of Figure 2.4, once a vehicle of line 1 reaches station 3, it changes

its direction and becomes a vehicle of line 3. The same occurs for lines 2 and 4 once a terminal

station is fixed (for example at station 2). This means that once a vehicle of line 2 reaches station

2, it becomes a vehicle of line 4 (it cannot be used in a line run of line 2 at that moment). Thus,

if a passenger travels from station 4 to station 3 using line 2, a transfer will be required at station 2

towards line 2 (again) or line 1.

2.3.3 Demand

Each user has fixed upper and lower bounds associated to the departure and arrival times. Additionally

other inconveniences related to in-vehicle times, line-change penalties and deviation between desired

departure and arrival times will be taken into account. The concept of schedule delay, introduced

by Small (1982), arises with the fact that arriving early is likely to involve some time wasted while

for most users, arriving late has more severe repercussions. Let I be the set of user transportation
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requests. In what follows, we use the terms user and request indiscriminately. Each request i ∈ I

involves the following information:

1. An origin and a destination stations.

2. Preferred departure times ti and ti+|I| to start and finish the trip respectively. Furthermore, t−i
denotes the earliest time at which user i can start the trip and t+i+|I| the latest time at which i can

reach his destination. Note that, these parameters are dependent on the travel time estimated

by the user considering the structure of the PTN (see Example 2.5).

3. A penalty of one unit is paid if request i is not served.

In addition we will introduce in the following section an inconvenience parameter to measure the

service quality perceived by each user.

2.3.4 Strategies

Given a CGN, a hyperpath is the set of all possible itineraries connecting an origin and a destination.

Each itinerary offers different travel options for traveling according to each combination of the potential

timetables from the different lines that can be used for completing a trip.

Let π ∈ Π be the set of all itineraries and Πi ⊆ Π the subset of itineraries that can be used by request

i. Note that each itinerary π is related with a set of lines Lπ and transfer nodes used to complete a

trip. Once the path is defined, the user can consider different options of departure times, depending

on the combinations of timetables that can be implemented on each line of the path. By r ∈ Riπ
we denote the set of options that can be used to serve request i by means of itinerary π. Given

this notation, we can define an inconvenience cost function parameter ϕiπr that computes the cost of

allocating request i to itinerary π and option r. Additionally, in order to keep track of the capacity

usage, we define a binary parameter mπa equal to one if and only if arc a ∈ A is used along itinerary

π. In addition, we denote by tiπrl the departure time slot used for a vehicle serving request i on line l

when itinerary π and option r are used. Note that, in order to simplify the notation, we will consider

strategies involving one transfer at most. This makes sense given the number of transfers that users

are usually willing to perform in practice (Stern, 1996). However, the proposed setting allows the

implementation of several transfers in a general CGN.

Example 2.5- Users can travel inside the network of Figure 2.3 following different strategies. As

an example, a passenger (i = 1) going from s = 4 to s = 3 can travel choosing one of the following

itineraries:

• itinerary 1, involving a trip from node (4, 4) to node (4, 3) (denoted by (4, 4) → (4, 3) in the

following),

• itinerary 2, involving two trips (4, 4) → (4, 2), (4, 2) → (4, 3) and a intermediate transfer (at

station 2),
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• itinerary 3, involving two trips (4, 4) → (4, 2), (1, 2) → (1, 3) and a intermediate transfer (at

station 2).

For simplicity, we assume that distances between adjacent stations of the PTN are all equal to 1.

This way a passenger (i = 2) traveling from station 1 to station 3 can only choose the itinerary

(1, 1)→ (1, 2)→ (1, 3) since in this case it does not make sense to transfer at station 2 to another line.

The different options for passenger i = 2 and his only one available itinerary are (assuming t2 = 9,

t2+|I| = 11, t−2 = 5 and t+2+|I| = 15) starting his trip at any of the times {5, 6, 7, 8, 9, 10, 11, 12, 13}.
The different options for passenger i = 1 and itinerary 2, are (assuming t1 = 9, t1+|I| = 10, t−1 = 5

and t+1+|I| = 14) the following:

• starting his trip at time 5 and transferring at any of the times {6, 7, 8, 9, 10, 11, 12, 13}

• starting his trip at time 6 and transferring at any of the times {7, 8, 9, 10, 11, 12, 13}

• starting his trip at time 7 and transferring at any of the times {8, 9, 10, 11, 12, 13}

• starting his trip at time 8 and transferring at any of the times {9, 10, 11, 12, 13}

• starting his trip at time 9 and transferring at any of the times {10, 11, 12, 13}

• starting his trip at time 10 and transferring at any of the times {11, 12, 13}

• starting his trip at time 11 and transferring at any of the times {12, 13}

• starting his trip at time 12 and transferring at time 13.

The scheduled delay costs will depend on the selected combination itinerary-option. See Section 2.5

for an example of the inconvenience cost function ϕiπR.

�

2.4 Formulation

In this section we define the six models described in Section 2.2. We make decisions concerning to

the number of line runs located on each line (ρl) and on the number of vehicles initially available on

each line (κl). In addition we make binary decisions by means of variable xlt equal to one if a line run

is located on line l at time slot t, and by means of variable yiπr equal to one if and only if user i is

allocated to itinerary π ∈ Πi and option r ∈ Riπ.

We consider first the problem of establishing the departure times from terminal stations of the lines.

Each departure performs a line run from line l that has an associated cost cl. The formulation is as

follows:
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min
∑

i∈I
[
∑

π∈Πi

∑

Riπ
ϕiπryiπr + (1−

∑

π∈Πi

∑

Riπ
yiπr)] (2.1a)

s.t.
∑

π∈Πi

∑

Riπ
yiπr ≤ 1 i ∈ I (2.1b)

∑

t∈Tl
xlt ≤ ρl l ∈ L (2.1c)

|Lπ|yiπr ≤
∑

l∈Lπ
xltiπrl i ∈ I, π ∈ Πi, r ∈ Riπ (2.1d)

∑

l∈L
clρl ≤ ρ (2.1e)

xlt ∈ {0, 1} l ∈ L, t ∈ Tl (2.1f)

yiπr ∈ {0, 1} i ∈ I, π ∈ Πi, r ∈ Riπ (2.1g)

The objective function (2.1a) minimizes the total user’s inconvenience. The first part computes the

inconvenience of the passengers using the system whereas the second part counts the penalty cost

of those passengers not assigned to any service of the system. Constraints (2.1b) ensure that no

more than one strategy is selected for passenger i, avoiding negative terms in the second part of the

objective function. Constraints (2.1c) ensure that no more than ρl line runs are located on each line

l ∈ L. Constraints (2.1d) ensure that no request will be allocated to a strategy that does not exist.

Constraint (2.1e) ensures that the total cost incurred by the line runs is not exceeded.

We recall that TNTPU does not take into account the fleet size or the capacity of the vehicles.

Constraints (2.2) ensure that the number of requests that use an arc of the CGN in a time slot do not

exceed Q.

∑

i∈I

∑

π∈Πi:l∈Lπ

∑

r∈Riπ :tiπrl=t

yiπrmπa ≤ Qxlt l ∈ L, a ∈ Al, t ∈ T (2.2)

The TNTPU together with constraint (2.2) defines the TNTPO.

Assuming that users know in advance all information related to the itineraries and timetables, it is

reasonable to assume that they will choose the strategy that enables them to reach their destination

at minimum inconvenience cost. In addition, as previously mentioned, the network manager may not

be able to route transportation requests within the CGN. Therefore, in order to model the TNTPS ,

two additional constraints can be added. First, we impose that a passenger can be allocated to a line

run only if there is at least one strategy available for i:

∑

l∈Lπ
xltiπrl ≤ (|Lπ| − 1) +

∑

π′∈Πi

∑

r′∈Riπ
yiπ′r′ i ∈ I, π ∈ Πi, r ∈ Riπ. (2.3)

Second, constraint (2.4) ensures that each request is allocated to a line run if and only if such line run

is the one with lowest inconvenience cost:
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∑

l∈Lπ
xltiπrl +

∑

π′∈Πi

∑

r′∈Riπ :
ϕiπ′r′>ϕiπr

yiπ′r′ ≤ |Lπ| i ∈ I, π ∈ Πi, r ∈ Riπ. (2.4)

Constraint (2.4) is adapted from Wagner and Falkson (1975) and belongs to the so-called closest

assignment constraints. According to Espejo et al. (2012), this kind of constraints can be modelled in

many different ways, giving rise to better or worse linear programming relaxations. As shown in that

paper, the constraint provided by Wagner and Falkson (1975) can be strengthened by using the fixed

numbers of facilities (line runs) to locate. Even with such improvements, the inclusion of constraints

(2.3) and (2.4) considerably increases the computational complexity of the proposed model.

In addition to the previous considerations we can assume the the timetables are carried out by a limited

number κ of vehicles. On each line l, vehicles change the direction of the line once the terminal station

is reached and then become a vehicle available for line l + |−→L | (l − |−→L| if l ∈ ←−L ). We describe the

vehicle scheduling problem through the following set of constraints:

τl∑

t′=1

xlt′ ≤ κl l ∈ L (2.5a)

t∑

t′=1

xlt′ −
t−τl∑

t′=1

x
l+|−→L |,t′ ≤ κl l ∈ −→L , t ∈ T : t > τl ∧ t < |T | − τl (2.5b)

t∑

t′=1

xlt′ −
t−τl∑

t′=1

x
l−|−→L |,t′ ≤ κl l ∈ ←−L , t ∈ T : t > τl ∧ t < |T | − τl (2.5c)

∑

l∈L
κl ≤ κ (2.5d)

Constraints (2.5a) ensure that no more than κl vehicles depart from each line before any vehicle from

the opposite direction has arrived. Constraints (2.5b) and (2.5c) ensure that the difference between

the number of vehicles that have departed from a line and the number of vehicles that have arrived

to that line (coming from the corresponding line in opposite direction) never exceeds the sum of the

fleet sizes corresponding to both lines. Constraint (2.5d) ensures that the fleet size is not exceeded.

The TNTPU , TNTPO, TNTPS together with constraints (2.5a)–(2.5d) are defined as the TNTSPU ,

TNTSPO, TNTSPS respectively.

2.5 Computational experience

In order to show the applicability of the previous models, we have considered six different networks

(Figure 2.5) inspired from some already existing in the literature (see Laporte et al., 1994; Laporte

et al., 1997). All networks contain 13 nodes and have similar number of edges (ranging from 12 to 16).

Each configuration can be obtained by setting out three lines, obtaining from one to five intersections.
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Note that each line, represented with continuous dashed and dotted lines, contains two path lines,

except for the cartwheel configuration where the dotted line contains two circular lies.
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Figure 2.5: Basic configurations obtained from 3 lines.

First, for each O/D pair we have precomputed the different itineraries by using a k-shortest path

algorithm (Shier, 1979). We have then generated 10 random instances of transportation requests for

|I| = 100 with an origin, a destination and a desired arrival time (ti+|I|) in |T | = 60 (all random

values following a discrete uniform distribution). Next, for each configuration, we have computed the

desired departure time ti of each request by means of the corresponding shortest path through the

PTN. Each desired departure time ti lies within a time window [max{0, ti − 4},min{|T |, ti + 4}], or

equivalently within a set of feasible time slots Ti = {max{0, ti − 4}, ...,max{0, ti − 1}, ti,min{|T |, ti +

1}, ...,min{|T |, ti + 4}} (analogously for the desired arrival time ti+|I|). The different travel options

for traveling were calculated for each user, according to the available itineraries, time windows, and

travel times in the network. Each of these options gives rise to a pair (t∗i (r, π), t∗i+|I|(r, π)) representing

actual departure an arrival times for user i using itinerary π and option r. Finally, the inconvenience

cost function (ϕiπr) was computed using the function

ϕiπr = min
{

1, ϕ̃(−|ti − t∗i (π, r)|+) + ϕ̃(|t∗i+|I|(π, r)− ti+|I||+)
}
, (2.6)

where |z|+ = max{0, z} and ϕ̃ is a discrete function defined as in Figure 2.6.
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ϕ̃(p)

p

1

0−4 −2 0 2 4

Figure 2.6: Discrete inconvenience costs under consideration.

Line runs vary as ρ ∈ {6, 12, 24} and fleet sizes are defined as κ ∈ {6, 12, 24}, ensuring that κ ≤ ρ

for each instance. All instances were solved with the MIP Xpress 7.5 optimizer, under a Windows

7 environment in an Intel(R) Core(TM)i7 CPU 2.93 GHz processor and 8 GB RAM. Default values

were initially used for all parameters of Xpress solver and a CPU time limit of 3600 seconds was set.

Each of our tables reports the following items. Each row corresponds to a group of 10 instances

with the same characteristics (#G, |I|, ρ, κ,Q) indicated in the first five columns. Column t reports

the average running time in seconds for the 10 instances corresponding to each row. Column gapLR

reports the relative gap computed with the best solution found by the solver and the optimal value of

the linear relaxation at the root node. Column nod indicates the average number of nodes explored in

the branch-and-bound tree. Finally, obj reports the mean objectives values that we recall represent the

total user inconvenience. The reader may note that we do not report gaps because all instances were

solved to optimality within the time limit. All tables report analogous information for the different

formulations described along the chapter. In order to facilitate the comparison among all tables, we

have marked in bold red the best result among all in the same group. In case of ties the best results

have been marked in bold blue. Note that, since we are rounding up to 2 decimals, cero values could

represent any value in [0, 0.005].

There is dependance between the network configuration and results presented in the tables. First,

regarding to the running times, the instance that was more difficult to solve was the Cartwheel

(#1) with a significant difference with respect to the other configurations. The main reason for

this is because it is the network that offers more possible itineraries and, therefore, strategies. On

the contrary, configuration Semi-circumferential (#3) was the fastest to solve since it seems to be

the configuration with the poorest directness among the others. Surprisingly, the Backbone (#4)

was faster to solve than the Star configuration (#3). In spite of offering #4 more possibilities for

completing the trips than #3, this trips are along common-lines over edges (3,7) and (3,8), and this

seems to make easier the allocation of passengers. Regarding to U and Cross (#2) and Triangle (#6)

we observe a similar performance except for the the TNTSPU problem where #2 seems to be more

complex. With respect to column gapLR we observe a direct relationship with column t, that is, those

configurations who left a bigger integrality gap at the root node, were those more difficult to solve.

Column nodes show that, in spite of the gapLR values, many of the TNTPU and TNTSPU instances

could be solved in the root node of the branch and bound tree search just by means of preprocessing
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#G |I| ρ Q t gapLR nod obj t gapLR nod obj t gapLR nod obj
1 100 6 1 7.7 37.86 15 77.2 0.5 0 1 86.6 13.1 2.36 15 90.1
1 100 6 2 7.6 37.86 15 77.2 0.7 0.29 1 81.4 17 1.05 10 82.3
1 100 6 3 7.6 37.86 15 77.2 5.1 1.56 1 79.1 20.4 2.13 26 79.7
1 100 12 1 20.7 49.74 158 61 0.5 0.02 1 76.8 12.8 3.77 19 81.5
1 100 12 2 20.6 49.74 158 61 5.3 1.58 10 68.2 29.2 3.38 165 69.8
1 100 12 3 20.5 49.74 158 61 12.6 5.3 27 63.6 95.9 6.16 1084 64.3
1 100 24 1 18.4 61.99 70 37.6 1.1 0.04 1 62.3 19.3 5.24 71 67.1
1 100 24 2 18 61.99 70 37.6 10.9 5.44 34 46.2 114.4 8.18 4023 48.1
1 100 24 3 18.2 61.99 70 37.6 24.8 21.51 308 40.6 158.2 22.88 1747 41.3
2 100 6 1 2 20.67 1 80.4 0.3 0 1 88.2 2.2 0.64 1 89.7
2 100 6 2 1.9 20.67 1 80.4 0.3 0.09 1 83.7 6.1 0.94 1 84.7
2 100 6 3 1.9 20.67 1 80.4 0.5 0.9 1 81.4 3.6 1.65 1 82.1
2 100 12 1 3.4 33.13 1 66.3 0.3 0.08 1 79.9 2.5 1.92 1 82.3
2 100 12 2 3.4 33.13 1 66.3 0.7 0.79 1 72.2 4.7 1.53 1 73.1
2 100 12 3 3.5 33.13 1 66.3 4.1 3.56 1 68.5 6.8 4.35 1 69.1
2 100 24 1 3.2 47.48 1 45.2 0.3 0 1 67.3 1.1 2.51 1 69.6
2 100 24 2 3.3 47.48 1 45.2 6.3 4.22 154 53.2 17.5 6.01 91 54.4
2 100 24 3 3.2 47.48 1 45.2 8 14.56 112 48.2 26.8 15.97 566 49
3 100 6 1 0 0 1 83.4 0 0 1 90 0 1.14 1 91.7
3 100 6 2 0 0 1 83.4 0 0 1 86.1 0 0.27 1 86.5
3 100 6 3 0 0 1 83.4 0 0.04 1 84.1 0.1 0.34 1 84.4
3 100 12 1 0 0 1 72 0 0 1 83.6 0 1.83 1 85.6
3 100 12 2 0 0 1 72 0 0.05 1 75.1 0.2 0.9 1 75.8
3 100 12 3 0 0 1 72 0 0.03 1 72.4 0.1 0.19 1 72.5
3 100 24 1 0 0 1 57.2 0 0 1 71.6 0 2.14 1 73.6
3 100 24 2 0 0 1 57.2 0 1 1 59.1 0 0.97 1 59.1
3 100 24 3 0 0 1 57.2 0 0.2 1 57.4 0 0.31 1 57.5
4 100 6 1 3.4 22.19 10 85.4 0.2 0 1 90.9 0.6 0.56 1 91.9
4 100 6 2 3.4 22.19 10 85.4 0.6 0.66 1 87.7 0.8 0.89 1 87.9
4 100 6 3 3.5 22.19 10 85.4 1.6 2.34 1 85.9 3 2.34 1 85.9
4 100 12 1 0.9 35.17 1 71.9 0.2 0 1 84.1 1.5 0.77 1 85.4
4 100 12 2 0.9 35.17 1 71.9 1.4 1.58 1 77 8.3 2.19 1 77.6
4 100 12 3 0.9 35.17 1 71.9 0.9 5.5 1 73.7 1.4 5.53 1 73.7
4 100 24 1 1.1 50.92 1 49 0.2 0 1 72.1 0.7 1.1 1 73.3
4 100 24 2 1.1 50.92 1 49 4.6 5.24 1 59 15.4 6.78 893 60.1
4 100 24 3 1.1 50.92 1 49 4.8 13.74 9 52.2 12.7 14.85 51 53
5 100 6 1 0.1 4.19 1 86 0 0.05 1 91.2 0.1 0.57 1 91.9
5 100 6 2 0.1 4.19 1 86 0 0 1 87 0.2 0.02 1 87.1
5 100 6 3 0.1 4.19 1 86 0.1 0.24 1 86 0.2 0.24 1 86
5 100 12 1 0.1 6.28 1 75.6 0 0 1 84.6 0.1 0.44 1 85
5 100 12 2 0.1 6.28 1 75.6 0.1 0.1 1 76.8 0.2 0.48 1 77.2
5 100 12 3 0.1 6.28 1 75.6 0.1 0.93 1 75.6 0.2 0.93 1 75.6
5 100 24 1 0.1 9.23 1 61.4 0 0 1 72.6 0.1 0.41 1 72.9
5 100 24 2 0.1 9.23 1 61.4 0.1 0.82 1 62.2 0.3 1.1 1 62.5
5 100 24 3 0.1 9.23 1 61.4 0.1 2.71 1 61.4 0.2 2.7 1 61.4
6 100 6 1 2.5 20.8 1 83.7 0.2 0.02 1 89.2 1.8 1.66 1 91.2
6 100 6 2 2.4 20.8 1 83.7 0.3 0.4 1 85.5 2.5 0.51 1 85.7
6 100 6 3 2.4 20.8 1 83.7 0.4 2.17 1 83.7 1.1 2.04 1 83.7
6 100 12 1 4.4 33.94 4 70.4 0.2 0 1 82.5 2.4 2.06 1 84.7
6 100 12 2 4.5 33.94 4 70.4 1.7 1.01 1 74.5 6.7 1.64 1 75.3
6 100 12 3 4.3 33.94 4 70.4 3.9 4.85 1 71.1 6.1 4.87 1 71.3
6 100 24 1 5.1 50.12 11 47.6 0.2 0 1 70.4 1.7 2.55 1 72.7
6 100 24 2 5.2 50.12 11 47.6 3.2 4.47 1 55.9 10.9 6.53 203 57.5
6 100 24 3 5.2 50.12 11 47.6 6.4 14.43 18 49.9 13.4 15.12 65 50.5

TNTPU TNTPO TNTPS

cuts and heuristics. This could also be achieved in the other problems in some of the instances with a

low gapLR value. The last column obj shows that the lower level of inconvenience is the one provided

by configuration #1 (as expected) followed by #2, #6, #3 and #4 (almost the same), and #6. The

effect of the common lines in #5, seems to be very convenient for travelers in the among the common

segments since the have double possibilities for travelling. However, for those transportation request

out from that sector, the common lines only imply a lack of supply.
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#G |I| ρ κ Q t gapLR nod obj t gapLR nod obj t gapLR nod obj
1 100 12 6 1 32.9 50.16 487 61.5 1.3 0.16 1 77.1 24.5 4.99 129 82.7
1 100 12 6 2 32.9 50.16 487 61.5 6.3 1.54 4 68.2 45.9 3.49 415 70
1 100 12 6 3 32.8 50.16 487 61.5 12.6 5.3 16 63.6 92.3 6.16 567 64.3
1 100 24 6 1 428.1 62.08 25223 40.2 5.4 0.71 67 64 176.4 10.07 7102 72
1 100 24 6 2 428.7 62.08 25223 40.2 33 7.27 251 48.2 2147.1 11.65 24412 50.9
1 100 24 6 3 428.8 62.08 25223 40.2 636.4 24.32 16521 42.8 2281.5 26.45 17749 44
1 100 24 12 1 26.8 61.98 164 37.6 1 0.04 1 62.3 20.1 5.27 178 67.1
1 100 24 12 2 26.6 61.98 164 37.6 14.5 5.44 57 46.2 131.1 8.18 3166 48.1
1 100 24 12 3 26.7 61.98 164 37.6 44.9 21.51 827 40.6 170.9 22.88 2445 41.3
2 100 12 6 1 4.5 33.39 1 66.7 0.5 0.1 1 80.1 3.8 1.62 1 82.5
2 100 12 6 2 4.4 33.39 1 66.7 0.7 0.5 1 72.4 10.6 2.16 69 74
2 100 12 6 3 4.4 33.39 1 66.7 2.6 3.31 1 68.6 11.2 4.58 45 69.6
2 100 24 6 1 7.9 47.11 15 46.3 1.9 0.21 1 68 15.3 4.05 1556 72
2 100 24 6 2 7.9 47.11 15 46.3 9 4.51 166 55 118.2 7.94 4037 57.5
2 100 24 6 3 7.9 47.11 15 46.3 20 14.87 158 49.4 132.5 17.41 3378 51
2 100 24 12 1 3.7 47.48 1 45.2 0.3 0 1 67.3 3.1 2.49 1 69.7
2 100 24 12 2 3.7 47.48 1 45.2 7.3 4.22 24 53.2 29.2 6.35 1001 54.6
2 100 24 12 3 3.7 47.48 1 45.2 8.7 14.56 82 48.2 29.2 15.97 566 49
3 100 12 6 1 0.1 0 1 72 0.1 0 1 83.6 0.1 1.83 1 85.6
3 100 12 6 2 0.1 0 1 72 0.1 0.05 1 75.1 1.4 1.25 1 76.1
3 100 12 6 3 0.1 0 1 72 0.1 0.03 1 72.4 0.1 0.19 1 72.5
3 100 24 6 1 0.1 0 1 57.8 0.2 0.05 1 71.6 1.7 4.08 59 75.2
3 100 24 6 2 0.1 0 1 57.8 0.1 0.27 1 60.2 3.1 2.06 36 61.5
3 100 24 6 3 0.1 0 1 57.8 0.1 0.16 1 58.2 0.2 0.52 1 58.4
3 100 24 12 1 0.1 0 1 57.2 0.1 0 1 71.6 0.1 2.14 1 73.6
3 100 24 12 2 0.1 0 1 57.2 0.2 1 1 59.1 0.1 0.97 1 59.1
3 100 24 12 3 0.1 0 1 57.2 0.1 0.2 1 57.4 0.1 0.31 1 57.5
4 100 12 6 1 3.3 35.24 2 72 0.3 0 1 84.1 2.5 0.89 1 85.5
4 100 12 6 2 3.3 35.24 2 72 1.3 1.56 1 77 9.9 2.17 1 77.6
4 100 12 6 3 3.3 35.24 2 72 1.6 5.5 1 73.7 2.1 5.52 1 73.7
4 100 24 6 1 2.9 50.4 1 49.5 1.1 0.13 1 72.3 7.5 2.5 329 74.8
4 100 24 6 2 3 50.4 1 49.5 7.2 5.82 20 60 251.6 8.21 19754 62.1
4 100 24 6 3 3 50.4 1 49.5 11.7 15.91 189 54.2 86.5 17.74 5034 55.5
4 100 24 12 1 1.8 50.92 1 49 0.3 0 1 72.1 2.3 1.19 1 73.3
4 100 24 12 2 1.8 50.92 1 49 4.4 5.24 18 59 14.1 6.78 407 60.1
4 100 24 12 3 1.8 50.92 1 49 6.1 13.74 33 52.2 12 14.85 58 53
5 100 12 6 1 0.5 6.4 1 75.7 0.3 0.1 1 84.7 0.7 0.62 1 85.3
5 100 12 6 2 0.5 6.4 1 75.7 0.2 0.19 1 76.9 0.4 0.57 1 77.3
5 100 12 6 3 0.5 6.4 1 75.7 0.3 1.06 1 75.7 0.4 1.05 1 75.7
5 100 24 6 1 0.9 9.01 1 61.8 0.1 0 1 72.6 0.8 0.58 1 73.1
5 100 24 6 2 0.9 9.01 1 61.8 0.3 0.79 1 63 1 1.51 1 63.5
5 100 24 6 3 0.9 9.01 1 61.8 0.7 2.96 1 62 1.2 2.93 1 62
5 100 24 12 1 0.5 9.23 1 61.4 0.1 0 1 72.6 0.3 0.41 1 72.9
5 100 24 12 2 0.5 9.23 1 61.4 0.2 0.82 1 62.2 0.5 1.1 1 62.5
5 100 24 12 3 0.5 9.23 1 61.4 0.3 2.71 1 61.4 0.5 2.7 1 61.4
6 100 12 6 1 5.7 33.94 1 70.4 0.3 0 1 82.5 4.7 2.29 1 84.9
6 100 12 6 2 5.8 33.94 1 70.4 0.7 1 1 74.5 8.9 1.6 1 75.3
6 100 12 6 3 5.7 33.94 1 70.4 2.3 4.85 1 71.1 7.2 4.87 4 71.3
6 100 24 6 1 8.4 50.05 39 49 0.5 0 1 70.4 7.6 4.19 327 74.1
6 100 24 6 2 8.4 50.05 39 49 7.8 5.61 21 57.2 31 7.07 493 58.5
6 100 24 6 3 8.5 50.05 39 49 10.6 15.38 86 51.3 60.2 17.06 2424 52.5
6 100 24 12 1 7.3 50.12 1 47.6 0.3 0 1 70.4 4.3 2.6 1 72.8
6 100 24 12 2 7.2 50.12 1 47.6 3.4 4.47 1 55.9 11.8 6.53 130 57.5
6 100 24 12 3 7.2 50.12 1 47.6 4.9 14.43 14 49.9 15 15.12 78 50.5

TNTSPU TNTSPO TNTSPS

Comparing the discussed results among the different problems we found that, on these instances,

TNTPO and TNTSPO were easier solvable than TNTPU and TNTSPU respectively in terms of t,

gapLR and nod. This makes sense considering that the capacity constraints, reduce significantly the

solution space and, therefore, the search space. Those transportation requests that cannot fit in the

available vehicles are simply neglected what is not a big difficulty in the allocation problem. This is

not the case of the TNTPS or TNTSPS that meets a more difficulty in the assignment that must be



60 Section 2.6. Conclusions

optimal for each transportation request once that a timetable is fixed (in the x variables). In general

terms, adding the Vehicle Scheduling Constraints (VSC) makes more difficult to solve each timetabling

variant but instances with κ = 6 and κ = 12 does not vary much since a fleet size of κ = 6 seems to

be almost enough to implement ρ = 24 line runs.

2.6 Conclusions

In this chapter we have presented a new approach for solving the integration of the Transit Network

Timetabling and Scheduling Problem together with the passengers’ routing problem. Traditionally,

these problems have been studied sequentially but this approach leads to sub-optimal solutions for the

entire problem. We present a flexible framework that let us allocate transportation requests to their

optimal strategies under capacity constraints. This approach not only pursues transfer coordination

but also customers’ preferences in terms of preferred departure/arrival times for a fully disaggregated

demand. Even more, each transportation request is faced individually, stating hard time windows

constraints for departure/arrival times as well as inconvenience costs related to trip duration and time

deviations from desired departure/arrival times. A testbed of randomly generated instances has been

generated for different network configurations existant in the literature and computational results have

been obtained and analyzed.

2.7 Appendix: Notation

Infraestructure:
G graph corresponding to the PTN

S node set (stations)

A set of arcs (indexed by a)

L set of lines (indexed by l)

Sl ⊆ S subset of stations used by line l

Al ⊂ A subset that contains all edges used by line l

L ⊆ L set of directed path lines

L̊ ⊆ L set of directed cycle lines
−→L ⊆ L set of path lines going forward
←−L ⊆ L set of path lines going backwards (a line l ∈ −→L is associated to its respective

(opposite) line l′ ∈ ←−L by means of l′ = l + |−→L |

(l, i) ∈ N set of nodes of all lines

(l, i, j)∈A set of arcs of all lines

n ∈ N̈ set of transfer nodes

A(tra) set of transfer edges

Timetables and vehicle scheduling:
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t ∈ T set of time slots (T = {1, ..., |T |})
τl fixed travel time required to complete a line run in line l

Q vehicle capacity

cl cost associated to locate a line run in line l

ρ total available budget to locate line runs

κ fleet size

Demand:
i ∈ I set of transportation requests

ti, ti+|I| preferred departure and arrival times for request i

t−i , t
+
i earliest and latest times that are admissible for serving request i

Strategies:

π ∈ Π set of possible itineraries within the PTN

Πi ⊂ Π subset of itineraries that are valid for user i

Liπ ⊆ L set of lines used by request i when itinerary π ∈ Πi is selected

r ∈ Riπ set of options available for request i when using itinerary π ∈ Πi

ϕiπr cost of allocating request i to itinerary π and option option r

maπ binary parameter equal to one if itinerary π ∈ Πi occupies arc a ∈ Al
tiπrl time slot that is used for a vehicle departure in line l when the itinerary π and the

option r are used

Decision Variables:
ρl number of line runs to locate on line l

κl fleet size to assign on line l

xlt ∈ {0, 1} binary variable equal to 1 when a vehicle starts a line run in line l at time t

yiπr ∈ {0, 1} binary variable equal to 1 iif request i is allocated to itinerary π ∈ Πi and option

r ∈ Riπ
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Chapter 3

On-line vehicle rescheduling in a

transit line

ABSTRACT

Public transportation systems in metropolitan areas carry a high density of traffic daily, hetero-

geneously distributed, and exposed to the negative consequences derived from service disruptions.

Breakdowns, accidents, strikes, require on-line operation adjustments to address these incidents in

order to reduce their side effects, such as passenger extra-waiting times, complaints, potential op-

erational dangers, etc. The Rescheduling Problem consists of defining a new schedule for a set of

previously scheduled trips, given that one/several trips cannot be carried out. This chapter deals with

the rescheduling problem in a transit line that has suffered a fleet size reduction. We present different

modelling possibilities depending on the assumptions that need to be included in the modelization and

we show that the problem can be solved rapidly by using a constrained max-cost-flow problem whose

coefficient matrix we prove is totally unimodular. We test our results in a testbed of random instances

outperforming previous results in the literature. An experimental study, based on a line segment of the

Madrid Regional Railway network, shows that the proposed approach provides optimal reassignment

decisions within computation times compatible with real-time use.

Keywords: Urban transportation network; Disturbance management; Real time rescheduling.

3.1 Introduction

Public transport systems often encounter disruptions that prevent them from operating as planned.

Among the examples of possible disruptions there are fleet size reductions due to breakdowns, drivers’

strikes or vehicle reallocations to reinforce other sections of the transit network. To address these

incidents, on-line operation adjustments are required in order to reduce the side effects of emergency

incidents, such as passenger waiting/traveling times, complaints, potential operational dangers, etc.

The Rescheduling Problem consists of defining a new schedule for a set of previously scheduled trips,

given that one/several trips cannot be carried out. While many objectives and constraints remain

65
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from the timetabling problem, new requirements and objectives arise in this context. In terms of

transportation of people, the main decisions concern the minimization of the deviations from the

initial timetable in operation. This is carried out cancelling some services and/or providing new

reference times for some vehicles located at specific points in the network. Further decisions may

concern re-allocating other available resources. In this chapter, we address the Rescheduling Problem

in a transit line.

Timetable design is a central problem in transportation planning with many interfaces with other

classical problems: line planning, vehicle scheduling, and vehicle rescheduling. The Transit Network

Timetabling and Scheduling Problem (TNTSP) is devoted to obtaining and optimizing departure and

arrival times for each line run (trip from an origin to a final destination) to and from each station

over a planning horizon imposing/optimizing different constraints and objectives. The TNTSP is

based on the following general input: An infrastructure of a transport system described by a node set

(network stations) and an edge set (roads/tracks between adjacent stations), a trip demand matrix

between pairs of nodes of the infrastructure, a set of transit lines with associated frequencies which

have already been determined in order to satisfy such trip demand and, finally, a vehicle fleet with

specific characteristics. The objective of the TNTSP consists of finding arrival and departure times of

each vehicle at each station such that the demand satisfaction, required fleet size and vehicle capacities

can be optimized/bounded.

Accidents, strikes and other sources of vehicle delays or cancellations force to modify the scheduled

timetable when vehicles in some sections cannot run according to the initial planning. Here

disturbances are relatively small perturbations of the transit network that can be handled by modifying

the timetable, but without modifying the duties for vehicles and drivers. Disruptions are relatively

large incidents, requiring both the timetable and the duties for vehicles to be modified. There are

several examples of possible disruptions that demand the rescheduling of vehicles: (1) interruptions

coming from severe weather conditions, accidents, and the blockage of road or tracks sections or (2)

fleet size reductions coming from vehicle breakdowns, drivers’ and crew strikes (van Exel and Rietveld,

2001) or vehicle reallocations made to reinforce other sections of the transit network (Burdett and

Kozan, 2009). In particular, a scheduled timetable may become infeasible simply due to a heavy

passenger flow (Mesa et al., 2009b).

Rescheduling is the process of updating an existing production plan in response to disturbances or

disruptions (Vieira et al., 2003). Customers plan their trips based on a known timetable, and can

be greatly inconvenienced if the service does not arrive or depart at the expected time. When a

disturbance occurs, like a vehicle breakdown in a certain line, the system operator must make a

decision about rescheduling the remainder vehicles which are normally operating along the network in

order to reduce the loss of service quality perceived by the users. An important difference between the

planning stage and the rescheduling stage during disruptions is that in the latter less time is available

for making decisions. In principle, solutions are expected within minutes (on-line). For the resources,

another important difference is that in general there is less flexibility in the rescheduling stage, since

many resource duties have already started at the time of the disruption when the rescheduling is carried

out, and cannot be easily diverted. In addition, the solution space is bounded by the remaining time



Chapter 3. On-line vehicle rescheduling in a transit line 67

until the end of the rescheduling horizon, which is usually the end of the day. Hence, if the disruption

happens in the evening, then the solution space is much smaller than in case the disruption happens

in the morning. For example, a straight forward myopic strategy consists in canceling those services

that serve to the least number of users. This methodology would not introduce any change/delay in

the remaining timetables. Nevertheless, a recent paper by (Mesa et al., 2013) have shown that if real

time control strategies are applied along a transit corridor (i.e., by allowing delays at some services of

the initial schedules), then the demand satisfaction after rescheduling can be increased significantly.

Example 3.1- A minimal toy example of a rescheduling problem might be considered as follows.

Let s be a station in a directed transit line where the demand pattern of total arrivals to station s is

represented in Figure 3.1. We assume that initially two vehicles are scheduled departing at times t1

and t2, therefore, a demand 0.8∗d is served at time t1 and a demand 0.2∗d is served at time t2. If the

transport manager has to reschedule the service establishing a single vehicle departure from station

s he may decide among 3 options for this isolated scenario: (1) to keep the service that departs at

t1 and cancel the one of t2, (2) to keep the service that departs at t2 and cancel the one of t1 or (3)

to delay the service that departs at t1 within time interval (t1, t2) and cancel the service departing at

t2. The first and second options affect to the 20% and 80% of the demand respectively. The third

option represents a trade-off between the first two. In the next sections we will extend this example

to reschedule a complete timetable in a transit line assuming a more complex demand pattern.

time

users

d

t1 t2

Figure 3.1: Demand pattern of total arrivals to station s.

In this chapter, we address the Rescheduling Problem in a transit line that has suffered a fleet size

reduction. We describe a demand pattern to reflect the passengers’ behaviour when some vehicle

services are delayed or cancelled and this pattern will let us to derive a rescheduling framework

coming from a timetabling formulation. We present different modelling approaches depending on

the assumptions that need to be included in the modelization and we show that the problem can

be rapidly solved by using a constrained max-cost-flow problem whose coefficient matrix we prove is

totally unimodular. We show that our approach can be applied to real scenarios as it is the case of

the commuter train systems of Madrid.

The remainder of the chapter is organized as follows. Section 3.2, reviews the most relevant

contributions related to this work. Section 3.3, presents the description of the problem and all details

to compute the demand pattern in the scheduling and rescheduling phase. Section 3.4, presents the

rescheduling formulations that can be obtained from a general scheduling problem. Computational
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experiments are provided in Section 3.5 in order to show the usefulness and applicability of this

methodology. Finally, some conclusions are summarized in Section 3.6.

3.2 Background

Different approaches have been developed in the literature to tackle the rescheduling problem

distinguishing between (1) disturbances and disruptions, (2) the level of detail considered in the

railway system, in particular in the timetable and (3) focusing the objective on the vehicles or on the

customers. In the the second distinction two approaches can be distinguished, known as microscopic

and macroscopic. The latter considers the transit network at a higher level, in which stations can

be represented by nodes of a graph and roads/tracks by arcs, and the details of block sections and

signals are not taken into account. In a microscopic approach these aspects are considered in detail.

In the case of railway systems, most of the approaches in the literature deal with (1) disturbances

affecting the railway system rather than disruptions, (2) the railway system at a microscopic level

rather than at a macroscopic level and (3) minimizing the delays of trains or the number of canceled

vehicles rather than minimizing the negative effects of disturbances and disruptions for passengers

(see Cacchiani et al., 2014). This section is restricted to disruptions at a macroscopic level in a transit

line.

Regarding to the timetabling problem in a transit line we refer to Mesa et al. (2014b) and references

therein. Gathering the integration of timetables, vehicle scheduling and passenger choices, Mesa et al.

(2014b) present a new approach for jointly planning timetables and vehicle schedules along a single

transit line emphasizing the point of view of potential customers. A p-median based formulation is

proposed for a given fleet size of vehicles. In addition, demand behavior is associated with the inclusion

of closest assignment type constraints.

Control strategies like short turns, deadheads and/or express services can be implented for the

timetabling adjustment in a transit linear corridor. Mesa et al. (2009a) develop an effective plan

for allocating fleet frequencies at stops along a line based on three objectives: minimizing passenger

overload, maximizing passenger mobility and minimizing passenger loss. Schedules for decongesting

and recovering the line are determined by means of optimization models. The methodology proposed

was applied to real data of the commuter train system of Madrid. Also Kumazawa et al. (2010) aim

at minimizing the dissatisfaction experienced by the passengers due to disturbances. They propose

a rescheduling algorithm that calculates a value for the amount of dissatisfaction experienced by

passengers due to disturbances on the Japanese railway network. In addition to a conventional

passenger flow analysis, the passenger overflow, defined as the waiting time experienced by a passenger

while waiting on a platform, is considered. Nakamura et al. (2011) present an algorithm for train

rescheduling during disruptions which takes as input train groups, train cancelation sections, and

return patterns. These factors are predetermined by the dispatchers. Here a train group consists

of a set of trains that share the same assignment of rolling stock. Train cancelation sections are

sections of the railway infrastructure bounded by two stations in which all trains are canceled if a

disruption occurs inside the section. In case of a disruption obstructing a section of the network, the
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developed algorithm determines a new timetable by canceling trains, combining return patterns, and

changing the train departure order at stations in a series of steps. The efficiency of the rescheduling

plan is evaluated in terms of passenger dissatisfaction caused by propagated delays. The algorithm

is tested on a railway line in a metropolitan area in Japan. Sato et al. (2013) presents a timetable

rescheduling algorithm based on Mixed Integer Programming (MIP) formulation when train traffic is

disrupted. They minimize further inconvenience to passengers instead of consecutive delays caused

by the disruption, since loss of time and satisfaction of the passengers are considered implicitly and

insufficiently in the latter optimization. They presume that inconvenience of traveling by train consists

of the traveling time on board, the waiting time at platforms and the number of transfers. Hence,

the objective function is calculated on the positive difference between the inconvenience which each

passenger suffers on his/her route in a rescheduled timetable and that in a planned timetable. The

inconvenience-minimized rescheduling is often achieved at the cost of further train delays. Some trains

dwell longer at a station to wait for extra passengers to come or to keep a connection, for instance.

Mesa et al. (2013) and Mesa et al. (2014a) assess the decision of rescheduling a train service, reducing

the current supply along one transportation line in order to reinforce the service of another line,

exploited by the same public operator, which has suffered an incidence or emergency. A methodology,

based on a geometric representation of solutions which allows the use of discrete optimization

techniques, is developed in order to attend to the underlying demand with efficiency criteria in this

context of unexpected incidents. The proposed methodology is computationally tested and applied to

real data of the commuter train system of Madrid.

This chapter differs from all previous cited research in several facets that we believe provide a significant

contribution in this field. First, we give a description of the problem providing an users’ demand

pattern for modeling both the arrival pattern and the passengers’ inconvenience function after the

rescheduling. This setting extends the one in Mesa et al. (2013) and Mesa et al. (2014a) to a general

framework in a transit line. Second, a modelling framework for rescheduling the line is derived from a

scheduling formulation. We present different modelling approaches depending on the assumptions that

need to be included in the modelization and we show that the problem is equivalent to a constrained

max-cost-flow problem whose coefficient matrix we prove is totally unimodular. We test our results

in a testbed of random instances outperforming previous results in the literature. An experimental

study, based on a line segment of the Madrid Regional Railway network, shows that proposed approach

provides optimal reassignment decisions within computation times compatible with real-time use.

3.3 Problem description

3.3.1 Infrastructure

Let l be a directed transit line running along a set of stations s ∈ S. Each station s ∈ S also occupies

the position s along the transit line l. We denote by 〈s〉 the “name” of station s that it could be

a text string (e.g. 〈4〉 = “central station”) or a number (e.g. 〈4〉 = “312”). Each vehicle k ∈ K

(|K| = κ) operates along l during a time horizon that will be discretized into a set of time slots
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t ∈ T = {1, ..., |T |} performing a single line run or expedition along the line. In addition, all vehicles

will be assumed to have the same circulation speed (and unlimited capacity), so overtaking is not

allowed.

3.3.2 Demand

Passengers enter in a station s and wait until a vehicle arrives. Let ast be the number of passengers

that access to station s at time t. A passenger that arrives to station s at time t is served by the

next vehicle that departs (strictly) after time t − 1 (denoted by vehicle kst ∈ K). Since vehicles are

assumed to have unlimited capacity, once a vehicle leaves a station all passengers waiting at the station

leave with it. We assume that passengers that entered to a station at time t′ suffer an inconvenience

ϕst′t ∈ [0, 1] if they have to wait until time t > t′ for leaving/departing. Without loss of generality

we can set the inconvenience equal to zero if t is not greater than an amount τ1
s,t′ . This means that

passengers may wait a certain amount of time without suffering any inconvenience. On the other

hand, we can assume that the inconvenience is the maximum (ϕst′t = 1) after a time τ2
s,t′ < t. Inside

interval (τ1
s,t′ , τ

2
s,t′) the inconvenience is assumed to take a value αst′t ∈ [0, 1). In this way, ϕ takes the

following expression:

ϕst′t =





0, t′ < t ≤ τ1
st′ ;

αst′t ∈ [0, 1), τ1
st′ ≤ t < τ2

st′ ;

1, τ2
st′ ≤ t;

(3.1)

Example 3.2- Figure 3.2-left shows an example of constant arrivals pattern. The total number of

users waiting at station s during time interval [t′, t] (that is
∑

t∈[t′,t] ast) is also depicted. This pattern

may correspond to a situation where users did not know vehicle departure times. Figure 3.2-center

shows another example of arrivals pattern (concentrated around time slot t′ + 4). This pattern may

correspond to a situation where users know that a vehicle departure would take place at time t′ + 7.

Figure 3.2-right shows an example of inconvenience cost function for those users that arrived at time

slot t′ and started suffering an inconvenience after time τ1
s,t′ . Note that at time t, with t′ < t ≤ τ1

s,t′ ,

the inconvenience remains constant with value equal to 0 and at time t, with (t ≥ τ2
s,t′ = τ1

s,t′ + 6, the

inconvenience remains constant with value equal to 1.

t

users

t′

(t, ast)

(t,
∑

t∈[t′,t]

ast)

t

users

t′

(t, ast)

(t,
∑

t∈[t′,t]

ast)

t

ϕst′t

τ1s,t′ τ2s,t′

1

Figure 3.2: Demand patterns (left, center) and inconvenience function (right).
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3.3.3 Timetables

The concept of timetable can be formalized as follows. Given the set of vehicles k ∈ K defined in line l,

a timetable Θ along partition T is defined as the set of arrival/departure times at each station for each

vehicle: Θ = {(θ+
sk, θ

−
sk), s ∈ S, k ∈ K} (for modeling convenience we can assume that θ+

1k = θ−1k − 1,

θ−|S|k = θ+
|S|k + 1). Denoting by λsk the waiting time of vehicle k at station s ∈ S and by µsk the travel

time from station s to the next station (that is, the travel time between stations s and s+ 1) we can

assume that:

1. λsk = θ−sk − θ+
sk

2. µsk = θ+
s+1,k − θ−sk, s ∈ S : s < |S|, k ∈ K

A timetable Θ defined by variables θ+, θ−, λ and µ is called arrival-departure timetable. In addition

we denote by λ∗ (λ∗) the maximum (minimum) waiting time that a vehicle can stay in a station that

is not a terminal of the transit line.

Potentially, all timetables can be generated over sets S,K. However, the number of feasible timetables

can be highly reduced by means of the following result:

Property 3.1- A timetable Θ can be redefined as Θ ≡ x = {xst, t ∈ T, s ∈ S : s < |S|} where

xst ∈ {0, 1} is equal to 1 if and only if a vehicle departs from station s at time t and:

• The departure time of vehicle k from station s: θ−sk = {t : xst = 1, t ∈ T}|k (where · |k denotes

the k-th element of a set that is sorted in non decreasing order).

• The arrival time of vehicle k to station s: θ+
sk = θ−s−1k + µs−1k.

• The waiting time of vehicle k at station λsk = θ−sk − θ+
sk.

A timetable Θ defined by variables x is called departure timetable.

Remark 3.1- Since no passengers wait at station |S|, without loss of generality we can exclude in

the following such station from the set S.

Property 3.2- On each station we consider a discretized version of the time horizon in time slots

(typically in minutes) t ∈ Ts ⊂ T . The set of time slots Ts avoids departures at times that are too

late to reach the end of the line or too early if such station has to be reached from the beginning of

the line. In order to compute Ts for each s ∈ S we assume that a minimum waiting time λ∗ = 1 is

required at each station.

Example 3.3- Table 3.1 shows an arrival-departure timetable for two vehicles in a directed transit

line running along stations 12, 7, 9, 13 that occupy positions 1, 2, 3 and 4 in the line, respectively. We
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also show the departure timetable (in terms of variables x). Given |T | = 23 and applying Property

3.2 we can reduce the feasible time slots for each station as it is indicated.

k = 1 k = 2

〈s〉 s (θ+
sk, θ

−
sk) λsk µsk (θ+

sk, θ
−
sk) λsk µsk x = (xst) Ts

〈12〉 1 (1,2) 1 2 (1,8) 7 2 (x1t) : x1t = 1, t ∈ {2, 8};x1t = 0, o.c. {2, ..., 11}
〈7〉 2 (4,7) 3 4 (10,12) 2 4 (x2t) : x2t = 1, t ∈ {7, 12};x2t = 0, o.c. {5, ..., 14}
〈9〉 3 (11,13) 2 3 (16,19) 3 3 (x3t) : x3t = 1, t ∈ {13, 19};x3t = 0, o.c. {10, ..., 19}
〈13〉 4 (16,23) 7 0 (22,23) 1 0

Table 3.1: Two representations of a timetable in a directed transit line.

Next, we show how travel times between stations can be assumed to be all equal to a constant (if all

vehicles travel at the same speed). We will make this assumption in the following.

Property 3.3- Travel times between stations can be all considered equal to a constant (that is,

µsk = 1, s ∈ S, k ∈ K).

Proof.

Since it is assumed that all vehicles travel at the same speed, we just set θ−sk := θ−sk−
∑

s′∈S:s′<s µs′k, s ∈
S : 1 < s < |S|. �

Example 3.4- Table 3.2 shows the arrival-departure timetable of example 1 when travel times are

equal to 1 (in the x variables). Note that now we can reduce the feasible time slots for each station

(Ts) as it is indicated.

k = 1 k = 2

s s (θ+
sk, θ

−
sk) λsk µsk (θ+

sk, θ
−
sk) λsk µsk x Ts

〈12〉 1 (1,2) 1 1 (1,8) 7 1 (xst) : xst = 1, t ∈ {2, 8};xst = 0, o.c. {2, ..., 10}
〈7〉 2 (3,6) 3 1 (9,11) 2 1 (xst) : xst = 1, t ∈ {6, 11};xst = 0, o.c. {4, ..., 13}
〈9〉 3 (7,9) 2 1 (12,15) 3 1 (xst) : xst = 1, t ∈ {9, 15};xst = 0, o.c. {6, ..., 15}
〈13〉 4 (10,17) 7 0 (16,17) 1 0

Table 3.2: Two representations of a timetable in a directed transit line.

Remark 3.2- The previous settings remains valid for representing timetables in the case of a bi-

directional line (a transit corridor with two lines, on each direction, running along all stations). For

doing so, we replicate each station once each time it is visited in the timetable so if vehicles run back

and forth along the line n times, we can redefine set S as:

S := {1, ..., |S|, |S|+ 1, ..., 2|S|, ..., (2n− 2)|S|, ..., (2n− 1)|S|, (2n− 1)|S|, ..., 2n|S|}.
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Example 3.5- Let L be a transit corridor with 5 stations {a, b, c, d, e} (|S| = 4) where vehicles run

back and forth 2 times. Then, redefining set S, we can assume that a single directed line runs along

L passing through stations:

〈s〉 a b c d e d c b a b c d e d c b

s ∈ S 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Table 3.3: Relation between a bidirectional transit line traversed four times and a directed transit line
of 16 stations.

3.3.4 Inconvenience cost function under disruptions

In this section we assume that a number of κ vehicles was initially scheduled within timetable Θ. If

a subset of vehicles becomes unavailable, a new set of κ̄ departure times at each station has to be

determined where κ̄ < κ. Passengers ignore new departure times until they arrive to a station at a

time t. We denote by kst′ the first vehicle, of the original schedule, with a departure after t′ from

station s and by θ−s,kst′ such departure time. Three possible decisions must be taken for each departure

time θ−s,kst′ (or service) initially scheduled:

1. keep the service in the initial timetable,

2. delay the service within time interval (θ−s,kst′ , θ
−
s,kst′+1) or

3. cancel the service.

In this way, the inconvenience suffered by passengers arriving at time t′ will be 0 if they depart from

s as in normal operation, that is, no later than θ−s,kst′ . Otherwise, if the departure from s is at a

time t within time interval (θ−s,kst′ , θ
−
s,kst′+1), passengers arriving at time t′ will suffer an inconvenience

given by a value ϕst′t = αst′t ∈ [0, 1). In addition, to penalize cancelled services, we can assume that

the inconvenience for passengers arriving at time t′ is full if service θ−s,kst′ is cancelled. Therefore, the

inconvenience function under disruptions is given by ϕst′t when τ1
st′ = θ−s,kst′ and τ2

st′ = θ−s,kst′+1:

ϕ̃st′t =





0, t′ < t ≤ θ−s,kst′ ;
αst′t ∈ [0, 1), θ−s,kst′ ≤ t < θ−s,kst′+1;

1, θ−s,kst′+1 ≤ t;
(3.2)

3.4 Problem formulation

In this section we present a catalogue of valid formulations for the problem described in the previous

sections. We begin with a scheduling formulation F xy that is valid for any inconvenience function ϕst′t.



74 Section 3.4. Problem formulation

Next, we will use the inconvenience cost function under disruption ϕ̃st′t in order to penalize delayed

vehicles and, more strongly, cancelled services. We show that ϕ̃st′t allows us to reformulate F xy into

an equivalent formulation easier to solve. In this way, 2 different formulations are presented for the

rescheduling problem depending on including explicitly or not arrival departures times to stations.

3.4.1 Scheduling formulation (F xy)

In the following, we consider scheduling, timetabling and vehicle scheduling as synonyms since each

vehicle will perform a single line-run along the transit line. Therefore we assume that κ vehicles are

scheduled along the line and the demand arriving to station s at time t′ is assigned to the first vehicle

departing from that station after time t′. We recall that xst is defined as a binary variable equal to

1 if a vehicle departs from station s at time t. In addition we require a binary variable that assigns

passengers to a time slot where there must exist a vehicle departure. Then, let yst′t be a binary

variable equal to 1 if passengers arriving at time t′ are allocated to a vehicle departing at time t.

F xy : min
∑

s∈S

∑

t′∈Ts
(
∑

t∈Ts:t′<t
ast′ϕst′tyst′t + ast′(1−

∑

t∈Ts:t′<t
yst′t)) (3.3a)

s.t.
∑

t∈Ts
xst = κ s ∈ S (3.3b)

∑

t′∈Ts:t′≤t
xst′ ≤

∑

t′∈Ts+1:t′≤t+µs+λ∗
xs+1t′ s ∈ S, t ∈ Ts : s < |S| (3.3c)

xst ∈ {0, 1} s ∈ S, t ∈ Ts (3.3d)

yst′t ≤ xst s ∈ S, t′, t ∈ Ts : t′ ≤ t (3.3e)
∑

t∈Ts:t>t′
yst′t ≤ 1 s ∈ S, t′ ∈ Ts (3.3f)

yst′t ∈ {0, 1} s ∈ S, t′, t ∈ Ts : t′ ≤ t (3.3g)

The objective function (3.3a) minimizes the total users’ inconvenience. It indicates that the

inconvenience of passengers that arrived to station s at time t′ is ϕst′t if they are allocated to a vehicle

departing at time t. Otherwise, if demand ast′ is not allocated to any time slot, the inconvenience for

those passenger will be full. Constraints (3.3b) impose that at each station all vehicles have to depart

(that is, there are κ departures and, in total, κ line runs along the line). Constraints (3.3c) ensure

flow conservation of vehicles at stations, imposing that the number of vehicles departing from station

s before time t is lower than those departing from the next station before time t+µs+λ∗. Constraints

(3.3e) ensure that no passenger allocations are made to timetables that do not exist. Constraints

(3.3f) impose that each demand ast′ is allocated to no more than one line run.

Formulation F xy comes from the scheduling formulation developed in Mesa et al. (2014b) where the

timetabling problem is seen as a p-median based formulation. Here, F xy, extends the flexibility of the

timetable since vehicles can remain stopped at intermediate stations allowing a better adjustment
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of the demand. In addition, since objective (3.3a) shows how much is the global inconvenience

of the scheduling, we can equivalently represent also the global convenience of the scheduling just

subtracting this amount from the total number of passengers in the system. Therefore, denoting by

A =
∑

s∈S
∑

t′∈T ast′ , the global convenience of the scheduling can be defined as:

A−min
∑

s∈S

∑

t′∈Ts
(
∑

t∈Ts:t′<t
ast′ϕst′tyst′t + ast′(1−

∑

t∈Ts:t′<t
yst′t)) (3.3a’)

s.t.(3.3b)− (3.3g)

Property 3.4- Objective (3.3a’) is equivalent to

max
∑

s∈S

∑

t′∈Ts

∑

t∈Ts:t′<t
ast′(1− ϕst′t)yst′t (3.3a”)

Proof.

To prove comes straightforward from transforming (3.3a’) into (3.3a”)

A−min
∑

s∈S

∑

t′∈Ts
(
∑

t∈Ts:t′<t
ast′ϕst′tyst′t + ast′(1−

∑

t∈Ts:t′<t
yst′t))) =

= A−min
∑

s∈S

∑

t′∈Ts
(
∑

t∈Ts:t′<t
ast′ϕst′tyst′t + ast′ +

∑

t∈Ts:t′<t
−ast′yst′t))) =

= A−min
∑

s∈S

∑

t′∈Ts
(ast′ +

∑

t∈Ts:t′<t
ast′(ϕst′t − 1)yst′t) =

= A−min
∑

s∈S

∑

t′∈Ts
(ast′ −

∑

t∈Ts:t′<t
ast′(1− ϕst′t)yst′t) =

= A−min(A−
∑

s∈S

∑

t′∈Ts

∑

t∈Ts:t′<t
ast′(1− ϕst′t)yst′t) =

= A+ max(−A+
∑

s∈S

∑

t′∈Ts

∑

t∈Ts:t′<t
ast′(1− ϕst′t)yst′t) =

max
∑

s∈S

∑

t′∈Ts

∑

t∈Ts:t′<t
ast′(1− ϕst′t)yst′t

�

3.4.2 Rescheduling formulation (F st)

In this section, we aim to derive a rescheduling formulation valid to reschedule a timetable (for example,

a timetable generated with formulation F xy or with the one in Mesa et al., 2014b). In order to compare



76 Section 3.4. Problem formulation

results with previous ones in the literature, we (equivalently) change the objective function from a

minimization of users’ inconvenience to a maximization of users’ convenience, where we understand

the convenience cost function as 1− ϕ̃.

F st : max
∑

s∈S

∑

t′∈Ts

∑

t∈Ts:t′<t<θ−s,ks,t′+1

ast′(1− ϕ̃st′t)xst (3.5a)

s.t.
∑

t∈Ts
xst = κ̄ s ∈ S (3.5b)

xst ≤
∑

t′∈Ts:t+µs+λ∗≤t′≤t+µs+λ∗
xs+1t′ s ∈ S : s < |S|, t ∈ Ts (3.5c)

∑

t∈Ts:θ−s,k−1<t<θ
−
s,k+1

xst ≤ 1 s ∈ S, k ∈ K (3.5d)

xst ∈ {0, 1} s ∈ S, t ∈ Ts (3.5e)

The objective function (3.5a) maximizes the total users’ convenience. It indicates that the convenience

of passengers that arrived to station s at time t′ is 1 − ϕ if a vehicle departs at time t. Note that

out from interval (t′, θ−s,ks,t′+1) the convenience for demand ast′ is not defined but it results in being

computed as 0. Note also that (3.5a) is well defined since constraints (3.5d) ensure that no more than

one vehicle is rescheduled inside interval (θ−s,k−1, θ
−
s,k+1) avoiding demand ast′ being served by more

than one vehicle. Constraints (3.5c) impose that if a vehicle departs from station s at time t, then

another vehicle must depart from the next station inside time interval [t + µs + λ∗, t + µs + λ∗] (we

recall θ−s,0 = 0, θ−s,κ+1 = |Ts|+ 1.

The reader, may note that F st generates a rescheduled timetable that is the same as the one of

F xy when ϕ = ϕ̃. However, formulation F st presents other modelling advantages and solution

possibilities that we describe in the following section. In terms of location theory, F xy presents a

location-allocation problem (in terms of the x and y variables respectively), whereas F st can be seen

as a maximum covering problem (Church and ReVelle, 1974) where each located timetable xst covers

a certain demand, but no demand is covered more than once.

3.4.3 Rescheduling formulation (F sut)

In this section we specify in the x variables the time at which a vehicle arrives and departs from a

station. We define as T 2
s the set of time slot pairs that are feasible for arriving and departing at a
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station s ∈ S. In particular, we define T 2
s as

T 2
s =

{
{(t− 1, t) : u = 1, t ∈ T1}, iif s = 1;

{(u, t) : u− µs−1 ∈ Ts−1, t ∈ Ts, u+ λ∗ < t < u+ λ∗} iif s > 1;
(3.6)

Then, we denote by xsut the binary variable equal to 1 if coordinates (u, t) of the time map

corresponding to station s are occupied by a vehicle; 0 otherwise. The reader may check Mesa et al.

(2013) for further details on timetable representations as arrival/departure diagrams.

F sut : max
∑

s∈S

∑

t′∈Ts

∑

(u,t)∈T 2
s :t′<t<θ−s,ks,t′+1

ast′(1− ϕ̃st′t)xsut (3.7a)

s.t.
∑

(u,t)∈T 2
s

xsut = κ s ∈ S (3.7b)

∑

(u,t′)∈T 2
s :t′≤t

xsut′ ≤
∑

(u,t′)∈T 2
s+1:t′≤t+µs

xs+1ut′ s ∈ S, t ∈ Ts : s < |S| (3.7c)

∑

(u,t)∈T 2
s :θ−s,k−1<t<θ

−
s,k+1

xsut ≤ 1 s ∈ S, k ∈ K (3.7d)

xsut ∈ {0, 1} s ∈ S, (u, t) ∈ T 2
s (3.7e)

The objective function (3.7a) maximizes the total users’ convenience. Constraints (3.7b) impose that

on each station all vehicles are scheduled. Constraints (3.7c) impose that the number of vehicles

departing from station s before time t ∈ Ts, has to be lower or equal to the number of vehicles

departing from station s+ 1 at time t+µs. Constraints (3.7d) impose that there is no more than one

vehicle departing from station s inside time interval (θ−s,k−1, θ
−
s,k+1).

Note that each solution of formulation F sut is related with a solution of F st by means of the

relationships xst =
∑

u∈Ts:u<t xsut and

xsut =





1, if s = 1, xst = 1, u = t− 1;

1, if s > 1, xst = 1, xs−1,u−µs−1 = 1;

0, otherwise;

(3.8)

Property 3.5- F sut can be solved by by using linear programming.

Proof.

We base our proof in two steps: (1) We prove that F sut is equivalent to another problem ~F sut and (2)

denoting by ~Asut to the matrix of coefficients coming from problem ~F sut, we prove that ~Asut is totally

unimodular (TU).

1. Let ~xsut be a binary variable equal to 1 if a vehicle arrives at time u to station s and departs at
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time t. Note that t ∈ [u + λ∗, u + λ∗]. We give the proof for the general case when at each s,

µs = 0, λ∗ = 0 and λ∗ = |Ts| − t. Let ~F sut be the following formulation:

~F sut : max
∑

s∈S

∑

t′∈Ts

∑

t∈Ts:t′<t<θ−s,ks,t′+1

ast′(1− ϕ̃st′t)xst (3.9a)

s.t.
∑

t∈Ts
x1t = κ̄ (3.9b)

xs−1,u −
∑

t∈Ts:t>u
~xsut = 0 s ∈ S : 1 < s < |S|, u ∈ Ts (3.9c)

− xs,t +
∑

u∈Ts:u<t
~xsut = 0 s ∈ S : s < |S|, t ∈ Ts (3.9d)

∑

t∈Ts:θ−s,k−1<t<θ
−
s,k+1

xst ≤ 1 s ∈ S, k ∈ K (3.9e)

xst ∈ {0, 1} s ∈ S, t ∈ Ts (3.9f)

Constraints (3.9c)–(3.9d) are equivalent to (3.5c) so the solution space in terms of variables xst

is the same for F sut, F st and F sut. Problem (3.9a)–(3.9f) can be seen a constrained maximum

cost flow problem in a directed network where κ̄ units of flow (vehicles) are sent from station 1

to station |S|. Arcs can be considered as trips between adjacent stations at a time instant and

the cost of each edge is the captured demand when a vehicle departs at a certain time.

2. Let ~Asut be the matrix of coefficients coming from problem ~F sut, we prove that ~Asut is totally

unimodular. Note first that ( ~Asut)s∈{1,2},u,t∈Ts:u≤t has the following form:



11×|T1| ...

−11×(|Ts|−1) ...

−11×(|Ts|−2) ...

I|T1| −11×(|Ts|−3) ... 0

.
. .

... −1

01×(|Ts|−2) 02×(|Ts|−3) 0(|Ts|−1)×1

I|Ts|−1 I|Ts|−2 I|Ts|−3 ... −I|Ts|

1

R1 ...

... R2



where empty boxes represent zeros, 1m×n stands for a matrix m × n of ones (analogously for 0 and

-1), In is the identity matrix in dimension n and Rs is a stair-matrix of consecutive ones in the rows

and columns with no more than two ones per column.
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To prove that ~Asut is TU we give the argument for ( ~Asut)s∈{1,2},u,t∈Ts:u≤t and remains the same for
~Asut. Its known that a matrix A is TU ⇔ for every J ⊆ N = (1, ..., n) there exists a partition J1, J2

of J such that

|
∑

j∈J1

aij −
∑

j∈J2

aij | ≤ 1∀i = 1, ...,m. (3.10)

We choose an arbitrary (sorted) subset of columns of ~Asut, J = (j1, ..., jl) and for each j ∈ J we

construct J1 and J2 as follows. We start with J ′1 = j1 and J ′2 = ∅. Iteratively, we try if (3.10) is

fulfilled with J1 = J ′1 ∪ ji and J2 = J ′2. If so, we redefine J ′1 := J ′1 ∪ ji and otherwise, we redefine

J ′2 := J ′2 ∪ ji. Doing so for each j ∈ J we conclude defining J1 = J ′1 and J2 = J ′2.

�

3.4.4 Extensions

The presented models assume that all vehicles are identical. This assumption is reasonable but could

be too restrictive in practical situations. Therefore, further side constraints can be added to F stk

and F sutk for example in terms of capacities and travel times. It is out of the scope of this chapter

to discuss all these possible considerations but it might be of interest to include the extensions of

formulations F st and F sut to the case when we make distinction among the different vehicles.

Let xstk be a binary variable equal to 1 if vehicle k ∈ K̄ (we recall K̄ is the set of vehicles that are

about to be rescheduled) departs from station s at time t (0 otherwise) and analogously xstuk be a

binary variable equal to 1 if vehicle k departs arrives to station s at time u and departs from s at time

t. We denote these formulations F stk and F sutk and the can be derived straight forward from F st and

F sut as follows:

F stk : max
∑

k∈K̄

∑

s∈S

∑

t′∈Ts

∑

t∈Ts:t′<t<θ−s,ks,t′+1

ast′(1− ϕ̃st′t)xstk (3.11a)

s.t.
∑

t∈Ts
xstk = 1 s ∈ S, k ∈ K̄ (3.11b)

∑

t′≤t
xst′k ≤

∑

t′≤t+µs
xs+1t′k s ∈ S, t ∈ Ts, k ∈ K (3.11c)

∑

k′∈K

∑

t∈Ts:θ−s,k−1<t<θ
−
s,k+1

xstk′ ≤ 1 s ∈ S, k ∈ K̄ (3.11d)

xstk ∈ {0, 1} s ∈ S, t ∈ Ts, k ∈ K̄ (3.11e)
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F sutk : max
∑

k∈K̄

∑

s∈S

∑

t′∈Ts

∑

(u,t)∈T 2
s :t′<t<θ−s,ks,t′+1

ast′(1− ϕ̃st′t)xsutk (3.12a)

s.t.
∑

(u,t)∈T 2
s

xsutk = 1 s ∈ S, k ∈ K̄ (3.12b)

∑

(u,t′)∈T 2
s :t′≤t

xsut′k ≤
∑

(u,t′)∈T 2
s :t′≤t+µs

xs+1ut′k s ∈ S, t ∈ Ts, k ∈ K̄ (3.12c)

∑

k′∈K̄

∑

(u,t)∈T 2
s :θ−s,k−1<t<θ

−
s,k+1

xsutk ≤ 1 s ∈ S, k ∈ K (3.12d)

xsutk ∈ {0, 1} s ∈ S, (u, t) ∈ T 2
s , k ∈ K̄(3.12e)

The reader may note that the interpretation of constraints (3.11a)–(3.11e) and (3.12a)–(3.12e) is the

same as the associated ones in formulations F st and F sut.

If no additional parameter/constraint dependant on index k is added to the model, F stk contains a

large set of symmetric optimal solutions (κ!) since vehicles in an optimal solution can be relabelled

without changing the objective value. In this way a solution of F st is related with κ! solutions of F stk.

Therefore, F st and F stk contain the same set of non-symmetric solutions.

Formulation (3.12a)–(3.12e) is equivalent to the presented in Mesa et al. (2013) but the alternative

formulation of the flow conservation constraints (3.12c) provide a better performance and a significant

improvement in running times as we show in the next section.

3.5 Computational experiments

3.5.1 Testbed of random instances

In this section, the computational performance of the different formulations is assessed. We have

generated similar instances to those in Mesa et al. (2013) in order to establish later a comparison

with those previous results. Along a one-way transit line with a number of stations |S| = 10 we

have generated a random instances for |I| = 1000 transportation requests (origin-destination trips) in

the time intervals |T | = {60, 120, 180, 240} with desired arrival times following a uniform distribution.

This time-dependant origin-destination matrix has been introduced as an input to compute an optimal

timetable as described in Mesa et al. (2014b). This timetable gave us the number of passengers that

board at each departure time.

Each of our tables reports the following items. Each row corresponds to a group of 5 instances

with the same characteristics (|T |, κ, κ̄) indicated in the first 3 columns (we recall |T | the number

of time slots in the time horizon, κ the fleet size before the rescheduling and κ̄ the fleet size to be

rescheduled). Column t/gap(#) reports firstly the average running time in seconds of the 5 instances
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of the row. If any of the 5 instances was solved to optimality, this column reports the average relative

gap (indicated with a percentage %) computed with the best solution found by the solver and the

LP bound. In addition, if at least one instance reaches the CPU time limit, we indicate in brackets

the number of instances that could be solved to optimality within the time limit and, in such a case,

we compute the average running time by using the time limit for those instances that could not be

solved to optimality. Column t∗/gap∗ reports the biggest CPU time over the 5 instances of the group.

Whenever the time limit is reached for any instance, the maximum relative gap (indicated with a

percentage %) is reported instead. Column gapLR reports the relative gap computed with the best

solution found by the solver and the optimal value of the linear relaxation at the root node. Column

nodes indicates the average number of nodes explored in the branch and bound tree. Finally, column

obj reports the average objective value of the 5 instances of the row. All tables report analogous items

for the different formulations described along the chapter. In order to facilitate the comparison among

all tables, we have marked in bold red the best result among all in the same group. In case of ties the

best results have been marked in bold blue.

|T | κ κ̄ t/gap(#) t∗/gap∗ gapLR nod obj t/gap(#) t∗/gap∗ gapLR nod obj
60 4 1 0.2 0.7 10.77 1 415.6 0.1 0.1 0 1 415.6
60 4 2 0 0.1 1.21 1 761.2 0.1 0.1 0 1 761.2
60 4 3 0.2 0.5 1.56 1 898 0.1 0.1 0 1 898
60 4 4 0 0 0 1 1000 0.1 0.1 0 1 1000
120 9 1 1.3 3 11.34 1 199.6 0.3 0.4 0 1 199.6
120 9 2 7.1 9.2 10.69 1081 378.8 0.3 0.3 0 1 378.8
120 9 3 10.9 18.9 8.6 1167 541.2 0.3 0.3 0 1 541.2
120 9 4 5.8 12.3 3.99 101 690.8 0.3 0.3 0 1 690.8
120 9 5 2.2 8.2 1.76 7 794.2 0.3 0.3 0 1 794.2
120 9 6 0.9 3 1.43 3 856.6 0.3 0.3 0 1 856.6
120 9 7 0.4 0.5 0.99 1 908.4 0.3 0.3 0 1 908.4
120 9 8 0.4 1 0.47 1 956.4 0.3 0.3 0 1 956.4
120 9 9 0.1 0.1 0 1 1000 0.3 0.3 0 1 1000
180 14 1 6 12.2 15.02 6 128.8 0.5 0.5 0 1 128.8
180 14 2 19.2 37.6 13.39 4076 251.8 0.4 0.5 0 1 251.8
180 14 3 151.5 489.7 11.7 33718 365.6 0.4 0.5 0 1 365.6
180 14 4 633 1384.2 10.4 220693 471.2 0.5 0.5 0 1 471.2
180 14 5 548.4 1692.9 8.95 74771 569.8 0.5 0.5 0 1 569.8
180 14 6 84.1 245.5 6 9289 663.6 0.5 0.5 0 1 663.6
180 14 7 15.2 33.5 3.21 288 742.6 0.5 0.5 0 1 742.6
180 14 8 4.1 8.4 1.94 6 798.6 0.5 0.5 0 1 798.6
180 14 9 2.2 6.6 1.42 2 842.6 0.5 0.5 0 1 842.6
180 14 10 1.4 2.4 1.26 1 879.4 0.5 0.5 0 1 879.4
180 14 11 1.5 2.9 1.15 1 911.8 0.5 0.5 0 1 911.8
180 14 12 1.3 2.7 0.78 1 943.4 0.5 0.5 0 1 943.4
180 14 13 0.6 0.9 0.41 1 972.6 0.5 0.5 0 1 972.6
180 14 14 0.2 0.2 0 1 1000 0.4 0.4 0 1 1000
240 18 1 10.3 13.6 16.31 18 100 0.7 0.8 0 1 100
240 18 2 63.4 143.6 16.06 10678 196 0.6 0.6 0 1 196
240 18 3 579.2 (4) 4.95% 15.52 159843 286.2 0.6 0.6 0 1 286.2
240 18 4 1434.3 (2) 7.4% 14.41 180966 371.4 0.6 0.6 0 1 372.8
240 18 5 1563.2 (1) 5.75% 12.23 102120 457.2 0.6 0.6 0 1 457.6
240 18 6 2.86% (0) 4.48% 10.76 81552 535.4 0.6 0.7 0 1 536
240 18 7 1166.1 (3) 2.4% 8 62051 612.4 0.6 0.7 0 1 612.4
240 18 8 278.2 912 5.15 22099 683 0.6 0.6 0 1 683
240 18 9 28 62.7 3.1 1499 740.6 0.6 0.7 0 1 740.6
240 18 10 14 32.9 2.21 201 783.4 0.6 0.7 0 1 783.4
240 18 11 6.1 11.9 1.76 13 819.6 0.6 0.7 0 1 819.6
240 18 12 4.9 9.7 1.41 5 852 0.6 0.7 0 1 852
240 18 13 5 9 1.29 10 880.2 0.6 0.7 0 1 880.2
240 18 14 3.4 7 1.1 2 906.8 0.7 0.7 0 1 906.8
240 18 15 2.5 4.6 0.85 1 932.2 0.6 0.7 0 1 932.2
240 18 16 1.8 3.4 0.45 1 957.2 0.6 0.6 0 1 957.2
240 18 17 0.9 2.2 0.2 1 979.8 0.6 0.6 0 1 979.8
240 18 18 0.3 0.3 0 1 1000 0.6 0.6 0 1 1000

Fst Fsut

Table 3.4: Computational results comparing the rescheduling formulations F st and F sut

Table ?? reports the comparison between formulations F st and F sut. Even when F st provides optimal

solutions in small running times until |T | = 120, longer times are required for some instances of

|T | = 180 and not all instances can be solved to optimality for some instances of |T | = 240. Column
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F st.gapLR shows that only instances where |K0| = κ can be solved with linear programming. However,

according to F st.nodes many of the instances where solved in the root node just adding preprocessing

cuts. In general among all tables, column obj shows how grows the objective function (passengers total

convenience after the rescheduling) with the number of vehicles that are rescheduled. Table ??.F sut

shows how clearly formulation is F st outperformed by F sut. We proved that F sut can be solved with

linear programming by using an equivalent formulation. However, F sut already seems to have the

integrality property since all the instances where solved in the rood node without any preprocessing

cuts.

|T | κ κ̄ t/gap(#) t∗/gap∗ gapLR nod obj t/gap(#) t∗/gap∗ gapLR nod obj t/gap(#) t∗/gap∗ gapLR nod obj
60 4 1 3 8.6 14.55 4 415.6 0.2 0.7 10.77 1 415.6 0.1 0.1 0 1 415.6
60 4 2 6.5 26.6 3.84 12 761.2 0.3 1.2 1.21 1 761.2 0.4 0.4 0 1 761.2
60 4 3 32 77.1 3.53 522 898 3.9 7.6 1.56 11 898 0.5 0.6 0 1 898
60 4 4 1.1 1.2 0 1 1000 0.3 0.3 0 1 1000 0.6 0.6 0 1 1000
120 9 1 4.2 8.9 15.54 1 199.6 1.3 3.1 11.34 1 199.6 0.6 0.6 0 1 199.6
120 9 2 610 1103.6 14.7 21456 378.8 22.5 28.4 10.69 175 378.8 0.9 0.9 0 1 378.8
120 9 3 4% (0) 6.09% 12.36 43180 541.2 81.7 123.2 8.6 4138 541.2 1.3 1.3 0 1 541.2
120 9 4 1765.9 (1) 5.78% 7.46 16730 689.6 130.8 225.4 3.99 4752 690.8 1.8 1.9 0 1 690.8
120 9 5 2.18% (0) 5.66% 5 8236 793 420.3 (4) 0.75% 1.76 11179 794.2 2.3 3 0 1 794.2
120 9 6 2.39% (0) 3.95% 4.75 10199 854.8 475.3 (4) 0.67% 1.43 6276 856.6 2.9 3.6 0 1 856.6
120 9 7 2.3% (0) 2.87% 3.77 8179 908.2 504 1072.6 0.99 5345 908.4 3.6 4.1 0 1 908.4
120 9 8 1462.1 (1) 1.47% 2.25 6348 956.4 66.1 116.6 0.47 125 956.4 4.2 5.2 0 1 956.4
120 9 9 10.1 12.6 0 1 1000 1.4 1.5 0 1 1000 3.4 3.5 0 1 1000
180 14 1 24.9 38 19.93 162 128.8 5.9 12 15.02 6 128.8 1.2 1.2 0 1 128.8
180 14 2 1622.7 (1) 8.21% 18.01 34985 251.8 50.5 58.6 13.39 1778 251.8 1.3 1.4 0 1 251.8
180 14 3 8.91% (0) 11.4% 16.48 26553 364.6 627.7 (4) 2.05% 11.7 33292 365.6 2.1 2.4 0 1 365.6
180 14 4 9.46% (0) 11.83% 14.95 9648 470.2 1753.1 (1) 5.61% 10.4 57412 471.2 3.3 3.8 0 1 471.2
180 14 5 8.91% (0) 11.4% 13.67 6144 566.4 5.11% (0) 6.65% 8.95 51530 569.8 4.6 5.1 0 1 569.8
180 14 6 7.91% (0) 10.61% 11.11 4090 655.2 3.78% (0) 5.61% 6.03 18722 663.4 5.8 6.3 0 1 663.6
180 14 7 7.39% (0) 8.6% 9.81 3260 721.6 1.96% (0) 3.43% 3.27 6701 742.2 7.5 10.9 0 1 742.6
180 14 8 9.3% (0) 16.83% 12.02 1476 754.2 1424.4 (2) 2.15% 1.94 3405 798.6 8.3 10.1 0 1 798.6
180 14 9 6.14% (0) 9.33% 7.57 950 822.2 1745.7 (1) 1.27% 1.44 3294 842.4 10.1 12 0 1 842.6
180 14 10 5.48% (0) 6.79% 6.76 682 861.2 1461.4 (1) 1.42% 1.38 1822 878.4 12.3 15 0 1 879.4
180 14 11 3.96% (0) 4.72% 5.03 1051 902.6 1460.1 (1) 1.29% 1.17 1696 911.6 17.7 21.3 0 1 911.8
180 14 12 3.26% (0) 5.03% 4.09 1188 933.4 1441.7 (1) 0.99% 0.81 2100 943.2 19 24 0 1 943.4
180 14 13 1.27% (0) 1.68% 1.92 1225 971.4 1161.5 (2) 0.32% 0.41 5263 972.6 19 21.4 0 1 972.6
180 14 14 54.8 66.9 0 1 1000 3.6 3.7 0 1 1000 10.3 10.5 0 1 1000
240 18 1 43.1 60.1 21.51 267 100 10.1 13.6 16.31 18 100 1.3 1.9 0 1 100
240 18 2 8.38% (0) 14.17% 21.04 34656 195.8 98 235.6 16.06 1951 196 1.9 2.4 0 1 196
240 18 3 12.76% (0) 19.23% 21.51 12929 283.2 856.6 (4) 7.38% 15.52 76627 286.2 4 4.5 0 1 286.2
240 18 4 13.22% (0) 15.43% 20.3 5288 367.8 7.77% (0) 11.38% 13.97 63896 372.8 5.1 6.9 0 1 372.8
240 18 5 14.63% (0) 18.12% 21.16 2672 440.2 8.07% (0) 10.45% 12.23 35816 457.2 8.8 10.7 0 1 457.6
240 18 6 14.28% (0) 17.88% 19.27 1675 515.6 8.59% (0) 10.63% 10.76 14374 535.4 14.5 16.4 0 1 536
240 18 7 13.68% (0) 22.94% 18.57 561 578.8 7.52% (0) 9.26% 8.78 5732 608 19.6 20.8 0 1 612.4
240 18 8 12.81% (0) 19.35% 17.01 350 636.6 5.91% (0) 8.86% 6.65 2304 673.6 29.1 31.9 0 1 683
240 18 9 14.23% (0) 23.47% 18.61 236 668.8 5.06% (0) 7.1% 5.65 1945 722.8 32.8 34.9 0 1 740.6
240 18 10 10.31% (0) 17.09% 12.9 164 736 4.16% (0) 5.5% 4.51 1738 766.2 38.2 45 0 1 783.4
240 18 11 8.09% (0) 11.22% 9.92 139 786.4 2.87% (0) 3.82% 3.1 830 809 45.2 49.6 0 1 819.6
240 18 12 10% (0) 13.22% 12.18 81 797.8 2.7% (0) 4.66% 2.88 633 840 47.8 58.6 0 1 852
240 18 13 9.09% (0) 12.32% 11.01 87 830.4 1.26% (0) 1.91% 1.35 689 879.6 55.1 61.3 0 1 880.2
240 18 14 7.08% (0) 11.91% 8.64 70 869.8 1.31% (0) 1.75% 1.41 643 904 61.9 67.2 0 1 906.8
240 18 15 5.14% (0) 8.19% 6.36 67 907 1509.7 (1) 1.24% 0.98 468 931 66.5 72.1 0 1 932.2
240 18 16 4.16% (0) 6.06% 5 162 934 1449.9 (1) 0.8% 0.57 1864 956 66.5 75.8 0 1 957.2
240 18 17 7.64% (0) 32.39% 11.06 115 912.8 367.2 665.2 0.2 10 979.8 65.9 72.1 0 1 979.8
240 18 18 164.2 202.2 0 1 1000 7.8 8.8 0 1 1000 20.5 21.2 0 1 1000

Fsutk as in Mesa et al. (2013) Fstk Fsutk

Table 3.5: Computational results comparing the 4-index rescheduling formulation F sutk as presented
in (Mesa et al., 2013) with the current models F st and F sut

From the results in Table ?? we observe first that F sutk provides worse running times and gaps that

the previous analyzed F st and F sut formulations. As mentioned in Section 3.4.4 working with those

formulations do not provide any advantage unless extra side constraints related to the features of

different vehicles are included. Otherwise, we just enlarge the size of the formulation as well as the

set of feasible symmetric solutions. On the contrary, although F sutk is still solved as a linear program,

the running times of the larger instances (|T | = 240) show an increase on de difficulty for solving

these problems. Finally, our implementation of F sutk as described in (Mesa et al., 2013) is clearly

outperformed by any of the other formulations in terms of both running time and gaps.



Chapter 3. On-line vehicle rescheduling in a transit line 83

Summing up, formulation F sut can be used to solve large instances in running times lower than 1

second which fulfills the requirements for an efficient on-line rescheduling. In addition, we are also

able to cope with a bigger formulation F sutk in reasonable times (1 minute in the worst case). This is

an improvement with respect to the results of Mesa et al. (2013). Regarding to formulations F st and

F stk, even when the provided results are not competitive with F sut and/or F sutk, they do not require

to use index u and this might be determinant if other side constraints are added to the formulation.

In this latter case, we refer to the heuristic approaches developed in Mesa et al. (2013).

3.5.2 Application to real data

We have tested the presented methodology in a real instance of the commuter train systems of Madrid.

Figure 3.3 shows a section of Line C4 (Parla [s=1] – Getafe Sector 3 [s=2] – Getafe Centro [s=3] – Las

Margaritas Universidad [s=4] – Villaverde Alto [s=5] – Villaverde Bajo [s=6] – Atocha [s=7]) that we

will consider in our study. Table 3.6 shows departure times at stations of all trains that complete the

itinerary Parla-Atocha in the time period [6:00,9:00], as well as the number of passengers boarding

trains in each station.

Stations

s = 1 s = 2 s = 3 s = 4 s = 5 s = 6 s = 7

k t′ a
st′ t′ a

st′ t′ a
st′ t′ a

st′ t′ a
st′ t′ a

st′ t′ a
st′

1 6:04 335 6:10 1 6:13 44 6:15 7 6:18 44 6:21 46 6:31 147
2 6:12 177 6:18 5 6:21 113 6:24 48 6:26 124 6:29 81 6:38 302
3 6:16 307 6:22 1 6:25 35 6:28 29 6:30 64 6:34 58 6:42 123
4 6:22 55 6:28 8 6:31 138 6:33 54 6:36 163 6:39 86 6:48 234
5 6:28 429 6:34 10 6:36 145 6:39 62 6:42 173 6:44 119 6:54 349
6 6:34 511 6:40 4 6:42 102 6:44 26 6:46 153 6:50 115 7:00 571
7 6:40 484 6:46 12 6:48 151 6:50 54 6:52 119 6:57 107 7:07 129
8 6:46 491 6:52 10 6:54 166 6:56 70 7:00 157 7:04 160 7:12 184
9 6:54 414 7:00 24 7:03 254 7:05 119 7:08 158 7:12 185 7:20 490
10 7:01 476 7:07 17 7:10 195 7:12 88 7:15 106 7:18 145 7:26 514
11 7:09 421 7:15 33 7:18 260 7:20 111 7:24 146 7:27 209 7:35 491
12 7:16 550 7:22 38 7:25 218 7:27 158 7:30 123 7:34 298 7:43 574
13 7:22 414 7:28 36 7:31 247 7:34 119 7:38 136 7:41 243 7:48 451
14 7:28 421 7:34 26 7:37 127 7:41 104 7:44 97 7:47 154 7:54 276
15 7:34 386 7:40 31 7:42 145 7:45 113 7:48 103 7:53 144 8:00 424
16 7:40 384 7:46 47 7:48 171 7:50 108 7:54 99 7:58 180 8:06 284
17 7:46 323 7:52 31 7:54 202 7:57 134 8:00 128 8:04 231 8:12 647
18 7:52 408 7:58 19 8:01 190 8:02 77 8:05 84 8:09 192 8:18 446
19 7:58 441 8:03 49 8:06 210 8:09 91 8:13 119 8:15 223 8:24 335
20 8:04 165 8:10 47 8:13 229 8:15 110 8:19 126 8:23 259 8:30 338
21 8:11 347 8:15 44 8:18 225 8:21 134 8:25 98 8:28 165 8:36 302
22 8:16 336 8:22 38 8:25 294 8:28 112 8:30 79 8:33 158 8:42 271
23 8:22 317 8:28 33 8:31 230 8:34 119 8:36 119 8:40 156 8:48 410
24 8:28 335 8:34 36 8:37 119 8:39 91 8:41 61 8:45 144 8:54 364
25 8:34 265 8:40 13 8:43 117 8:45 66 8:47 43 8:52 153 9:00 381

Table 4: Timetables and boarding in Line C4

Figure 3 shows in blue lines the 25 initial timetables provided by the company, and by bold red lines, the
optimal rescheduling for only 9 trains according to the developed model. If the myopic selection of the 9 most
efficient timetables were decided, the number of served passengers would be 15629 (by using a value λ = 0.7 for
the preference parameter of the logit function). An improvement of 20.9% can be reached if the rescheduling is
performed by applying the model (18901 passengers) to determine 9 optimal line runs.
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Figure 3: Timetables (in blue) and 9 rescheduled timetables (bold red)
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Figure 3.3: Line C4 (Parla-Atocha) Table 3.6: Timetables and boarding in Line C4

Figure ?? shows in blue lines the 25 initial timetables provided by the company, and by bold red lines,

the optimal rescheduling for only 9 trains according to the developed model. If the myopic selection

of the 9 most efficient timetables were decided, the number of served passengers would be 15629 (see

Mesa et al., 2013 for further details on data generation). An improvement of 20.9% can be reached if

the rescheduling is performed by applying the model (18901 passengers) to determine 9 optimal line

runs.
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Figure 3.4: Timetables (in blue) and 9 rescheduled timetables (bold red)

3.6 Conclusions

In this chapter we have presented a modeling approach for solving the rescheduling problem in a

transit line that has suffered a fleet size reduction. We have described a demand pattern to reflect

the passengers’ behaviour when some vehicle services are delayed or cancelled. This inconvenience

function has been used to derive a rescheduling framework coming from a timetabling formulation.

We have shown that the problem can be solved rapidly by using a constrained max-cost-flow problem

whose coefficient matrix we prove is totally unimodular. We have tested the different formulations

over a testbed of random instances and the results show that (1) on-line rescheduling can be efficiently

done by using the proposed models, (2) previous approaches in the literature are outperformed and

(3) our approach can be applied to real scenarios as it is the case of the commuter train system of

Madrid.
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Chapter 4

The multi-criteria p-facility median

location problem on networks

ABSTRACT

In this chapter we discuss the multi-criteria p-facility median location problem on networks with

positive and negative weights. We assume that the demand is located at the nodes and can be different

for each criterion under consideration. The goal is to obtain the set of Pareto-optimal locations in the

graph and the corresponding set of non-dominated objective values. To that end, we first characterize

the linearity domains of the distance functions on the graph and compute the image of each linearity

domain in the objective space. The lower envelope of a transformation of all these images then gives

us the set of all non-dominated points in the objective space and its preimage corresponds to the

set of all Pareto-optimal solutions on the graph. For the bicriteria 2-facility case we present a low

order polynomial time algorithm. Also for the general case we propose an efficient algorithm, which

is polynomial if the number of facilities and criteria is fixed.

Keywords: Network Location, multicriteria optimization, p-facility location.

4.1 Introduction

Many real-world applications are concerned with finding an optimal location for one or more new

facilities on a network (road network, power grid, etc.) minimizing a function of the distances between

these facilities and a given set of existing facilities (clients, demand points), where the latter typically

coincide with vertices. For a recent book on location theory the reader is referred to Nickel and Puerto

(2005) and references therein. Since the first seminal paper by Hakimi (1964), an ever growing number

of results have been published in this field.

The majority of research focuses on the minimization of a single objective function that is increasing

with distance. However, in the process of locating a new facility usually more than one decision

maker is involved. This is due to the fact that often the cost incurred with the decision is relatively
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high. Furthermore, different decision makers may ( or will ) have different ( conflicting ) objectives. In

other situations, different scenarios must be compared due to uncertainty of data or still undecided

parameters of the model. One way to deal with these situations is to apply scenario analysis. Another

way of reflecting uncertainty in the parameters is to consider different replications of the objective

function. Hence, there exists a large number of real-world problems which can only be modelled

suitably through a multicriteria approach, especially when locating public facilities.

An additional difficulty is that we are usually dealing with conflicting criteria and a single optimal

solution does not always exist (which would be an optimal solution for each of the criteria). Therefore,

an alternative solution concept has to be used. One possibility is to determine the set of non-dominated

solutions. That is, solutions such that there exists no other solution which is at least as good for all

decision makers and strictly better for at least one of them. These solutions are often called Pareto-

optimal. For an overview on multicriteria location problems the reader is referred to Nickel et al.

(2005).

In contrast to the practical needs described above, network location research involving multiple criteria

has received little attention, especially when it comes to multiple facilities. In this chapter, we consider

the p-facility median location problem with several objective functions. Hereby, each objective function

is representing the goal of one decision maker and the aim is to locate p facilities in order to minimize

the total weighted distance from the clients to their closest facility. The weights assigned to clients

vary from one decision maker to another, yielding different objective functions. It might even happen

that one of the facilities is desirable for some decision makers and, at the same time, undesirable for

others. Undesirable facilities are usually modelled using negative weights. See Eiselt and Laporte

(1995) for more details on these problems. Before we discuss the literature, we present a practical

example for this model. Suppose we want to locate two garbage dumps and we have a set of residential

and recreational areas and a set of industrial sites where garbage has to be collected. There are two

decision makers involved: the “Business economist” who has to keep the costs in check and the

“Politician” who is concerned about the nuisance of the garbage dumps and the garbage trucks on

the population. The business economist wants the dumps to be close to all sites to minimize travel

times and costs. To that end he associates positive weights with the residential and industrial areas

that are proportional to the average number of required garbage collections. In contrast to that, the

politician wants to minimize the nuisance of the garbage dumps and of the trucks frequenting the

garbage dumps for the population. Therefore, he assigns to each site a second, negative value. The

smaller the weight is, the more likely it is that the residential area is far away from the dumps and

the less likely it is that trucks that are not bound for these areas are simply passing through them

on their way to the dumps. Formulating this problem in mathematical terms results in a bi-criteria

2-facility location model.

There are many other applications of multicriteria multi-facility location problems. Bitran and

Lawrence (1980) consider the multicriteria location of regional service offices in the expanding

operating territories of a large property and liability insurer. These offices serve as first line

administrative centers for sales support and claims processing. Another application of multiobjective

optimization in the context of location theory can be found in Johnson (2001) that discusses a spatial
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decision making problem for housing mobility planning. Ehrgott and Rau (1999) present an analysis of

a part of the distribution system of BASF SE, which involves the construction of warehouses at various

locations. The authors evaluate 14 different scenarios and each of these scenarios is evaluated with

the minimal cost solution obtained through linear programming and the resulting average delivery

time at this particular solution. For more applications see Schöbel (2005), Carrano et al. (2007), and

Kolokolov and Zaozerskaya (2013).

Concerning the methodological aspects of multicriteria network location problems, Hamacher et al.

(1999) discuss the network 1-facility problem with median objective functions. They show that for

Pareto-optimal locations on undirected networks no node dominance result can be proven. Hamacher

et al. (2002) provide a polynomial time algorithm for the 1-facility problem when the objectives

are both weighted median and anti-median functions. The method is generalized for any piecewise

linear objective function. Zhang and Melachrinoudis (2001) develop a polynomial algorithm for the

2-criteria 1-facility network location problem maximizing the minimum weighted distance from the

service facility to the nodes (maximin) and maximizing the sum of weighted distances between the

service facility and the nodes (maxisum). Skriver et al. (2004) introduce two sum objectives and criteria

dependent edge lengths for the 1-facility 2-criteria problem. Nickel and Puerto (2005) solve the 1-

facility problem when all objective functions are ordered medians. Colebrook and Sicilia (2007a,b)

provide polynomial algorithms for solving the cent-dian 1-facility location problem on networks with

criteria dependent edge lengths and facilities being attractive or obnoxious.

Concerning the single criterion multi-facility location problem on networks, Kalcsics (2011) derives a

finite domination set for the p-median problem with positive and negative weights. For the 2-facility

case, the author presents an efficient solution procedure using planar arrangements. Based on this

approach, Kalcsics et al. (2015) solve the 2-facility case for different equity measures.

Many of the previous papers study the problem on trees as a particular case of generalized networks.

The first work dealing with several objectives and facilities is provided by Tansel et al. (1982) who

develop an algorithm for finding the efficient frontier of the biobjective multifacility minimax location

problem on a tree network. This problem involves as objective functions the maximum of the weighted

distances between specified pairs of new and existing facilities.

Despite its intrinsic interest as discussed above, to the best of our knowledge there are no papers

discussing the multicriteria p-facility median location problem on networks and no results are known

until the moment to obtain the set of Pareto-optimal solutions.

The remainder of this chapter is organized as follows. Section 4.2 introduces the notation and concepts

used throughout the chapter. Section 4.3 presents some properties of the k-criteria p-facility median

problem on networks. Section 4.4 is devoted to the development of a polynomial algorithm for the

2-criteria 2-facility version of the problem. A solution procedure for the general case is proposed in

Section 4.5. Finally, Section 4.6 contains some conclusions and posible extensions of the analyzed

problems.
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4.2 Problem description and general concepts

4.2.1 Problem definition

Let G = (V,E) be an undirected connected graph with node set V = {v1, . . . , vn} and edge set

E = {e1, . . . , em}. Each edge e ∈ E has a positive length `(e), and is assumed to be rectifiable. Let

A(G) denote the continuum set of points on edges of G. We denote a point x ∈ e = [u, v] as a pair

x = (e, t), where t (0 ≤ t ≤ 1) gives the relative distance of x from node u along edge e. For the

sake of readability, we identify A(G) with G and A(e) with e for e ∈ E. Let k ≥ 1 be the number

of criteria of the problem and define Q = {1, . . . , k}. Each vertex vi ∈ V has a real-valued weight

wqi ∈ R, q ∈ Q. Let J = {1, . . . , p}, where p is the number of facilities to be located. We denote by

X = (x1, . . . , xp) the vector of locations of the facilities, where xj ∈ G, j ∈ J . (Note that in order

to allow co-location, which is quite common in location problems with negative weights, we have to

represent the facility locations using a vector.) In the remainder, we use the notions location vector

and solution synonymously.

We denote by d(x, y) the length of the shortest path connecting two points x, y ∈ G. Let vi ∈ V

and x = ([vr, vs], t) ∈ G. The distance from vi to x entering the edge [vr, vs] through vr (vs)

is given as D+
i (x) = d(vr, x) + d(vr, vi) (D−i (x) = d(vs, x) + d(vs, vi)). Hence, the length of a

shortest path from vi to x is given by Di(x) = min{D+
i (x), D−i (x)}. As d(vr, x) = t · `(e) and

d(vs, x) = (1 − t) · `(e), the functions D+
i (x) and D−i (x) are linear in x and Di(x) is piecewise linear

and concave in x, cf. Drezner (1995). The distance from vi to its closest facility is finally defined as

Di(X) = minj∈J Di(xj) = minj∈J{D+
i (xj), D

−
i (xj)}. In the following, we call the functions D

+/−
i (x)

and Di(X) distance functions of node vi. Moreover, we say that Da
i (xj), a ∈ {+,−}, is active for X,

if Da
i (xj) = Di(X).

We consider the objective function F (X) = (F 1(X), . . . , F |Q|(X)), where each F q(X), q ∈ Q, is a

median function defined as:

F q(X) =
∑

i∈V
wqi Di(X) .

We assume the usual definition of Pareto-optimality or efficiency (Ehrgott (2005)). That is, a solution

X is called efficient or Pareto-optimal, if there exists no solution X ′ which is at least as good

as X with respect to all objective function values and strictly better for at least one value, i.e.,

6 ∃X ′ : Fq(X
′) ≤ Fq(X), ∀ q ∈ Q, and ∃q ∈ Q : Fq(X

′) < Fq(X). If X is Pareto-optimal, F (X) ∈ Rk
will be called a non-dominated point. If Fq(X) ≤ Fq(X

′) ∀ q ∈ Q and ∃q ∈ Q : Fq(X) < Fq(X
′) we

say X dominates X ′ in the decision space and F (X) dominates F (X ′) in the objective space.

The k-criteria p-facility median location problem on networks, denoted by (k, p)-MLPN, is now defined

as the problem of determining the set of all Pareto-optimal solutions on the graph:

v-min
X∈G× p...×G

F (X) , (4.1)

where v-min stands for vector minimization. We denote by X̃ the set of all Pareto-optimal solutions of
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(4.1). As mentioned in the introduction, we are interested in obtaining a description of the complete

sets of Pareto-optimal solutions (in the decision space) and the non-dominated points (in the objective

space). Hereby, the set of Pareto-optimal solutions comprises all alternative location vectors for the p

facilities that are suitable candidates to choose from, because no other point can give rise to objective

values that dominate them component-wise.

Let h = (eh1 , . . . , ehp) be a p-tuple of not necessarily distinct edges, where ehj ∈ E, j ∈ J . Then, the

(k, p)-MLPN can be equivalently formulated as:

v-min{F (X) | X ∈ eh1 × . . .× ehp , h ∈ E × . . .× E} .

Note that because of symmetry it is sufficient to consider only p-tuples h for which h1 ≤ · · · ≤ hp.

4.2.2 General concepts

Let h = (eh1 , . . . , ehp) be a p-tuple of edges and X ∈ eh1 × . . .× ehp with xj = (ehj , tj), 0 ≤ tj ≤ 1. In

the following, we derive a subdivision of eh1 × . . . × ehp into maximal subsets such that the distance

function of each node is linear over such a subset, i.e., each node is allocated to the same facility for

all location vectors in the subset and each node reaches its closest facility via the same vertex of the

edge that contains this facility. This subdivision will be a building block of our solution approach.

Let vi ∈ V . As the functions D+
i (xj) and D−i (xj) are linear for xj ∈ ehj , the distance functions Di(X)

are piecewise linear and concave for X ∈ eh1 × . . .× ehp . Moreover, a breakpoint of Di(X) occurs if

• there are either two distinct facilities xj and xj′ at the same closest distance from vi, i.e.,

Di(X) = Da
i (xj) = Da′

i (xj′) for a, a′ ∈ {+,−}, or if

• the shortest paths from vi to its closest facility xj = ([vr, vs], tj) via vr and, respectively, vs have

the same length, i.e., Di(X) = D+
i (xj) = D−i (xj).

It is noteworthy that the breakpoints of Di(X) for any vi ∈ V occur only for active functions Da
i (·).

See Example 4.1 for an illustration.

Example 4.1- Let p = k = 2 and consider the graph depicted in Figure 4.1. The node weights

wi = (w1
i , w

2
i ) and the edge lengths are shown in the figure.

Consider the pair of edges h = ([v2, v3], [v4, v5]). In Figure 4.2 we depict the resulting sets of

breakpoints of the distance functions over [v2, v3]× [v4, v5] (bold lines). The thin dashed lines indicate

sets of intersection points between pairs of distance functions Da
i (·) where at least one of the functions

is not active.

The breakpoints for all other edge pairs are depicted in Appendix 1.

To derive the desired subdivision, we identify each edge of the network with the unit interval [0, 1].

Hence, the cartesian product eh1× . . .×ehp of the edges of h corresponds to the unit hypercube [0, 1]p.
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v1

v2

v3

v4 v5

(1, 1)

(1, 2)

(2, 1)

(1, 1) (2, 2)

2

2 2

1

2

Figure 4.1: Network with node weights (in brackets) and edge lengths (Example 4.1).

v2 v3
v4

v5
D+

4 (x1)=D−4 (x1)

D+
1 (x1)=D−1 (x1)

D+
1 (x1)=D+

1 (x2)

Figure 4.2: Breakpoints of the distance functions Di(X) for the pair of edges h =
([v2, v3], [v4, v5]).

�

For the ease of notation, we identify xj with tj in the remainder. The sets of location vectors that

fulfill the breakpoint conditions D(X) = Da
i (xj) = Da′

i (xj′) and D(X) = D+
i (xj) = D−i (xj) define

hyperplanes in [0, 1]p. The set of all these hyperplanes induces a subdivision of the hypercube into

subsets such that each distance function Di(X) is linear over each subset of this subdivision. Such a

subdivision is also called an arrangement and the subsets are called cells, see de Berg et al. (2008).

As these hyperplanes resemble the breakpoints, each cell of the subdivision is maximal in the sense

that all distance functions Di(X), vi ∈ V , are linear over the cell. As the subdivision is induced by

hyperplanes, all cells are convex polygons. For more details see Kalcsics (2011). In the following, we

denote by Ch the set of all cells of the subdivision for h. Moreover, for a set D ⊆ Rn, ch(D) denotes

the convex hull of D, ext(D) the set of extreme points of D, and |D| the cardinality of D.

Example 4.1 (cont.). Figure 4.2 shows the subdivision of [0, 1]2 into cells induced by the breakpoints

for the edge pair h. In the following, we identify a solution X = (([v2, v3], t1), ([v4, v5], t2)) on

the graph with the corresponding point x = (t1, t2) on the unit square. Then, the two cells C1

and C2 of the subdivision are given by C1 = ch({(0, 0), (1, 0), (1, 1), (0.5, 1), (0, 0.5)}) and C2 =

ch({(0, 0.5), (0.5, 1), (0, 1)}).

For location vector X in the relative interior of a cell we either have Di(x1) < Di(x2) or Di(x1) >

Di(x2), i.e., each node will be served by the same facility x1 or x2. Moreover, for each node vi the
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shortest path from the node to its closest facility xj will always pass through the same endpoint of

the edge containing the facility, i.e., we either have D+
i (xj) < D−i (xj) or D+

i (xj) > D−i (xj).

4.3 General properties for the (k, p)-MLPN

To determine the set of Pareto-optimal solutions in the graph, we have to compute all non-dominated

points of the set {F (X) | X ∈ G× p. . . ×G} in the objective space. To that end, using the subdivision

introduced in the previous section for a given p-tuple h of edges, it will be necessary to compute in

a first step the images of all cells of this subdivision. Given these images for all p-tuples h, we are

then able to derive the set of non-dominated points. In a last step, we have to identify the set of

location vectors on the graph whose image corresponds to the non-dominated points. These location

vectors then comprise the set of Pareto-optimal solutions of our problem. In this section we discus

how to compute images of cells and preimages of sets of points in the objective space. Moreover, we

present some properties of the objective function of the (k, p)-MLPN. The determination of the set of

non-dominated points is described in the next sections.

Let h = (eh1 , . . . , ehp) be a p-tuple of edges, Ch the subdivision of [0, 1]p into cells, and C be a cell in

Ch. Recall that F (X) = (F 1(X), . . . , F k(X)) is a mapping from G× p. . . ×G to Rk. We first show

how to compute images of cells.

Lemma 4.1- (Image of a cell) The function F is an affine mapping over C ∈ Ch, i.e., F : C → Rq,

F (X) = At+ b, A ∈ Rk×p, b ∈ Rk, and t ∈ [0, 1]p. Moreover, the image F (C) of the cell has dimension

rank(A) with 0 ≤ rank(A) ≤ min{p, k} and can be represented in the objective space as the convex

hull of the images of the extreme points of C.

Proof.

Let X = ((eh1 , t1), . . . , (ehp , tp)) ∈ C. As each distance function Di(X) is linear over C, so will be

F q(X), q ∈ Q. Hence, we can write F q(X) = aq1t1 + · · ·+aqptp+ bq where aqj , b
q ∈ R, q ∈ Q. Therefore,

F (X) =




F 1(X)
...

F k(X)


 =




a1
1t1 + · · ·+ a1

ptp + b1

...

ak1t1 + · · ·+ akptp + bk


 =




a1
1 . . . a1

p
...

...
...

ak1 . . . akp







t1
...

tp


+




b1

...

bk


 =: At+ b

is an affine mapping. Moreover, F (C) is a polytope of dimension rank(A), with 0 ≤ rank(A) ≤
min{p, k}.

As F is an affine mapping over C, it preserves collinearity and ratios of distances. Let ext(C) = {vc |
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c = 1, . . . , |ext(C)|}. Since C is convex, F (C) is a convex set given by

F (C) = F (ch({ext(C)})) = F







|ext(C)|∑

c=1

λcυc | λc ≥ 0,

|ext(C)|∑

c=1

λc = 1








=





|ext(C)|∑

c=1

λcF (υc) | λc ≥ 0,

|ext(C)|∑

c=1

λc = 1



 = ch({F (vc) | vc ∈ ext(C)}) .

�

If a proper subset U of the image F (C) of a cell C belongs to the set of non-dominated points of

{F (X) | X ∈ G× p. . . ×G} in the objective space, we have to derive the set of points of C whose image

corresponds to U . The next result provides a characterization of the preimage of a convex set U ( C.
Its proof follows directly from the properties of affine mappings. We will see in the next sections why

it is sufficient to restrict ourselves to convex sets U .

Lemma 4.2- (Preimage of a set) Let C ∈ Ch be a cell and U be a convex subset of F (C) with extreme

points z1, . . . , zϑ, ϑ ≥ 1. The preimage F−1(U) of U is given by

F−1(U) = ch({t ∈ [0, 1]p | zc = At+ b for some c ∈ {1, . . . , ϑ}} .

In this way, F−1 is well defined.

Remark 4.1- Note that F−1(U) depends on the cell C. Therefore, we have to store for each point

t ∈ Rk in the objective space the cell(s) who “generated” this point, i.e., to whose image F (C) the

point t belongs to.

The next example illustrates the computation of images and preimages.

Example 4.1 (cont.). Consider again the graph depicted in Figure 4.1, and the edge pair

h = (eh1 = [v2, v3], eh2 = [v1, v4]). The subdivision Ch contains a single cell that coincides with

the whole unit square, i.e., Ch = {[0, 1]2}. Let X = (x1, x2) with x1 = (eh1 , t1) and x2 = (eh2 , t2).

1. Using the weights w1 = (3, 3) and w2 = (2, 1) for nodes v1 and v2 instead of the ones depicted

in Figure 4.1, we obtain

F 1(X) = 4t1 + 4(1− t1) + 3t2 + (1− t2) + 2(2 + (1− t2)) = 11

F 2(X) = 2t1 + 2(1− t1) + 3t2 + (1− t2) + 2(2 + (1− t2)) = 9 .

Hence, F (X) =

(
0 0

0 0

)(
t1

t2

)
+

(
11

9

)
. Since rank(A) = 0, the image F (C) of C = [0, 1]2 is a

single point, namely (11, 9). Furthermore, F−1(F (C)) = C ∩ R2 = C. Figure 4.3 shows C, its

image F (C) and the preimage of F (C).
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v2 v3
v1

v4

C

t1

t2
F

6 8 10 12 F 1(X)

6

8
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F 2(X)

F(C)
F−1

v2 v3
v1

v4

F−1(F(C)) = C

t1

t2

Figure 4.3: The image of a cell with rank(A) = 0.

2. Using now the alternative weights w1 = (3, 2) and w5 = (1, 2) for nodes v1 and v5, we obtain

F 1(X) = 2t1 + 4(1− t1) + 3t2 + (1− t2) + (2 + (1− t2)) = 8− 2t1 + t2

F 2(X) = 4t1 + 2(1− t1) + 2t2 + (1− t2) + 2(2 + (1− t2)) = 9 + 2t1 − t2 .

Hence, F (X) = At + b =

(
−2 1

2 −1

)(
t1

t2

)
+

(
8

9

)
. Since rank(A) = 1, the image of

C is now a line segment given by ch({(6, 11), (9, 8)}). For computing the preimage, let

U = ch({(8.5, 8.5), (7.5, 9.5)}) ( F (C). Then,

F−1(U) = C ∩ ch
({(

t1

t2

)
|
(

8.5

8.5

)
= At+ b or

(
7.5

9.5

)
= At+ b

})

= C ∩ ch
({(

t1

t2

)
| 2t1 − t2 + 0.5 = 0 or 2t1 − t2 − 0.5 = 0

})
.

Hence, F−1(U) is the set of all points of the square [0, 1] × [0, 1] between the two parallel lines

defined by 2t1 − t2 + 0.5 = 0 and 2t1 − t2 − 0.5 = 0. Figure 4.4 depicts C, its image F (C), and

the preimage of U ⊆ F (C).

v2 v3
v1

v4

C

t1

t2
F

6 8 10 12 F 1(X)

6

8

10

12

F 2(X)

F(C)
U

F−1

v2 v3
v1

v4

F−1(U)

t1

t2

Figure 4.4: The image of a cell with rank(A) = 1.
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3. Using the alternative weight w1 = (1, 2) for node v1, we obtain

F 1(X) = 2t1 + 4(1− t1) + t2 + (1− t2) + 2(2 + (1− t2)) = 11− 2t1 − 2t2

F 2(X) = 4t1 + 2(1− t1) + 2t2 + (1− t2) + 2(2 + (1− t2)) = 9 + 2t1 − t2 .

Hence, F (X) = At + b =

(
−2 −2

2 −1

) (
t1

t2

)
+

(
11

9

)
. Since rank(A) = 2, the image of C is

now a polygon with vertices (7, 10), (9, 8), (11, 9), and (9, 11). For computing the preimage, let

U = ch({(9, 11), (8, 10), (9, 9)}) ( F (C). Then,

F−1(U) = C ∩ ch
({(

t1

t2

)
|
(

9

11

)
= At+ b,

(
8

10

)
= At+ b, or

(
9

9

)
= At+ b

})

= C ∩ ch({(1, 0), (5/6, 2/3), (1/3, 2/3)}) ,

which is again a triangle. Figure 4.5 shows C, its image F (C), and the preimage of U ⊆ F (C).
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F 2(X)

F(C)
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F−1

v2 v3
v1

v4

F−1(U)

t1

t2

Figure 4.5: The image of a cell with rank(A) = 2.

4.4 A polynomial algorithm for the (2, 2)-MLPN

In this section we first discuss the (2, 2)-MLPN to explain the main ideas of our solution approach,

before we turn to the general case in Section 4.5. In the following, we present the different steps of

the approach. For a given pair of edges h = (eh1 , eh2), we first compute the set Ch of cells of the

subdivision of [0, 1]2 into maximal domains of linearity of the distance functions Di(X). Afterwards,

we compute the image F (C) of each cell C ∈ Ch. Depending on the rank of the mapping F with respect

to C, the image is either a point, a line segment, or a two-dimensional polygon, see Lemma 4.1. We

store for each image a reference to the cell C. To determine the set of non-dominated points Z̃ of the

images of all cells in the objective space, we adapt the approach in Hamacher et al. (1999) for the

single facility bi-criteria problem. The idea of their approach is to determine the set of non-dominated

points in the objective space by means of the lower envelope. To facilitate that approach, they add

to the rightmost point of each image a right-open horizontal halfline (as p = 1, all images are points
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or segments). Then, each point in the objective space that is not on the lower envelope will obviously

be dominated by a point on the envelope. At the end, they delete all parts of the lower envelope that

belong to horizontal halflines that have been added before. The remaining points then comprise the

set of all non-dominated points.

Coming back to our problem, to compute the set of all non-dominated points in the objective space,

we compute the image F (C) of each cell C ∈ Ch for all edge pairs h (where it is sufficient to consider

only pairs with h1 ≤ h2). If the image is a point or a segment, we add it to a set L together with a

reference to the respective cell. If F (C) is a polygon, all interior points will be dominated by points

on the boundary. Thus, we only add the bounding edges of the polygon to L, again with a reference

to the respective cell. Note that each polygon has at most eight bounding edges (Kalcsics (2011)). In

view of the general case to be discussed in Section 4.5, we generalize the approach in Hamacher et al.

(1999) as follows. We add to the bottommost point of each image a horizontal and a vertical halfline

extending to +∞. Then, we first determine the lower envelope in y-direction and afterwards the lower

envelope of the remaining points in x-direction. In this way, all dominated points will be eliminated.

Formally, let le1, le2 denote the lower envelope functions of a set with respect to the directions of

the two components of the canonical basis of R2. Given a collection L ⊂ R2 of points and segments,

Procedure 4.1 summarizes the steps to obtain the set of non-dominated points in the objective space.

Procedure 4.1- (Computing the non-dominated set of a collection L ⊂ R2)

1. For each connected component of L find the point (z1, z2) of the component which has the

smallest z2 value and augment the horizontal halfline {(z1 + s, z2) | s ∈ R+} and the vertical

halfline {(z1, z2 + s) | s ∈ R+} to L.

2. Compute Z̃ = (le1 ◦ le2)(L).

The output Z̃ of Procedure 4.1 is a collection of segments and points. Note that by applying both lower

envelope functions, all horizontal and vertical halflines added in Step 1 are deleted at the end. Each

element ` of Z̃ is a point or a subset of a segment of L and contains a reference to the set of elements

of L in which it is contained. Therefore, we can immediately determine the set C(`) of all cells whose

image contains `. As, in turn, each element of L contains a reference to the cell generating this element,

we can readily compute the preimage of ` with respect to each cell C ∈ C(`) using Lemma 4.2. The

union of all these preimages yields the set of Pareto-optimal solutions. Algorithm 2 gives a complete

description of our approach to compute the sets of non-dominated points and Pareto-optimal solutions.

Complexity analysis. In the following, we discuss the complexity of Algorithm 2. For each pair of

edges, there are at most O(n2) cells in Ch (Kalcsics (2011)). Using the procedure described in Kalcsics

(2011), we can compute the linear representation of F over all cells C ∈ Ch in O(n2) total time. Step

5 can be computed in constant time as each cell has at most eight extreme points (Kalcsics (2011)).

Since there are at most O(m2) pairs of edges, the overall complexity of Steps 1-5 is O(n2m2).

Concerning Step 6, the set L has O(n2m2) elements. Hence, we have to add O(n2m2) horizontal
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Algorithm 2: Solution method for the (2, 2)-MLPN

Input: A graph G
Output: The sets Z̃ and X̃ of non-dominated points and, respectively, Pareto-optimal solutions

1 for each pair of edges h = (eh1 , eh2) ∈ E × E, h1 ≤ h2 do
2 Compute the subdivision of eh1 × eh2 and the set Ch of all cells (Section 4.2.2);
3 for each cell C ∈ Ch do
4 Compute the linear representation of F over C and the image F (C);
5 Add (the bounding edges of) F (C) to the collection L and store a reference of the cell to each

point/segment of the image F (C);

6 Compute the set Z̃ of non-dominated points of the collection L using Procedure 4.1;

7 for each ` of Z̃ do
8 Determine C(`);
9 for each C ∈ C(`) do

10 Add the set of points of the graph corresponding to F−1(`) to the set of Pareto-optimal

solutions X̃;

11 return Z̃ and X̃

and vertical lines, which can be done in O(n2m2) time. The lower envelope can be computed in

O(n2m2 log(nm)) and contains O(n2m2α(n2m2)) number of elements (Hershberger, 1989), where α(·)
is the inverse of the Ackerman’s function. Hence, the overall complexity for Step 6 is O(n2m2 log(nm)).

As for the computation of preimages of elements in the set of non-dominated points, Step 8 can be

done in constant time since it is part of the output of the lower envelope algorithm. Step 10 can be

carried out in constant time since the preimage of a point or segment has at most eight bounding

segments. Thus, the overall complexity of Steps 7-10 is equal to the number of components of Z̃, that

is O(n2m2α(n2m2)). With this, the overall complexity of Algorithm 2 is O(n2m2 log(nm)).

Remark 4.2- (Speed-up improvement) If the image of a cell is a polygon it is not necessary to add

all bounding segments of F (C) to L since some of them will be dominated. To compute the set of all

locally non-dominated bounding segments of F (C), we first find the vertices u1 and u2 of F (C) with

the smallest F 1 and F 2 value, respectively. Then, starting at u1 we add to L all bounding segments

of F (C) when walking from u1 along bd(F (C)) in clockwise direction towards u2. Although this does

not improve the worst case complexity, the actual time required to compute the lower envelope will

decrease.

Example 1 (cont.).

Let Ch = {C1, C2} be the subdivision into cells obtained in Figure 4.2 for h = ([v2, v3], [v4, v5]).

Denoting a point X = (([v2, v3], t1), ([v4, v5], t2)) of the unit square as X = (t1, t2), the cells C1, C2 can

be described by C1 = ch({(0, 0), (1, 0), (1, 1), (0.5, 1), (0, 0.5)}) and C2 = ch({(0, 0.5), (0.5, 1), (0, 1)}).
The description of F (X) for X ∈ [v2, v3]× [v4, v5] depends on the cell under consideration and is given

by:
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F (X) =





(
−2 0

2 0

)(
t1

t2

)
+

(
9

7

)
, if X = (t1, t2) ∈ C1;

(
0 −2

4 −2

)(
t1

t2

)
+

(
10

8

)
, if X = (t1, t2) ∈ C2.

Figure 4.6 shows in dashed and dotted lines the image of C1 and, respectively, C2. The set of non-

dominated points Z̃ obtained by using Procedure 4.1 is given by:

Z̃ = {(6, 8)} ∪ {(9− 2t1, 7 + 2t1), 0.5 < t1 ≤ 1, 0 ≤ t2 ≤ 1},

and is depicted in Figure 4.6 by the black segments and filled dots.

6 8 10
F 1(X)

6

8

10

F 2(X)

F (0, 1)

F (0.5, 0)

F (0, 0) = F (0, 0.5)

F (1, 1)

Figure 4.6: Images of cells depicted in Figure 4.2 (dashed and dotted lines) and non-
dominated solutions (continuous line and filled dots).

Computing the preimages of the set Z̃ we obtain the following set of Pareto-optimal solutions:

X̃ = {(v2, v5)} ∪ {(([v2, v3], t1), ([v4, v5], t2)) : 0.5 < t1 ≤ 1, 0 ≤ t2 ≤ 1}

Remark 4.3- (The (2, 2)-MLPN on trees) If the underlying graph is a tree, the complexity of

Algorithm 2 reduces by a factor of n since the number of cells of a subdivision of [0, 1]2 into linearity

domains is at most O(n), see Kalcsics (2011).

4.5 The (k, p)-MLPN

In this section we show how to extend the previous results in order to derive an algorithmic approach

to solve the general problem with p facilities and k criteria, i.e., the (k, p)-MLPN. Note first that the
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(k, p)-MLPN is NP-hard (if p is part of the input) because it generalizes the (1,p)-MLPN (Hakimi

(1965)). Thus, there does not exist a polynomial algorithm to solve the (k, p)-MLPN (unless P = NP).

The outline of the approach for the general case is the same as for p = k = 2. For a given p-tuple

of edges h = (eh1 , . . . , ehp) we first compute the set Ch of cells of the arrangement that gives us the

subdivision into linearity domains (Kalcsics (2011)). For each cell C ∈ Ch we then compute the image

F (C) of C. If F (C) has dimension lower than k, we add it to a set L. If F (C) has dimension k we

just add the facets of the induced polytope to L. Moreover, we store for each element augmented

to L a reference to its respective preimage (a cell C ∈ Ch). We repeat this for all p-tuples h (where

it is sufficient to consider only p-tuples with h1 ≤ · · · ≤ hp). To compute the set of Pareto-optimal

solutions X̃, we adapt Procedure 4.1 to the general case with p facilities and k criteria as follows.

Again we denote by leq the lower envelope function of a set with respect to the direction of the q− th
component of the canonical basis of Rk (see Sharir (1994) for details on the lower envelope procedure).

Procedure 4.2- (Computing the non-dominated set Z̃ of a collection L ⊂ Rk)
Given a collection L ⊂ Rk of polytopes (of dimension lower than or equal to k − 1) the set Z̃ ⊆ L of

non-dominated points of L can be obtained as follows:

1. For each element θ ∈ L compute the convex hull of the domination cones attached to each point

c ∈ θ. Then add to L the set of all facets of this set.

2. Compute (le1 ◦ · · · ◦ lek)(L).

Algorithm ?? now gives a description of the necessary steps required to compute the set of Pareto-

optimal solutions and non-dominated points.

Algorithm 3: (k, p)-MLPN

Input: A graph G, and numbers p and k
Output: The sets Z̃ and X̃ of non-dominated points and, respectively, Pareto-optimal solutions

1 for each p-tuple of edges h = (eh1 , . . . , ehp) ⊂ E, h1 ≤ · · · ≤ hp do
2 Compute the set Ch of all cells of the subdivision eh1 × · · · × ehp (see Section 4.2.2);
3 for each cell C ∈ Ch do
4 Find the linear representation of F over C;
5 Add the (bounding facets of the) image F (C) to the collection L;

6 Compute the non-dominated subset Z̃ of the collection L by using Procedure 4.2;
7 for each p-tuple of edges h = (eh1 , . . . , ehp) ⊂ E, h1 ≤ · · · ≤ hp do
8 for each C ∈ Ch do

9 Compute ` = F (C) ∩ Z̃;
10 Add the set of points of the graph corresponding to F−1(`) into the set of Pareto-optimal

solutions X̃;

11 Return Z̃ and X̃;

In the following, we discuss the complexity of Algorithm ??. For each p-tuple of edges, there are at

most η = 2np2 hyperplanes of the type Da
i (xj) = Da′

i (xj′), i ∈ V, a, a′ ∈ {+,−}, j, j′ ∈ {1, . . . , p}.
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Thus, there are O(ηp) cells in Ch (Edelsbrunner (1987)). To compute the linear representation

of F over a cell C ∈ Ch, we pick an arbitrary vector X ∈ C. For this X we first determine

Di(X) = Da
i (xj), a ∈ {+,−}, j ∈ {1, . . . , p} for all i ∈ V . Afterwards, we can compute F q(X) =∑

i∈V w
q
iDi(X) = aq1t1 + · · ·+ aqptp + bq. Both steps require in total O(npk) time and this is done only

once for each cell. To compute the image of a cell we determine F (t) = At+ b for every extreme point

t ∈ ext(C), where |ext(C)| = O(ηp) (Edelsbrunner (1987)), and then we plot all these extreme points

(in O(ηppk) time). Thus, computing the image of all cells in Ch can be done in O(η2ppk). Since we

have to repeat this for each p-tuple of edges, the overall effort for Steps 1-5 is O(mpη2ppk).

Concerning Step 6, for each element θ ∈ L we have to compute the union of the domination cones

attached to each point c ∈ θ, i.e., the set T = {c+Rk≥ | c ∈ θ}. As θ is convex, this set is identical to

the convex hull of the domination cones attached to each extreme point of θ, i.e., T = ch({c+Rk≥ | c ∈
ext(θ)}). To compute T for each θ ∈ L, we restrict the domination cones to [0,M ]k where M is

sufficiently large. Then T = ch({c ∪ {a | a = c+Meq, eq = (0, q−1. . . , 0, 1, 0, . . . , 0), q ∈ Q} : c ∈ ext(θ)})
is the convex hull of O(ηp + kηp) points. Since the convex hull of τ points in Rk can be computed

in O(τ b
k
2

+1c), the convex hull of the domination cones attached to the extreme points of a cell can

be computed in O((kηp)b
k
2

+1c). Next, Step 2 in Procedure 4.2 computes the lower envelope of the

set L. Sharir (1994) shows that the complexity of the lower envelope (in one direction) in Rk of δ

surfaces or surface patches (all algebraic of constant degree, and bounded by algebraic surfaces of

constant degree) is O(δk+ε) for any ε > 0 with the constant of proportionality depending on ε, k, s

(the maximum number of intersections among any k-tuple of the given surfaces) and on the shape

and degree of the surface patches of their boundaries. The number of facets of a polytope with τ

extreme points in Rk is O(τ b
k
2

+1c) (Gale, 1963). Thus, for each element θ ∈ L the above convex hull

construction generates at most O((kηp)b
k
2

+1c) facets. Since each choice of a p-tuple of edges generates

a subdivision with O(ηp) cells, the input size of the lower envelope algorithm is O(mpηp(kηp)b
k
2

+1c).

Hence, the complexity for computing the lower envelope in each direction of the canonical basis is

O((mpηp(kηp)b
k
2

+1c)k+ε) and the overall complexity is O(k(mpηp(kηp)b
k
2

+1c)k+ε). This implies that

Step 6 can be computed in O(k(mpηp(kηp)b
k
2

+1c)k+ε). Note that, in the worst case, the output of

the lower envelope algorithm contains as many elements as the cardinality of the input, that is,

O(mpηp(kηp)b
k
2

+1c).

Regarding Step 9, the number of facets (of dimension p− 1) of a cell belonging to an arrangement of

β hyperplanes in Rp (recall that there are η = 2np2 hyperplanes of the type Da
i (xj) = Da′

i (xj′), i ∈
V, a, a′ ∈ {+,−}, j, j′ ∈ {1, . . . , p}) is bounded by O(β) since each hyperplane can appear at most once

on each cell. Then, ` = F (C) ∩ Z̃ can be computed in O(mpη2p(kηp)b
k
2

+1c) time, given that we have

to process O(η) facets of F (C) with O(mpηp(kηp)b
k
2

+1c) elements in the non-dominated set Z̃. Adding

one preimage of F−1(`) requires first to compute S = {F−1(c), c ∈ ext(`)} for all extreme points c

of ` in O(kpηp). Later, we compute the convex hull of S in O((kpηp)b
p
2

+1c), and intersect the result

with [0, 1]p in O(2p(kpηp)b
p
2

+1c) time. Thus, considering all cells in all p-tuples of edges, Steps 7-10

can be computed in O(mpηp max{mpη2p(kηp)b
k
2

+1c, 2p(kpηp)b
p
2

+1c}). Finally, the overall complexity

of the complete algorithm is O(max{k(mpηp(kηp)b
k
2

+1c)k+ε,mpηp2p(kpηp)b
p
2

+1c}) for the case k ≥ 3.

For the bicriteria problem (2,p)-MLPN it is of interest to analyze the complexity since the lower
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envelope can be computed efficiently using Procedure 4.1. Steps 1-5 can be computed in O(pη2pmp)

time as described in Algorithm ??.The remaining steps are done as in Algorithm 2. As |L| =

O(pη2pmp), Step 6 requires O(pη2pmp log(pηm)) time (recall that the complexity of the lower envelope

of τ elements in R2 is O(τ logτ)). The difference with respect to the complexity computed in Section

4 comes from the fact that in this case we cannot exploit that the number of extreme points of each

cell is bounded by a constant (eight).

As for the computation of preimages of elements in the set of non-dominated points in the objective

space, Step 8 can be done in constant time since it is part of the output of the lower envelope algorithm.

Adding one preimage of F−1(`) requires first to compute S = {F−1(c), c ∈ ext(`)} for every extreme

point c of ` in O(pηp). Later we compute the convex hull of S in O((pηp)b
p
2

+1c), and intersect the

result with [0, 1]p in O(2p(pηp)b
p
2

+1c). Thus, considering all cells in all p-tuples of edges, Steps 7-10

can be computed in O(ηpmp2p(pηp)
p
2 ). Finally, the overall complexity of the complete algorithm is

O(ηpmp2p(pηp)
p
2 ).

Next, we illustrate Algorithm ?? with an example of a 3-facility 3-objective problem.

Example 4.2- Let G = (V,E) be the graph depicted in Figure 4.7 and let p = k = 3. Weights

wi = (w1
i , w

2
i , w

3
i ) and edge lengths are shown in the figure. Observe that nodes v2 and v4 contain

negative weights.

v1

v2

v3

v4 v5

(2,−1, 0)

(2,−1,−1)

(2, 1, 1)

(1,−1, 1) (2, 2, 1)

2

2 2

1

2

Figure 4.7: Network with node weights (in brackets) and edge lengths (Example 4.2).

As before, we identify a solution X = ((e1, t1), (e2, t2), (e3, t3)) on the graph with the corresponding

point x = (t1, t2, t3) of the unit cube. Choosing, for example, the edges e1 = [v2, v3], e2 = [v4, v5]

and e3 = [v2, v1], we obtain the following three hyperplanes: D+
2 (x1) = D+

2 (x3), D−1 (x3) = D+
1 (x2),

D−4 (x3) = D+
4 (x2). Figure 4.8 depicts these hyperplanes and shows the resulting subdivision into

linearity domains as described in Section 4.2.2. In this case, we obtain six cells that correspond with

the different possible allocations when we place a facility on each selected edge. Consider now the cell

C delimited by the points (1, 0.5, 1), (1, 1, 1), (1, 1, 0.5), (0.5, 1, 0.5) depicted in grey in Figure 4.8. In

this cell v1 and v2 are allocated to the facility placed in e3, v3 to the one placed in e1 and v4, v5 to

the one placed in e2. For this cell, the affine linear representation of F is given by
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F (X) =




F1(X)

F2(X)

F3(X)


 =



−4 −4 −2

−2 −4 +2

−2 −2 −4







t1

t2

t3


+




15

1

7


 .

e1 = [v2,v3]

e2 = [v4,v5]

e3 = [v2,v1]

D+
2 (x1) = D+

2 (x3)

D+
2 (x1) = D+

2 (x3)

D−
4 (x3) = D+

4 (x2)

(1, 1, 1)

(1, 1, 0.5)

(1, 0.5, 1)

(0.5, 1, 0.5)

Figure 4.8: Active intersection hyperplanes and subdivision into cells for edges
e1 = [v2, v3], e2 = [v4, v5] and e3 = [v2, v1]. The cell delimited by points
(1, 0.5, 1), (1, 1, 1), (1, 1, 0.5), (0.5, 1, 0.5) is emphasized.

The image of C in the objective space is depicted in Figure 4.9.

F1

F2

F3

F (1, 1, 1) = (5,−3,−1)

F (1, 1, 0.5) = (6,−4, 1)

F (0.5, 1, 0.5) = (8,−3, 2)

F (1, 0.5, 1) = (7,−1, 0)

Figure 4.9: Image of the cell delimited by points
(1, 0.5, 1), (1, 1, 1), (1, 1, 0.5), (0.5, 1, 0.5) emphasized in Figure 4.8.

The resulting subset of non-dominated points Z̃ with respect to C is given by

Z̃ = {(7− 2t3,−5 + 2t3, 3− 4t3), 0.5 ≤ t3 ≤ 1} .

Computing the preimages of the set Z̃, we obtain the following set of Pareto-optimal solutions with

respect to C:

X̃ = {(v3, v5, ([v2, v1], t3)), 0.5 ≤ t3 ≤ 1} .

Note that two facilities are located on the vertices v3 and v5 and the third facility along any point of

the subedge ([v2, v1], t3)), 0.5 ≤ t3 ≤ 1. �
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4.6 Conclusions

In this chapter we have provided a methodology to obtain a complete description of the set of Pareto-

optimal solutions for the multi-criteria p-facility median location problem on networks. It is noteworthy

that this chapter is the first attempt to characterize the solution set of this problem. Note that the

single criteria p-facility median problem is already NP-hard and handling closest assignments makes

more difficult to deal with the multifacility version.

The main tools used to obtain the set of Pareto-optimal solutions is the characterization of the lin-

earity domains of the distance functions and the lower envelope. Hence, this analysis can be easily

extended to more general objective functions as long as we can again determine these domains and

their image and preimage. In this sense, an open line of research is to obtain the characterization of

Pareto-optimal solutions for the case of ordered median objective functions. Recall that this func-

tion includes as particular instances most classical objectives functions used in Location Theory, as

for instance the median, center, k-center and cent-dian, see Nickel and Puerto (2005) for further details.
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4.7 Subdivision into linearity domains for all pairs of edges in

Example 1
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Figure 4.10: Subdivision into linearity domains for all pairs of edges in Example 1. The
sets of points where Da

i (xj) = Da′
i (xj′) for i ∈ V , a ∈ {+,−}, j ∈ {1, 2} are denoted

as IP aa
′
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Chapter 5

Ordered Weighted Average

Combinatorial Optimization:

Formulations and their properties

ABSTRACT

Multiobjective combinatorial optimization deals with problems considering more than one viewpoint

or scenario. The problem of aggregating multiple criteria to obtain a globalizing objective function

is of special interest when the number of Pareto solutions becomes considerably large or when a

single, meaningful solution is required. Ordered Weighted Average or Ordered Median operators are

very useful when preferential information is available and objectives are comparable since they assign

importance weights not to specific objectives but to their sorted values. In this chapter, Ordered

Weighted Average optimization problems are studied from a modeling point of view. Alternative

integer programming formulations for such problems are presented and their respective domains

studied and compared. In addition, their associated polyhedra are studied and some families of facets

and new families of valid inequalities presented. The proposed formulations are particularized for two

well-known combinatorial optimization problems, namely, shortest path and minimum cost perfect

matching, and the results of computational experiments presented and analyzed. These results indicate

that the new formulations reinforced with appropriate constraints can be effective for efficiently solving

medium to large size instances.

Keywords: Combinatorial Optimization, Multiobjective optimization, Weighted Average Optimiza-

tion, Ordered median.

5.1 Introduction

Multiobjective combinatorial optimization deals with problems considering more than one viewpoint or

scenario. They inherit the complexity difficulty of their scalar counterparts, but incorporate additional

109
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difficulties derived from dealing with partial orders in the objective function space. The standard

solution concept is the set of Pareto solutions. However, the number of Pareto solutions can grow

exponentially with the size of the instance and the number of objectives. A first approach to overcome

this difficulty focuses on a specific subset of the Pareto set, such as, for instance, the supported Pareto

solutions (see, e.g., Ehrgott, 2005). Those are the Pareto solutions that optimize linear scalarizations

of the different objectives. However, it is possible to exhibit instances for which even the number

of supported solutions grows exponentially with the size of the instance. Furthermore, focusing on

supported Pareto solutions a priori excludes compromise solutions that could be preferred by the

decision maker. For the above reasons, more involved decision criteria have been proposed in the field

of multicriteria decision making (Perny and Spanjaard, 2003). These include objectives focusing on

one particular compromise solution, which, for tractability and decision theoretic reasons, seem to be

better suited when an appropriate aggregation operator is available.

In some cases, a particularly important Pareto solution related to a weighted ordered average aggre-

gating function is sought. Provided that some imprecise preference information on the objectives is

available, and that they are comparable, an averaging operator can be used to aggregate the vector of

objective values of feasible solutions. The Ordered Median (OM) objective function is very useful in

this context since it assigns importance weights not to specific objectives but to their sorted values.

OM operators have been successfully used for addressing various types of combinatorial problems (see,

for instance, Ogryczak and Tamir, 2003; Nickel and Puerto, 2005; Puerto and Tamir, 2005; Boland

et al., 2006; Maŕın et al., 2009 or, Fernández et al., 2012).

When applied to values of different objective functions in multiobjective problems, the OM operator is

called in the literature Ordered Weighted Average (OWA) (Yager, 1988; Yager and Kacprzyk, 1997).

It assigns importance weights to the sorted values of the objective function elements in a multiple

objective optimization problem. The OWA has been also used in the literature under the name of

Choquet optimization to address continuous problems (Schmeidler, 1986; Lesca et al., 2013) and more

recently it has been applied to some combinatorial optimization problems, like the minimum spanning

tree and 0-1 knapsack (Galand and Spanjaard, 2012). The OWA is, however, a very broad operator,

which, depending on the cases, can be seen as an Ordered Median or as Vector Assignment Ordered

Median (Lei and Church, 2012), and which can be applied to any combinatorial optimization problem.

We therefore believe that its full potential within combinatorial optimization is worth being exploited.

This naturally leads to a thorough study of its modeling properties and alternatives, which is the focus

of this chapter.

From a modeling point of view, the OWA operator can be formulated with a combination of discrete

and continuous decision variables linked by several families of linear constraints. Since the domain of

combinatorial optimization problems can be characterized with ad hoc discrete variables and linear

constraints, it becomes clear that every combinatorial optimization problem with an OWA objective

can be formulated as a linear integer programming problem, by suitably relating the two sets of vari-

ables and constraints. Of course, not all formulations are equally useful. Moreover, it is not even clear
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that the best formulation for the domain of the combinatorial object should be preferred, because its

“integration” with the formulation of the OWA may imply additional difficulties. In this chapter we

propose three alternative basic formulations for a combinatorial object with an OWA objective. Each

basic formulation uses a different set of decision variables to model the OWA objective. We study

properties yielding to alternative formulations, which preserve the set of optimal solutions, and we

also compare the formulations among them. In addition we propose various families of facets and valid

inequalities, which can be used (independently or in combination) to reinforce the basic formulations.

For keeping the length of the chapter within some reasonable limits, we report the results obtained

with a particular case of the OWA operator, namely the Hurwicz criterion (Hurwicz, 1951). This cri-

terion, which has been used by other authors in the literature (see, e.g., Ogryczak and Olender, 2012,

Galand and Spanjaard, 2012) is a non-monotonic and non-convex criterion. In our experience the

Hurwicz criterion behaves quite similarly to other non-convex OWA criteria, so the results we report

and derived conclusions can be extended to analogous criteria as well. In the final part of the chapter,

we focus on two classical optimization problems: shortest path and minimum cost perfect matching.

For these two problems we analyze the empirical performance of the alternative basic formulations and

their possible reinforcements and variations. From our computational experience we can not conclude

that any of the formulations is superior to the others since the behavior of the proposed formulation

varies with the different combinatorial object to be considered (see Section 5.6).

The chapter is structured as follows. Section 5.2 gives the formal definition of the OWA operator and

shows that it has as particular cases both the Ordered Median and the Vector Assignment Ordered

Median. Section 5.3 presents the three basic formulations, and their variations, for a combinatorial

problem with an OWA objective, studies their properties and compares them, whereas Section 5.4

presents different families of valid inequalities and possible reinforcements. Sections 5.5.1 and 5.5.2

respectively present the formulation of the combinatorial object that we use in our empirical study

of the shortest path and minimum cost perfect matching problems with an OWA objective. Finally,

Section 5.6 describes the computational experiments that we have run and presents and analyzes the

obtained numerical results. The chapter ends in Section 5.7 with some conclusions.

5.2 The Ordered Weighted Average Optimization

The Ordered Weighted Average (OWA) operator is defined over a feasible set Q ⊆ Rn. Let C ∈ Rp×n

be a given matrix, whose rows, denoted by Ci, are associated with the cost vectors of p objective

functions. The index set for the rows of C is denoted by P = {1, . . . , p}. For x ∈ Q, the vector y ∈ Rp

is referred to as the outcome vector relative to C. In the following we assume y = Cx, with x ∈ Q.

For a given y, let σ be a permutation of the indices of i ∈ P such that yσ1 ≥ . . . ≥ yσp . Let also

ω ∈ Rp+ denote a vector of non-negative weights. Feasible solutions x ∈ Q are evaluated with an

operator defined as OWA(C,ω)(x) = ω′yσ. The OWA optimization Problem (OWAP) is to find x ∈ Q
of minimum value with respect to the above operator, that is
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OWAP: min
x∈Q

OWA(C,ω)(x)

Example 5.1- Consider

Q =
{
x ∈ {0, 1}3 : x1 + x2 + x3 = 2

}
, C =




1 4 1

1 1 3

5 1 2


 and ω′ =

(
1 2 4

)
.

Table 5.1 illustrates, for each feasible x ∈ Q, the values of y = Cx, yσ and OWA(C,ω)(x) = ω′yσ. The

optimal value to the OWAP is minx∈QOWA(C,ω)(x) = 23.

x y yσ OWA(C,ω)(x) = ω′yσ(
1 1 0

)′ (
5 2 6

)′ (
6 5 2

)′
24(

1 0 1
)′ (

2 4 7
)′ (

7 4 2
)′

23(
0 1 1

)′ (
5 4 3

)′ (
5 4 3

)′
25

Table 5.1: Solutions x ∈ Q, values y = Cx, sorted values yσ and OWA(C,ω)(x) for Example 5.1.

The OWA operator is a very general function which, as we see below, has as particular cases well-

known objective functions. We next describe some of them.

5.2.1 The ordered median objective function (OM).

The OM objective (Nickel and Puerto, 2005) minimizes a weighted sum of ordered elements. It is

a well known function that unifies many location problems as the p-median problem, the p-center

problem, etc.

Let Q ⊆ Rn denote the feasible domain for an optimization problem and let d ∈ Rn be a cost vector

and ω ∈ Rn a given weights vector. For x ∈ Q, let σ denote a permutation of the indices of x, such

that dσjxσj ≥ dσj+1xσj+1 , j ∈ {1, 2, . . . , n− 1}. The OM operator is OM(d,ω)(x) =
∑
j∈P

ωjdσjxσj (note

that p = n in this case) and the OM Problem (OMP) is therefore defined as

OMP: min
x∈Q

OM(d,ω)(x) =
∑

j∈P
ωjdσjxσj .

To cast the OM operator as an OWA operator, we only need to set the rows of the C matrix as

(Ci)′ = die
i, i ∈ {1, . . . , n}, where ei ∈ Rn is the i-th unit vector of the canonical basis of Rn. Let

Diag(d) denote the diagonal matrix whose diagonal entries are the components of the vector d, thus,

C = Diag(d). Then OM(d,ω)(x) = OWA(Diag(d),ω)(x).

Example 5.2- Consider

Q =
{
x ∈ {0, 1}3 : x1 + x2 + x3 = 2

}
, d =

(
5 1 2

)′
and ω =

(
1 2 4

)′



Chapter 5. OWA Combinatorial Optimization: Formulations and their properties 113

Table 5.2 illustrates, for each feasible x ∈ Q, the values of (djxj)j∈P , (dσjxσj )j∈P , and OM(d,ω)(x) =∑
j∈P ωjdσjxσj . The optimal OM value is minx∈QOM(d,ω)(x) = 4.

x (djxj)j∈P (dσjxσj )j∈P OM(d,ω)(x) =
∑

j∈P ωjdσjxσj(
1 1 0

)′ (
5 1 0

)′ (
5 1 0

)′
7(

1 0 1
)′ (

5 0 2
)′ (

5 2 0
)′

9(
0 1 1

)′ (
0 1 2

)′ (
2 1 0

)′
4

Table 5.2: Solutions x ∈ Q, values djxj , sorted dσjxσj and OM(d,ω)(x) for the OM of Example 5.2.

To cast the OM operator as an OWA operator, we only need to set the rows of the C matrix as

C = Diag(d) =




5 0 0

0 1 0

0 0 2


 .

The values of y = Cx, yσ and OWA(C,ω)(x) = ω′yσ are shown in Table 5.3. The optimal OWA value

is minx∈QOWA(Diag(d),ω)(x) = minx∈QOM(d,ω)(x) = 4.

x y yσ OWA(C,ω)(x) = ω′yσ(
1 1 0

)′ (
5 1 0

)′ (
5 1 0

)′
7(

1 0 1
)′ (

5 0 2
)′ (

5 2 0
)′

9(
0 1 1

)′ (
0 1 2

)′ (
2 1 0

)′
4

Table 5.3: The OM instance of Example 5.2 as an OWA: y = Cx, yσ and OWA(C,ω)(x).

5.2.2 The vector assignment ordered median objective function.

The Vector Assignment Ordered Median (VAOM) problem was recently introduced by Lei and Church

(2012) in the context of discrete location-allocation problems. In this context, the VAOM generalizes

both OM and Vector Assignment Median (Weaver and Church, 1985). As we see below the OWA

generalizes the VAOM as well. First, we briefly introduce the VAOM.

The main decisions in location-allocation problems are the set of facilities to open, and the assignment

of customers to opened facilities so as to satisfy their demand. Consider a given set of customers

P = {1, . . . , p}, where each customer is also a potential location for a facility, and let q ≤ p denote

the number of facilities to open. Associated with each customer i ∈ P there is a demand ai. A unit

of demand at customer i served from facility k incurs a cost dik. We will use di to denote the p

dimensional vector of the distances associated with customer i. Usual objectives focus on service cost

minimization.
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Many location-allocation models allow splitting the demand at customers among several facilities, so

allocating customer i to facility k means that some positive fraction of ai is served from facility k.

However, without any further incentive or constraint, in optimal solutions customers will be allocated

to one single facility, the closest one among those that are open. Since such solutions often exhibit priv-

ileged customers, equity measures have been proposed to balance out the service level of the customers.

This is the case of the VAOM that imposes the specific fractions of the demand at each customer to

be served from the various open facilities. Let γi` denote the fraction of ai that must be served from

the `-th closest facility to customer i where ` ∈ I = {1, ..., q}. To measure the service level of customer

i in a given solution, the distances from i to the different open facilities are ordered and weighted

with the values γi` according to their rank in the sorted list of distances. This invites to characterize

solutions by means of binary decision variables xik`, i, k ∈ P , ` ∈ I, where xik` is equal to 1 if i is

allocated to facility k as the `-th closest facility. Now, the service cost of customer i can be computed

as si =
∑

k∈P
∑

`∈I aiγi`dikx
i
k`. Note that si can be expressed in a compact way as si = C

i
xi, where xi

is the vector of decision variables (xik`)k∈P,`∈I = (xi11, x
i
12, ..., x

i
21, x

i
22, ...)

′, and (C
i
)′ = (aiγildik)k∈P,`∈I .

The VAOM operator is computed as a weighted sum of the service costs of all customers. A weight

ωj is applied to the customer with the j-th lowest service level, i.e. with the j-th highest service

cost. For a given solution, x, and its associated vector s as defined above, let σ be a permutation of

the indices of P such that sσ1 ≥ . . . ≥ sσp . Then, V AOM(d,γ,a,ω)(x) =
∑p

j=1 ωjsσj and the VAOM

Problem (VAOMP) is therefore defined as

VAOMP: min
x∈Q

V AOM(d,γ,a,ω)(x) =

p∑

j=1

ωjsσj .

The set of feasible solutions to the problem is fully characterized by the set of feasible assignments,

since an explicit representation of the open facilities is not needed. These can be obtained directly

from x by identifying the indices k ∈ P with xik` = 1 for some i ∈ P , ` ∈ I. Thus in this problem

Q is given by the set of feasible assignments. For reasons that will become evident when we cast the

VAOM operator as an OWA, we express the assignment vectors x as one dimensional n vectors with

n = p2q. In particular x is partitioned in p blocks, each of them associated with a different customer

i ∈ P . That is, x = (x1′| . . . | xi′ | . . . |xp′)′. In turn, each block xi consists of p smaller blocks, each

with q components. The k-th block of xi contains the q components xik` for the indices ` ∈ I.

Now, to cast the VAOM as an OWA operator, we define p objective functions C
i
xi, one associated

with each customer i ∈ P . In particular, objective C
i
xi represents the service cost of customer i ∈ P ,

si. With the above characterization of vectors x ∈ Q, each C
i

must be defined by a n vector. Thus

expressing the VAOM as an OWA becomes basically a notation issue. For each fixed i ∈ P , again

we partition the cost vector C
i

in p blocks. Similarly to the partition of vectors x ∈ Q, each block

corresponds to a different customer, and has pq components. We now set at value 0 all the entries

except those in the block of customer i, which are given by the entries of the vector C
i

as defined

above. That is: Ci = (0pq | . . . | Ci | . . . | 0pq), where 0pq = (0, ..., 0) ∈ Rpq. With this notation it

becomes clear that Cix = C
i
xi. Hence,
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V AOM(d,γ,a,ω)(x) = OWA(C,ω)(x).

Example 5.3- Consider an instance of a VAOM problem with p = 3 customers in which q = 2

facilities must be opened. Suppose all the customers have one unit of demand, i.e. a1 = a2 = a3 = 1,

and suppose the rest of the data is the following:

(dik)i,k∈P =




0 2 6

2 0 4

8 4 0


 , (γil)i∈P,l∈I =




0.5 0.5

0.5 0.5

1 0


 , ω′ =

(
0 1 2

)
.

Since q = 2 the feasible combinations of facilities to open are {1, 2}, {1, 3} and {2, 3}. When the

distances of each customer to the potential facilities are all different, like in this example, each com-

bination of open facilities determines a unique feasible assignment vector x. For instance, when

facilities 1 and 2 open, then customer 1, has facility 1 as the closest and facility 2 as the second

closest, so x1
11 = x1

22 = 1, and x1
12 = x1

21 = x1
31 = x1

32 = 0. The service cost of customer 1 is

thus s1 = γ11d11x
1
11 + γ12d12x

1
22 = 0 + 0.5 × 2 = 1. For customer 2 we have x2

12 = x2
21 = 1, and

x2
11 = x2

22 = x2
31 = x2

32 = 0, with service cost s2 = 0 + 0.5 × 2 = 1. With this set of open facilities,

the assignment for customer 3 is x3
12 = x3

21 = 1, and x3
11 = x3

22 = x3
31 = x3

32 = 0 with service cost

s3 = 4. Since s3 ≥ s1 ≥ s2 the objective function value for this solution is thus 0×4+1×1+2×1 = 3.

Proceeding similarly with the other possible combinations of open facilities we obtain the complete

set of feasible solutions Q, which in this example is given by the set of binary vectors given in Table

5.4:

x1
11 x1

12 x1
21 x1

22 x1
31 x1

32 x2
11 x2

12 x2
21 x2

22 x2
31 x2

32 x3
11 x3

12 x3
21 x3

22 x3
31 x3

32

1 0 0 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0
1 0 0 0 0 1 1 0 0 0 0 1 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 1 0

Table 5.4: Complete set of feasible solutions Q as binary vectors for Example 5.3.

For modeling the VAOM as an OWA we define the cost matrix C as:

C =




0 0 1 1 3 3 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 2 2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 8 0 4 0 0 0


 .

Table 5.5 shows the values of y, yσ and OWA(C,ω)(x) for each x ∈ Q. The optimal value of the VAOM

is minx∈Q V AOM(d,γ,a,ω)(x) = min{3, 3, 2} = 2.
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y yσ OWA(C,ω)(x) = ω′yσ(
1 1 4

)′ (
4 1 1

)′
3(

3 3 0
)′ (

3 3 0
)′

3(
4 2 0

)′ (
4 2 0

)′
2

Table 5.5: Values of y, yσ and OWA(C,ω)(x) for the feasible solutions of Example 5.3.

5.2.3 The Vector Assignment Ordered Median function of an abstract combina-

torial optimization problem

In the previous section we have applied the VAOM operator to the locations and allocations of a

general multifacility location problem, according to the original definition by Lei and Church (2012).

Nevertheless, this operator can be also applied to the characteristic vector of a combinatorial solution

of any abstract combinatorial optimization problem, as we also did with the ordered median operator.

In doing that we obtain a more general interpretation of this type of objective function that can also

be cast within the OWA operator.

Let Q ⊆ Rn denote the feasible domain for an optimization problem, ω ∈ Rp+ a given vector of

nonnegative weights and P = {1, . . . , p}. Recall that a VAOM operator considers for each objective

function si, i ∈ P different fractions, γi, of the cost vector d for the sorted elements of the decision

vector x.

For x ∈ Q, the evaluation of the i-th component of the VAOM objective is given by si = γidixi, for

all i ∈ P . Let σ denote a permutation of the indices of P , such that sσi ≥ sσi+1 , for i = 1, . . . , p− 1.

The VAOM operator is V AOM(d,γ,ω)(x) =
∑
i∈P

ωisσi . The reader may note that the original definition

of VAOM can be accommodated to this general setting once we identify the combinatorial object Q

as the set of location-allocations in the discrete location problem. In that case, there are i = 1, . . . , n

objective functions associated with each of the customers and then the fractions that apply to each

customer i are non-null only for a subset of the open facilities (servers) corresponding to the q-closest

ones.

This can be done by defining a set of variables, one per customer i, with n blocks. In the block

k, xi�k = (xi1k, ..., x
i
nk)
′ accounts for the allocation of i to any facility as the k-th closest, therefore

xi = (xi′�1 | xi′�2 | ... | xi′�n)′ for i = 1, . . . , n. This way, the cost vectors must also have the

same structure by blocks, each block corresponding with the level of assignment, i.e. denoting by

di� = (di1, ..., d
i
n)′ ∈ Rn2

then di = (di′� | di′� | ... | di′� )′. Finally, since the fractions of costs are applied

according to the level of assignment, the structure of the vector of fractions γi is also by blocks. Block

k represents the fraction of the cost that is accounted for costumer i at the k-th level of assignment.

Denoting by γi` = (γi`, ..., γi`)
′ ∈ Rn then γi = (γi1 | γi′2 | ... | γi′n)′ for i = 1, . . . , n.

To cast the VAOM as an OWA operator, we only need to set γ̄i = ( 0np︸︷︷︸
1

| . . . | γi
′

︸︷︷︸
i

| . . . | 0np︸︷︷︸
p

)′,

d̄i = ( 0np︸︷︷︸
1

| . . . | di
′

︸︷︷︸
i

| . . . | 0np︸︷︷︸
p

)′, x = (x1′| . . . | xi
′ | . . . |xp′)′ and Ci = (γ̄ij d̄

i
j)
p(pn)
j=1 . Then, the
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VAOM can be written as the following OWA operator V AOM(d,γ,ω)(x) = OWA(C,ω)(x).

As we have shown above, OWA is a very general operator. In the following, we will work in more

particular settings, namely we shall restrict ourselves to assume that Q is a combinatorial object which

can be represented by a system of linear inequalities.

5.3 Basic formulations for the OWAP, properties and reinforce-

ments

This section presents alternative Mixed Integer Programming (MIP) formulations for an OWAP, which

are analyzed and compared. The starting point of our study are three basic formulations, which,

broadly speaking, differ from one to another on how the permutation that defines the ordering of the

cost function values is modeled. Two of the formulations presented use binary variables z to define

the specific positions in the ordering of the sorted cost function values, whereas the other one uses

binary variables s to define the relative position in the ordering of the sorted cost function values.

One of the two formulations based on the z variables also uses an additional set of decision variables

y for modeling the specific values of the cost functions depending on their position in the ordering.

All three formulations use a set of decision variables θ to compute the values of the objectives sorted

at specific positions. In each case, alternative formulations are presented, which preserve the set of

optimal solutions. Before addressing any concrete formulation we discuss the meaning of both sets of

variables z and s as well as their relationships.

5.3.1 Alternative formulations for permutations

The essential element in our formulations rests on the representation of ordering within a MIP model.

To such end, we devote this section to describe how a permutation can be represented with binary

variables. Recall that we have introduced P = {1, . . . , p} as the set of the cost function indices. Let

π : P → P be a function representing a permutation of P . That is, it assigns the index i of each

cost function (also denoted by cost function i) to a position indexed by j (also denoted by position

j). Note that π is a permutation if each cost function is assigned to a single position and if each

position contains a single cost function index. In what follows, we use πi = π(i) to denote the position

occupied by cost function i ∈ P and σj = π−1(j) to denote the index of the cost function that occupies

position j (we recall that the notation σ was previously used in Section 5.2). Note that σ also defines

a permutation of the positions of P . In what follows we will indistinctively use π and σ. Slightly

abusing notation we refer to π as to the cost functions permutation and to its inverse σ as to the

positions permutation.
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In order to model π as a permutation, let zij be a binary decision variable defined as

zij =





1 if cost function i occupies position j, (i.e. if πi = j)

0 otherwise.

The set of variables z defines a permutation if:

(i) each position contains a single cost function:

∑

i∈P
zij = 1 j ∈ P, (5.1)

and,

(ii) each cost function i is assigned to a single position j:

∑

j∈P
zij = 1 i ∈ P. (5.2)

In addition, we observe that since system (5.1)–(5.2) contains exactly 2p − 1 linearly independent

equations, the above permutation can also be represented without variables zi1, for all i ∈ P , that can

be replaced by 1−∑j∈P :j>1 zij . In this way, system (5.1)–(5.2) can also be rewritten as

∑

i∈P
zij = 1 j ∈ P : j > 1, (5.3)

∑

j∈P :j>1

zij ≤ 1 i ∈ P. (5.4)

Example 5.4- Let π be a permutation defined by π =
(

3 2 4 1
)

or equivalently by

σ =
(

4 2 1 3
)

. Then, π can be represented by using variables z as follows:

(zij)i,j∈P =




0 0 1 0

0 1 0 0

0 0 0 1

1 0 0 0



, or (zij)i,j∈P :j>1 =




0 1 0

1 0 0

0 0 1

0 0 0



.

�

An alternative representation of a permutation, which we have also found useful is based on a different

set of variables defined as:
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sij =





1 if cost function i is placed before position j in the ordering,

0 otherwise.

The set of variables s defines a permutation if:

(i) for all j ∈ P there are j − 1 cost functions placed before position j:

∑

i∈P
sij = j − 1 j ∈ P, (5.5)

and

(ii) cost function i cannot be placed before position j unless it is also placed before position j + 1,

i.e.,

sij+1 − sij ≥ 0 i, j ∈ P : j < p. (5.6)

Again we can reduce the number of decision variables, now by eliminating si1 for all i ∈ P . Indeed,

since there is no cost function placed before position 1 in any ordering, all the si1, i ∈ P can be fixed to

zero. In this way, permutation (5.5)–(5.6) can be also represented by means of the following reduced

set of constraints:

∑

i∈P
sij = j − 1 j ∈ P : j > 1, (5.7)

sij+1 − sij ≥ 0 i, j ∈ P : 1 < j < p. (5.8)

Example 5.5- Let π be a permutation defined by π =
(

3 2 4 1
)

or equivalently by

σ =
(

4 2 1 3
)

. Then, π can be represented by using variables s as follows:

(sij)i,j∈P =




0 0 0 1

0 0 1 1

0 0 0 0

0 1 1 1



, or (sij)i,j∈P :j>1 =




0 0 1

0 1 1

0 0 0

1 1 1



.

�
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With the above considerations, variables z and s are related by means of

zij =




sij+1 − sij i ∈ P, j = 1, ..., p− 1

1− sij i ∈ P, j = p
(5.9)

and equivalently,

sij = 1−
∑

k≥j
zik, i, j ∈ P. (5.10)

5.3.2 OWAP formulations with variables for the positions of sorted cost function

values

For a given feasible set Q ⊆ Rn, consider the binary decision variables z as defined in Section 5.3.1 to

represent the permutation π associated with the sorted cost function values Cix, i ∈ P . Let also θj be

a real decision variable equal to the value of the cost function sorted in position j. Next, we give an

integer linear programming description of the OWAP where we use M to denote a non-negative upper

bound of the value of all the cost functions. (We refer the interested reader to Boland et al. (2006) or

Nickel and Puerto (2005) for similar sets of decision variables and formulations for the discrete ordered

median location problem.)

F z0 : V = min
∑

j∈P
ωjθj (5.11a)

s.t.
∑

i∈P
zij = 1 j ∈ P (5.11b)

∑

j∈P
zij = 1 i ∈ P (5.11c)

Cix ≤ θj +M(1− zij) i, j ∈ P (5.11d0)

θj ≥ θj+1 j ∈ P : j < p (5.11e)

x ∈ Q, z ∈ {0, 1}p×p (5.11f)

The objective function (5.11a) minimizes the weighted average of sorted objective function values,

provided that θj , j ∈ P , are enforced to take on the appropriate values. As seen, constraints (5.11b)-

(5.11c) define a cost functions permutation by placing at each position of π a single cost function

and each cost function at a single position of π. Constraints (5.11d0) relate cost function values with

the values placed in a sorted sequence. Constraint (5.11e) imposes that the sorted values are ordered

non-increasingly.

In the following we denote by Ωz
0 the domain of feasible solutions to formulation F z0 . That is,

Ωz
0 =

{
(x, z, θ) satisfying constraints (5.11b), (5.11c), (5.11d0), (5.11e), (5.11f)

}
.
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Consider now the family of inequalities

Cix ≤ θj +M(1−
∑

k≥j
zik) i, j ∈ P, (11d)

and note that, for z satisfying (5.11c), inequalities (11d) can be rewritten as

Cix ≤ θj +M
∑

k<j

zik i, j ∈ P, (11d’)

since for all i, j ∈ P , 1−∑k≥j zik =
∑

k<j zik.

Remark 5.1- Observe that when variables zi1, i ∈ P are not defined and the permutation is described

by means of inequalities (5.3) and (5.4), then constraints (5.11d0), (11d) and (11d’) must consider

separately the case j = 1 from the case j ∈ P, j > 1. In particular, the case j = 1 reduces to

Cix ≤ θ1 i ∈ P, (5.12)

since the first position has always a value greater than or equal to any cost function.

Let Ωz = {(x, z, θ) satisfying constraints (5.11b), (5.11c), (11d), (5.11e), (5.11f)} denote the domain

obtained from Ωz
0 when constraints (5.11d0) are replaced by constraints (11d).

Property 5.1- Ωz
0 = Ωz.

Proof.

It is clear that Ωz
0 ⊇ Ωz, since for i, j ∈ P given, the right hand side of the associated constraint (11d)

is smaller than or equal to that of constraint (5.11d0).

To prove that Ωz
0 ⊆ Ωz also holds let (x, z, θ) ∈ Ωz

0 and we show that (x, z, θ) satisfies constraints

(11d). For i, j ∈ P given, we distinguish two cases:

• If zij = 1 then (11d) holds for this pair of indices.

• If zij = 0 then by (5.11c), there must exist j′ ∈ P , j′ 6= j, such that zij′ = 1. If j′ < j, then∑
k≥j zik = zij = 0, and (11d) holds for the pair of indices i, j. Otherwise, if j′ > j, then∑
k≥j zik = zij′ = 1 so the right hand side of constraint (11d) for the pair i, j takes the value

θj . Now constraint (5.11d0) for the pair of indices i, j′ implies that Cix ≤ θj′ . By constraints

(5.11e), we also have θj ≥ θj′ and thus (11d) also holds for the pair of indices i, j. �

Remark 5.2- Since Ωz
0 = Ωz, an equivalent formulation for the OWAP is
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F z : V = min
∑

j∈P
ωjθj

s.t. (x, z, θ) ∈ Ωz.

Formulation F z can be preferred to formulation F z0 for solving an OWAP, since it may provide tighter

linear programming bounds, given that, for fractional vectors z satisfying constraints (5.11b)-(5.11c),

constraints (5.11d0) are dominated by constraints (11d).

In the search for optimal solutions to the OWAP any formulation whose optimal solution set coincides

with that of the OWAP can be of interest. Such formulations could be preferred because they use fewer

variables or constraints, or because their feasible domain has a structure which is easier to explore.

Next we present three such formulations. All of them can be seen as relaxations of formulation F z

in the sense that their feasible domains contain Ωz. However, all of them are valid formulations for

the OWAP since they preserve the set of optimal solutions of F z, i.e. their set of optimal solutions

coincides with that of F z. First we prove a property of optimal solutions.

Lemma 5.1- Let (x∗, z∗, θ∗) ∈ Ωz be an optimal solution to F z. Then for each j ∈ P there exists

i ∈ P with θ∗j = Cix∗.

Proof.

Let x̃ be a feasible solution in Q. Then, there exists a positions permutation σ that sorts the cost

functions values in non-increasing order. That is, Cσj x̃ ≥ Cσj+1 x̃,∀j ∈ P \ {p}. Therefore, we can

set z̃ = (zσj ,j)j∈P and θ = (Cσj x̃)j∈P . Since this is true for each x ∈ Q, it is true in particular for x∗. �

From the above lemma, we observe that Ωz is always non empty, provided that Q is non empty.

Let Ωz
R1 = {(x, z, θ) satisfying constraints (5.11b), (5.11c), (11d), (5.11f)}, i.e, Ωz

R1 is the relaxation

of the domain Ωz once the set of constraints (5.11e) is removed. Next, consider the formulation

F zR1 : V = min
∑

j∈P
ωjθj

s.t. (x, z, θ) ∈ Ωz
R1.

Property 5.2- Every optimal solution to F zR1 is also optimal to F z.

Proof.

Since Ωz ⊆ Ωz
R1it is enough to prove that every optimal solution to F zR1 is feasible to F z. Let

(x, z, θ) ∈ Ωz
R1 be an optimal solution to F zR1 and σ a permutation that sorts the cost function values

of x. Let us see that θ verifies constraint (5.11e).
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If i ≥ j then Cσix occupies, in the sorted sequence of objective values, a position greater than

or equal to the j-th. Thus, Constraint (11d) implies that θj ≥ maxi≥j Cσix. Since we are min-

imizing a function which is a linear combination with non-negative weights of the θ variables, it

follows that in any optimal solution θj = maxi≥j Cσix since, otherwise, the value of θj could be de-

creased to maxi≥j Cσix, while keeping all other variables values unchanged and without increasing

the objective function value. Therefore (5.11e) holds since, otherwise, there would exist j′ such that

θj′+1 > θj′ ⇔ maxi≥j′+1C
σix > maxi≥j′ Cσix which is not possible. �

Consider now Ωz
R2 = {(x, z, θ) satisfying constraints (5.11b), (11d), (5.11f)}, i.e, Ωz

R2 is the relaxation

of the domain Ωz
R1 once the set of constraints (5.11c) is removed. Next, consider the formulation

F zR2 : V = min
∑

j∈P
ωjθj

s.t. (x, z, θ) ∈ Ωz
R2.

Property 5.3- Every optimal solution to F zR2 is also optimal to F z.

Proof.

Since Ωz ⊆ Ωz
R2 it is enough to prove that any optimal solution to F zR2 is feasible to F z. Let (x, z, θ)

be an optimal solution to F zR2. If (x, z, θ) is optimal to F zR1 then, by using Property 5.2, (x, z, θ) is

also optimal to F z. Thus, to prove that (x, z, θ) is optimal to F z, it suffices to prove that (x, z, θ)

satisfies inequalities (5.11c).

We prove first that
∑

j∈P zij ≤ 1 for all i ∈ P . Using the notation rij =
∑

k≥j zik, for all i, j ∈ P ,

constraints (11d) can be rewritten as

Cix ≤ θj +M(1− rij)⇔ θj ≥ Cix+M(rij − 1).

Therefore, for all j ∈ P ,

θj = max
i∈P
{Cix+M(rij − 1)}.

Suppose there exists i′ ∈ P with
∑

j∈P zi′j = r > 1, and let j′ = arg max{ri′j = 2 | j ∈ P}. If several

indices exist with
∑

j∈P zij > 1 we select i′ as the one with maximum associated j′.

The criterion for the selection of i′ and the definition of j′ imply that ri′j′ = 2 and rij′ ≤ 1 for all

i 6= i′.

Therefore, since M is a strict upper bound on the value of any cost function, the actual value of θj′

is determined by cost function i′, and we have

θj′ = Ci
′
x+M(ri′j′ − 1) = Ci

′
x+M.
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Also, ri′j ≥ 2 for all j < j′. Thus, θj ≥ Ci
′
x + M for all j < j′. Furthermore, rij ≤ 1 for all i ∈ P ,

j > j′, implying that θj < M for all j > j′.

Observe, on the other hand, that
∑

j∈P zi′j > 1 implies that there exists some i′′ ∈ P , i′′ 6= i′ with∑
j∈P zi′′j = 0. (Otherwise, adding up all constraints (5.11b) we get a contradiction.)

Let us now define the solution (x, z, θ) ∈ Ωz
R2 with the same x components as above, where

zij =





0 if i = i′, and j = j′

1 if i = i′′, and j = j′

zij otherwise.

It is clear that
∑

j∈P zi′j = r − 1, and,
∑

k≥j zi′k = ri′j − 1, for all j ≤ j′. It is also clear that∑
j∈P zi′′j = 1, and,

∑
k≥j zi′′k = 1, for all j ≤ j′, and 0 for j > j′. For all other i 6= i′, i′′, it holds

that
∑

j∈P zi′j =
∑

j∈P zi′j . Since
∑

k≥j′ zik ≤ 1, for all i ∈ P we now have

θj′ = max
i∈P
{Cix+M(

∑

k≥j′
z̄ik − 1)} < M ≤ Ci′x+M = θj′ ,

and, θj ≤ θj , for all j 6= j′.

Therefore, since we are minimizing a linear function with non-negative weights of the θ variables, the

objective function value of (x, z, θ) is smaller than that of (x, z, θ), contradicting the optimality of

(x, z, θ). Hence,
∑

j∈P zij ≤ 1 for all i ∈ P .

Let us, finally, see that
∑

j∈P zij 6= 0 for all i ∈ P . Assume on the contrary that
∑

j∈P zi′j = 0 for some

i′ ∈ P . Then, by adding up all constraints (5.11b) we get p =
∑

j∈P
(∑

i∈P zij
)

=
∑

i∈P
(∑

j∈P zij
)

=
∑

i∈P,i 6=i′
(∑

j∈P zij
)
≤ p− 1, which is impossible. �

We now consider the inequality version of constraints (5.11b)

∑

i∈P
zij ≤ 1 j ∈ P. (5.11b≤)

Remark 5.3- Observe that if we replace inequalities (5.11b) by (5.11b≤), constraints (11d) are no

longer equivalent to (11d’).

Let us define the domain Ωz
R3 = {(x, z, θ) satisfying constraints (5.11b≤), (11d’), (5.11f)}.

It is clear that Ωz ⊆ Ωz
R3. However, as we next see, both sets are equivalent for the minimization of

the objective (5.11a) in the sense that they define the same set of optimal solutions. Consider the
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problem

F zR3 V = min
∑

j∈P
ωjθj

s.t. (x, z, θ) ∈ Ωz
R3.

Lemma 5.2- Ωz
R2 ⊆ Ωz

R3.

Proof.

We prove that any feasible solution (x, z, θ) ∈ Ωz
R2 verifies that (x, z, θ) ∈ Ωz

R3. To prove this, it is

only necessary to prove that (x, z, θ) verifies (11d’). From (11d) we have that (x, z, θ) verifies

θj ≥ max
i
{Cix−M(1−

∑

k≥j
zik)}, j ∈ P (5.17)

and for (11d’), we have to prove that (x, z, θ) also verifies

θj ≥ max
i
{Cix−M(

∑

k<j

zik)}, j ∈ P. (5.18)

We distinguish the following cases:

• If
∑

k≥j zi′k = r > 1 for some i′ then

θj ≥ Ci
′
x+ (r − 1)M ≥ max

i
{Cix−M(

∑

k<j

zik)}, (5.19)

and the result holds.

• If
∑

k≥j zik = 1 for all i ∈ P then θj ≥ maxi{Cix} ≥ maxi{Cix−M(
∑

k<j zik)} and the results

is also proven.

• If
∑

k≥j zi′k = 0 for some i′ then we distinguish to subcases. If
∑

k<j zi′k ≥ 1 then from (5.17)

we easily get that (5.18) holds. Otherwise,
∑

k∈P zi′k = 0 and by (5.11b) it does exist an i′′ such

that
∑

k≥j zi′′k = r > 1. Thus, by using (5.19), equation (5.18) also holds.

�

Property 5.4- F z and F zR3 have the same set of optimal solutions.

Proof.

Since Ωz ⊂ Ωz
R2 and Ωz

R2 ⊂ Ωz
R3 then Ωz ⊂ Ωz

R3 and it is enough to prove that any optimal solution

to F zR3 is feasible to F z. Since the set of optimal solutions of F z and F zR2 coincide, we only need to

prove that any optimal solution of F zR3 is feasible for F zR2.
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To see that any optimal solution (x, z, θ) to F zR3 is feasible to F zR2, it is enough to see that

(x, z, θ) ∈ Ωz
R2, i.e. it satisfies inequalities (5.11b) and (11d).

By a similar argument to the one applied in Property 5.3, any optimal solution (x, z, θ) of F zR3 satisfies∑
j∈P zij = 1. Therefore, satisfying inequality (11d’) implies inequality (11d).

Now (5.11b) follows directly from (5.11c) and (5.11b≤) since, otherwise, the sum of all constraints

(5.11b≤) would not coincide with the sum of all constraints (5.11c).

To see that (x, z, θ) also satisfies (5.11b), let us suppose w.l.o.g. that there exists exactly one j′ ∈ P
such that

∑
i∈P zij′ = 0. Then, by adding up all constraints (5.11b≤) we have p−1 ≥∑j∈P

∑
i∈P zij =∑

i∈P
∑

j∈P zij . Therefore, there must exist i′ ∈ P such that
∑

j∈P zi′j = 0. Thus, we observe that

we can construct (x, z̄, θ̄), another optimal solution to F zR3, setting z̄ij = zij , if i 6= i′ and z̄i′k = 1 for

any k. Clearly, (x, z̄, θ̄) is a feasible solution to F zR3 for some suitable θ̄, satisfying in addition

Ci
′
x ≤ θ̄k +M

∑

`<k

zi′`, ∀k ∈ P.

Therefore, this inequality allows for any k ∈ P that θ̄k assumes a value smaller than or equal to θk,

the one associated with the solution (x, z, θ), and therefore its objective value is at least as good as

the previous one. Hence, (x, z̄, θ̄) is also optimal. In addition, values z̄ satisfy by construction that∑
i∈P z̄ij′ =

∑
i 6=i′ zij′ + z̄i′j′ = 0 + 1 = 1. Therefore (5.11b) holds.

�

We can now relate the domains of the formulations considered so far.

Proposition 5.1- The following relationships hold

Ωz
0 ≡ Ωz ( Ωz

R1 ( Ωz
R2 ( Ωz

R3

Proof.

• Ωz ( Ωz
R1: Every feasible solution in Ωz verifies inequalities of Ωz

R1. However, a feasible solution

in Ωz
R1 with θj ≤ θj+1 for some j ∈ P is not feasible in Ωz.

• Ωz
R1 ( Ωz

R2: Every feasible solution in Ωz
R1 verifies the inequalities of Ωz

R2. However, a feasible

solution in Ωz
R2 where for some i ∈ P , zij = 1, for all j ∈ P is not feasible in Ωz

R1.

• Ωz
R2 ( Ωz

R3: Every feasible solution in Ωz
R2 verifies the inequalities of Ωz

R3. However, a feasible

solution in Ωz
R3 with zij = 0, i, j ∈ P is not feasible in Ωz

R2.

�
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Proposition 5.2- The dimension of Ωz
0 is p2 − p+ 1 + dim(Q).

Proof.

Suppose Q ⊆ Rn. Then, Ωz
0 is embedded in a space of dimension p2 + p+n. Furthermore, since there

are 2p− 1 linearly independent equations in (5.11b) and (5.11c) and the dimension of Q does not de-

pend on relations (5.11b)-(5.11e), then the dimension of (5.11b)-(5.11f) is at most p2−p+1+dim(Q).

Denote by q = dim(Q) and by ρ = p2 − 2p+ 1. Next, we show that there exist q + ρ+ p+ 1 ( equal

to p2 − p + 2 + dim(Q)) affinely independent points in Ωz
0 and consequently, the dimension of Ωz

0 is

p2 − p+ 1 + dim(Q).

Let v = (vj)j∈P where vj = M + p − j + 1 for M > 0 and sufficiently large. Denoting by ej ∈ Rp

the j-th vector of the canonical basis in Rp and 0 < ε < 1, let θj = {v + εej, j ∈ P}. Moreover, let

θp+1 = (M, . . . ,M)′. We observe that the vectors θj , j = 1, . . . , p + 1 are affinely independent and

each one of them satisfies inequalities (5.11e).

Next, since dim(Q) = q, we take q + 1 arbitrary affinely independent vectors xi ∈ Q, i = 1, . . . , q + 1.

Furthermore, let zk ∈ {0, 1}p2
k = 1, . . . , ρ + 1, be ρ + 1 affinely independent vectors satisfying

(5.11b) and (5.11c). Note that the latter is always possible since there are p2 degrees of freedom for

the coordinates of z variables and only 2p equations being one of them linearly dependent of the others.

Now, we prove that any point of the form ((xi)′, (zk)′, (θl)′)′ i = 1, . . . , q + 1, k = 1, . . . , ρ + 1, l =

1, . . . , p + 1 satisfies (5.11b)-(5.11e). Indeed, by construction the first block of coordinates defines a

point in Q, the second block satisfies (5.11b) and (5.11c) and the third one (5.11e). Thus, it remains

to prove that such a generic point also satisfies (11d) as follows:

Cixi ≤M ≤M + p− j + 1 ≤ θlj +M(1− zkij), ∀ i, j.

Consider the q + ρ+ p points defined as the column vectors of the matrix A = (A1|A2|A3) where

A1 =




x1 x2 . . . xq

z2 z1 . . . z1

θ2 θ1 . . . θ1


 , A2 =




x1 x1 . . . x1

z1 z2 . . . zρ

θ2 θ1 . . . θ1


 , A3 =




x1 x1 x1 . . . x1

z1 z3 z1 . . . z1

θ1 θ2 θ3 . . . θp


 .

By construction, each submatrix Ai has its column vectors linearly independent from one another

since the i-th block is formed by linearly independent vectors. Next, clearly each column vector of A1

is linearly independent from those of A2 and A3 and each column vector of A2 is linearly independent

from those of A3. Therefore, the rank of A is q + ρ+ p = q + p2 − p+ 1.

Finally, the column vectors of A are linearly independent and feasible points of (5.11b)-(5.11e). In
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addition, we can easily construct another feasible point, different from those considered previously

and affinely independent from all of them, namely ((xq+1)′, (zρ+1)′, (θp+1)′)′ . Hence the dimension of

Ωz is q + ρ+ p = q + p2 − p+ 1.

�

Proposition 5.3- The following inequalities define facets in Ωz
0:

Cix ≤ θp +M(1− zip) i ∈ P (5.20)

θj ≥ θj+1 j ∈ P : j < p (5.21)

Proof.

(5.20) is a facet defining inequality:

We prove that for each i′ ∈ P there exist dim(Ωz
0) = p2 − p+ dim(Q) + 1 affinely independent points

of Ωz
0 that verify Ci

′
x = θp +M(1− zi′p).

As in the proof of the above proposition, we take q + 1 arbitrary affinely independent points xi,

i = 1, . . . , q + 1 in Q. Furthermore, let zk ∈ {0, 1}p2
k = 1, . . . , ρ, be ρ affinely independent points

(recall that ρ := p2 − 2p + 1) satisfying (5.11b), (5.11c) and zi′p = 1. Note that the latter is always

possible since there are p2 degrees of freedom for the coordinates of z variables and 2p non redundant

equations (2p− 1 as in the case above and zi′p = 1).

Let vl = (vlj)j∈P where vlj = Ci
′
xl + M + p − j if j < p and vlp = Ci

′
xl for M > 0 and sufficiently

large. Denoting by ej ∈ Rp the j-th vector of the canonical basis in Rp and 0 < ε < 1, let

θ̄lj = {vl + εej, j ∈ P} if j < p and θ̄lp = vl, θ̄l,p+1 = (Ci
′
xl + M, . . . , Ci

′
xl + M,Ci

′
xl)′. We

observe that for each l fixed, the vectors θ̄lj j = 1, . . . , p+ 1 are affinely independent and each one of

them satisfies inequalities (5.11e).

Now, we prove that any point of the form ((xl)′, (zk)′, (θlj)′)′ k = 1, . . . , ρ, j = 1, . . . , p + 1 satisfies

(5.11b)-(5.11e) and zki′p = 1. Indeed, by construction the first block of coordinates defines a point in

Q, the second block satisfies (5.11b), (5.11c) and zi′p = 1, and the third one (5.11e). Thus, it remains

to prove that such a generic point also satisfies (11d). We distinguish two cases:

• If j < p then

Cixl ≤ Ci′xl +M + p− j + 1 +M = Ci
′
xl +M + p− j +M(1− zkij) = θ̄lj +M(1− zkij), ∀i.

• If j = p we have that

Cixl ≤ Ci′xl +M = Ci
′
xl +M(1− zkip), ∀ i 6= i′,

Ci
′
xl ≤ Ci′xl = Ci

′
xl +M(1− zki′p), otherwise. (Recall that zki′p = 1.)
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Consider the q + ρ− 1 + p points defined as the column vectors of the matrix Ā = (Ā1|Ā2|Ā3) where

Ā1 =




x1 x2 . . . xq

z2 z1 . . . z1

θ̄11 θ̄21 . . . θ̄q1


 , Ā2 =




x1 x1 . . . x1

z1 z2 . . . zρ−1

θ̄12 θ̄11 . . . θ̄11


 , Ā3 =




x1 x1 x1 . . . x1

z1 z3 z1 . . . z1

θ̄11 θ̄12 θ̄13 . . . θ̄1p


 .

By construction, each submatrix Āi has its column vectors linearly independent from one another

since the i-th block is formed by linearly independent vectors. Next, clearly each column vector of Ā1

is linearly independent from those of Ā2 and Ā3 and each column vector of Ā2 is linearly independent

from those of Ā3. Therefore, the rank of A is q + ρ− 1 + p = q + p2 − p.

Finally, the column vectors of A together with the point ((xq+1)′, (zρ+1)′, (θq+1,j)′)′ are feasible points

of (5.11b)-(5.11e) that satisfy Ci
′
x = θp +M(1− zi′p); and this last vector is clearly affinely indepen-

dent from the those in Ā, therefore (5.20) is a facet defining inequality for Ωz.

(5.21) is a facet defining inequality:

In order to prove that for each j′ ∈ P \ {p} there exist dim(Ωz
0) = p2 − p + dim(Q) + 1 affinely

independent points of Ωz
0 that verify θj′ = θj′+1, we can proceed analogously as before considering

v = (vj)
p
j=1, where vj = M + p − j + 1 if j 6= j′ + 1 and vj′+1 = M + p − j′ + 2 and the points

θ̂j = {v + ε(ej + ej
′+1), j ∈ P \ {p}}. In addition, we take θ̂p = (M, . . . ,M)′. We observe that the

vectors θ̂j j = 1, . . . , p are affinely independent and each one of them satisfies θ̂jj′ = θ̂jj′+1.

Any point of the form ((xi)′, (zk)′, (θ̂l)′)′ i = 1, . . . , q + 1, k = 1, . . . , ρ + 1, l = 1, . . . , p satisfies

(5.11b)-(5.11e) and θ̂lj′ = θ̂lj′+1.

Consider the q + ρ+ p− 1 points defined as the column vectors of the matrix Â = (Â1|Â2|Â3) where

Â1 =




x1 x2 . . . xq

z2 z1 . . . z1

θ̂2 θ̂1 . . . θ̂1


 , Â2 =




x1 x1 . . . x1

z1 z2 . . . zρ

θ̂2 θ̂1 . . . θ̂1


 , Â3 =




x1 x1 x1 . . . x1

z1 z3 z1 . . . z1

θ̂1 θ̂2 θ̂3 . . . θ̂p−1


 .

By construction, each submatrix Âi has its column vectors linearly independent from one another

since the i-th block is formed by linearly independent vectors. Next, clearly each column vector of Â1

is linearly independent from those of Â2 and Â3 and each column vector of Â2 is linearly independent

from those of Â3. Therefore, the rank of Â is q + ρ+ p− 1 = q + p2 − p.

Finally, the column vectors of Â are linearly independent and are also feasible points of (5.11b)-

(5.11e) that satisfy θj′ = θj′+1. Next, we can easily add a new feasible point, for instance

((xq+1)′, (zρ+1)′, (θ̂p)′)′ that also satisfies θj′ = θj′+1 and that is clearly affinely independent from

the those in Â. Hence, (5.21) is a facet defining inequality for Ωz.

�

Table 5.6 summarizes the previous proposed formulations. Formulas included on each formulation

have been checked (X) whereas those not appearing are marked with a dot (.).
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F z0 F z F zR1 F zR2 F zR3

min
∑

j∈P
ωjθj X X X X X

∑

i∈P
zij = 1, j ∈ P X X X X .

∑

j∈P
zij = 1, i ∈ P X X X . .

∑

i∈P
zij ≤ 1, j ∈ P . . . . X

Cix ≤ θj +M(1− zij), i, j ∈ P X . . . .

Cix ≤ θj +M(1−
∑

k≥j
zik), i, j ∈ P . X X X .

Cix ≤ θj +M
∑

k<j

zik, i, j ∈ P . . . . X

θj ≥ θj+1, j ∈ P : j < p X X . . .

x ∈ Q, z ∈ {0, 1}p×p X X X X X

Table 5.6: Summary of the proposed formulations for the OWAP.

5.3.3 OWAP formulations with variables for the values of cost functions occupying

specific sorted positions

Another OWAP formulation can be obtained by defining an additional set of continuous variables

y = (yij)i,j∈P ∈ Rp×p, where yij denotes the value of cost function i if it occupies the j-th position in

the ordering. The formulation is as follows:

F zy0 : V = min
∑

j∈P
ωj
∑

i∈P
yij (5.22a)

s.t.
∑

i∈P
zij = 1 j ∈ P (5.22b)

∑

j∈P
zij = 1 i ∈ P (5.22c)

Cix ≤
∑

i′∈P
yi′j +M(1− zij) i, j ∈ P (5.22d0)

∑

i∈P
yij ≥

∑

i∈P
yij+1 j ∈ P : j < p (5.22e)

x ∈ Q, z ∈ {0, 1}p×p (5.22f)

Next we study some properties of formulation F zy0 and relate it to the OWAP formulations presented

above. Denote by Ωzy
0 the domain of Problem F zy0 . Consider first, for any M > 0 sufficiently large,

the following set of inequalities
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yij ≤Mzij , i, j ∈ P. (5.22g)

Property 5.5- There is an optimal solution to F zy0 for which constraints (5.22g) hold.

Proof.

Observe that constraints (5.22d0) imply that
∑

k∈P ykj ≥ Cix for all i, j ∈ P with zij = 1. Since

constraints (5.22b) indicate that for j ∈ P fixed there exists a unique index, say i(j) with zi(j),j = 1,

the above condition reduces to
∑

k∈P ykj ≥ Ci(j)x, for all j ∈ P . Because of the non-negativity of the

cost coefficients, we can thus deduce that an optimal solution exists to F zy0 in which

∑

k∈P
ykj = Ci(j)x, for all j ∈ P. (5.23)

Let now (x, y, z) ∈ Ωzy
0 be such an optimal solution, and suppose it violates some constraint (5.22g).

That is, there exist i′, j′ ∈ P with yi′j′ > Mzi′j′ . Hence,
∑

i∈P yij′ > Mzi′j′ , contradicting (5.23)

unless zi′j′ = 0. In other words, i(j′) 6= i′.

Consider now the solution (x, y, z), with the same x and z values as before where y is defined as

follows:

yij =





0 if i = i′, and j = j′

yi(j′),j′ + yi′j′ if i = i(j′), and j = j′

yij otherwise.

Indeed (x, y, z) ∈ Ωzy
0 , as it is immediate to check that it satisfies constraints (5.22b)–(5.22f). Fur-

thermore, by construction, it satisfies the constraint (5.22g) associated with i′, j′. Finally, note that

it is optimal to F zy0 , since
∑

i∈P yij =
∑

i∈P yij , for all j ∈ P . �

Note that if there is j ∈ P with ωj = 0 then it is possible to have optimal solutions to F zy0 that do

not satisfy constraints (5.22g). However, because of Property 5.5, constraints (5.22g) can be useful to

restrict the domain where optimal solutions are sought. Let

ΩGS′ = {(x, y, z, θ) satisfying constraints (5.22b), (5.22c), (5.22d0), (5.22e), (5.22f), (5.22g)}.
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Then, a different formulation that also ensures to obtain an optimal solutions to F zy0 is:

FGS
′

V = min
∑

j∈P
ωjθj

s.t. (x, y, z, θ) ∈ ΩGS′ .

Formulation FGS
′

is closely related to the formulation used in Galand and Spanjaard (2012) for

modeling the minimum cost spanning tree OWAP. In their formulation they operate on a domain

which is like ΩGS′ except that constraints (5.22d0) have been substituted by constraints

∑

j∈P
yij = Cix i ∈ P. (5.22h)

Let ΩGS = {(x, y, z, θ) satisfying constraints (5.22b), (5.22c), (5.22e), (5.22f), (5.22g), (5.22h)}, de-

note the domain used in Galand and Spanjaard (2012). Then, it is straightforward to conclude the

following.

Property 5.6- The domains ΩGS and ΩGS′ satisfy ΩGS ⊆ ΩGS′ . Moreover, if (x∗, y∗, z∗) is an

optimal solution of FGS
′

then it is also optimal for FGS and conversely.

We can also relate F zy0 with F z0 and its variations. In particular, because of the relationship

θj =
∑

i∈P
yij , j ∈ P. (5.25)

we have:

Property 5.7- For each optimal solution to F zy0 , (x∗, y∗, z∗, θ∗), there exists (x∗, z∗, θ∗) optimal

solution for F z0 and conversely. Moreover,
∑

j∈P wj
∑

i∈P y
∗
ij =

∑
j∈P wjθ

∗
j .

By above result, we can derive variations of F zy similar to the ones obtained for F z with similar

properties. These constructions are straightforward and therefore are left for the interested readers.

Table 5.7 summarizes the formulations proposed in this subsection that can be derived from those of

Subsection 5.3.2. Constraints included in each formulation have been checked (X) whereas those not

appearing are marked with a dot (.).

5.3.4 Using variables defining relative positions of sorted cost function values

We close this section with another formulation which uses decision variables defining the relative

positions of the sorted cost function values. As we have seen in Section 5.3.1 it is possible to describe

permutations with variables representing the relative positions of the sorted values. Next we use such

variables to obtain formulations for the OWAP.
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F zy0 F zy F zyR1 F zyR2 F zyR3

min
∑

j∈P
ωj
∑

i∈P
yij X X X X X

∑

i∈P
zij = 1, j ∈ P X X X X .

∑

j∈P
zij = 1, i ∈ P X X X . .

∑

i∈P
zij ≤ 1, j ∈ P . . . . X

Cix ≤
∑

i′∈P
yi′j +M(1− zij), i, j ∈ P X . . . .

Cix ≤
∑

i′∈P
yi′j +M(1−

∑

k≥j
zik), i, j ∈ P . X X X .

Cix ≤
∑

i′∈P
yi′j +M

∑

k<j

zik, i, j ∈ P . . . . X

∑

i∈P
yij ≥

∑

i∈P
yij+1, j ∈ P : j < p X X . . .

x ∈ Q, z ∈ {0, 1}p×p X X X X X

Table 5.7: Summary of the proposed formulations for the OWAP.

For i, j ∈ P , consider the binary variable sij , i, j ∈ P as

sij =





1 if cost function i is placed before position j in the ordering,

0 otherwise.

As we have seen in Section 5.3.1, for all i, j ∈ P , sij = 1 −∑k≥j zik, i, j ∈ P . Therefore, variables z

and s are related by means of

zij =




sij+1 − sij i ∈ P, j = 1, ..., p− 1

1− sij i ∈ P, j = p
(5.26)
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Thus, we can reformulate the OWAP in the new space of the s variables as

F s : V = min
∑

j∈P
ωjθj (5.27a)

s.t.
∑

i∈P
sij = j − 1 j ∈ P (5.27b)

sij+1 − sij ≥ 0 i, j ∈ P : j < p (5.27c)

Cix ≤ θj +Msij i, j ∈ P (5.27d)

θj ≥ θj+1 j ∈ P : j < p (5.27e)

x ∈ Q, s ∈ {0, 1}p×p (5.27f)

Since F s is obtained from F z by a change of variable and there is a one to one correspondence between

feasible solutions, we can state the following result. Let Ωs be the feasible region of Problem F s.

Property 5.8- For each solution (x, s, θ) ∈ Ωs there exists (x, z, θ) ∈ Ωz with equal objective value

and conversely.

By analogy with the notation used in Section 5.3.2 let us define the following domains and problems

related to F s:

F sR1 V = min
∑

j∈P
ωjθj

s.t. (x, s, θ) ∈ Ωs
R1.

with Ωs
R1 = {(x, s, θ) satisfying constraints (5.27b), (5.27c), (5.27d), (5.27f)}.

F sR2 V = min
∑

j∈P
ωjθj

s.t. (x, s, θ) ∈ Ωs
R2.

with Ωs
R2 = {(x, s, θ) satisfying constraints (5.27b), (5.27d), (5.27f)}.

F zR3 V = min
∑

j∈P
ωjθj

s.t. (x, z, θ) ∈ Ωz
R3.
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with Ωs
R3 = {(x, s, θ) satisfying constraints (5.27b≤), (5.27d), (5.27f)}, where (5.27b≤) are the

inequality version of constraints (5.27b). That is,

∑

i∈P
sij ≤ j − 1 j ∈ P. (5.27b≤)

Property 5.9- The following relationships hold.

1. Every optimal solution to F sR1 is optimal to F s and conversely.

2. Every optimal solution to F sR2 is optimal to F s and conversely.

3. Every optimal solution to F sR3 is optimal to F s and conversely.

4. Ωs ( Ωs
R1 ( Ωs

R2 ( Ωs
R3.

Proof.

The proofs of the above statements follow directly from the relationship that links variables z and

s, namely (5.9) and (5.10). Specifically, statement 1 follows from Property 5.2, statement 2 from

Property 5.3, statement 3 from Property 5.4 and statement 4 from Property 5.1.

�

5.3.5 Formulations summary

Table 5.8 summarizes the previous formulations in this subsection. Constraints included in each

formulation have been checked (X) whereas those not appearing are marked with a dot (.).

F s F sR1 F sR2 F sR3

min
∑

j∈P
ωjθj X X X X

∑

i∈P
sij = j − 1, j ∈ P X X X .

sij+1 − sij ≥ 0, i, j ∈ P : j < p X X . .∑

i∈P
sij ≤ j − 1, j ∈ P . . . X

Cix ≤ θj +Msij , i, j ∈ P X X X X
θj ≥ θj+1, j ∈ P : j < p X . . .

x ∈ Q, z ∈ {0, 1}p×p X X X X

Table 5.8: Summary of the proposed formulations for the OWAP.
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5.4 Valid inequalities and reinforcements for the OWAP formulation

5.4.1 Valid inequalities for the (OWAP) formulation

In this section we derive different valid inequalities for all the formulations presented in previous

sections. For the sake of simplicity, we present all inequalities for the formulations developed in

Subsection 5.3.2. However, all these inequalities can be easily adapted to the remaining formulations

just by means of the substitutions explained by Equations (5.10) and (5.25).

• Constraints related to bounds of cost function values. Let li (ui) denote the minimum (maximum)

objective value relative to cost function i ∈ P , respectively. It is clear that li (ui) are valid lower

(upper) bounds on the value of objective i, independently of the position of cost function i in

the ordering. Therefore we obtain the following two sets of constraints which are valid for the

OWAP:

li ≤ Cix ≤ ui i ∈ P (5.31)

• Constraints related to bounds of values in specific positions. Let lπj (uπj ) denote the j-th lowest

(largest) value of li (ui). Then, lπj (uπj ) is a valid lower (upper) bound of the objective function

sorted in position j, that is

lπj ≤ θj ≤ uπj j ∈ P (5.32)

• Constraints related to bounds of cost function values in specific positions. Let lij and uij denote

valid lower and upper bounds on the value of objective i if it occupies position j, respectively.

Then, lower and upper bounds on the value of objective i are

min
j∈P

lij ≤ Cix ≤ max
j∈P

uij i ∈ P (5.33)

Analogously to (5.32), we can sort the j-th lowest (largest) value of minj∈P lij obtaining the

following inequality

min
i∈P

lij ≤ θj ≤ max
i∈P

uij j ∈ P (5.34)

• There are also different bounds on the value of the cost function i and the value of the cost

function sorted in position j:

∑

j∈P
max{li, lπj }zij ≤ Cix ≤

∑

j∈P
min{ui, uπj }zij i ∈ P (5.35)
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∑

i∈P
max{li, lπj }zij ≤ θj ≤

∑

i∈P
min{ui, uπj }zij j ∈ P (5.36)

• The inclusion of the following constraint also allows to consider, in the original formulations in

Section 5.3, weights ω ∈ R that, consequently, could take both negative and positive values.

θj ≤ max
i∈P
{uij , Cix+M(1− zij)} i, j ∈ P (5.37)

• Constraints related to positions in the ordering. Constraints (5.38) impose that the position

values are ordered in non-increasing order.

θj ≥ θj+1 j ∈ P\{p} (5.38)

• Constraints related to subsets of cost functions. Next, we observe that for any subset I ⊆ P , of

size k = 1, ..., p

∑

i∈I
Cix ≤

k∑

j=1

θj I ⊆ P (5.39)

In particular, we consider the cases when I = {i}, I = {i, i′ ∈ P}, I = P \ {i} and I = P .

5.4.2 Valid inequalities for the (OWAP2) formulation

Note first that all previous inequalities from Section 5.4.1 can be applied to the two-index formulation of

the OWAP substituting θj =
∑

i∈P yij . Additionally, the following inequalities provide a reinforcement

to the formulations using y variables:

• The following inequality combined with (5.22e) improves considerably the LP relaxation of the

OWAP

∑

k∈P
yik = Cix i ∈ P (5.40)

• Constraint (5.22e) can be disaggregated by j ∈ P as:

yij ≤
∑

i′∈P
yi′j + min{ui, uπj }(1−

∑

k≥j
zik) i, j ∈ P (5.41)

• We can also establish a lower bound on the value of cost function i ∈ P if it is ordered in position

j ∈ P by relating the x, y and z variables as follows:

Cix ≤ yij + uπj (1− zij) i, j ∈ P (5.42)
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Observe that, for i, j fixed, the above constraint imposes a lower bound on the value yij only

when cost function i ∈ P is ordered in position j ∈ P , and becomes inactive otherwise.

• We can also relate the values of two different cost functions between them, depending on their

positions. In particular,

∑

k≥j+1

yik ≤ yi′j + ui(1− zi′j − zij) i, i′, j ∈ P, i 6= i′, j 6= p (5.43)

For i, i’, j fixed, constraint (5.43) establishes that when cost function i′ occupies position j, its

value cannot be smaller than that of cost function i, provided that cost function i is ordered after

j. Observe that the constraint becomes inactive when i is ordered before j or is in j position

(since in this case
∑

k≥j+1

yik = 0) and when i′ does not occupy position j.

• A better effectiveness of the previous inequalities can be obtained by means of

yij+1 ≤ yi′j + (1− zij+1)uij+1 + (1− zi′j)ui′j i, i′, j ∈ P, i 6= i′, j 6= p (5.44)

which can be further reinforced to

yij+1 ≤ yi′j + (1− zij+1) min{ui, uπj+1}+ (1− zi′j) min{ui′ , uπj } i, i′, j ∈ P, i 6= i′, j 6= p.

(5.45)

5.4.3 Lower and upper bounds: Elimination tests

Several of the inequalities presented above use valid lower and upper bounds on the values of the

different cost functions, li and ui, respectively. As mentioned above, the minimum and maximum

objective value with respect to each cost function provide such bounds. However, tighter bounds can

be very useful for obtaining tighter constraints. One possibility is to use lower and upper bounds on

the value of each objective for the different positions in the ordering. In particular, if Lij and Uij

denote valid lower and upper bounds on the value of objective i if it occupies position j, respectively,

then lower and upper bounds on the value of objective i are li = minj∈P Lij and ui = maxj∈P Uij ,

respectively. For i, j ∈ P given, Lij and Uij can be obtained in different ways. One alternative is to

solve the linear programming (LP) relaxation of the formulation, both for the minimization and the

maximization of cost function i, with the additional constraint that it occupies position j. In this case

Lij (Uij) is the optimal value of the minimization (maximization) OWAP problem in which we fix the

ordering variable at value 1, i.e. zij = 1.

Next we present simple tests which can help to eliminate some variables by fixing their values. Broadly

speaking these tests compare the value of a lower bound associated with the decision of setting (or

not setting) objective i at position j with the value of a known upper bound. If the value of the

lower bound exceeds the value of the upper bound, the associated decision variable can be fixed.

Any feasible solution yields a valid upper bound, which corresponds to its value with respect to the

objective function. In the following we use U to denote the value of the upper bound corresponding to
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the best-known solution. We also denote by L0
ij the optimal value of the minimization OWAP problem

in which we fix the ordering variable at value 0, i.e. zij = 0. Then for each i ∈ P , j ∈ P we have

• If Lij > U then zij = 0 (no optimal solution will have objective i in position j).

• If L0
ij > U then zij = 1 (no optimal solution will not have objective i in position j).

5.5 The OWA problem on shortest paths and minimum cost perfect

matchings

This section presents the formulations of the combinatorial objects that we use in our computational

experiments, namely shortest paths and minimum cost perfect matchings. In order to test our results

we have chosen two of the most well-known formulations for these two problems. These formulations

have to be combined with those presented in previous sections to provide valid OWAP models for the

Shortest Path Problem (SPP) (see, e.g., Cherkassky et al., 1996; Ramaswamy et al., 2005) and the

Perfect Matching Problem (PMP) (see, e.g., Edmonds, 1965; Grötschel and Holland, 1985). All the

details are given in what follows.

5.5.1 The shortest path problem

We consider now the OWAP when Q is the feasible set of the SPP (see, e.g., Cherkassky et al., 1996).

Let G = (V,E) be an undirected graph with set of vertices V , |V | = n and set of edges E, |E| = m.

In addition to the sets of variables required to model the order of the p cost functions ranked by

non-increasing criterion values, we will need additional variables used to model the structure of the

combinatorial object (shortest path in this case). For modeling the shortest path between two selected

vertices, u1, un ∈ V we use a flow-based formulation, in which binary design variables x are related to

continuous flow variables ϕ. In particular, for each e = (u, v) ∈ E let

xe ≡ xuv =





1 edge e ≡ (u, v) is in the shortest path,

0 otherwise.

As usual, paths between u1, un ∈ V can be obtained by identifying the arcs that are used when one

unit of flow is sent from u1 to un. For the flow variables we consider a directed network, with set of

vertices V and set of arcs A which contains two arcs, one in each direction, associated with each edge

of E. For each (u, v) ∈ A we define the decision variables ϕuv which represents the amount of flow
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through arc (u, v). Then a characterization of the domain of feasible solutions (Q) for the SPP is:

∑

(u,v)∈A
ϕuv −

∑

(u,v)∈A
ϕvu = 1 u = u1 (5.46a)

∑

(u,v)∈A
ϕuv −

∑

(u,v)∈A
ϕvu = −1 u = un (5.46b)

∑

(u,v)∈A
ϕuv −

∑

(u,v)∈A
ϕvu = 0 u ∈ V \ {u1, un} (5.46c)

ϕuv + ϕvu ≤ xuv (u, v) ∈ E (5.46d)

ϕuv ≥ 0 (u, v) ∈ A (5.46e)

xe ∈ {0, 1} e ∈ E (5.46f)

Constraints (5.46a)–(5.46c) guarantee flow conservation at any vertex of the network. Constraints

(5.46d) relate the ϕ and x variables, by imposing that all the edges used for sending flow in some

direction are activated.

5.5.2 The perfect matching problem

We consider now the OWAP when Q is the feasible set of the PMP (see, e.g., Edmonds, 1965). It is

well known that the PMP is polynomially solvable by using the Blossom algorithm (Edmonds, 1965).

However, to the best of our knowledge it is not known how such an algorithm could be used for solving

an OWAP in which Q is given by the set of perfect matchings on a given graph. Indeed, this can be

done by using any of the OWAP formulations we have introduced in the previous sections.

Let G = (V,E) be an undirected graph with set of vertices V , |V | = n and set of edges E, |E| = m.

In addition to the sets of variables required to model the order of the p cost functions ranked by

non-increasing criterion values, we will need additional variables used to model the structure of the

combinatorial object (perfect matching in this case). For modeling the perfect matching we use binary

design variables x associated with the edges of the graph. In particular, for each e = (u, v) ∈ E let

xe ≡ xuv =





1 edge e ≡ (u, v) is in the matching,

0 otherwise.

We introduce some additional notation. For S ⊂ V , E(S) = {e = (u, v) ∈ E | u, v ∈ S} and

δ(S) = {e = (u, v) ∈ E | u ∈ S, v /∈ S} . When S is a singleton, i.e. S = {u} with u ∈ V we simply
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write δ({u}) = δ(u). Then, a characterization of the domain of feasible solutions for the PMP (Q) is:

∑

e∈δ(u)

xe = 1 u ∈ V (5.47a)

xe ∈ {0, 1} e ∈ E (5.47b)

Constraints (5.47a) guarantee that in the solution the degree of every vertex is one.

5.5.3 Complexity

In this section we prove that the OWAP combined with the PMP (OWAPMP) is NP-complete even

on bipartite graphs. The reader may note that a similar argument that the one presented can be used

to prove the NP-completeness of the OWAP when Q is the SPP.

Given a graph G = (V,E) with weights (c1
e, c

2
e) for each e ∈ E, ω−weights ω1, ω2 ≥ 0 and a constant

K, the decision version of the OWAPMP is the following: Is there a matching M of G such that

ω1θ1(M) + ω2θ2(M) ≤ K? Reduction comes from the Partition with Disjoint Pairs (PDP) problem:

Given n pairs of integers (ai, bi), i ∈ {1, ..., n} with
∑

i(ai + bi) = Q, is there S ⊂ {1, 2, ..., n} such

that
∑

i∈S ai +
∑

i/∈S bi = Q/2?

Assume a solution S of (PDP) exists. Then we construct a bipartite graph with 2n vertices {1, 2, ..., 2n}
such that cii+n = (ai, bi) and cij = (bi, ai) ∀j 6= i+n, j ≥ n+ 1. We take ω1 > 0, ω2 = ω1− ε > 0 and

K = Q(ω1 − ε/2). For i ∈ S (i, n+ i) ∈M, and if i /∈ S (i, j(i)) ∈M, j 6= i, i, j /∈ S. That is, we can

choose j(i) for each i /∈ S in such a way that the above construction is a matching. It is clear that

θ1(M) =
∑

i∈S
ai +

∑

i/∈S
bi = Q/2

and this implies that θ2(M) = Q/2 and therefore a solution for OWA-matching with K = Q(ω1−ε/2)

exists.

Conversely, if we have a solution M to OWAPMP less than or equal to Q(ω1 − ε/2), there must be a

subset of nodes i ∈ S for which the edge is (i, i + n) and for the remaining we take (i, j(i)) as above

with costs (bi, ai). If not all nodes of S go with the cost (ai, bi) one of the two objective functions has a

value Q/2+∆ and the other Q/2−∆ for some ∆ > 0. Therefore θ1(M) = Q/2+∆, θ2(M) = Q/2−∆

and

ω1θ1(M) + (ω1 − ε)θ2(M) = ω1(Q/2 + ∆) + (λ1 − ε)(Q/2−∆) = Q(ω1 − ε/2) + ε∆.
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5.6 Computational experience

In this section we report on the results of some computational experiments we have run, in order

to compare empirically the proposed formulations and reinforcements. We have studied the OWAP

over the two combinatorial objects proposed: Shortest Paths and Minimum Cost Perfect Matchings.

The best formulation obtained for each combinatorial object, has been later used for studying the

proposed valid inequalities, including them one by one separately. Accordingly, for each combinatorial

object, we have obtained results for 14 basic formulations (i.e., without adding any valid inequality)

plus 19 “reinforced” formulations. For the sake of readability, we display results in tables just for the

three best basic formulations and graphics for both basic and reinforced formulations. For further

details, the reader may refer to Fernández et al. (2013) in order to check all the results obtained in

the computational experiments organized by tables.

The OWA operator allows to model various aggregation functions according to the vector of weights w

(see, e.g., Ogryczak and Olender, 2012). Some examples are the minimum, maximum, median, center

or k-centrum functions. Therefore, the variation of w into non/monotonic or non/symmetric weights

is directly connected with a problem structure and thus with a problem complexity (Kasperski and

Zielinski, 2013). Some elegant linearization of OWA functions have been proposed in the literature for

some subclasses of OWA operators (see, e.g., Ogryczak and Sliwinski, 2003; Ogryczak and Tamir,

2003, for convex OWA with decreasing weights). For keeping the length of the chapter within

some reasonable limits, in our computational experience we study a particular case of the OWA

operator, namely the Hurwicz criterion (Hurwicz, 1951), defined as αmaxi∈P yi + (1 − α) mini∈P yi.

This criterion is non-monotonic and non-convex and, in our experience, its behavior in terms of

computational effort to get optimal solutions is similar to that of other non-convex OWA criteria. In

addition, this objective has been already considered when analyzing the behavior of OWA operators

in multiobjective optimization (see, e.g., Galand and Spanjaard, 2012) and it is of special interest

for being non-convex since the sorting weights, α, are not in non-increasing order (Grzybowski et al.,

2011, Puerto and Tamir, 2005). The considered values of α are {0.4, 0.6, 0.8} and the number of

objectives ranges in |P | ∈ {4, 7, 10}. Graphs generation is described below considering three different

sizes of the graph according to |V | ∈ {100, 225, 400}. In addition, for each selection of the parameters

(|V |, p, α), 10 instances were randomly generated so, in total, we have a set of 270 benchmark instances.

All instances were solved with the MIP Xpress optimizer, under a Windows 7 environment in an

Intel(R) Core(TM)i7 CPU 2.93 GHz processor and 8 GB RAM. Default values were used for all solver

parameters. A CPU time limit of 600 seconds was set.

For the benchmark instances, we generated square grid networks produced as with the SPGRID

generator of Cherkassky et al. (1996) for both combinatorial objects. Nodes of these graphs correspond

to points on the plane with integer coordinates [x, y], 1 ≤ x ≤
√
|V |, 1 ≤ y ≤

√
|V |. These points

are connected “forward” by arcs of the form ([x, y], [x + 1, y]), 1 ≤ x <
√
|V |, 1 ≤ y ≤

√
|V |;

“up” by arcs of the form ([x, y], [x, y + 1]), 1 ≤ x ≤
√
|V |, 1 ≤ y <

√
|V | and “down” by

arcs of the form ([x, y], [x, y − 1]), 1 ≤ x ≤
√
|V |, 1 < y ≤

√
|V | and by arcs of the form

([x, y], [x + 1, y − 1]), 1 ≤ x ≤
√
|V |, 1 < y ≤

√
|V |. The components of the cost vectors are
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randomly drawn from a uniform distribution on [1, 100]. Note also that shortest paths are computed

between nodes 1 and |V | whereas node |V | is removed for the PMP when |V | is odd.

Each of our tables reports the following items. Each row corresponds to a group of 10 instances with

the same characteristics (|V |, p, α) indicated in the first three columns. Column t(#) reports firstly

the average running time in seconds of the 10 instances of the row. In addition, if at least one instance

reaches the CPU time limit, we indicate in brackets the number of instances that could be solved to

optimality within the maximum CPU time limit and, in such a case, we compute the average running

time by using the CPU time limit for those instances that could not be solved to optimality. Column

t∗/gap∗ reports the biggest CPU time over the 10 instances of the group. Whenever the time limit

is reached, the relative gap (indicated with a percentage %) is reported instead. Column #nodes

indicates the average number of nodes explored in the branch and bound tree and column gapLR

reports the relative gap computed with the best solution found by the solver and the linear relaxation

optima at the root node. All tables report analogous items for the different formulations described

along the chapter. The best three formulations for each combinatorial object are F zR2, F zyR2, and F s

for the SPP; and F zR1, F zyR1, and F sR1 for the PMP. Entries in bold remark best values among the 16

basic formulations (all tables are available at Fernández et al., 2013).

Figures 5.1 and 5.2 summarize the comparative results of all proposed basic formulations applied to

each combinatorial object respectively. In these graphics the x−axis displays the different variations

of the formulations presented in Section 5.3 and the y−axis the features analyzed. All displayed bars

represent percentages of mean values computed over 90 instances with |V | = 400. These are the 90

hardest instances for the solver among the 270 we generated.

In particular the row labeled with “t, gap” shows a bar with the mean values of the running times

measured in percentage over 600 seconds. For those instances reaching the time limit, we compute the

mean running time taking the value of the time limit. Moreover, a dashed line indicates the percentage

of worst case gap among those instances that have reached the time limit. The columns in the row

labeled with “nodes” show the percentage of nodes over 106 that have been visited in the branch and

bound tree. The columns in the row labeled with “gapLR” report the percentage gap relative to the

best solution found by the solver and the linear relaxation optima at the root node.

From the results displayed in Table 5.9 and Figure 5.1, we observe first that the gapLR is similar for

all formulations except for F z0 and F zy0 , where a 100% of gap is reached. Formulations F zR2 and F zyR2

increase slightly the gapLR in comparison with the remaining formulations but this does not affect

negatively in the exploration as we see next. The values of nodes and t, gap are strongly related for

each one of the formulations. F z0 , F zR3, F zy0 and F zyR3 give the worst values. In contrast, F zR2, F zyR2

and F s produce the best values. In addition, we observe a regular behavior among all formulations

with s variables, namely F s, F sR1, F sR2 and F sR3. Regarding to the PMP, analogous conclusions can

be obtained in Table 5.10 and Figure 5.2 for the gapLR and the relations between nodes and t, gap.

However, in this case, formulations F zR1 and F zyR1 produce the best values together with F sR1, F sR2 and

F sR3.

Figures 5.3 and 5.4 report analogous items as Figures 5.1 and 5.2, but now when the valid inequalities of
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Figure 5.1: Comparative results for the proposed OWAP basic formulations applied to the Shortest
Path Problem (p = 10, |V | = 400).

Inst F zR2 F zyR2 F s

|V | p α t(#) t∗/gap∗ #nodes gapLR t(#) t∗/gap∗ #nodes gapLR t(#) t∗/gap∗ #nodes gapLR
100 4 0.4 0.5 0.6 15 55.79 0.4 0.6 13 55.79 8.4 59.9 16959 53.72
100 4 0.6 0.5 0.6 41 40.17 12 116.5 56370 40.17 31.9 213.4 113492 37.39
100 4 0.8 0.4 0.5 61 24.26 0.4 0.5 48 24.26 2.4 7.9 2871 20.79
100 7 0.4 0.6 0.7 200 52.77 0.6 0.8 177 52.77 121 (8) 40.66% 210086 51.11
100 7 0.6 0.7 0.8 360 38.19 0.8 1.6 468 38.19 121 (8) 22.74% 193167 36.01
100 7 0.8 0.9 1.6 839 23.76 0.9 1.4 760 23.76 20.8 125.9 36870 21.08
100 10 0.4 2.1 4.2 6658 51.98 2.5 10.3 9239 51.98 195.2 (7) 43.64% 273035 49.29
100 10 0.6 4.1 13.2 16386 37.89 2.8 11.1 9985 37.89 178.6 (8) 24.44% 238513 34.4
100 10 0.8 5.5 27.9 23353 24.83 13.1 49.4 57599 24.83 95.3 500.7 127230 20.61
225 4 0.4 0.8 1 48 55.77 0.8 1.1 45 55.77 64.4 (9) 52.43% 29874 55
225 4 0.6 0.8 1 44 39.42 0.8 1 49 39.42 91.5 (9) 31.77% 41747 38.31
225 4 0.8 0.8 1.1 95 22.13 0.8 1.2 84 22.13 243.8 (6) 14.08% 70842 20.7
225 7 0.4 1.2 1.3 99 52.61 1.3 1.8 151 52.61 129 (8) 49.52% 41763 51.29
225 7 0.6 3.3 8.8 1554 37.63 16.2 143.6 10871 37.63 185.6 (7) 31.25% 63146 35.83
225 7 0.8 4.6 22.1 3082 22.76 2.6 6.1 1204 22.76 305 (5) 14.19% 105127 20.44
225 10 0.4 9.1 62.7 6427 51.68 5.4 24.9 4222 51.68 317.1 (5) 49.98% 95076 50.33
225 10 0.6 15.2 56.6 10148 37.07 10.8 39.7 7537 37.07 319.5 (5) 32.14% 96370 35.15
225 10 0.8 38.1 147.8 41223 23.12 29.6 141.5 32090 23.12 279.6 (6) 15.16% 85419 20.81
400 4 0.4 1.4 1.8 57 55.07 1.3 1.6 55 55.07 3.3 16.8 286 54.44
400 4 0.6 1.6 2 95 38.71 1.5 1.8 76 38.71 88.5 (9) 35.79% 13806 37.84
400 4 0.8 1.8 2.9 182 21.57 1.8 3.1 265 21.57 255.9 (6) 17.21% 49806 20.47
400 7 0.4 6.5 41.1 1102 52.72 19.3 169 4370 52.72 76.4 (9) 50.67% 9192 51.85
400 7 0.6 9.4 62.6 2952 37.41 63.4 (9) 33.32% 10416 37.48 70.9 (9) 34.59% 8711 36.27
400 7 0.8 8.1 30.2 1994 21.87 7.2 24.6 1999 21.87 368.8 (4) 18.29% 32614 20.41
400 10 0.4 158.5 (9) 1.09% 100979 51.8 116.1 242.7 83991 51.8 306.4 (5) 48.93% 24184 50.73
400 10 0.6 61.8 121.5 37448 36.48 33.2 115.9 17308 36.48 132.4 (8) 31.48% 10395 35.01
400 10 0.8 229.9 (8) 0.61% 143034 21.82 155.6 (9) 0.04% 104042 21.82 142.6 (8) 17.18% 12829 19.99

Table 5.9: Results obtained for the three best OWAP basic formulations applied to the Shortest Path
Problem

Section 5.4 are incorporated into the best basic formulations obtained for each combinatorial object.

The x−axis displays the different variations in the formulations, starting first with the best basic

formulation. Next labels refer to the valid inequality that has been added. Labels of the valid

inequalities correspond with those of Section 5.4, where “.1” and “.2” refer to the two inequalities

displayed in a single equation (for example the two valid inequalities of equation (5.31) are labeled

as (5.31.1) and (5.31.2)). In the following we will refer indistinctly to a valid inequality and the
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Figure 5.2: Comparative results for the proposed OWAP basic formulations applied to the Perfect
Matching Problem (p = 10, |V | = 400).

Inst F zR1 F zyR1 F sR1
|V | p α t(#) t∗/gap∗ #nodes gapLR t(#) t∗/gap∗ #nodes gapLR t(#) t∗/gap∗ #nodes gapLR
100 4 0.4 0.6 0.7 186 55.44 0.6 0.7 139 55.44 0.5 0.7 147 55.44
100 4 0.6 0.6 0.7 152 38.98 0.6 0.7 140 38.98 0.6 0.8 175 38.98
100 4 0.8 0.6 0.7 302 21.53 0.7 0.8 329 21.53 0.6 0.7 157 21.53
100 7 0.4 1 1.3 236 52.18 1 1.2 256 52.18 1 1.2 205 52.18
100 7 0.6 1.1 1.4 480 35.97 1.2 1.8 591 35.97 1.2 1.6 529 35.97
100 7 0.8 1.4 2 965 20.27 1.5 2.3 1008 20.27 1.3 1.8 1075 20.27
100 10 0.4 1.5 1.9 299 50.66 1.7 4.1 580 50.66 1.5 1.9 333 50.66
100 10 0.6 1.9 2.6 963 34.85 1.9 2.9 985 34.85 2 2.8 922 34.85
100 10 0.8 6 19.4 6329 20.2 5.6 17.6 5364 20.2 6.1 19.8 7018 20.2
225 4 0.4 2.1 4.4 1188 55.09 2 2.9 990 55.09 1.9 4.1 1095 55.09
225 4 0.6 1.7 2.9 1236 38.57 1.7 2.5 1239 38.57 1.7 2.2 982 38.57
225 4 0.8 1.9 3.2 1101 21.09 1.9 3.7 1240 21.09 2 3.6 1221 21.09
225 7 0.4 7.1 22.8 9208 52.34 8.4 36 5617 52.34 8.7 29.3 6308 52.34
225 7 0.6 10 16 6038 36.27 9.7 18.3 6206 36.27 8.8 15.9 5432 36.27
225 7 0.8 17.2 62.5 10491 20.32 17.1 48.7 10746 20.32 14.7 50.1 9525 20.32
225 10 0.4 7.5 13.2 2136 50.25 7.4 12.4 2464 50.25 7.8 15.5 2265 50.25
225 10 0.6 32.4 123.2 15537 34.56 33.9 90.1 13763 34.56 31.5 70.1 15465 34.56
225 10 0.8 295 (8) 0.32% 114029 19.62 338.7 (7) 12.07% 130079 19.7 344.7 (8) 0.33% 133025 19.62
400 4 0.4 7.3 22.3 3345 55.37 6.3 15.5 2546 55.37 6.1 9.6 2777 55.37
400 4 0.6 6.7 11.9 4103 39.04 7.5 16.7 4044 39.04 8.7 25.3 6589 39.04
400 4 0.8 9 22.1 5397 21.03 11.4 44.9 6263 21.03 9.2 19.4 5194 21.03
400 7 0.4 34.4 144.4 10464 52.05 48.9 257 15696 52.05 37.7 218.2 11164 52.05
400 7 0.6 83.4 250.9 27604 36.12 74.5 209.5 26944 36.12 78.7 185.1 28692 36.12
400 7 0.8 84.4 187.6 28762 20.19 98.2 182.5 35369 20.19 92.6 206.4 34328 20.19
400 10 0.4 68.4 197.4 13777 50.58 86.7 387.2 17514 50.58 91.9 407.6 19024 50.58
400 10 0.6 289.4 (9) 0.11% 61886 34.54 335 (9) 0.24% 69457 34.54 285.7 563.5 59428 34.54
400 10 0.8 583.5 (1) 0.42% 97022 19.5 599 (1) 0.4% 93171 19.5 577 (1) 0.43% 97258 19.52

Table 5.10: Results obtained for the three best OWAP basic formulations applied to the Perfect
Matching Problem

formulation that includes such valid inequality. All displayed bars represent percentages of mean

values computed over 30 random instances with p = 10, |V | = 400 and α ∈ {0.4, 0.6, 0.8}.

From the results displayed in Figure 5.3, we observe first that the gapLR is similar for all formulations

but (5.32.1), (5.36.1), (5.37), (5.39.1) and (5.40). As compared with with F zyR2, formulation (5.36.1)

improves the values of gapLR, nodes and t, gap. However, (5.32.1), (5.39.1) and (5.40) improve gapLR
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Figure 5.3: Comparative results for the proposed OWAP reinforced formulations applied to the
Shortest Path Problem (p = 10, |V | = 400).

but are not able to improve nodes or t, gap. We also note that (5.37) increases gapLR since this gap

is computed with a (low quality) best solution found by the solver and the linear relaxation optima

at the root node. In addition, formulations (5.31.1), (5.31.2) and (5.39.4) provide promising results in

comparison with the values of nodes and t, gap.
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Figure 5.4: Comparative results for the proposed OWAP reinforced formulations applied to the Perfect
Matching Problem (p = 10, |V | = 400).

From the results displayed in Figure 5.4, we observe first that the gapLR is similar for all formulations

but (5.32.1), (5.36.1), (5.37) and (5.40). As compared with F zR1, formulations (5.32.1) and (5.36.1),

improve gapLR and nodes or t, gap. However, (5.40) improves gapLR but is not able to improve nodes

or t, gap in comparison with the best basic formulation for PMP, namely F zR1. We also note that (5.37)

increases gapLR since this gap is computed with a (low quality) best solution found by the solver and

the linear relaxation optima at the root node. In addition, formulations (5.35.2), (5.36.2) and (5.39.3)

provide promising results in comparison with the values of nodes or t, gap.

In summary, we observe the performance of the OWAP formulation depends on its combination with

the considered combinatorial object. In particular we conclude, from our computational experience,

that for the SPP, it is convenient to apply F zyR2 reinforced with (5.31.1) and (5.31.2); although rather

similar results can be obtained with F zR2. The conclusion for the PMP is different, because the best

basic formulation is now F zR1 and the reinforcements (5.32.1). Once more, rather similar results are
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obtained for F zyR1 and F sR1. Therefore, we cannot conclude whether there is a formulation superior

to all the others regardless the domain Q to be considered. For this reason it is important to have

developed the catalogue of formulations and valid inequalities presented in this chapter. In general,

it is advisable to test them depending on the combinatorial object to be considered.

5.7 Conclusions

In this chapter we have presented and revisited different mathematical programming formulations for

the OWAP using different sets of decision variables. These formulations reinforced with appropriate

constraints have shown to be rather promising for efficiently solving many medium size OWAP

instances. However, from the obtained results it is also clear that for solving larger OWAP instances

with more objective functions further improvements are needed. Our current research focuses on

the design of more sophisticated elimination tests as well as from alternative formulations leading to

tighter LP bounds.
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Chapter 6

Ordered Weighted Average

Optimization in multiobjective

spanning tree problems

ABSTRACT

Multiobjective Spanning Tree Problems are analyzed in this chapter. In particular, the ordered median

objective function is used as an averaging operator to aggregate the vector of objective values of

feasible solutions. This leads to the study of the Ordered Weighted Average Spanning Tree Problem,

a nonlinear combinatorial optimization problem. Different reformulations as a mixed integer Linear

problem are proposed, based on the most relevant Minimum cost Spanning Tree formulations in

the literature and on a new one derived from an extended formulation proposed by Kipp Martin.

These reformulations are analyzed and several enhancements proposed. Their empirical performance

is tested over a set of randomly generated benchmark instances. The results of the computational

experiments show that the choice of an appropriate reformulation allows to solve larger instances with

more objectives than those previously solved in the literature.

Keywords: Combinatorial Optimization, Multiobjective optimization, Ordered median, Ordered

weighted average, Spanning trees.

6.1 Introduction

Optimization problems related to spanning trees, or simply Spanning Tree Problems are among

the core problems in combinatorial optimization. On the one hand, the combinatorial object that

represents spanning trees has important structural properties. On the other hand, from a practitioner

point of view, spanning trees are found in a wide range of applications in many fields (e.g. computer

networks design, telecommunications networks, transportation, etc). Furthermore, they often appear

as subproblems of other more complex optimization problems.

149
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The most relevant property of trees is their matroid structure. This implies that the basic problem

of finding a minimum cost spanning tree, can be solved efficiently (Prim, 1957; Kruskal, 1956). This

also implies that formulations with the integrality property can be obtained, which allow to solve

the minimum cost Spanning Tree Problem (STP) with linear programming tools. However, these

good features can be lost for several reasons. For instance, when the objective function does not

preserve Gale optimality, i.e., it is not monotonic on the edges costs (Lawler, 1966; Fernández et al.,

2014), as it happens in the Optimum Communication Spanning Tree Problem (Hu, 1974). The reader

may refer to Landete and Maŕın (2014) for a description of alternative objective functions for the

STP. An optimization STP also becomes a hard problem when several objectives are considered

simultaneously (Ehrgott, 2005). In such cases, no efficient combinatorial algorithm is known so the

choice of an appropriate mathematical programming representation of the combinatorial object may

become crucial. In this sense, formulations for the STP with good properties can be outperformed by

other formulations in the new environment.

From a different point of view, in the multiobjective case, it is widely accepted that the use of order

and aggregation functions may yield compromise solutions for the different criteria. The literature

includes many works on this area related to combinatorial optimization. Some examples, among

many others, include minimax problems (Hansen, 1980; Schrijver, 1983), combining minisum and

minimax (Averbakh et al., 1995; Hansen and Labbé, 1988; Hansen et al., 1991; Minoux, 1989; Punnen

et al., 1995; Tamir et al., 2002), k-centrum optimization (Garfinkel et al., 2006; Kalcsics et al., 2002;

Punnen, 1992; Slater, 1978a,b; Tamir, 2000), lexicographic optimization (Calvete and Mateo, 1998;

Croce et al., 1999), k-th best solutions (Lawler, 1972; Martello et al., 1984; Pascoal et al., 2003; Yen,

1971), most uniform solutions (Galil and Schieber, 1998; López de los Mozos et al., 2008), minimum-

envy solutions (Espejo et al., 2009), solutions with minimum deviation (Gupta et al., 1990), regret

solutions (Averbakh, 2001; Conde, 2004; Puerto and Rodŕıguez-Ch́ıa, 2003), equity measures (Gupta

and Punnen, 1988; López de los Mozos et al., 2008; Mesa et al., 2003; Punnen and Aneja, 1997),

discrete ordered median location problems (Boland et al., 2006; Maŕın et al., 2009; Puerto, 2008;

Puerto and Tamir, 2005; ?), ordered weighted average objectives (Fernández et al., 2013, 2014; Galand

and Spanjaard, 2012), and covering objectives (Balas and Padberg, 1972; Breuer, 1970; Christofides

and Korman, 1974; Kelly, 1944; Lawler, 1966). Among the aggregation functions mentioned above,

the Ordered Weighted Average operator (OWA) is particularly relevant, because of its generality, as it

includes as particular cases most of the above mentioned operators. This observation has been made

explicit in Fernández et al. (2014).

Multiobjective STPs have already been studied by some authors, mostly for the biobjective case

(see Hamacher and Ruhe, 1994; Andersen et al., 1996; ?; Sourd and Spanjaard, 2008; Steiner and

Radzik, 2008). In this chapter we address the Multiobjective STP under the perspective of the

OWA operator for a general number of objectives. This problem will be referred to as the OWA

Spanning Tree Problem (OWASTP). In the OWASTP the optimality of traditional combinatorial

algorithms is no longer guaranteed. Furthermore, formulations adapted from good STP formulations

lose the integrality property. Thus alternative formulations that originally do not exhibit such good

properties, may now outperform them. In Galand and Perny (2007) the OWASTP was addressed
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using Choquet optimization and Galand and Spanjaard (2012) presented a first ordered median Mixed

Integer Linear Programming (MILP) formulation. Our goal in this chapter is to exploit properties

of alternative formulations for the OWASTP. As we will see, an appropriate formulation allows us to

solve larger instances and with more objectives than those previously solved in the literature (Galand

and Spanjaard, 2012), with up to 100 nodes and 10 objective functions. The contributions of this

chapter are (1) to provide new formulations for the OWASTP combining appropriate STP and OWAP

formulations; (2) to prove a new complexity result according to which the OWASTP is NP-complete

even for cactus graphs and two objectives; (3) to establish a theoretical and empirical comparison

between the new formulations and previous existing ones; and, (4) to provide reinforcements that

together with the new OWASTP formulations are able to outperform previous results in the literature.

The structure of the chapter is the following. In Section 6.2 we formally define the OWASTP and prove

our new complexity result. Section 6.3 presents the catalogue of STP formulations that we study for

the OWASTP. One such formulation has already been used in Galand and Spanjaard (2012). We will

use it as a reference for the alternative formulations that we present. The empirical performance of

the resulting OWASTP formulations is analyzed in Section 6.4, where we present extensive numerical

results and a comparison with existing ones. Finally, some conclusions are summarized in Section 6.5.

6.2 Problem definition

The Ordered Weighted Average operator is defined over a feasible set Q ⊆ Rm. Let C ∈ Rp×m be a

given matrix, whose rows, denoted by Ci, are associated with the cost vectors of p objective functions.

The index set for the rows of C is denoted by P = {1, . . . , p}. Let also ω ∈ Rp+ denote a vector

of non-negative weights. For x ∈ Q, the vector y = Cx ∈ Rp is referred to as the outcome vector

relative to C. In the following we assume y = Cx, with x ∈ Q. For a given y, let σ be a permutation

of the indices of i ∈ P such that yσ1 ≥ . . . ≥ yσp . Feasible solutions x ∈ Q are evaluated with an

operator defined as OWA(C,ω)(x) = ω′yσ. The OWA optimization Problem (OWAP) is to find x ∈ Q
of minimum value with respect to the above operator, that is

OWAP: min
x∈Q

OWA(C,ω)(x)

The OWA is a very general operator, which has as particular cases well-known objective functions

namely the Ordered Median Objective and the Vector Assignment Ordered Median (see Fernández

et al., 2014). In addition, the OWA operator allows to model various aggregation functions according

to the vector of weights w (see, e.g., Ogryczak and Olender, 2012). Some examples are the minimum,

maximum, median, center or k-centrum functions. Therefore, the selection of non/monotonic

or non/symmetric w-weights is directly connected with the problem structure and thus with its

complexity (Kasperski and Zielinski, 2013).

As defined, the OWA operator is indeed not linear. Moreover, in general, it is not convex either.

For the case of monotonic weights, its convexity is known ? and some elegant linearization of OWA

functions have been proposed in the literature (see, e.g., Ogryczak and Sliwinski, 2003; Ogryczak and
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Tamir, 2003). Depending on the type of monotonicity, the problems are simpler (with decreasing

weights in the case of minimization) or harder (with increasing weights in the case of minimization).

In this chapter we focus on the OWASTP with arbitrary weights. Two well-known particular cases

of the OWA operator with arbitrary weights are the Hurwicz criterion (Hurwicz, 1951) defined as

αmaxi∈P yi+(1−α) mini∈P yi and the k-trimmed mean defined as
∑p−k

i=k−1(p−2k)−1yi. These criteria

are of special interest for being non-monotonic and non-convex (Grzybowski et al., 2011, Puerto and

Tamir, 2005) and have already been considered when analyzing the behavior of OWA operators in

multiobjective optimization (see, e.g., Galand and Spanjaard, 2012).

The OWASTP is defined as follows. Let G = (V,E) be an undirected connected graph with set of

nodes V , |V | = n, and set of edges E, |E| = m. In the following we assume that G contains at least

one cycle, that is m > n − 1, as otherwise the problem becomes trivial. A spanning tree of G is a

subgraph T = (V,E′) where E′ ⊂ E is a minimal set of edges connecting the set of nodes V . Let T
denote the set of spanning trees defined on G. Then, the OWASTP can be defined as

OWASTP: min
x∈T

OWA(C,ω)(x).

Example 6.1-

Consider the graph G = (N,E) depicted in Figure 6.1-(a) and the 3-cost vectors on E, whose values

are represented next to each edge. The optimal solution to the OWASTP with ω′ = (0.4, 0, 0.6) is

depicted in Figure 6.1-(b) and has a value of 8.8. When the weights are ω′ = (0.8, 0, 0.2) the optimal

OWASTP value is 10.4, corresponding to the tree depicted in Figure 6.1-(c).
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Figure 6.1: Graph with edge costs (a) and OWASTP solutions for ω′ = (0.4, 0, 0.6) (b)
and ω′ = (0.8, 0, 0.2) (c).

�

OWASTP is known to be NP-hard on general graphs (Hamacher and Ruhe, 1994; Yu, 1998). We can

give, however, a stronger complexity result since as we prove below the OWASTP is NP-complete even

for two objective functions (p = 2) and on cactus graphs. The reader may note that cactus graphs

are considered as almost trees and classified in the lowest level difficulty class of graphs, just after the

acyclic ones (see, e.g., graphclasses.com).

The OWASTP problem in decisional form is: Given a graph G = (V,E) with weights (c1
e, c

2
e) assigned

to each edge e ∈ E. Let f1(T ) and f2(T ) be the weights of a spanning tree T computed w.r.t. c1
e and
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Figure 6.2: The Cactus graph used in proof of the NP-completeness claim.

c2
e, for all e ∈ V (T ), respectively. Is there a spanning tree T of G and weights (w1, w2) ≥ 0 such that

for an ordering σ of f1(T ) and f2(T ) one has w1fσ1(T ) + w2fσ2(T ) ≤ K?

Claim Problem OWASTP is NP-complete on cactus graphs and p = 2.

The reduction is from Partition with Disjoint Pairs (PDP) which is the following problem: Given n

pairs of integers (ai, bi), i = 1, . . . , n, is there a subset S ⊂ [1, . . . , n] (a bi-partition) of the set of

indices such that:
∑
i∈S

ai +
∑
i/∈S

bi = Q
2 , where

n∑
i=1

(ai + bi) = Q?

Proof. Given an instance of PDP, construct the (very simple) cactus graph in Figure 6.2. Set w1 = 1,

w2 = 1− ε, for ε > 0, and K ≤ Q(1− ε
2).

To each block i assign to edge (i, ji) weights (ai, bi); assign weights (bi, ai) to edge (i, hi). To all other

edges of G assign weights (0, 0). Given a solution of PDP, we can construct a solution for OWASTP

as follows: if i ∈ S the corresponding edge in the spanning tree T in block i is (i, ji), otherwise add

to T (i, hi). Then, since T must be a spanning tree of G, we must add edges (ji, hi) and all the edges

(i, 0), i = 1, . . . , n. The weight of T w.r.t. the first component of the edge weights (i.e., f1(T )) is

f1(T ) =
∑
i∈S

ai +
∑
i/∈S

bi = Q
2 . Thus, f2(T ) =

∑
i/∈S

ai +
∑
i∈S

bi = Q
2 . Hence,

fσ1(T ) + (1− ε)fσ2(T ) = Q(1− ε

2
) = K.

Conversely, if we have a solution of OWASTP, there must exist a subset S of the n blocks for which

edges (ai, bi) are added to T , i ∈ S; while for the other blocks (i.e., i /∈ S) edges (bi, ai) belong to T .

In fact, since
n∑
i=1

(ai + bi) = Q, any other different assignment of edges in (at least one) block i, will

produce a solution for OWASTP such that fσ1(T ) > Q
2 and fσ2(T ) < Q

2 . Suppose that fσ1(T ) = Q
2 +∆

and fσ2(T ) = Q
2 −∆, ∆ > 0. Then, computing the objective function of OWASTP we have:

fσ1(T ) + (1− ε)fσ2(T ) =
Q

2
+ ∆ + (1− ε)(Q

2
−∆) = Q(1− ε

2
) + ε∆ > K.
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Since OWASTP (clearly) belongs to NP, then OWASTP is NP-complete.

6.3 OWASTP formulations

In this section we present several formulations for the OWASTP. All of them are MILP formulations,

which integrate a mixed integer linear programming STP formulation within a generic mathematical

programming formulation for an OWA combinatorial problem (Fernández et al., 2014). We start with

the catalogue of STP formulations and then we give the mathematical programming formulations for

OWA combinatorial optimization problems that we have used.

6.3.1 Mixed Integer Linear Programming formulations for the STP

Many alternative MILP formulations have been proposed for the STP. For an overview of the possible

alternatives and the properties in each case, the interested reader is addressed to the excellent book

chapter by Magnanti and Wolsey (1995) where many of them are presented and compared.

It is well-known that STP formulations exist with the integrality property. Unfortunately, when they

are embedded within the OWAP framework the integrality property is lost, so explicit integrality

conditions are needed. Alternative STP formulations without such property may now be superior.

This explains why some of the formulations we have used lack the integrality property. The criterion

that has guided the selection of the formulations is either their good theoretical properties or some

characteristic that seemed useful as, for instance, a small number of variables or constraints.

We start with two well-known models, the first one derived from the matroid polyhedron (Edmonds,

1970, 1971) and the second one proposed by Martin (1991), both of which having the integrality

property. Then we present three existing formulations without the integrality property, based,

respectively, on cutset inequalities, flow balance equations and Miller-Tuker-Zemlin inequalities (Miller

et al., 1960). We present another STP formulation based on a relaxation of the formulation proposed

by Martin (1991), which uses considerably fewer variables.

All formulations use design variables x to represent the edges of the spanning trees. Let xe, e ∈ E
be a binary variable equal to 1 if edge e = (u, v) is in the spanning tree, and zero otherwise. Some

formulations use additional variables related to the arcs of the directed network, D = (V,A) with the

same node set as the original undirected G and set of arcs A, containing two arcs associated with each

edge of E, i.e., A = {(u, v), (v, u) | (u, v) ∈ E}.

Throughout we will use the following standard notation. Given a subset of nodes S ⊂ V , E(S) and

A(S) respectively denote the subsets of edges of E and arcs of A with both end-nodes in S, i.e.,

E(S) = {e = (u, v) ∈ E : u, v ∈ S} and A(S) = {(u, v) ∈ A : u, v ∈ S}. The cut-set associated

with S ⊂ V , δ(S) = {e = (u, v) ∈ E | (u ∈ S, v ∈ V \ S) or (v ∈ S, u ∈ V \ S)}, contains all edges

with one node in S and the other node outside S. When working on the directed network D, for

S ⊂ V , we let δ+(S) = {(u, v) ∈ A | u ∈ S, v ∈ V \ S} denote the cutset directed out of S and

δ−(S) = {(u, v) ∈ A | u ∈ V \ S, v ∈ S} the cutset directed into S. Directed cuts will also be referred
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to as dicuts.

Next we focus on the domains that characterize feasible solutions in each case.

The domain in the subtour elimination formulation is:

T sub :
∑

e∈E
xe = n− 1 (6.1a)

∑

e∈E(S)

xe ≤ |S| − 1 ∅ 6= S ⊂ V (6.1b)

xe ≥ 0 e ∈ E (6.1c)

The cardinality constraint (6.1a) imposes that exactly n − 1 edges are chosen. Constraints (6.1b)

ensure that the solution contains no cycle. The number of such constraints is exponential on the

number of nodes. However, they can be separated in polynomial time by solving a series of minimum

(s, t)-cut problems. An effective algorithm can be implemented using a Gomory-Hu cut tree (Hu,

1974).

It is well-known that all the extreme points in the above domain are integer and that formulation

T sub is stronger than the formulation where inequalities (6.1b) are replaced by the cut-set constraints∑
e∈δ(S) xe ≥ 1, that we denote T cut, which may have fractional extreme points (Magnanti and Wolsey,

1995).

The extended formulation of Martin (1991) models an arborescence rooted at each node k ∈ V , in

which arcs follow the direction from the leaves to the root. The arcs of such arborescences are then

related to the design x variables. For k ∈ V, (u, v) ∈ E, let qkuv and qkvu be decision variables that,

respectively, indicate whether or not arcs (u, v) and (v, u) ∈ A belong to the arborescence rooted at

k. The domain of the K. Martin (KM) formulation is the following:

T km :
∑

e∈E
xe = n− 1 (6.2a)

qkuv + qkvu = xuv k ∈ V, (u, v) ∈ E (6.2b)
∑

(u,v)∈δ+(u)

qkuv ≤ 1 k ∈ V, u ∈ V : u 6= k (6.2c)

∑

(k,v)∈δ+(k)

qkkv ≤ 0 k ∈ V (6.2d)

xe ≥ 0 e ∈ E (6.2e)

qkuv ≥ 0 k ∈ V, (u, v) ∈ A (6.2f)

Constraint (6.2a) ensures that the tree has n−1 edges. On the other hand, constraints (6.2b) indicate
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that the arcs that are used in the arborescences are precisely the ones associated with the n−1 selected

undirected edges. In other words, the underlying undirected graph supporting all the arborescences

is exactly the same, so all the arborescences use exactly n − 1 arcs, and the only differences among

arborescences are the directions of the arcs, but not the edges on the undirected graph that are used.

For each arborescence, (6.2c) impose that no more than one arc leaves any node different from the

root k, while (6.2d) forbids any arc leaving the root node k. Hence, these constraints imply that for

each arborescence, the component containing the root node does not contain any cycle. Since each

node is the root of one arborescence, (6.2b) guarantee that the selected undirected edges contain no

cycle and, by (6.2a), the solutions define spanning trees.

While formulation T km has the integrality property, it has an O(n3) number of both q variables and

constraints (6.2b). As the size of the graph increases, this number can be prohibitive. When the

integrality property is lost because of the addition of new constraints, the computational burden for

solving a formulation with such a large number of variables and constraints may become too high.

The Miller-Tucker-Zemlin (MTZ) inequalities are an alternative to the exponential size family of

constraints in (6.1b), to guarantee the connectivity of the solutions and thus prevent cycles. These

constraints were initially proposed by Miller et al. (1960) in the context of the Traveling Salesman

Problem. They have been adapted to other problems and reinforced by different authors (see, e.g.

Laporte, 1992, Landete and Maŕın, 2014). In particular, they have been used by Gouveia (1995) for

the Hop-Constrained Spanning Tree Problem, which is a generalization of the STP in which the paths

starting at a specified root node r are restricted to have no more than p edges. The MTZ formulation

for the STP builds an arborescence rooted at a specified node r ∈ V , in which arcs follow the direction

from the root to the leaves. It uses binary variables to represent the arcs of the arborescence. Each

edge (u, v) ∈ E, is associated with a pair of binary variables, yuv and yvu, which take the value 1 if

and only if arcs (u, v) and (v, u) ∈ A belong to the arborescence, respectively. In addition, it uses

continuous variables lu, denoting the position that node u occupies in the arborescence with respect

to r. Since, in principle, there is no pre-specified root node, below r denotes any arbitrarily selected

node. The domain of this formulation is given by the following set of constraints:

T mtz :
∑

e∈E
xe = n− 1 (6.3a)

∑

(v,u)∈δ−(u)

yvu = 1 u ∈ V \ {r} (6.3b)

yuv + yvu = xuv (u, v) ∈ E (6.3c)

lv ≥ lu + 1− n(1− yuv) (u, v) ∈ A (6.3d)

lu = 1 u = r (6.3e)

2 ≤ lu ≤ n u ∈ V \ {r} (6.3f)

yuv ∈ {0, 1} (u, v) ∈ A (6.3g)

xe ∈ {0, 1} e ∈ E (6.3h)
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Constraint (6.3a) ensures that the tree has n−1 edges. Equations (6.3b) impose that each node apart

from the root is reached by one single arc, while (6.3c) guarantee that an edge is selected if any of its

two arcs is selected. Constraints (6.3d) state that if an arc (u, v) is selected the position in the tree

of v is higher than the position of u. Finally, (6.3e) and (6.3f) assign appropriate bounds to variables

lu, to ensure that the relative position of the root node in the tree is 1 and that the position of any

other node is greater than or equal to 2 and does not exceed the number of nodes.

The flow-based STP formulation we present below (see Magnanti and Wolsey, 1995) is based on the

formulation of Gavish (1983) for the capacitated minimal directed tree problem, and was used by

Galand and Spanjaard (2012) for the OWASTP. In addition to the binary design variables x, the

formulation uses continuous flow variables ϕ defined on the arcs of the directed network D = (V,A).

There is a single source node, which is an arbitrarily selected node r ∈ V , with inflow n− 1. All other

nodes have a demand of one unit. For each (u, v) ∈ A the decision variable ϕuv represents the amount

of flow through arc (u, v). Then the domain of the flow formulation for the STP is:

T flow :
∑

e∈E
xe = n− 1 (6.4a)

∑

(r,v)∈δ+(r)

ϕrv −
∑

(u,r)∈δ−(r)

ϕur = n− 1 (6.4b)

∑

(u,v)∈δ+(u)

ϕuv −
∑

(v,u)∈δ−(u)

ϕvu = −1 u ∈ V \ {r} (6.4c)

ϕuv ≤ (n− 1)xuv (u, v) ∈ E (6.4d)

ϕvu ≤ (n− 1)xuv (u, v) ∈ E (6.4e)

ϕuv ≥ 0 (u, v) ∈ A (6.4f)

xe ∈ {0, 1} e ∈ E (6.4g)

Again, constraint (6.4a) ensures that exactly n−1 edges are selected. The block of constraints (6.4b)–

(6.4c) guarantees that n − 1 units of flow leave the source node r and that at least one unit of flow

arrives to every other node. The main role of these constraints is to guarantee that the graph induced

by the arcs through which the flow circulates is connected and all nodes are “covered”. Constraints

(6.4d)–(6.4e) extend these two properties to the graph induced by the x variables, by imposing that

all the edges used for sending flow in some direction are activated.

Concerning domain T flow note that, because of the flow constraints (6.4b)–(6.4c), the removal of

constraint (6.4a) would not change the set of optimal solutions (as opposed to the case of the maximum

STP). However, constraint (6.4a) reinforces considerably the linear relaxation of formulation T flow,

so it is kept in the formulation. Another improvement consists of replacing (6.4d) and (6.4e) by the
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tighter set of constraints:

ϕuv + ϕvu ≤ (n− 1)xuv (u, v) ∈ E : u = r ∨ v = r (6.4d’)

ϕuv + ϕvu ≤ (n− 2)xuv (u, v) ∈ E : u 6= r ∧ v 6= r (6.4e’)

An alternative formulation for the STP

Below we present an alternative formulation for STPs, which inherits some of the ideas behind the T km
formulation without requiring O(n3) variables. In particular, instead of building one arborescence for

each node, we arbitrarily set one single root node r ∈ V and build one single arborescence rooted at r.

The arcs of such an arborescence are determined by the subset of variables qruv, (u, v) ∈ A. Since r is

fixed, in the following we remove the first index and simply denote these variables by quv, (u, v) ∈ A.

Indeed, equality (6.2a), plus the subset of constraints (6.2b), (6.2c) and (6.2d) associated with k = r

defines a relaxation to formulation T km, which uses O(n2) variables. Unfortunately, such relaxation is

not valid for STPs, as it may produce solutions which are not associated with connected sets of arcs.

Luckily, this weakness can be easily overcome by including the following dicut inequalities:

∑

(u,v)∈δ+(S)

quv ≥ 1, S ⊆ V \ {r},

which guarantee the connectivity of the obtained solutions (at least one arc will exit from any subset

of nodes S not containing the root node) and thus, the validity of the formulation. The formulation

is then as follows:

T km2 :
∑

(u,v)∈E
xuv = n− 1 (6.6a)

quv + qvu = xuv (u, v) ∈ E (6.6b)
∑

(u,v)∈δ+(u)

quv ≤ 1 u ∈ V \ {r} (6.6c)

∑

(r,v)∈δ+(r)

qrv ≤ 0 (6.6d)

∑

(u,v)∈δ+(S)

quv ≥ 1 ∅ 6= S ⊂ V \ {r} (6.6e)

xuv ≥ 0 (u, v) ∈ E (6.6f)

quv ≥ 0 u, v ∈ V (6.6g)

Remark 6.1-

(a) The only difference between formulations T mtz and T km2 is the way in which subtours are



Chapter 6. OWA Optimization in multiobjective spanning tree problems 159

prevented. The former uses the Miller-Tucker-Zemlin inequalities, which are known to be weaker

than cut-type constraints used in the latter. This indicates that formulation T mtz is weaker than

T km2. Below we provide a stronger evidence of the superiority of T km2 over T mtz, as we will

see that T km2 has the integrality property, even if some redundancies are eliminated.

(b) For any u ∈ V \ {r} the constraint (6.6e) corresponding to the set S = {u} reduces to∑
(u,v)∈δ+(u) quv ≥ 1. Together with constraints (6.6c) this implies that

∑
(u,v)∈δ+(u) quv = 1

for all u ∈ V \ {r}. Observe, however, that the new set of constraints (6.6e) together with (6.6a)

and (6.6b) already imply that
∑

(u,v)∈δ+(u) quv = 1 for all u ∈ V \{r}. To see this, note first that

if we add all the constraints (6.6e) associated with singletons S = {u} with u ∈ V \ {r} we get

∑

u∈V \{r}

∑

(u,v)∈δ+(u)

quv =
∑

(u,r)∈δ−(r)

qur +
∑

(u,v)∈A(V \{r})
quv ≥ n− 1.

Thus, we have,

n− 1 ≤
∑

(u,r)∈δ−(r)

qur +
∑

(u,v)∈A(V \{r})
quv ≤

∑

(r,v)∈δ+(r)

qrv +
∑

(u,r)∈δ−(r)

qur +
∑

(u,v)∈A(V \{r})
quv =

∑

(u,v)∈A
quv =

∑

(u,v)∈E
xuv = n− 1,

where the last two equalities follow from constraints (6.6b) and (6.6a), respectively.

Hence, we can conclude that
∑

(u,v)∈δ+(r) quv = 0 and
∑

(u,v)∈δ+(u) quv = 1 for all u ∈ V \ {r},
since otherwise we would reach a contradiction.

The above remark indicates that the dicut constraints (6.6e) make the sets of constraints (6.6c) and

(6.6d) unnecessary. Hence, the STP formulation which emanates from the above discussion is:

T dc :
∑

(u,v)∈E
xuv = n− 1 (6.7a)

quv + qvu = xuv (u, v) ∈ E (6.7b)
∑

(u,v)∈δ+(S)

quv ≥ 1 ∅ 6= S ⊂ V \ {r} (6.7c)

xuv ≥ 0 (u, v) ∈ E (6.7d)

quv ≥ 0 u, v ∈ V (6.7e)

The reader may observe that formulation T dc can be readily transformed into the directed cut

formulation of Magnanti and Wolsey (1995) by just changing the directions of the arcs of the

arborescence and, thus, directing the arcs from the root r to the leaves, instead of from the leaves

to the root. Since the directed cut formulation of Magnanti and Wolsey (1995) has the integrality

property, so does formulation T dc. In its turn, this implies the integrality of the domain of T km2.

The number of dicut constraints (6.7c) is exponential on |V |. Nevertheless, they can be incorporated
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into the formulation only if needed via an efficient separation oracle, as they can be separated in

polynomial time by finding the Gomory-Hu cut tree (Hu, 1974).

Comparison of formulations

Let P (T (·)) denote the polyhedron associated with the linear programming relaxation of formulation

T (·). Except for formulation T sub, all other formulations above are extended formulations, in the

sense that, besides the design x variables, additional sets of variables are used. For comparing all the

formulations in the same space we project the polyhedra associated with the extended formulations

onto the space of the x variables, and denote by Px(T (·)) the projected polyhedron associated with

formulation T (·).

Several of the formulations described above have the integrality property, namely formulations

T sub, T km and T km2. This means that Px(T sub) = Px(T km) = Px(T km2). In its turn, each of

these formulations is tighter than any of the formulations without integrality property. That is,

Px(T km2) ⊂ Px(T mtz) and Px(T km2) ⊂ Px(T flow). Below we compare Px(T mtz) and Px(T flow), as

we have not seen such comparison in the literature.

The example of Figure 6.3 illustrates that Px(T flow) * Px(T mtz). The components of a x vector

such that
∑

e∈E xe = n − 1 are given next to each edge. Taking r = 5 as the root node, the flow

ϕ53 = ϕ54 = 2, ϕ31 = ϕ42 = 1, together with x, define a feasible solution to formulation Px(T flow).

However, there is no feasible y vector that together with the depicted x vector satisfies constraints

(6.3b) and (6.3c).

31
1

½ 

5

1

½  ½ 

42
1

½ ½

Figure 6.3: Fractional x solution with
∑

e∈E xe = n− 1.

On the other hand, the example depicted in Figure 6.4 shows that Px(T mtz) * Px(T flow), i.e. the

two formulations are not related in that there exist feasible solutions to Px(T flow) that do not give

rise to feasible solutions to Px(T mtz) and the other way around.

Consider a complete graph with n = 5 nodes and cost matrix:

C =




0 31 19 33 67

31 0 57 40 38

19 57 0 2 18

33 40 2 0 13

67 38 18 13 0



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1 

Figure 6.4: Solution x of T mtz formulation in the complete graph (n = 5) of the above example.

The optimal solution to the linear relaxation of T mtz is given by: x12 = 1, x34 = 1, x35 = 1, x45 = 1;

y12 = 1, y34 = 0.5, y35 = 0.5, y43 = 0.5, y45 = 0.5, y53 = 0.5, y54 = 0.5; and `1 = 1, `2 = 2, `3 = 2,

`4 = 2, `5 = 3.5.

It is clear that the above solution to T mtz does not induce a feasible solution to T flow since the vector

x does not produce a connected solution in the graph. Thus we have the following result:

Corollary 6.1-

Px(T sub) = Px(T km) = Px(T km2) ⊆
{

Px(T mtz)

6=
Px(T flow)

6.3.2 Mixed Integer Linear Programming formulations for the OWAP

This section presents the OWA formulation that we use for the OWASTP. The choice is based on our

preliminary experiments for the STP and on previous results of Fernández et al. (2014), who show

that this formulation outperforms other alternatives when the embedded combinatorial object is the

shortest path or the perfect matching problem.

Consider the following binary variables that define the specific positions in the ordering of the sorted

cost function values:

zij =





1 if cost function i occupies position j,

0 otherwise

For each j ∈ P , let also θj be a variable representing the value of the objective function sorted at
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position j. Then, the OWAP can be formulated as:

F θ : V = min
∑

j∈P
ωjθj (6.8a)

s.t.
∑

i∈P
zij = 1 j ∈ P (6.8b)

∑

j∈P
zij = 1 i ∈ P (6.8c)

Cix ≤ θj +M(1−
∑

k≥j
zik) i, j ∈ P (6.8d)

θj ≥ θj+1 j ∈ P : j < p (6.8e)

x ∈ T (6.8f)

θj ≥ 0 j ∈ P (6.8g)

z ∈ {0, 1}p×p (6.8h)

The objective function (6.8a) minimizes the weighted average of sorted objective function values,

provided that θj , j ∈ P , are enforced to take on the appropriate values. Constraints (6.8b)–(6.8c)

define a permutation of the cost functions, by placing one single cost function at each position and

each cost function at one single position of the sequence. Constraints (6.8d) relate cost function values

with the values placed in the sorted sequence. Constraints (6.8e) are optimality cuts which help the

resolution of F θ, as explained in Fernández et al. (2014).

For comparison purposes in our computational experiments, below we present the formulation used by

Galand and Spanjaard (2012) for the OWASTP. This formulation uses the above z binary variables

plus an additional set of continuous variables y = (yij)i,j∈P ∈ Rp×p, where yij denotes the value of
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cost function i if it occupies the j-th position in the ordering. The formulation is as follows:

FGS : V = min
∑

j∈P
ωj
∑

i∈P
yij (6.9a)

s.t.
∑

i∈P
zij = 1 j ∈ P (6.9b)

∑

j∈P
zij = 1 i ∈ P (6.9c)

∑

i∈P
yij ≥

∑

i∈P
yij+1 j ∈ P : j < p (6.9d)

yij ≤Mzij i, j ∈ P (6.9e)
∑

j∈P
yij = Cix i ∈ P (6.9f)

x ∈ T (6.9g)

yij ≥ 0 i, j ∈ P (6.9h)

z ∈ {0, 1}p×p (6.9i)

The objective function (6.9a) minimizes the weighted average of sorted objective function values.

Constraints (6.9b)–(6.9c) are a copy of constraints (6.8b)–(6.8c) respectively, and thus define a cost

function permutation. Constraints (6.9d) impose that the sorted values are ordered non-increasingly.

Constraints (6.9e) relate cost function values with the values placed in the sorted sequence. Constraints

(6.9f) ensure that one of the yij variables gives precisely the value of the objective function i.

Note that the relationship between θ in formulation F θ and the y variables in FGS is:

θj =
∑

i∈P
yij j ∈ P : j > 1. (6.10)

Next, we prove two results concerning formulations F θ and FGS . Let us denote by Ωθ and ΩGS the

domains defined by their respective sets of constraints. We first prove that F θ and FGS have the

same set of optimal solutions although ΩGS ⊂ Ωθ. This property no longer holds for the respective

relaxations, where everything remains unchanged except for the z variables, which are allowed to take

continuous values, i.e. zi,j ≥ 0, i, j ∈ P . In particular, we will see that ΩGS
LR ⊂ Ωθ

LR, where Ωθ
LR

and ΩGS
LR denote the respective continuous relaxed domains. Moreover, in general, the sets of optimal

solutions of the linear relaxations for the objective functions (6.8a) and (6.9a) do not coincide.

Property 6.1- Every optimal solution to FGS is also optimal to F θ and conversely.

Proof.

Given the relationship (6.10) between θ and y variables, in Ωθ we can substitute Constraints (6.8d)

by Cix ≤∑i∈P yij +M(1−∑k≥j zik), i, j ∈ P .
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• We prove first that ΩGS ⊆ Ωθ, that is, every solution (x, z, y) ∈ ΩGS (not necessarily optimal)

is such that (x, z, y) ∈ Ωθ. Observe that it suffices to prove that every (x, z, y) ∈ ΩGS , with y

and θ related by (6.10), satisfies

Cix ≤
∑

i∈P
yij +M(1−

∑

k≥j
zik) i, j ∈ P. (6.9d’)

Let x̂ be a feasible solution in T and ẑ a permutation that sorts the cost function values of x.

Then, for fixed x̂ and ẑ values there is a unique ŷ since, according to (6.9e)–(6.9f) there is at

most one j ∈ P such that yij 6= 0 for each i ∈ P . It follows that such (x̂, ẑ, ŷ) verifies (6.9d’).

• Next we prove that every optimal solution of F θ, satisfies that (x, z, y) ∈ ΩGS , after performing

the change of variable given by (6.10). For this, it is sufficient to prove that every optimal

solution (x, z, y) ∈ Ωθ verifies (6.9e) and (6.9f). Let x̂ be a feasible solution in T . Then, there

exists a permutation ẑ that sorts the cost function values of x̂ in non increasing order. Now, we

give values to the θ̂ variables according to this ordered sequence, and we determine the ŷ values

by means of ŷij = θ̂j ẑij i, j ∈ P . From here, it follows that (x̂, ẑ, ŷ) verifies (6.9d)–(6.9f). In

addition, we note that, in general, for fixed x̂ and ẑ, the polyhedron given by (6.8d)–(6.8e) is

unbounded and thus Ωθ * ΩGS .

�

Property 6.2- ΩGS
LR ⊂ Ωθ

LR.

Proof.

First, we observe that Ωθ
LR * ΩGS

LR since, otherwise, the optimal solution of F θLR for the graph in

Example 6.1 (with value 8.6 when ω = (0.8, 0, 0.2)) could not have a smaller value than the optimal

solution of FGSLR (with value 9.4).

Next, we prove that every feasible solution (x, z, y) ∈ ΩGS
LR is such that (x, z, y) ∈ Ωθ

LR, once the change

of variable given by (6.10) is done.

Indeed, we have to prove that any (x, z, y) ∈ ΩGS
LR verifies

Cix ≤
∑

i∈P
yij +M(1−

∑

k≥j
zik) i, j ∈ P. (6.9d’)

Let x̂ be a feasible solution in T and ẑ a fractional vector. Since Cix =
∑

i∈P yij and (1−∑k≥j zik)

is greater than or equal to zero, it is clear that constraint (6.9d’) is verified.

�

The above result proves that the linear relaxation of ΩGS is stronger than that of Ωθ, although

the two formulations share the same optimal integer values. Nevertheless, as we shall show in the

computational experiments, formulation F θ provides much better results in terms of running times
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and number of optimal solutions found. The reason may be the smaller number of variables used in

the second formulation.

To conclude this section we state the relationships between the different formulations that derived

from the combination of some OWA representation and any of the STP polytopes described above.

To this end, let us denote by Pxz(Ω
(·)) the projection onto the space of the x, z variables of the linear

relaxation of an OWA polytope built on the corresponding T (·) polytope for the STP. The following

property states the relationships among them.

Property 6.3-

Pxz(Ω
sub) = Pxz(Ω

km) = Pxz(Ω
km2) ⊆

{
Pxz(Ωflow)

6=
Pxz(Ωmtz)

(6.11)

Enhancements and valid inequalities for the OWAP

Formulation F θ admits other enhancements like removing some redundant variables, adding valid

inequalities, etc. First, we observe that since system (6.8b)–(6.8c) contains exactly 2p − 1 linearly

independent equations, the above permutation can also be represented without variables zi1, for all

i ∈ P , which can be replaced by 1 −∑j∈P :j>1 zij . In this way, system (6.8b)–(6.8c) can also be

rewritten (see Section 5.3.1) as

∑

i∈P
zij = 1 j ∈ P : j > 1, (6.12)

∑

j∈P
zij ≤ 1 i ∈ P. (6.13)

Second, constraints (6.8c) and (6.8e) can be removed from F θ without changing the set of optimal

solutions. We denote by F θR1 formulation F θ\{(6.8e)} and by F θR2 formulation F θ\{(6.8c), (6.8e)}.
Note that formulations F θR1 and F θR2 admit some solutions that are unfeasible in F θ (e.g. a solution

where θj ≤ θj+1 for some j). However, these two new formulations have fewer constraints and could

be more efficient in a branch-and-bound algorithm.

Finally, we present some valid inequalities that can be added to the above OWAP in order to improve

the bound of the linear relaxation and/or to reduce the search space in the branch-and-bound tree

(see Section 5.4).

• Constraints related to bounds of cost function values. Let li (ui) denote the minimum (maximum)

objective value relative to cost function i ∈ P , respectively. It is clear that li (ui) are valid lower

(upper) bounds on the value of objective i, independently of the position of cost function i in
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the ordering. Therefore we obtain the following two sets of constraints which are valid for the

OWAP:

li ≤ Cix ≤ ui i ∈ P (6.14)

• Constraints related to bounds of values in specific positions. Let lπj (uπj ) denote the j-th lowest

(largest) value of li (ui). Then, lπj (uπj ) is a valid lower (upper) bound of the objective function

sorted in position j, that is

lπj ≤ θj ≤ uπj j ∈ P (6.15)

• There are also different bounds on the value of the cost function i and the value of the cost

function sorted in position j:

∑

j∈P
max{li, lπj }zij ≤ Cix ≤

∑

j∈P
min{ui, uπj }zij i ∈ P (6.16)

6.4 Computational experience

Next, we report on the results of some computational experiments we have run, in order to compare

empirically the proposed formulations and reinforcements. We have studied the OWASTP combining

the different formulations proposed for the STP and the OWAP. First of all we have chosen the best

formulation, according to Fernández et al. (2014), among those proposed for the OWAP, namely F zR2.

We recall that the goal of this chapter is the analysis of some STP formulations within the OWAP

framework.

For keeping the length of the chapter within some reasonable limits, in our computational experience

we study a particular case of the OWA operator, namely the Hurwicz criterion (Hurwicz, 1951),

defined as αmaxi∈P yi + (1 − α) mini∈P yi. This criterion is non-monotonic and non-convex and,

in our experience, its behavior in terms of computational effort to get optimal solutions is similar

to that of other non-convex OWA criteria. In addition, this objective has been already considered

when analyzing the behavior of OWA operators in multiobjective optimization (see, e.g., Galand

and Spanjaard, 2012) and it is of special interest for being non-convex since the sorting weights, α,

are not in non-increasing order (Grzybowski et al., 2011, Puerto and Tamir, 2005). The number of

objectives ranges in |P | ∈ {5, 8, 10} and the considered values of α are {0.4, 0.6, 0.8}. Graphs are

complete according to |V | ∈ {40, 50, 60} and the components of the cost vectors are randomly drawn

from a uniform distribution on [1, 100]. In addition, for each selection of the parameters (|V |, p, α),

10 instances were randomly generated so, in total, we have a set of 180 benchmark instances. All

instances were solved with the MIP Xpress 7.5 optimizer, under a Windows 7 environment in an

Intel(R) Core(TM)i7 CPU 2.93 GHz processor and 8 GB RAM. Default values were initially used for

all parameters of Xpress solver and a CPU time limit of 3600 seconds was set. We have also tested
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different combinations of parameters for the solver cut strategy and intensity of heuristics but, unless

it is specified, the best results were obtained with the parameters of the solver set to the default

values.

In all tables each row summarizes the results corresponding to a group of 10 instances with the same

parameters (|P |, |V |, α). Columns are grouped in blocks. The first block contains three columns

with the values of the instances parameters. Then, we give a block of four columns for each tested

formulation. The columns of each such block are the following. Columns t(#) report the average

computing time in seconds over the 10 instances of the row. If at least one instance reaches the CPU

time limit, we indicate in the brackets (#) the number of instances in the group that could be solved

to optimality within the CPU time limit. In such a case, t is computed using the CPU time limit for all

unsolved instances. Columns gapLR give the percentage relative gap, computed as 100 z
∗−zLR
zLR

, where

z∗ denotes the value of the best solution found and zLR the optimal value of the linear relaxation at

the root node. Columns gap∗ show the maximum percentage optimality gap, over all the instances of

the group, relative to the lower bound at termination. Finally, columns nodes indicate the average

number of nodes explored in the branch-and- bound tree.

The caption just below each block gives the formulation the block refers to. Throughout the section

FGS denotes the formulation of Galand and Spanjaard (2012) for the OWASTP. Otherwise, we denote

by F (.) the combination of the OWA F θR2 formulation together with a STP T (.) domain. We report

results of formulations FGS , F km, F cut, Fmtz, F flow, and F km2. All tables report analogous items

for the different formulations described along the chapter. In order to facilitate the comparison among

all tables, we have marked in bold red the best result among all in the same group. In case of ties the

best results have been marked in bold blue.

6.4.1 Comparison of formulations

In Tables 6.1 and 6.1 we report results for formulations FGS , F km, F cut, Fmtz, F flow, and F km2.

The results of block FGS indicate that the OWASTP formulation of Galand and Spanjaard (2012)

produces the smallest gaps at the root node (gapLR), although only few instances could be solved

to optimality, and the gaps remaining at termination (gap∗) are outperformed by most of the other

formulations.

The results of block F km show that the number of instances solved to optimality is higher than that of

FGS , although the gaps in the unsolved instances are higher. We recall that F km uses O(n3) variables,

which can be too high in large graphs. This also explains the low average number of explored nodes

in the B&B tree.

The separation of the cutset inequalities in formulation F cut was implemented using a max-flow based

algorithm. Heuristics in Xpress solver were configured with intensity 2 (out of 3) and an initial solution

was given to the problem. The initial solution was the minimum cost spanning tree obtained using as

edge costs the average costs among all objectives. The results of block F cut indicate that, in general,

this formulation outperforms both FGS and F km. As can be seen in block Fmtz, the above also holds
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true for that formulation. In addition, the flow formulation F flow produces a similar performance to

the previous one. Observe that the block F km2 shows the best performance in terms of both number

of instances solved to optimality and running times. The reader may note that the number of explored

nodes is significantly smaller than those in previous formulations and the maximum gap at termination

(gap∗) is always below 1%.

|P | |V | α t(#) t∗/gap∗ gapLR nodes t(#) t∗/gap∗ gapLR nodes t(#) t∗/gap∗ gapLR nodes
5 40 0.4 3303 (1) 14.68% 41.47 4530253 3101.6 (2) 48.85% 47.45 13309 350.3 1629.4 48.49 2809
5 40 0.6 2432.1 (4) 13.52% 26.93 3656732 2365.9 (4) 36.1% 35.95 12585 140.3 490.8 37.37 1233
5 40 0.8 2300.5 (4) 3.61% 8.23 2028372 1481.3 (7) 19.68% 20.29 5383 685 2806.6 22.24 5846
5 50 0.4 3206.6 (2) 19.38% 40.38 3294056 3113.2 (2) 49.63% 47.95 4628 428.7 945 48.83 1552
5 50 0.6 3275.6 (1) 13.29% 27.15 3557911 3336.6 (1) 37.75% 36.53 4955 820 (9) 0.12% 37.53 2817
5 50 0.8 3309.7 (2) 1.62% 7.35 2043011 2541.9 (5) 20% 20.25 4469 1661.1 (8) 0.36% 22.2 5810
5 60 0.4 - (0) 18.25% 41.59 1753859 3085.5 (4) 50.31% 48.3 2721 1728.3 (7) 0.5% 49.18 2524
5 60 0.6 3311.6 (1) 12.23% 27.43 1713348 3340.6 (2) 37.27% 36.2 2125 1881.4 (6) 0.29% 37.78 2714
5 60 0.8 - (0) 4.01% 8.63 1662827 - (0) 20.24% 20.27 4207 3382.7 (2) 0.88% 22.25 5277
8 40 0.4 - (0) 13.75% 35.42 3794485 - (0) 43.13% 41.74 14468 1589.7 3187.7 39.44 13602
8 40 0.6 - (0) 12.93% 25.99 3724322 - (0) 34.12% 32.16 18424 1727.2 (9) 0.3% 30.25 15099
8 40 0.8 - (0) 10.68% 14.71 3094546 - (0) 20.12% 19.84 20398 2749.9 (5) 0.91% 19.83 21788
8 50 0.4 - (0) 12.86% 36.45 1646653 - (0) 46.24% 42.08 4591 3021.4 (3) 1.19% 40.43 9660
8 50 0.6 - (0) 25.27% 27.22 1772306 - (0) 33.87% 32.14 5413 - (0) 1.05% 31.33 11358
8 50 0.8 - (0) 12.64% 14.85 1952442 - (0) 20.42% 20.13 5976 - (0) 0.85% 20.12 12947
8 60 0.4 - (0) 14.84% 36.47 1417232 - (0) 48.98% 41.29 1889 - (0) 1.02% 39.56 5801
8 60 0.6 - (0) 25.98% 27.21 1472262 - (0) 34.81% 32.09 2279 - (0) 0.9% 30.77 6144
8 60 0.8 - (0) 13.74% 15.74 1347127 - (0) 20.68% 19.84 2555 - (0) 0.74% 20.14 6767

FGS F km F cut

Table 6.1: OWASTP results for the different formulations.

|P | |V | α t(#) t∗/gap∗ gapLR nodes t(#) t∗/gap∗ gapLR nodes t(#) t∗/gap∗ gapLR nodes
5 40 0.4 161 1084.4 48.09 330936 108 707.3 48.47 132275 37.8 289.7 47.25 6005
5 40 0.6 65.8 281.2 36.87 134268 19.1 46.1 37.34 27210 21.1 115.3 35.86 3525
5 40 0.8 40.2 165.3 21.63 55925 82.8 371 22.21 79107 11.3 30.7 20.37 2530
5 50 0.4 1250.3 (8) 1.58% 48.53 1719405 239 815.5 48.77 186992 202.6 1385.5 47.63 22038
5 50 0.6 1292.9 (7) 2.41% 37.28 1780642 772.1 (9) 0.06% 37.47 598456 510.7 (9) 0.85% 36.09 42928
5 50 0.8 1010.2 (8) 0.5% 21.65 880870 511.8 2560 22.11 263337 586.6 (9) 0.49% 20.37 78392
5 60 0.4 3481.3 (1) 8.72% 50.56 2151974 1469.8 (7) 0.98% 49.19 689822 1107.2 (8) 0.62% 47.98 39445
5 60 0.6 3381.2 (1) 7.74% 39.06 2399936 1334.1 (7) 0.48% 37.75 562257 736.5 (9) 0.3% 36.31 27597
5 60 0.8 3540.9 (1) 4.62% 22.78 2495350 2822.4 (4) 0.89% 22.22 998333 1790.2 (6) 0.43% 20.37 136451
8 40 0.4 1444.6 (8) 3.26% 39.37 2447077 679.2 (9) 1.16% 39.43 493769 144.5 598.6 38.55 63802
8 40 0.6 1540.2 (7) 0.6% 30.04 2555899 717.7 (9) 0.42% 30.22 513069 115.7 654.2 29.22 68677
8 40 0.8 1837.4 (6) 0.84% 19.54 2436963 1366.7 (8) 0.86% 19.78 848285 107 496.6 18.61 61329
8 50 0.4 3290.4 (1) 4.22% 41.2 2825835 3021.2 (2) 1.93% 40.52 1312489 1093.3 (8) 0.99% 39.67 232801
8 50 0.6 3491.4 (1) 4.25% 31.97 3094747 2897.2 (4) 2.37% 31.43 1505621 1505.5 (8) 0.38% 30.41 569556
8 50 0.8 2781.1 (4) 1.71% 20.04 2254217 2352.8 (5) 0.83% 20.08 851597 1559.9 (7) 0.96% 19.12 533160
8 60 0.4 - (0) 12.09% 43.53 1374362 3310.1 (1) 3.54% 39.8 1350196 1315 (9) 0.51% 38.52 294879
8 60 0.6 - (0) 7.96% 33.49 1891401 - (0) 2.28% 30.96 1316337 1164.5 (8) 0.52% 29.63 246070
8 60 0.8 - (0) 4.75% 21.54 2104458 - (0) 0.69% 20.09 1086016 1688.5 (8) 0.7% 18.86 446946

Fmtz F flow F km2

Table 6.2: OWASTP results for the different formulations.

The previous results show that formulation F km2 outperforms all the others. Thus, we have tested

several reinforcements of this formulation to further improve its performance. Next we report on the

three most promising strengthening found, which consist on adding valid inequalities (6.14), (6.15) and

(6.16) to formulation F km2. Tables 6.3 and 6.4 show that the performance of F km2 is highly improved

whenever any of these valid inequalities are added. In all cases at most 2 instances could not be solved

to optimality within the CPU time limit, and in those cases the remaining gaps at termination were

quite small (below 0.5%).

Table 6.5 displays a comparison among the results obtained by Galand and Spanjaard, 2012 for the

OWASTP and our best formulation. First, column FGS shows the formulation implemented by Galand

and Spanjaard, 2012 in IBM ILOG CPLEX 12 without any preprocessing whereas columns FGSP1 and

FGSP2 shows the running times after applying two different preprocessings (shavings) described in that

paper. In that case, 30 instances were considered for each tuple (|P |, |V |, α) and symbol “-” indicates
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|P | |V | α t(#) t∗/gap∗ gapLR nodes t(#) t∗/gap∗ gapLR nodes
5 40 0.4 37.8 289.7 47.25 6005 18 95.7 47.22 2869
5 40 0.6 21.1 115.3 35.86 3525 9.2 20.8 35.83 873
5 40 0.8 11.3 30.7 20.37 2530 9.2 17.9 20.32 2160
5 50 0.4 202.6 1385.5 47.63 22038 73.8 592.1 47.56 12474
5 50 0.6 510.7 (9) 0.85% 36.09 42928 18.9 39.3 35.98 1124
5 50 0.8 586.6 (9) 0.49% 20.37 78392 16.6 31.6 20.24 2575
5 60 0.4 1107.2 (8) 0.62% 47.98 39445 82.8 543.3 47.93 3768
5 60 0.6 736.5 (9) 0.3% 36.31 27597 168 1144.8 36.23 17012
5 60 0.8 1790.2 (6) 0.43% 20.37 136451 512.3 (9) 0.29% 20.27 54782
8 40 0.4 144.5 598.6 38.55 63802 45.5 201.8 38.59 19952
8 40 0.6 115.7 654.2 29.22 68677 21 47.1 29.25 8453
8 40 0.8 107 496.6 18.61 61329 42 90.4 18.58 21314
8 50 0.4 1093.3 (8) 0.99% 39.67 232801 108.9 480.5 39.6 39815
8 50 0.6 1505.5 (8) 0.38% 30.41 569556 437.1 (9) 0.46% 30.34 157305
8 50 0.8 1559.9 (7) 0.96% 19.12 533160 166.5 321.7 18.97 56487
8 60 0.4 1315 (9) 0.51% 38.52 294879 229 981.9 38.44 67639
8 60 0.6 1164.5 (8) 0.52% 29.63 246070 437.8 1037.9 29.54 162671
8 60 0.8 1688.5 (8) 0.7% 18.86 446946 677.8 1838.6 18.74 200817

F km2 F km2 + (6.14)

Table 6.3: OWASTP results for F km2 including valid inequalities

|P | |V | α t(#) t∗/gap∗ gapLR nodes t(#) t∗/gap∗ gapLR nodes
5 40 0.4 15.6 62.9 36.51 1525 12.1 40.1 47.22 1821
5 40 0.6 11.6 27.6 30.04 1085 12.2 33 35.83 1480
5 40 0.8 9.2 19 17.63 1130 8.7 17.2 20.32 1301
5 50 0.4 204.2 1871.5 37.65 30819 273.4 2564.3 47.56 31749
5 50 0.6 26.4 60.8 30.61 1746 42.3 267.4 35.98 2753
5 50 0.8 18.4 37.1 17.73 1927 21.4 63.1 20.24 2330
5 60 0.4 73.9 339.2 38.86 3053 37.4 116.1 47.93 1301
5 60 0.6 312.6 2622.2 31.29 16891 270.8 2019.6 36.23 13980
5 60 0.8 479.7 (9) 0.29% 17.96 33318 529.3 3253 20.27 60893
8 40 0.4 78.1 389.2 29.4 18236 36.3 103.4 38.59 12104
8 40 0.6 41.5 149.9 24.54 10984 23.6 45.2 29.25 8565
8 40 0.8 64.2 144.2 16.55 20397 41.4 78.4 18.58 19360
8 50 0.4 125.7 408.9 31.31 26170 89.7 271.5 39.6 27126
8 50 0.6 468.5 (9) 0.4% 26.09 115520 438.2 (9) 0.4% 30.34 129181
8 50 0.8 217.9 436 17.12 47529 147.4 370.9 18.97 52554
8 60 0.4 370 1550.8 30.67 60953 249 942.9 38.44 65411
8 60 0.6 617.5 1569.8 25.59 102501 351.3 853.8 29.54 97160
8 60 0.8 1083 3356.9 17.03 199707 489 1090.4 18.74 160118

F km2 + (6.15) F km2 + (6.16)

Table 6.4: OWASTP results for F km2 including valid inequalities

that the average execution times is beyond 15min (1800s). Only minimum, average and maximum

running times were provided. Our results in column F km2 + (6.16) show a better performance in

mostly all cases.

|P | |V | α t∗ t t∗ t∗ t t∗ t∗ t t∗ t∗ t t∗

5 20 0.4 0.3 1.2 2.3 0.5 1.4 2.6 0.3 1.1 2.3 1.1 1.6 3.6
5 20 0.6 0.9 1.8 3.4 1.1 2.1 3.4 0.6 1.7 2.8 1 1.4 2.4
5 20 0.8 0.6 1.7 4.3 0.5 1.5 3.4 0.5 1.5 3.1 0.9 1.2 1.8
5 30 0.4 2.4 4.6 10.1 3.6 6.1 11.8 2.2 4.6 10.1 2.8 5.8 16.1
5 30 0.6 1.9 8.9 41.7 3.1 10.3 44.3 1.6 9.1 43.8 2.4 14.4 72.9
5 30 0.8 1.5 28.1 104.7 1.2 18.6 60.7 0.5 18.4 90.5 1.9 15.5 75
5 40 0.4 6.5 18 50.8 11.5 23.9 57 6.6 18.1 45.3 5.4 12.1 40.1
5 40 0.6 7.9 46.2 155.8 13.3 51.9 163.6 7.7 46.1 155.6 5.1 12.2 33
5 40 0.8 6.5 70.5 211.7 7.1 53.4 184.8 4.1 51.7 226 4.2 8.7 17.2
5 50 0.4 21.7 123.9 323.6 38.8 143.4 352.7 21.5 124.6 335.8 8.3 273.4 2564.3
5 50 0.6 26.3 367.3 2374.1 41.7 384.8 2404.1 26 368 2394.3 7.6 42.3 267.4
5 50 0.8 9.7 297.8 3664.5 23.3 217.6 1972.1 14.5 225.3 1978.9 10 21.4 63.1
5 60 0.4 41 460.9 4131.3 86.9 511.7 4174.9 40.5 461.1 4092.9 18.8 37.4 116.1
5 60 0.6 - - - - - - - - - 12.7 270.8 2019.6
5 60 0.8 6.4 1725.3 16778.8 25.2 866.9 9426.5 2.6 1586.2 29575.1 18.7 529.3 3253

FGS FGSP1 FGSP2 F km2 + (6.16)

Table 6.5: Comparison among the results obtained by Galand and Spanjaard, 2012

Finally we run a last series of experiments with larger graphs of sizes up to 100 nodes and with up to

10 objectives. To the best of our knowledge the largest OWASTP instances reported in the literature

have up to 60 nodes and up to 5 objectives.
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Table 6.6 shows our results of formulations F km2 + (6.15) and F km2 + (6.16). We can observe that,

when |V | ≥ 80, after 1h of CPU time there are already some unsolved instances. Nevertheless, the

performance of F km2 + (6.15) and F km2 + (6.16) is remarkable, as the biggest gaps at termination are

around 1% and always below 5%.

|P | |V | α t(#) t∗/gap∗ gapLR nodes t(#) t∗/gap∗ gapLR nodes
5 40 0.4 15.6 62.9 36.51 1525 12.1 40.1 47.22 1821
5 40 0.6 11.6 27.6 30.04 1085 12.2 33 35.83 1480
5 40 0.8 9.2 19 17.63 1130 8.7 17.2 20.32 1301
5 50 0.4 204.2 1871.5 37.65 30819 273.4 2564.3 47.56 31749
5 50 0.6 26.4 60.8 30.61 1746 42.3 267.4 35.98 2753
5 50 0.8 18.4 37.1 17.73 1927 21.4 63.1 20.24 2330
5 60 0.4 73.9 339.2 38.86 3053 37.4 116.1 47.93 1301
5 60 0.6 312.6 2622.2 31.29 16891 270.8 2019.6 36.23 13980
5 60 0.8 479.7 (9) 0.29% 17.96 33318 529.3 3253 20.27 60893
5 80 0.4 1460.2 (8) 1.2% 39.8 14117 1193.2 (8) 1% 47.48 19421
5 80 0.6 1682.5 (7) 1.09% 32.02 22844 1828.2 (7) 1.49% 36.15 22162
5 80 0.8 1554.2 (6) 1.09% 18.41 21643 1583 (6) 1.29% 20.38 28128
5 100 0.4 2241 (5) 1.15% 40.59 12791 2336 (5) 1.14% 47.88 16091
5 100 0.6 2269.4 (4) 1.17% 32.33 13356 2191.9 (5) 4.48% 36.56 9957
5 100 0.8 1591.5 (6) 1.52% 18.38 19327 1548.9 (6) 0.85% 20.21 29653
8 40 0.4 78.1 389.2 29.4 18236 36.3 103.4 38.59 12104
8 40 0.6 41.5 149.9 24.54 10984 23.6 45.2 29.25 8565
8 40 0.8 64.2 144.2 16.55 20397 41.4 78.4 18.58 19360
8 50 0.4 125.7 408.9 31.31 26170 89.7 271.5 39.6 27126
8 50 0.6 468.5 (9) 0.4% 26.09 115520 438.2 (9) 0.4% 30.34 129181
8 50 0.8 217.9 436 17.12 47529 147.4 370.9 18.97 52554
8 60 0.4 370 1550.8 30.67 60953 249 942.9 38.44 65411
8 60 0.6 617.5 1569.8 25.59 102501 351.3 853.8 29.54 97160
8 60 0.8 1083 3356.9 17.03 199707 489 1090.4 18.74 160118
8 80 0.4 2314 (5) 1.46% 35.14 105903 2176.4 (5) 1.02% 38.59 152486
8 80 0.6 2785.9 (5) 0.2% 26.33 215590 2355.2 (5) 0.5% 29.65 316561
8 80 0.8 3085.1 (3) 1.16% 17.44 234384 2010.7 (8) 0.98% 18.85 299480
8 100 0.4 3238 (3) 3.82% 33.18 90102 2903.9 (4) 1.11% 38.82 119588
8 100 0.6 2952.3 (3) 0.81% 26.79 81007 2998.1 (3) 0.58% 29.73 153248
8 100 0.8 3595.7 (1) 1.23% 17.71 159736 3396.8 (1) 0.93% 19 232543
10 40 0.4 1360.3 (7) 0.05% 27.04 139960 263.8 837.5 35.82 128102
10 40 0.6 1345.1 (8) 1.25% 22.82 336561 986.5 (8) 1% 27.25 435060
10 40 0.8 1980.9 (7) 0.66% 15.62 557424 1054.3 (9) 1.34% 17.55 589547
10 50 0.4 2209.9 (5) 1.31% 28.44 311753 1679.6 (6) 1.12% 36.01 494558
10 60 0.4 - (0) 0.51% 28.5 373784 2604.4 (4) 0.85% 27.53 863090
10 60 0.6 - (0) 0.62% 23.54 469722 2798.2 (4) 0.9% 18.08 1097300
10 60 0.8 - (0) 0.63% 16.22 478948 2135.2 (7) 0.44% 35.72 600445
10 80 0.4 - (0) 2.76% 28.96 176553 2625.9 (7) 0.58% 27.17 934221
10 80 0.6 - (0) 0.88% 23.99 203533 3514.7 (1) 0.54% 17.74 996344
10 80 0.8 - (0) 1.02% 16.45 213147 - (0) 0.91% 34.99 467169
10 100 0.4 - (0) 1.02% 29.51 108833 - (0) 0.47% 27.03 458488
10 100 0.6 - (0) 0.65% 24.12 103042 - (0) 0.9% 17.72 492075
10 100 0.8 - (0) 1.27% 16.53 101222 - (0) 0.84% 35.01 222124

kp21 1 3 cota j kp21 1 3 cota y z

Table 6.6: OWASTP results for large instances
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6.5 Conclusions

In this chapter we have presented reinforced mathematical programming formulations for the

OWASTP as well as a new formulation which reduces the number of decision variables. This new

formulation reinforced with appropriate constraints has shown to be very promising for efficiently

solving many medium size OWASTP instances. However, from the obtained results it is also clear

that for solving larger OWASTP instances with more objective functions further improvements are

needed. Our current research focuses on the design of more sophisticated elimination tests as well as

from alternative formulations leading to tighter LP bounds.
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Pascoal, M., Captivo, M. E. and Cĺımaco, J. (2003) “A note on a new variant of Murty’s ranking assignments
algorithm”. 4OR, vol. 1(3): 243–255.

Prim, R. (1957) “Shortest connection networks and some generalizations”. Bell System Technical Journal,
vol. 36: 1389–1401.

Puerto, J. (2008) “A new formulation of the capacitated discrete median problem with {0, 1}-assignment”.
In J. Kalcsics and S. Nickel, eds., Operations Research Proceedings 2007, chap. , pp. 165–170. Springer,
Heidelberg.
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Conclusions

This PhD dissertation explores different topics related to mathematical models for the design and

planning of transportation on demand in urban logistics networks. The contributions are divided into

six main chapters and a basic background, for the contents that are presented, is provided.

In Chapter 1, a new approach for jointly planning timetables and vehicle schedules along a single transit

line has been developed by emphasizing the point of view of potential customers. The setting analyzed

in this chapter assumes a model of fully disaggregated demand for a scenario that includes capacity

constraints and demand behavior according to different criteria. A p-median based formulation has

been proposed including specific constraints for the scheduling problem for a given fleet size of vehicles.

In addition, demand behavior is associated with the inclusion of closest assignment type constraints.

A clustering algorithm has been developed in order to provide an alternative methodology for solving

instances of the problem when computational time must be limited. The performed computational

experience shows the difficulty of including closest assignment constraints in a transportation problem

and the advantages of deriving a clustering algorithm that allows an appropriate preprocessing of the

information.

In Chapter 2, we have presented a new approach for solving the integration of the Transit Network

Timetabling and Scheduling Problem together with the passengers’ routing problem. Traditionally,

these problems have been studied sequentially but this approach leads to sub-optimal solutions for the

entire problem. We present a flexible framework that let us allocate transportation requests to their

optimal strategies under capacity constraints. This approach not only pursues transfer coordination

but also customers’ preferences in terms of preferred departure/arrival times for a fully disaggregated

demand. Even more, each transportation request is faced individually, stating hard time windows

constraints for departure/arrival times as well as inconvenience costs related to trip duration and time

deviations from desired departure/arrival times. A testbed of randomly generated instances has been

generated for different network configurations existant in the literature and computational results have

been obtained and analyzed.

In Chapter 3, we have presented a modeling approach for solving the rescheduling problem in a

transit line that has suffered a fleet size reduction. We have described a demand pattern to reflect

the passengers’ behaviour when some vehicle services are delayed or cancelled. This inconvenience

function has been used to derive a rescheduling framework coming from a timetabling formulation.

We have shown that the problem can be solved rapidly by using a constrained max-cost-flow problem

whose coefficient matrix we prove is totally unimodular. We have tested the different formulations
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over a testbed of random instances and the results show that (1) on-line rescheduling can be efficiently

done by using the proposed models, (2) previous approaches in the literature are outperformed and

(3) our approach can be applied to real scenarios as it is the case of the commuter train system of

Madrid.

In Chapter 4, we have provided a methodology to obtain a complete description of the set of Pareto-

optimal solutions for the multi-criteria p-facility median location problem on networks. It is noteworthy

that this chapter is the first attempt to characterize the solution set of this problem. Note that the

single criteria p-facility median problem is already NP-hard and handling closest assignments makes

more difficult to deal with the multifacility version. The main tools used to obtain the set of Pareto-

optimal solutions is the characterization of the linearity domains of the distance functions and the

lower envelope. Hence, this analysis can be easily extended to more general objective functions as

long as we can again determine these domains and their image and preimage.

In Chapter 5, we have presented and revisited different mathematical programming formulations for

the OWAP using different sets of decision variables. These formulations reinforced with appropriate

constraints have shown to be rather promising for efficiently solving many medium size OWAP

instances.

Finally, in Chapter 6 we have studied the Ordered Weighted Average Spanning Tree Problem. The

ordered weighted average is an averaging operator to aggregate the vector of objective values of feasible

solutions. A new complexity result is proven according to which the OWASTP is NP-complete even for

cactus graphs and two objectives. Alternative mixed integer linear formulations have been proposed

and compared, both theoretically and empirically. Extensive computational experiments on a large

set of randomly generated benchmark instances have been run and the obtained numerical results

analyzed and compared. These results show that the choice of an appropriate formulation allows to

solve larger instances with more objectives than those previously solved in the literature.
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López de los Mozos, M., Mesa, J. and Puerto, J. (2008) “A generalized model of equality measures in network”.
Computers & Operations Research, vol. 35: 651–660.

Lusby, R., Larsen, J., Ehrgott, M. and Ryan, D. (2011) “Railway track allocation: models and methods”. OR
Spectrum, vol. 33 (4): 843–883.

Magnanti, T. and Wong, R. (1984) “Network design and transportation planning: Models and algorithms.”
Transportation Science, vol. 18(1): 1–55.

Magnanti, T. L. and Wolsey, L. A. (1995) “Optimal trees”. In C. M. M.O. Ball, T.L. Magnanti and
G. Nemhauser, eds., Network Models, Chapter 9, vol. 7 of Handbooks in Operations Research and Management
Science, pp. 503 – 615. Elsevier.
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