

Universidad de Sevilla

Escuela Técnica Superior de Ingeniería

Departamento de Ingeniería Eléctrica

Trabajo fin de master

INCORPORACIÓN DE ELEMENTOS DE CONTROL DE TENSIÓN A LAS ECUACIONES DE FLUJO DE CARGAS BASADAS EN INTENSIDADES

Autor: Joaquín Álvarez Agudo

Tutores: Dra. Esther Romero Ramos

Dr. Antonio Gómez Expósito

Sevilla, Diciembre 2014

INDICE

1. INTRO	DUCCIÓN	6
2. DESCR	IPCIÓN DE MODELO DE RED	8
2.1 ECU	ACIONES DE RED	8
2.2 MOD	DELO DE TRANSFORMADOR CON TOMAS, NUDOS PQV	9
2.3 LINE	EALIZADO DE LAS ECUACIONES EN FORMA COMPLEJA-REAL	13
2.4 PRO		16
3. DESCR	IPCION DEL ALGORITMO EN MATLAB	17
3.1 BLO		1/
3.1.1 FC	UNCIÓN DE LECTURA	17
3.1.2 M	ATRIZ DE ADMITANCIAS	20
3.1.3 D	ATOS INICIALES	20
3.2 BLO	QUE DE ITERACIÓN	22
3.2.1 II	NTENSIDADES	22
3.2.2 B	LOQUE DE SUBMATRICES	23
3.2.3 0	BTENCIÓN DE RESULTADO	25
3.2.4 FC	UNCIÓN LÍMITE DE TOMAS	25
3.2.5 FC	UNCIÓN LÍMITE DE REACTIVA GENERADA	26
3.2.6 C	OMPROBAR ITERACIÓN	26
3.2.7 R	ECÁLCULO	26
3.3 MUE	STRA DE RESULTADO FINAL	28
4. RESUL	TADOS	29
4.1 IEEE	14	29
4.2 RED	136	31
4.3 RED	136 DOBLEMENTE CARGADA	34
4.3.1 Ca	aso B.1: Red radial con nudos PV, límites grandes	34
4.3.2 Ca	aso B.2: Red radial con nudos PV, límites pequeños	36
4.3.3 Ca	aso C.1: Red radial con transformadores OLTC, Tensión Slack 1.00 .	38
4.3.4 Ca	aso C.2: Red radial con transformadores OLTC, Tensión Slack 0.97 .	41
4.3.5 Ca	aso D.1: Red radial con transformadores y generadores	<i>43</i>
4.3.1 Ca	aso D.2: Red radial con transformadores y generadores	46
5. CONCL	USIONES	49
6. BIOGR	AFÍA	50
7. ANEXO)S	51
I.1 IEEE	14	51
I.2 RED	BRASILENA 136 NODOS	54

INDICE FIGURAS

Figura 1: Modelo transformador con cambio de tomas9
Figura 2: Modelo de transformador con cambio de tomas mediante fuentes dependientes 10
Figura 3: (a) Cambio fuente de tensión a fuente de corriente y (b) división de la misma 11
Figura 4: Modelo final de transformador con tomas 12
Figura 5: Esquema de resolución 17
Figura 6: Modelado de líneas 18
Figura 7: Modelado de transformadores de tomas fijas 19
Figura 8: Detalles del bloque iniciación
Figura 9: Proceso de cálculo de submatrices
Figura 10: División de la matriz de cálculo 25
Figura 11: División en coordenadas rectangulares
Figura 12: Resumen bloque iteración 27
Figura 13: Red IEEE14 original [3]
Figura 14: Red 14 nodos
Figura 15: Red brasileña
Figura 16: Evolucion diferencial potencia reactiva ΔQ_r caso B.1:
Figura 17: Evolución diferencial ángulo en nudos PV $\Delta \Theta_Q$, caso B.1:
Figura 18: Evolución máxima diferencia de tensiones ΔU, caso B.1
Figura 19: Evolución diferencial potencia reactiva ΔQ , caso B.2:
Figura 20: Evolución diferencial ángulo en nudos PV $\Delta \Theta_Q$, caso B.1:
Figura 21: Evolución máxima diferencia de tensiones AU, caso B.2
Figura 22: Evolución diferencial toma de transformadores Δa_i caso C.1:
Figura 23: Evolución diferencial ángulos del secundario Δ_{θ} , caso C.1:
Figura 24: Evolución diferencial caso C.1:
Figura 25: Evolución máxima diferencia de tensiones ΔU, caso C.1
Figura 26: Evolución diferencial toma de transformadores Δa_i caso C.2:
Figura 27: Evolución diferencial ángulos del secundario Δ_{θ} , caso C.2:
Figura 28: Evolución diferencial caso C.2:
Figura 29: Evolución máxima diferencia de tensiones ΔU_i caso C.2
Figura 30: Evolución diferencial potencia reactiva ΔQ , caso D.1:
Figura 31: Evolución diferencial ángulo en nudos PV $\Delta \Theta_0$, caso B.1:
Figura 32: Evolución diferencial toma de transformadores Δa_i caso D.1:
Figura 33: Evolución diferencial ángulos del secundario $\Delta \theta_i$ caso D.1:
Figura 34: Evolución máxima diferencia de tensiones ΔU_i caso D.1
Figura 35: Evolución diferencial potencia reactiva ΔQ , caso D.2:
Figura 36: Evolución diferencial ángulo en nudos PV $\Delta \Theta_o$, caso B.1:
Figura 37: Evolución diferencial toma de transformadores Δa_i caso D.2:
Figura 38: Evolución diferencial ángulos del secundario $\Delta \theta_i$ caso D.2:
Figura 39: Evolución máxima diferencia de tensiones ΔU_{ℓ} caso D.2
Figura 40: Red brasileña mallada caso A.1
Figura 41: Red brasileña radial caso A.2
Figura 42: Red brasileña radial con generadores casos B
Figura 43: Red brasileña radial con transformadores LTC, casos C
Figura 44: Red brasileña radial con transformadores LTC y generadores, caso D.1
Figura 45: Red brasileña mallada con transformadores LTC y generadores, caso D.1 66

INDICE TABLAS

Tabla 1: Características de los nodos	. 18
Tabla 2: Características de las líneas	. 18
Tabla 3: Característica de generadores	. 19
Tabla 4: Característica de generadores	. 19
Tabla 5: Resultado mostrado	. 28
Tabla 6: Datos de generadores	. 31
Tabla 7: Datos de transformadores con cambio de tomas	. 31
Tabla 8: Datos de generadores	. 33
Tabla 9: Datos de transformadores con cambio de tomas	. 33
Tabla 10: Resultado generadores, caso B.1 de red doblemente cargada	. 36
Tabla 11: Resultado generadores, caso B.1 de red doblemente cargada	. 38
Tabla 12: Resultado transformadores, caso C.1 de red doblemente cargada	. 40
Tabla 13: Resultado transformadores, caso C.1 de red doblemente cargada	. 42
Tabla 14: Resultado transformadores, caso D.1 de red doblemente cargada	. 45
Tabla 15: Resultado generadores, caso D.1 de red doblemente cargada	. 45
Tabla 16: Resultado transformadores, caso D.2 de red doblemente cargada	. 48
Tabla 17: Resultado generadores, caso D.2 de red doblemente cargada	. 48
Tabla 18: Resultado generadores, caso A.1 del IEEE14	. 51
Tabla 19: Resultado generadores, caso A.1 del IEEE14	. 51
Tabla 20: Resultado generadores, caso A.2 del IEEE14	. 51
Tabla 21: Resultado tensiones y fases nodos, caso A.2 del IEEE14	. 51
Tabla 22: Resultado generadores, caso B.1 del IEEE14	. 51
Tabla 23: Resultado transformadores con cambio de tomas, caso B.1 del IEEE14	. 52
Tabla 24: Resultado tensiones y fases nodos, caso B.1 del IEEE14	. 52
Tabla 25: Resultado generadores, caso B.2 del IEEE14	. 52
Tabla 26: Resultado transformadores con cambio de tomas, caso B.2 del IEEE14	. 52
Tabla 27: Resultado tensiones y fases nodos, caso B.2 del IEEE14	. 52
Tabla 28: Resultado generadores, caso C.1 del IEEE14	. 52
Tabla 29: Resultado transformadores con cambio de tomas, caso C.1 del IEEE14	. 53
Tabla 30: Resultado tensiones y fases nodos, caso C.1 del IFEE14	. 53
Tabla 31: Resultado generadores, caso C.2 del IEEE14	. 53
Tabla 32: Resultado transformadores con cambio de tomas, caso C.2 del IEEE14	. 53
Tabla 33: Resultado tensiones y fases nodos, caso C.2 del IEEE14	. 53
Tabla 34: Resultado tensiones y fases nodos, caso A.1 de red brasileña mallada	. 55
Tabla 35: Resultado tensiones y fases nodos, caso A.2 de red brasileña radial	. 57
Tabla 36: Resultado generadores, tensiones y fases nodos, caso B.1 de red brasileña radial	. 59
Tabla 37: Resultado generadores, tensiones y fases nodos, caso B.2 de red brasileña radial	. 60
Tabla 38: Resultado transformadores, tensiones y fases nodos, caso C.1, red brasileña radial	. 62
Tabla 39: Resultado transformadores, tensiones y fases nodos, caso C.2 de red brasileña radial.	. 63
Tabla 40: Resultado generadores, transformadores, tensiones y fases nodos, caso D.1 de	red
brasileña radial	. 65
Tabla 41: Resultado generadores, transformadores, tensiones y fases nodos, caso D.2 de	red
brasileña malla	. 67

1. INTRODUCCIÓN

En el planteamiento de la resolución de flujos de cargas en redes de sistemas eléctricos, los principales objetivos son los de obtener el perfil de tensiones (tanto módulos como ángulos), los valores de potencia reactiva generada así como la inclusión de componentes que permiten la regulación de tensión en un nudo en concreto como es el caso de reactancias o banco de condensadores, reguladores automático de voltaje asociados a algún generador o la opción de transformadores con cambio de tomas; todo ello en base a la potencia consumida y/o generada en cada nudo.

Estos problemas suponen la utilización de complejos algoritmos y métodos que proporcionan soluciones aproximadamente exactas, comprometiendo exactitud y tiempo de cálculo, como ocurre en los flujos de cargas convencionales. Tomando estos métodos como referencia se plantea un método no lineal que mediante un proceso iterativo basado en el proceso Newton-Raphson. Sin embargo, las ecuaciones empleadas utilizan un método de flujo de cargas basado en residuos de intensidades y no de potencias como se viene haciendo hasta ahora.

De manera que, la novedad se establece en que las ecuaciones de la red se realizan en términos de tensiones e intensidades, utilizando la primera y segunda ley de Kirchhoff, la ley de Ohm y las relaciones en las cargas. A partir de las mismas y aplicando el desarrollo en serie de Taylor, se linealizan, quedándonos sólo con los términos de primer orden.

De este modo, basado en nuevos modelos de elementos reguladores de tensión tal y como se expone en el artículo referencia [1], se pretende simplificar la computación de flujos de cargas. El procedimiento seguido en dicho artículo parte de los complejos modelos que se utilizan convencionalmente, pasando a un modelo incremental de ecuaciones tanto en términos complejos como reales. Éste es resuelto de manera eficiente con la ayuda de la factorización en submatrices constantes a partir de la matriz de admitancias de los nudos PQ.

El presente Trabajo Fin de Máster, tomando como referencia este nuevo modelo aplicado a los transformadores con cambio de tomas, desarrolla un algoritmo en MATLAB para su aplicación en el cálculo de flujo de cualquier tipo de red eléctrica. A lo largo del mismo se expondrán los diferentes modelos en los que se ha basado; exponiendo y describiendo el algoritmo que hace posible la implementación de estos nuevos algoritmos. Todos los elementos que se esperan conseguir en el flujo de carga (tensiones, ángulos, potencia generada y tomas de transformadores) serán comparados con los resultados obtenidos mediante métodos bien establecidos como es el uso del modelo de Newton-Raphson aplicado en programas como el PSS-E o PowerWorld. Siendo éstos utilizados como referencia para la validación de la solución final.

Departamento de Ingeniería Eléctrica

Para la validación y testeo del programa desarrollado en base al algoritmo citado, varios casos serán analizados intentando cubrir el mayor número de redes posibles. Aunque la casuística puede complicarse tanto como el lector pueda imaginar, se tendrán en cuenta otros casos proponiendo las posibles mejoras que puedan quedar por cubrir.

2. DESCRIPCIÓN DE MODELO DE RED

Tras una primera introducción del problema, lo que se pretenderá realizar en esta sección es presentar la base computacional sobre la que se apoyará el algoritmo implementado en el programa MATLAB.

2.1 ECUACIONES DE RED

Inicialmente se exponen las conocidas ecuaciones de un flujo de carga simplificado, en el que sólo se tienen en cuenta nudos generadores y nodos con cargas, incluyendo el nudo slack.

A. Ecuaciones de nodos de la red

Las ecuaciones de nudos de la red son ampliamente conocidas, con \mathcal{U}_{δ} el vector de tensiones de los nodos de la red; I_{δ} el vector de corrientes netas inyectadas en los nodos; y la matriz de admitancias \mathcal{Y}_{δ} , la cual es simétrica siempre y cuando no existan transformadores que puedan aplicar desplazamiento de fase.

$$Y_b U_b = I_b \tag{1}$$

Teniendo en cuenta la diferenciación entre cargas y generadores, esta ecuación puede ser presentada como se expone en las ecuaciones (2).

$$Y_{ll}U_{l} + Y_{lg}U_{g} + Y_{l0}U_{0} = I_{l}$$

$$Y_{gl}U_{l} + Y_{gg}U_{g} + Y_{g0}U_{0} = I_{g}$$
(2)

B. Restricciones para nudos generadores y cargas

Teniendo en cuenta el tipo de nudo, diferentes restricciones no lineales son aplicadas para el cálculo de las corrientes de cargas y generadores ($I_{i\beta}$, $I_{j\beta}$).

<u>Nudos PQ:</u>

En el caso de los nudos PQ o nudos carga, la potencia compleja inyectada (S_l^{sp}) es especificada mientras que la tensión y el ángulo de la misma son desconocidos. El vector obtenido de la ecuación (3), en el que se incluyen todas las potencias especificadas, es utilizado para obtener la tensión compleja $(diag(U_l))$ de cada nodo, tal y como se expone en (4).

$$S_l^{sp} = P_l^{sp} + Q_l^{sp} j \tag{3}$$

Departamento de Ingeniería Eléctrica

$$S_l^{sp} = diag(U_l)I_l^* \tag{4}$$

Dentro de este tipo de nudos y como será explicado durante la definición del algoritmo, se pueden englobar otros tipos de nodos como pueden ser transformadores de toma fija, generadores que han alcanzado su límite de generación o aquellos transformadores con cambio de tomas utilizando sus tomas límites. Teniendo en cuenta que estos elementos de control de tensión han alcanzado sus límites, la potencia generada será conocida y por tanto pasan a ser nodos PQ.

<u>Nudos PV:</u>

Los nudos PV o nudos generadores, la potencia activa P_g^{sp} y la tensión V_g^{sp} son especificadas aunque el ángulo de esta tensión θ_g y la potencia reactiva generada Q_g deben ser obtenidas. La matriz obtenida a partir de la ecuación (5) es el resultado de esta restricción.

$$P_g^{sp} + Q_g j = diag(U_g)I_g^*$$

$$Con |U_g| = V_g^{sp}$$
(5)

2.2 MODELO DE TRANSFORMADOR CON TOMAS, NUDOS PQV

Hasta ahora se ha presentado el modelo de red que se utiliza habitualmente en el método para la solución de flujos de carga. Con la introducción de transformadores con tomas (Figura 1), estas ecuaciones varían y complican la resolución de este problema.

De forma que, un nuevo modelo de transformador es propuesto para simplificar el procedimiento. El modelo que se utiliza normalmente sin tener en cuenta las admitancias de magnetización se expone en Figura 1. Las ecuaciones del modelo (6) (con p las tensiones y corrientes del nudo primario, s las correspondientes al nudo secundario y v un nudo auxiliar sin inyección de corriente), permiten una representación mediante fuentes de corriente y tensión tal y como se puede observar en la Figura 2 (junto con las ecuaciones (7))

Departamento de Ingeniería Eléctrica

Figura 2: Modelo de transformador con cambio de tomas mediante fuentes dependientes

$$U_{p} - U_{s} = (a - 1)U_{v} + \frac{I_{s}}{Y_{cc}} = (a - 1)U_{v} + a\frac{I_{p}}{Y_{cc}}$$

$$I_{p} = \left[\frac{-U_{p}}{a^{2}} - \frac{U_{s}}{a}\right]Y_{cc}$$
(7)

Tras esta simplificación, la fuente de tensión en serie con la admitancia \mathcal{Y}_{CC} es transformada a una fuente de corriente equivalente en paralelo con la misma admitancia. Tras ello, esta fuente de corriente puede ser dividida y reemplazada por un par de fuentes de corrientes iguales pero con direcciones de inyección opuestas, una entrando en el nodo \mathcal{P} y la otra en el nodo s. La Figura 3 representa el cambio propuesto.

El modelo de transformador resultantes está compuesto por una única admitancia en serie entre los nodos s y p, junto con dos fuentes de corrientes shunt (I_{sp}, I_{ss}) inyectando en cada uno de los nodos (Figura 4). Los valores de estas dos fuentes de corrientes, las cuales serán nulas cuando la toma $\alpha=1$, pueden ser expresado en términos de tensiones complejas \mathcal{U}_{p} y $\mathcal{U}s$. Tomando las ecuaciones (6) junto con las expuestas en (7), obtenemos esta dependencia de las tensiones de primario y secundario (ecuación (8)).

Departamento de Ingeniería Eléctrica

u 🕻

$$I_{sp} = Y_{cc} \left[\frac{(a^2 - 1)}{a^2} U_p - \frac{(a - 1)}{a} U_s \right]$$

$$I_{ss} = Y_{cc} \frac{(a - 1)}{a} U_s$$
(8)

11

Con este nuevo modelo, y teniendo en cuenta las fuentes de corrientes que éste conlleva, las ecuaciones de nodos de la red cambian obteniendo

$$Y_{ll}U_{l} + Y_{lg}U_{g} + Y_{l0}U_{0} = I_{l} + I_{sl}$$

$$Y_{gl}U_{l} + Y_{gg}U_{g} + Y_{g0}U_{0} = I_{g} + I_{sl}$$
(9)

De forma que las corrientes shunt (I_{sp}, I_{ss}) Obtenidas en la ecuación (8), son incluidas en la parte derecha de la ecuación (2). Teniendo en cuenta que la admitancia Y_{cc} es incluida en la matriz de admitancia como una más, la ecuación (10) es el resultado. Sustituyendo (8) en (10), reordenando y despejando, nos da como resultado las ecuaciones (11).

$$Y_{pl}U_{l} + Y_{pg}U_{g} + Y_{p0}U_{0} = I_{l} + I_{sp}$$

$$Y_{sl}U_{l} + Y_{sg}U_{g} + Y_{s0}U_{0} = I_{g} - I_{ss}$$
(10)

$$Y_{pl}U_{l} + \left[Y_{pp} + Y_{cc}\frac{(a^{2} - 1)}{a^{2}}\right]U_{p} + \left[Y_{ps} + Y_{cc}\frac{(a - 1)}{a}\right]U_{s} + Y_{pg}U_{g} + Y_{p0}U_{0} = I_{p}$$

$$Y_{sl}U_{l} + \left[Y_{sp} + Y_{cc}\frac{(a - 1)}{a}\right]U_{p} + Y_{ss}U_{s} + Y_{sg}U_{g} + Y_{s0}U_{0} = I_{s}$$
(11)

2.3 LINEALIZADO DE LAS ECUACIONES EN FORMA COMPLEJA-REAL

Tras obtener el modelo expuesto, procedemos a linealizar el problema mediante el modelo incremental. Para ello, se tendrá en cuenta que, para obtener el modelo incremental de las ecuaciones, la tensión de los nodos PV (ΔU_g) será escrita en modo incremental en función del ángulo de la tensión ($\Delta \theta_g$). Quedando como resultado las ecuaciones (12).

$$\begin{split} \Delta U_i &= j U_i \Delta \theta_i \qquad \forall \ i \in g \\ \Delta U_i^* &= -j U_i \Delta \theta_i \qquad \forall \ i \in g \end{split} \tag{12}$$

<u>Nudos PQ:</u>

El modelo incremental de estos nodos es obtenido a partir de las ecuaciones (2) y (4). Obteniendo como resultado la ecuación (13). Dónde I_{ℓ} es obtenido a partir de (2).

$$Y_{ll}\Delta U_l + jY_{lg}diag(U_g)\Delta\theta_g + Y_{l0}U_0 = S_l^{sp} = diag(U_l)^{-1}S_l^{sp*} - I_l$$
(13)

<u>Nudos PV:</u>

El modelo incremental de los nodos PV es obtenido a partir de las ecuaciones (2) y (5). Obteniendo como resultado la ecuación (14). Con $U_i = V_i \exp(j\theta_i)$, $\forall i \in g$. $Y_{gl}\Delta U_l + j[Y_{gg}diag(U_g) - diag(I_g)]\Delta \theta_g + jdiag(U_g)^{-1}\Delta Q_g = diag(U_g)^{-1}(P_g^{sp} - Q_gj) - I_g$ (14)

Tomando las ecuaciones (13) y (14), y poniéndolas en forma matricial, obtenemos el modelo incremental buscado sin tener en cuenta aún los transformadores con cambio de tomas (OLTC, por sus siglas en inglés "On-load tap changing"). Como puede comprobarse, una importante característica del modelo complejo-real que se propone es que los nodos PQ son incluidos por media de la inclusión de la variable ΔQ_g al vector de incógnitas, al contrario de lo que se viene utilizando en los métodos que utilizan coordenadas rectangulares.

$$\begin{pmatrix}
Y_{ll} & jY_{lg}diag(U_g)\Delta\theta_g & 0 \\
Y_{gl} & j[Y_{gg}diag(U_g) - diag(I_g)] & jdiag(U_g)^{-1} \\
\end{pmatrix} \begin{pmatrix}
\Delta U_l \\
\Delta \theta_g \\
\Delta Q_g
\end{pmatrix} = \begin{pmatrix}
diag(U_l)^{-1}S_l^{sp*} - I_l \\
diag(U_g)^{-1}(P_g^{sp} - Q_gj) - I_g
\end{pmatrix}$$
(15)

En este punto se puede ver que el número de ecuaciones complejas coincide que las incógnitas del problema. El modelo compromete variables complejas y reales, que no pueden resolverse de manera convencional si no se dividen las cantidades complejas de acuerdo a coordenadas rectangulares.

• <u>Transformadores OLTC:</u>

Como se ha expuesto anteriormente, los transformadores OLTC regulan la magnitud de las tensiones, normalmente la del nodo secundario V_s^{sp} . Teniendo en cuenta que no sólo la potencia aparente inyectada es conocida S_s^{sp} , sino que la tensión V_s^{sp} también es especificada, estos nudos son considerados como PQV.

Basado en las ecuaciones (11), el modelo incremental es deducido. Debe tenerse en cuenta que el nodo s contribuye con el ángulo de la tensión θ s ya que el módulo de la misma viene dado, de ahí la definición como nudo PQ. La otra incógnita viene dada por la toma a necesaria para alcanzar la tensión objetivo. Así este nudo tendrá la misma nomenclatura que la expresada en (12). Obteniendo las ecuaciones en modo incremental (16) y (17).

$$Y_{pl}\Delta U_{l} + \left[Y_{pp} + Y_{cc}\frac{(a^{2}-1)}{a^{2}}\right]\Delta U_{p} + j\left[Y_{ps} + Y_{cc}\frac{(a-1)}{a}\right]diag(U_{s})\Delta\theta s$$

$$+ \left[Y_{cc}\left(-\frac{2}{a^{3}}diag(U_{p}) + \frac{1}{a^{2}}diag(U_{s})\right)\right]\Delta a + jY_{pg}diag(U_{g})\Delta\theta_{g}$$

$$= diag(U_{p})^{-1}S_{p}^{sp*} - I_{p}$$

$$Y_{sl}\Delta U_{l} + \left[Y_{sp} + Y_{cc}\frac{(a-1)}{a}\right]\Delta U_{p} + jY_{ss}diag(U_{s})\Delta\theta s + \left(Y_{cc}\frac{1}{a^{2}}diag(U_{p})\right)\Delta a + jY_{sg}diag(U_{g})\Delta\theta_{g}$$

$$= diag(U_{s})^{-1}S_{s}^{sp*} - I_{s}$$

$$(16)$$

Añadiendo estas ecuaciones a las obtenidas para los nudos PQ y PV, obtenemos la forma matricial que se expone en la matriz (19). De forma compacta podemos verla en la matriz (18).

						\sim		
$\left(Y_{ll} \right)$	Y_{lp}	K_{ls}	0	K_{lg}	0 \	ΔU_l		ΔI_l
Y _{pl}	K _{pp}	K _{ps}	K _{pa}	K _{pg}	0	$\frac{\Delta U_p}{\Delta \theta_s}$	_	ΔI_p
Y _{sl}	K _{sp}	K _{ss}	K _{sa}	K _{sg}	0	Δa $\Delta \theta_g$	_	ΔI_s
Y_{gl}	Y_{gp}	K _{gs}	0	K _{gg}	K _{gq}	ΔQ_g		ΔI_g
				(18)				

Comparándola con la matriz que normalmente se utiliza cuando no existen transformadores OLTC (**20**) y que es la base de los métodos basados en Newton-Raphson, se puede observar la diferencia que supone la inclusión de las nuevas ecuaciones. Aunque este método no requiera una reevaluación continua de la matriz de admitancias, si requiere de análisis sensitivos continuos en el caso de que se introduzcan transformadores. Como consecuencia, las necesidades de cálculo e iteraciones son mayores ya que le análisis sensitivo requiere de varias iteraciones en cada cambio.

(19)

$$\begin{array}{|c|c|c|c|}\hline Y_{ll} & jY_{lg}diag(U_g) & 0 \\\hline Y_{gl} & j[Y_{gg}diag(U_g) - diag(I_g)] & jdiag(U_g)^{-1} \\\hline \hline \Delta \theta_g \\\hline \Delta Q_g \\\hline \end{array} = \begin{array}{|c|c|}\hline diag(U_l)^{-1}S_l^{sp^*} - l \\\hline diag(U_g)^{-1}(P_g^{sp} - Q_gj) - I_g \\\hline \end{array}$$

(20)

2.4 PROCESO DE RESOLUCIÓN

Con todas las ecuaciones de los elementos de la red incluidas en la matriz (19), basado en el método híbrido de inyección de corriente para la resolución de flujos de corriente, se presentan los pasos a seguir durante el proceso iterativo de resolución:

- 1) Se inicializan todos las tensiones en los nodos, comenzando desde "flat start" para los nudos PQ y especificando la tensión en aquellos nudos PV o PQV
- 2) A través de estas tensiones, se obtendrá el vector de diferencias de corrientes; es decir, los componentes del término de la derecha de las ecuaciones presentadas
- 3) Se actualizarán los diferentes coeficientes de la matriz (19)
- 4) Tras obtener todos las partes de las ecuaciones, se resuelve la matriz (19)
- 5) Con el resultado, actualizamos todas las incógnitas (tensiones, tomas de transformadores y potencia generada). Si estas variaciones son suficientemente pequeñas (de acuerdo a un umbral fijado previamente), tendremos la solución; en caso contrario, con el resultado obtenido volveremos a empezar desde el punto 2.

Dentro de este proceso iterativo, habrá que tener en cuenta los límites impuestos por la generación en los nudos PV o de las tomas de transformadores en los nudos PQV. Principalmente, cuando se presenten estos casos, el nudo en cuestión será saturado convirtiéndolo en un PQ tal y como se expuso anteriormente. De manera que la matriz de admitancias tendrá que ser adaptada al igual que el resto de componentes aunque se continuará con los resultados de la última iteración.

Durante la exposición del algoritmo se expondrán los pasos a seguir y como serán tratados en los diferentes casos que puedan presentarse.

3. DESCRIPCIÓN DEL ALGORITMO EN MATLAB

Tras fijar los fundamentos matemáticos sobre los que se ha basado el algoritmo para el cálculo del flujo de cargas de cualquier red, a continuación se especifican cada uno de los pasos seguidos para resolver.

3.1 BLOQUE DE INICIACIÓN

Este primer bloque será el encargado de obtener todos los datos contenidos en los archivos *.raw*. Con los datos de nudos, líneas, generadores y transformadores con y sin cambio de tomas, se procederá a obtener y ordenar la matriz de admitancias que será la base de todo el algoritmo. Los datos especificados serán asignados a cada uno de los nodos durante este proceso.

3.1.1 FUNCIÓN DE LECTURA

Para la realización de la lectura de los datos se ha tomado como referencia los archivos *.raw* utilizados en la mayoría de programas para la resolución de problemas de flujo cargas,

Departamento de Ingeniería Eléctrica

concretamente la versión 26. Cualquier otra versión requerirá pequeñas modificaciones de esta función.

Al comienzo del mismo se encargará de obtener la potencia base y la tensión base. Se indicará si se prefiere comenzar desde "flat start" o por el contrario se pretende continuar con los datos que se encuentren en el fichero de resultados de la computación anterior.

La información obtenida se dividirá en cuatro bloques:

A. Información de nudos

En este bloque se incluyen las características principales de cada uno de los nodos, como su tensión su potencia consumida y generada en el caso de nudos PV.

Nombre	Potencia Activa	Potencia Activa	Potencia Reactiva	Potencia Reactiva	Tensión		
	generada $\mathcal{P}g$	consumida $\mathcal{P}c$	generada <i>Qg</i>	consumida $\mathcal{Q}c$			
Tabla 1: Características de los nodos							

B. Información de líneas

Tanto los orígenes como nodos finales de cada una de las líneas son especificados, incluyendo la resistencia, reactancia, conductancia y susceptacia (p.u.).

Tabla 2: Características de las líneas							
Nudo Origen Nudo final	\mathcal{R}	χ	\mathcal{B}	G			

El modelo utilizado para las líneas es el que se expone en la Figura 6:

Figura 6: Modelado de líneas

En el caso de transformadores con tomas fijas, las línea se modelará de acuerdo a la Figura 7. Tras la finalización del algoritmo, todos aquellos transformadores OLTC serán considerados de toma fija cogiendo el resultado final de la toma óptima, y pasando a modelarlos de acuerdo a la Figura 7.

Figura 7: Modelado de transformadores de tomas fijas

C. Información de nudos PV

Trabajo fin de master

En este bloque lo se recogen aquellos nudos con generación excluyendo al nudo slack, e incluyendo la tensión objetivo.

Nudo PVTensión especificada V_g Qg máximaQg mínimaTabla 3: Característica de generadores

D. Información de transformadores OLTC

Para aquellos nudos con transformadores OLTC, el objetivo de este trabajo, se obtendrá tanto su nudo de origen y destino, como la tensión especificada, la toma máxima y mínima así como el número de tomas o en su defecto el cambio posible. Al mismo tiempo y en previsión de que se alcance el límite de tomas, éste pasaría a formar parte de los nudos PQ con el modelo que se presentó en la Figura 7, enlazando con la admitancia utilizada en los cálculos.

Junto con estos cuatro bloques presentados, la función de lectura del archivo proporcionará:

- Nudos y características
- Número de nudos
- Líneas y características
- Número de líneas
- Nudos PV y características
- Número de nudos PV
- Transformadores OLTC y características
- Número de transformadores OLTC
- Números de transformadores de toma fija
- Nudos PQ y número de nudos PQ
- Tensión Base
- Potencia Base
- Matriz de susceptanicas
- Admitancias de transformadores OLTC
- Tensión objetivo del nudo slack

3.1.2 MATRIZ DE ADMITANCIAS

Con los datos obtenidos, el proceso natural es obtener la matriz de incidencias con la información de las líneas. Tras obtener ésta, y teniendo en cuenta la estructura de la matriz (**19**), se ordenará la matriz de incidencias para obtener la matriz de admitancias ordenada por bloques, lo cual permitirá una rápida obtención de todos los elementos de la misma.

Durante este proceso se identificará desde el final de la matriz hasta el comienzo:

- 1. El nudo slack
- 2. Los nudos generadores
- 3. Aquellos nudos representando el secundario de los transformadores OLTC y por tanto el nudo controlado
- 4. Los nudos representando el primario de los transformadores OLTC, teniendo en cuenta que éste no se repita con respecto a otro transformador. Es decir, en el caso en el que tengamos más de un transformador con cambio de tomas compartiendo el mismo primario, sólo será necesaria mantener información del primario una vez.
- 5. Los nudos PQ que no fueran ni generadores ni transformadores OLTC

Con la matriz de incidencias ordenada, procedemos a obtener la matriz de admitancias con los datos de las líneas (\mathcal{R} , \mathcal{X} , \mathcal{B} , \mathcal{G}), los elementos de compensación shunt así como toda la información relevante a transformadores de tomas fijas.

Con la matriz de admitancias, se pueden extraer de manera sencilla y mediante índices de localización cada uno de los elementos de la matriz.

	1	(yll	Уlр	Yls	Уlg	ylo
		Урl	Урр	<i>Yps</i>	Урд	Уро
y	=	Ysl	Ysp	Yss	Уsg	Yso
		Ygl	Удр	Ygs	Ygg	Удо
		Yol	Уор	Yos	Уод	yoo)

1	21	۱.
L	21)

3.1.3 DATOS INICIALES

Siguiendo las directrices ofrecidas en el proceso de resolución, el siguiente paso antes de comenzar con el algoritmo implementado es obtener todos los datos necesarios en cada uno de los grupos en los que se ha dividido el algoritmo.

1. En los nudos PV obtenemos la tensión especificada y la potencia compleja teniendo en cuenta las cargas que puedan existir y la potencia activa generada. En el caso de que no

comenzáramos desde un estado plano (flat start), la potencia reactiva generada y los datos de tensión iniciales del nodo serán especificados.

- 2. En el caso del secundario, estaríamos en un caso similar al de generadores, procediendo con la extracción de la tensión especificada y la potencia compleja. La toma así como el ángulo de la tensión serán iniciados en 1 y 0 respectivamente, a no ser que se indique al comienzo que se pretende continuar con los datos de origen.
- 3. Del primario de los transformadores OLTC se requerirá para comenzar la potencia compleja, mientras que la tensión (tanto módulo como ángulo) serán la incógnita.
- 4. En los nudos PQ se presenta el mismo caso que en los nudos primarios, por lo que con la potencia compleja reflejando el consumo de las cargas tendremos la información necesaria para obtener la tensión en dichos nudos.

Un resumen de todos los pasos seguidos puede Figura 8

Figura 8: Detalles del bloque iniciación

3.2 BLOQUE DE ITERACIÓN

Tras obtener todos los datos que permiten completar los elementos de la matriz referencia (**19**), se procede a obtener cada uno de los componentes.

3.2.1 INTENSIDADES

Para obtener el bloque de diferencias intensidades tenemos dos términos:

 Por un lado está el término obtenido a partir de las admitancias y las tensiones en cada uno de los nodos en el momento del cálculo (k), tal y como se expone en (22).

 Por otro, nos encontramos con los términos de intensidades calculados a partir de las potencias objetivos de cargas así como aquellas potencias resultado de la generación en cada uno de los nudos PV (ecuaciones (23))

(23)

Obteniendo el bloque de diferencias de corrientes:

$$\Delta I = \begin{pmatrix} I l_{sp} - I l \\ I p_{sp} - I p \\ I s_{sp} - I s \\ I g_{sp} - I g \end{pmatrix}$$

3.2.2 BLOQUE DE SUBMATRICES

En este bloque, teniendo en cuenta que las submatrices de la matriz de admitancias están divididas por grupos, sólo será necesario computar las ecuaciones de cada una de las submatrices reflejadas en la matriz (19). Para ahorrar cálculos y evitar problemas cuando se obtengan los resultados, se han evitado las submatrices si no existen transformadores o generadores en la red de estudio tal y como se expone en la Figura 9. El mismo proceso se ha seguido en anteriores cálculos.

Figura 9: Proceso de cálculo de submatrices

3.2.3 OBTENCIÓN DE RESULTADO

Con los dos miembros de la ecuación disponibles sólo queda obtener la solución. Para ello, además de tener en cuenta la distinción de si existen o no transformadores y/o generadores antes planteada, se ha dividido la matriz (19) en dos partes.

Teniendo en cuenta que la mayoría de los elementos incógnitas sólo tienen parte real (ΔX), se procederá realizando un cálculo en coordenadas rectangulares. De acuerdo a los pasos mostrados y partiendo de la división expuesta en la Figura 10, se obtiene la división de la Figura 11. Como se puede comprobar, la parte imaginaria de ΔX no se contempla ya que no existe, por lo que se reduce la computación necesaria.

	Уа		уб			ΔU	ΔI
Y _{ll}	Y_{lp}	$jY_{ls}diag(U_s)$	0	$jY_{lg}diag(U_g)$	0	$\left[\Delta U_l \right]$	$diag(U_l)^{-1}S_l^{sp^*} - l$
Y_{pl}	$Y_{pp} + Y_{cc} \frac{(a^2 - 1)}{a^2}$	$\left[Y_{ps} + Y_{ce}\frac{(a-1)}{a}\right] diag(U_s)$	$\left[V_{cc} \left(-\frac{2}{a^3} diag(U_p) + \frac{1}{a^2} diag(U_s) \right) \right]$	$jY_{pg}diag(U_g)$	0	ΔU_p $\Delta \theta_s$	$diag(U_p)^{-1}S_p^{sp^*} - I_p$
Y_{sl}	$Y_{sp} + Y_{cc} \frac{(a-1)}{a}$	$jY_{ss}diag(U_s)$	$\left(Y_{cc}\frac{1}{a^2}diag(U_p)\right)$	$jY_{sg}diag(U_g)$	0	Δa $\Delta \theta_g$	$diag(U_{s})^{-1}S_{s}^{sp^{*}}-I_{s}$
Ygl	Y_{gp}	$jY_{gs}diag(U_s)$	0	$j \left[Y_{gg} diag(U_g) - diag(I_g) \right]$	$jdiag(U_g)^{-1}$	ΔQ_g	$diag(U_g)^{-1} \left(P_g^{sp} - Q_g j \right) - I_g$

 ΔX

Figura 10: División de la matriz de cálculo

Figura 11: División en coordenadas rectangulares

Tras resolver y obtener la solución pasamos a comprobar que esté dentro de los límites establecidos.

3.2.4 FUNCIÓN LÍMITE DE TOMAS

En el caso de los transformadores TLC, tras actualizar la toma y comprobar que ésta está fuera de límites, se procederá a modificar el tratamiento de ese transformador. Anteriormente se ha fijado un contador que evita que se tomen como buenos los grandes cambios iniciales que puedan suceder.

La función que se ocupa de modificar el tratamiento como transformador OLTC y pasarlo a un transformador de toma fija, lo primero que hará es comprobar que el primario no es un nudo compartido con otro transformador OLTC. En caso contrario, el nudo primario no variaría.

Al cambiar a un nudo PQ, tanto la matriz de admitancia como el resto de elementos, tensión y potencia aparente, deben cambiar. El cambio en la matriz de admitancias es crucial, ya que en la siguiente iteración cuando se vuelva a recalcular las submatrices de la ecuación (19), el tratamiento será completamente diferente.

3.2.5 FUNCIÓN LÍMITE DE REACTIVA GENERADA

Con la potencia reactiva generada se presenta el mismo caso. Si al actualizar, se sobrepasara los límites de generación mínima o máxima, será necesario saturar la generación y este nodo pasaría a ser considerado PQ. Del mismo modo, para evitar las grandes variaciones que se producen al comienzo de la computación, se ha introducido un contador que hace necesario traspasar varias veces los límites para considerar que este cambio es necesario.

De nuevo la matriz de admitancia variará y la tensión y los elementos de generación pasan a ser tratados como un nudo PQ más.

3.2.6 COMPROBAR ITERACIÓN

Tras obtener los resultados y comprobar que está dentro de límites, se procede a comprobar que la comparación entre el resultado obtenido y el anteriormente calculado es suficientemente pequeño y por tanto menor al umbral marcado al comienzo del algoritmo. Si esto es así se procederá a terminar la iteración, en caso contrario volveremos a comenzar este bloque desde el comienzo

3.2.7 RECÁLCULO

Tras obtener los resultados y comprobar que éstos están dentro de los límites fijados, se procederá a discretizar los resultados de las tomas alcanzadas en los diferentes transformadores. Con ello se pretende acercarlos a una solución acorde a los cambios de tomas establecidos. Esta discretización se hace al final del algoritmo para evitar que durante el proceso de cálculo se fuese a una solución que no sea la óptima.

Una vez se tiene la toma de los transformadores OLTC, tal y como se explicó en el tratamiento de los transformadores con el modelo de líneas (Figura 7); éstos pasan a ser considerados nudos PQ, siendo introducidos en la matriz de admitancias lo que permite considerar que suponen ese cambio de tomas en el resto de la red.

Tras estos cambios, se procede a realizar el cálculo de nuevo, obteniendo el resultado final.

3.3 MUESTRA DE RESULTADO FINAL

Finalmente, se mostrará por pantalla y podrá ser almacenada la solución del problema de flujo de carga. La solución mostrada tendrá el formato que se expone en la Tabla 5. Al final también se incluye la posibilidad de mostrar las líneas de unión entre los diferentes nodos que componen la red de estudio

Nudoc	Те	ensión (p.u.)	Ángulo (°deg)			
Nuuos						
Ę.	Nudo PV	Q generada (MVAr)	Q máxima (MVAr)	Q mínima (MVAr)		
nació os PV						
orn udc	Nudo PV	Q límite (MVAr)				
Inf n						
. <u> </u>	Nudo PQV	Toma	Toma máxima	Toma mínima		
PQ						
los I	Nudo PQV	Toma límite				
nfo nud						
_						

Tabla 5: Resultado mostrado

Mediante representación gráfica se expondrá la evolución de las distintas variables incógnitas. Se podrá comprobar el comportamiento que siguen las variables del vector de pequeñas diferencias como el ángulo de las tensiones del secundario de los transformadores OLTC, la toma de cada uno de éstos, el ángulo de las tensiones de los generadores así como la potencia reactiva generada. De estas variables se muestra tanto la evolución de cada uno de los componentes como la variación máxima que se produce en cada en el conjunto de transformadores y/o nudos PV.

Por otro lado, se muestra una figura con la tendencia de las diferencias de tensiones máximas. Teniendo en cuenta que el número de nudos puede ser muy elevado, se opta por este modo para evitar mostrar un conjunto de datos sin sentido.

4. **RESULTADOS**

Para comprobar el resultado y depurar el correcto funcionamiento del algoritmo se ha seguido un procedimiento de menos a más, probando primero con pequeñas redes de apenas 6 nodos hasta llegar a redes más grandes como las que se analizan a continuación.

4.1 IEEE14

Esta red de 14 nodos se basa en el caso clásico de test del IEEE. En el caso que se presenta, se harán algunas modificaciones para adaptarla a la casuística que se quiere comprobar, incluyendo transformadores con cambio de tomas. De modo que en base a la red presentada en la Figura 14, se presentan varios casos.

Esta red se caracteriza por contener 14 nodos y 17 ramas, en las que se cuenta con 4 generadores junto con 2 transformadores con cambio de tomas, en el caso que se presenta. En las Tabla 6 y Tabla 7 se reflejan los principales datos que han sido tenidos en cuenta para generadores y transformadores con cambio de tomas. Se expondrán varios casos para verificar el correcto funcionamiento comparándolos con los resultados que se obtengan mediante programas utilizando la resolución por Newton-Raphson como es el caso del PSSE. Entre los casos planteados se encuentran:

- A. En este caso sólo tendremos generadores junto con los transformadores aunque éstos serán de tomas fijas
 - 1. Por un lado se ampliarán los límites de la potencia reactiva necesaria, de manera que se podrán alcanzar la tensión objetivo en todos los nodos PV.

Departamento de Ingeniería Eléctrica

- 2. Por otra parte, se fijarán los límites tal y como se muestra en la Tabla 6. De forma que cuando estos se alcancen se aplicará el proceso que se exponía anteriormente durante la exposición del algoritmo.
- B. En los casos que se estudiarán se planteará la red con los transformadores pero esta vez tendrán incorporado la posibilidad de ajustar la toma automáticamente, tal y como se pretende demostrar con el modelo presentado. Los límites de generadores serán lo suficientemente amplios como para alcanzar la tensión especificada.
 - 1. Del mismo modo, se planteará el uso de estos transformadores con los límites de las tomas amplios para que no puedan alcanzarse, logrando la tensión especificada.
 - 2. Se presentará unos límites más ajustados para que sea posible mostrar el comportamiento de estos nodos y que supone su cambio a nodos PQ.
- C. Finalmente, limitando los generadores según la Tabla 6, se volverán a plantear los casos B.1 y B.2, anteriormente descritos.

Tal y como puede comprobarse en el Anexo I.1, todos los resultados coinciden con los obtenidos mediante el software PSSE. Tensiones de nodos, potencia generada así como la toma de los transformadores coinciden y alcanzan el mismo resultado que el algoritmo planteado.

Nudo PV	Tensión especificada V_g	Qg máxima	Qg mínima	Potencia activa
	(p.u.)	(MVAr)	(MVAr)	(MW)
1	1.06	0	0	234
2	1.045	50	-40	40
3	1.01	40	0	0
6	1.07	24	-60	0
8	1.09	24	-60	0

Tabla 6: Datos de generadores							
Nudo Nudo Tensión especificada a a Cambio d							
Primario	Secundario	<i>V_s</i> (p.u.)	máxima	mínima	tomas		
4	7	1.06	1.1	0.9	0.0333		
5	10	1.057	1.1	0.9	0.0333		

Tabla 7: Datos de transformadores con cambio de tomas

4.2 RED 136

Tras la comprobación y validación en una red pequeña, se procedió a probar el nuevo algoritmo en una red más compleja. La red de testeo es una red del sistema de distribución brasileño de 13.8 kV, cuyos datos pueden ser encontrados en el artículo [2]. Contiene 8 alimentadores con un total de 136 nodos de consumo y 156 ramas de conexión. Aunque 21 de estas ramas se encuentran

Departamento de Ingeniería Eléctrica

normalmente abiertas (tal y como se expone en la Figura 15 con líneas discontinuas), algunos de los casos planteados consideran la red mallada.

Siete generadores distribuidos y cinco transformadores con cambio de tomas han sido incluidos al sistema original anteriormente presentado con el objetivo de evaluar el comportamiento del algoritmo propuesto. En las Tabla 8 se presentan las principales características de los generadores instalados, aunque estos podrán variar mínimamente para adaptarlos a los diferentes casos.

El principal transformador OLTC se encuentra situado en la subestación principal, entre el bus slack de 138 kV (no aparece en la Figura 15, aunque si en las imágenes de las redes expuestas en el anexo) y el nodo cabecera, el bus BO (señalado con líneas gruesas), desde dónde parten los ocho alimentadores. Los otros cuatro transformadores están colocados tal y como se expone en la Tabla 9, exponiendo la tensión especificada para el nodo controlado. El máximo y el mínimo tap son representados, siendo el cambio permitido de 0.625%.

Departamento de Ingeniería Eléctrica

Nudo PV	Tensión especificada V_g (p.u.)	Qg máxima (kVAr)	Qg mínima (kVAr)	Potencia activa (kW)
129	1	100	-150	200
130	1	9999	-9999	250
132	1	9999	-9999	300
133	1	9999	-9999	350
134	1	9999	-9999	400
135	1	9999	-9999	450
136	1	375	0	500

Tabla 8: Datos de generadores

Nudo	Nudo	Tensión especificada	а	а	Cambio de
Primario	Secundario	<i>V_s</i> (p.u.)	máxima	mínima	tomas
36	39	1	1.1	0.9	0.006250
80	81	1	1.1	0.9	0.006250
154	155	1	1.1	0.9	0.006250
218	219	1	1.1	0.9	0.006250
Slack	B0	1.05	1.1	0.9	0.006250

Tabla 9: Datos de transformadores con cambio de tomas

Comenzando con el caso base en el que la tensión del nudo slack se fija a 1 p.u., se expondrán varios casos para verificar el correcto funcionamiento comparándolos con los resultados que se obtengan mediante programas utilizando la resolución por Newton-Raphson como es el caso del PSSE. Entre los casos planteados se encuentran:

- A. Caso sin generadores ni transformadores LTC
 - 1. El primer caso presenta la red mallada.
 - 2. En el siguiente se probará la red con las ramas, que se encuentran representadas mediante líneas discontinuas, abiertas. Formando de este modo la red radial
- B. Este caso se refiere al sistema original incluyendo los generadores distribuidos, mientras que los transformadores serán considerados fijos.
 - 1. Por un lado, como se venía haciendo con la red pequeña, se probará con grandes límites, asegurando que se alcanzan las tensiones objetivos marcadas
 - Tras ello, se limitará la generación máxima del generador situado en el nodo 32 a 1 MVAr, mientras que la generación mínima del situado en el nodo 203 será limitada a 0 MVAr.
- C. Para los casos C, se añadirán los transformadores expuestos pero sin considerar generadores. De nuevo se llevarán a cabo dos casos

- 1. El primero de ellos no limitará los transformadores, pudiendo alcanzar la tensión especificada en los nodos controlados
- 2. En este caso, el bus slack fijará su tensión en 0.97 pu, lo cual conllevará que el transformador principal situado en el nodo slack alcance su límite (0.9).
- D. Para esta red tendremos tanto generadores como transformadores LTC con límites amplios, por lo que será el resultado de la suma de los casos B.1 y C.1.
 - 1. Por un lado se realizará para la red radial, es decir con las líneas abiertas
 - 2. Del mismo modo se probará con la red totalmente mallada

Los resultados de todos estos casos pueden ser observados en el Anexo I.2, comparándolos con las soluciones obtenidas mediante el programa PSSE.

4.3 RED 136 DOBLEMENTE CARGADA

Finalmente y con la idea de probar la robustez del código, se ha implementado la misma red que se expuso en el apartado anterior pero en este caso la carga aplicada a los nudos de la misma ha sido duplicada. Los casos estudiados serán los mismos que se expusieran previamente.

Al contrario que en el caso de las redes estudiadas, en este caso no comprobaremos el resultado respecto a otros programa; en su lugar se expondrá la evolución de las distintas variables incógnitas en cada uno de los casos. Estas características tienen un mayor interés, teniendo en cuenta que permiten observar de qué modo actúa el algoritmo, pudiendo compararlo con el método normalmente utilizado.

4.3.1 Caso B.1: Red radial con nudos PV, límites grandes

En este caso, la variable a observar son el ángulo de los nudos PV y la evolución de la potencia reactiva generada. Como puede desprenderse de las figuras, la tendencia es a converger rápidamente teniendo en cuenta que no hay ningún tipo de limitación. Tras la tercera iteración puede observarse como la estabilidad se ha alcanzado y el algoritmo está buscando la solución óptima para cumplir con los límites impuestos.

-0.12

-0.14

Departamento de Ingeniería Eléctrica

Departamento de Ingeniería Eléctrica

Figura 18: Evolución máxima diferencia de tensiones ΔU , caso B.1

Generadores				
		Límites		
121	4.1105			
131	3.0804			
132	2.4486			
133	2.3424			
134	0.9159			
135	4.2941			

Tabla 10: Resultado generadores, caso B.1 de red doblemente cargada

4.3.2 Caso B.2: Red radial con nudos PV, límites pequeños

Al limitar dos de los generadores, tal y como se exponía en la sección 4.2, uno de ellos ha alcanzado su límite de generación. Este hecho es fácilmente destacable por la variación en las tensiones que se produce en la iteración 5. Como se extrae de la Figura 21, hay una clara tendencia hacia la convergencia que se ve truncada porque el primer generador listado alcanza el límite, produciendo una reordenación de la matriz ya que éste pasa a ser considerado un nudo PQ.

Tras este hecho, el algoritmo vuelve a tender rápidamente hacia la búsqueda de errores menores que el límite fijado.

Hasta este momento y teniendo en cuenta que no se han incluido ningún transformador OLTC, el comportamiento es similar al de los métodos habituales. Aunque, comparándolo con programas que utilizan dichos métodos, el número de iteraciones pueda ser ligeramente superior.

Departamento de Ingeniería Eléctrica

Figura 19: Evolución diferencial potencia reactiva ΔQ , caso B.2: (a) Todos los nudos PV; (b) La máxima diferencia

Figura 20: Evolución diferencial ángulo en nudos PV $\Delta \Theta_{Q_r}$ caso B.1: (a) Todos los nudos PV; (b) La máxima diferencia

Departamento de Ingeniería Eléctrica

132

133

134

135

136

4.3.3 Caso C.1: Red radial con transformadores OLTC, Tensión Slack 1.00 Con la introducción de transformadores de tomas variables, el resultado en este caso es similar al alcanzado con los nudos PV. En este caso se observa perfectamente en las figuras como el transformador que llega al límite, lo hace en la iteración 7. Provocando un pequeño cambio, principalmente visible en las tomas de los transformadores y en la evolución de las tensiones de los nudos. Al cabo de 11 iteraciones se alcanza el óptimo.

2.4486

2.3424

0.9159

4.2942

0.2071 Tabla 11: Resultado generadores, caso B.1 de red doblemente cargada

Sin embargo, como se puede observar en la Figura 25, tras alcanzar el óptimo se produce un cambio brusco en las tensiones. Como ya se explicara en la descripción del algoritmo, una vez que tenemos la solución de las tomas de transformadores y hemos llegado a la solución óptima, se vuelve a implementar el código considerando estas tomas como fijas. De forma que podamos obtener el comportamiento final de la red tras obtener la solución para los transformadores.

Departamento de Ingeniería Eléctrica

Figura 22: Evolución diferencial toma de transformadores Δa_r caso C.1: (a) Todos los transformadores; (b) La máxima diferencia

Figura 23: Evolución diferencial ángulos del secundario $\Delta \theta$, caso C.1: (a) Todos los transformadores; (b) La máxima diferencia

Departamento de Ingeniería Eléctrica

-			Límites
128	133	1.0063	
129	134	1.0188	
130	135	0.93125	
131	136	1.0063	
132	137	0.9000	Х

Tabla 12: Resultado transformadores, caso C.1 de red doblemente cargada

4.3.4 Caso C.2: Red radial con transformadores OLTC, Tensión Slack 0.97

De forma similar al caso anterior, se pueden distinguir todos los cambios que se van produciendo y el modo en el que se llega al óptimo. En esta red cabe destacar el hecho de que dos de los transformadores llegan a límites. Por la forma de la Figura 28 se puede extraer en que momento han alcanzado el límite cada uno de estos transformadores (iteración 6 e iteración 10). De igual modo, se repite la iteración con las tomas fijas (iteración 12).

Departamento de Ingeniería Eléctrica

Figura 28: Evolución diferencial caso C.2:

Transformadores					
	Límites				
128	133	0.9625			
129	129 134 0.975				
130	130 135 0.9000				
131	136	0.9625			
132	137	0.9000	Х		

Tabla 13: Resultado transformadores, caso C.1 de red doblemente cargada

Este es uno de los casos más restrictivos que se han estudiado. Durante la realización del mismo se encontraron oscilaciones de ángulos y tomas muy grandes que provocaban que el sistema divergiera en algunos casos. En otros casos en los que se limitaba esta divergencia, se alcanzaba una

solución pero a costa de que se tomaran unos cambios de tomas diferentes a los que realmente eran los óptimos. Es decir, en estos últimos casos la convergencia era hacia un óptimo local.

Finalmente se optó por incluir un límite dentro de la función límite de tomas, que en caso de que la variación fuera muy elevada, ésta es limitada a un pequeño cambio de manera que hacemos que el algoritmo tienda hacia la solución buscada sin grandes cambios. Se debe tener en cuenta que este límite no debe modificar el comportamiento del algoritmo haciendo que se obtenga una solución que no es la óptima. Es por ello que debe depurarse en profundidad cualquier cambio respecto a estos límites adoptados.

4.3.5 Caso D.1: Red radial con transformadores y generadores

En los últimos casos, con transformadores y nudos PV, la dinámica es la misma que la seguida anteriormente. Como puede analizarse, ninguno de ellos alcanza los límites impuestos. Si se puede observar cómo, tras la realización de la última iteración con los tomas fijas, se produce un pequeño cambio en la evolución de las variables de los nudos PV, consecuencia del ajuste de tensiones que se está produciendo.

(a) Todos los nudos PV; (b) La máxima diferencia

Departamento de Ingeniería Eléctrica

(a) Todos los transformadores; (b) La máxima diferencia

Departamento de Ingeniería Eléctrica

Figura 33: Evolución diferencial ángulos del secundario $\Delta \theta$, caso D.1: (a) Todos los transformadores; (b) La máxima diferencia

Tabla 15: Resultado generadores, caso D.1 de red doblemente cargada

4.3.1 Caso D.2: Red radial con transformadores y generadores

Tal y como ocurriera en el caso D.1, a partir de la iteración 6 alcanzaríamos el óptimo y tras éste, volveríamos a realizar el cálculo con el consiguiente ajuste en tensiones y generación.

(a) Todos los nudos PV; (b) La máxima diferencia

Departamento de Ingeniería Eléctrica

Figura 38: Evolución diferencial ángulos del secundario $\Delta \theta$, caso D.2: (a) Todos los transformadores; (b) La máxima diferencia

Departamento de Ingeniería Eléctrica

1]&

Tabla 17: Resultado generadores, caso D.2 de red doblemente cargada

5. CONCLUSIONES

El método planteado, en general, ha obtenido unos resultados destacables en el cálculo de tensiones, ángulos y potencias aparentes. Según se ha mostrado a lo largo de este documento, mejora sustancialmente los resultados obtenidos frente a otros métodos comúnmente aceptados.

Mientras que los métodos normalmente utilizados se realiza un intercambio de los tomas y se analiza continuamente el efecto de estos cambios sobre el resto de elementos utilizando coordenadas polares. En el caso del método planteado el cambio de las tomas así como de las potencias generadas por los generadores se realiza conjuntamente con el análisis del resto de la red. Eso conlleva una reducción el número de cálculos y por tanto se reducen las iteraciones necesarias para alcanzar la solución óptima.

Entre las posibles mejoras a introducir en el algoritmo implementado se encuentran la posibilidad de introducir un rango de tensión sobre la que puedan moverse los transformadores. Al igual que ocurre en los programas actuales, una posibilidad es la de llevar a cabo una función adicional en el caso de que exista una banda de tensión sobre la que pueda variar el nudo controlado. De modo que se establecerá un contador que se ocupará de saber el número de veces que se repite una toma en cada iteración. Si ésta se repitiera tras un número **#** de veces, el transformador pasaría a ser considerado de toma fija pero se controlaría que su tensión está dentro de los límites especificados. En el caso de que se sobrepasaran los márgenes de las tensiones, el transformador volvería a ser considerado del tipo LTC y se continuaría con la computación.

La mejora en los métodos de cálculo con el objetivo de reducir el tiempo de computación es uno de los puntos que no han podido llevarse a cabo y que presentan uno de los puntos de mejoras más evidentes. Aunque el método presentado ya resuelve en parte este problema ya que la división en submatrices y la actualización de las mismas, evita que la matriz más grande ($\mathcal{Y}(l)$, requiera de su continua computación, reduciendo enormemente el esfuerzo computacional.

Sin embargo, este es el caso de redes de distribución dónde el número de generadores normalmente es pequeño. En redes de transporte con un número mayor de generadores, puede resultar interesante llevar un estudio en profundidad del tratamiento del resto de matrices ya que éstas pueden contener un número elevado de elementos cero por la diagonalidad que presentan éstas.

En el futuro podría plantearse la aplicación de este modelo a problemas de optimización. Se podría plantear este problema de coordinación de todos los recursos de regulación de tensiones como un problema de ese tipo, con todas sus restricciones, incluidas las temporales, algo así como un "Despacho óptimo de unidades generadoras" aplicado a los dispositivos de regulación de tensiones a lo largo de 24h.

6. BIOGRAFÍA

[1] Antonio Gómez Expósito, Esther Romero Ramos, Izudin Dzafic; "Hybrid real-complex current injectionbased load flow formulation"; Electric power system research.

[2] J.R.S. Mantovani, F. Casari, R.A. Romero, "Reconfiguração de sistemas dedistribuição radiais utilizando o critério de queda de tensão", Rev. ControleAutom. Soc. Brasil. Autom. SBA 11 (03) (2000) 150–159.

[3] http://www.ee.washington.edu/research/pstca/pf14/pg_tca14bus.htm

[4] http://w3.siemens.com/smartgrid/global/en/products-systems-solutions/software-solutions/planning-datamanagement-software/planning-simulation/Pages/PSS-E.aspx#

[5] http://es.mathworks.com/

[6] Paul Matthew Tuson, Transmission transformer tap changer optimization while minimizing system losses using security unconstrained optimal power flow (OPF) techniques, August 2011

7. ANEXOS

I.1 IEEE 14

I.1.1 CASO A.1

Nudo PV	Tensión especificada	Qg (MVAr)	Qg (MVAr)
	V _g (p.u.)	PSSE	ALGORITMO MATLAB
2	1.045	41.0811	41.0812
3	1.01	23.1989	23.1989
6	1.07	31.7188	31.7189
8	1.09	10.1144	10.1144

Tabla 18: Resultado generadores, caso A.1 del IEEE14

Nudo PV	NRPF		ALGO	RITMO
	PSSE		MA	TLAB
1	1.0600	0.00	1.06	0
2	1.0450	-5.03	1.045	-5.0286
3	1.0100	-12.83	1.01	-12.8268
4	1.0189	-10.50	1.0189	-10.4977
5	1.0228	-8.83	1.0228	-8.8282
6	1.0700	-24.36	1.07	-24.3622

e	S, Caso A.I del IEEE14						
	7	1.0737	-16.07	1.0737	-16.0737		
	8	1.0900	-16.07	1.09	-16.0737		
	9	1.0779	-18.94	1.0779	-18.9377		
	10	1.0789	-18.88	1.0789	-18.8833		
	11	1.0713	-21.67	1.0713	-21.6734		
	12	1.0554	-24.77	1.0554	-24.7712		
	13	1.0541	-24.42	1.0541	-24.4155		
	14	1.0490	-22.27	1.049	-22.2711		

Tabla 19: Resultado generadores, caso A.1 del IEEE14

I.1.2 CASO A.2

Nudo PV	Tensión especificada V_g (p.u.)	Qg (MVAr) PSSE	Qg (MVAr) ALGORITMO MATLAB
2	1.045	43.4987	43.4989
3	1.01	24.4048	24.4049
6	1.07	24.0000	24
8	1.09	13.9676	13.9678

Tabla 20: Resultado generadores, caso A.2 del IEEE14

Nudo PV	NRPF PSSE		ALGO MA	RITMO TLAB
1	1.0600	0.00	1.06	0
2	1.0450	-5.03	1.045	-5.0319
3	1.0100	-12.84	1.01	-12.8431
4	1.0169	-10.48	1.0169	-10.4764
5	1.0208	-8.80	1.0208	-8.798
6	1.0382	-24.18	1.0382	-24.1814

7	1.0674	-16.11	1.0674	-16.1133		
8	1.0900	-16.11	1.09	-16.1133		
9	1.0657	-19.04	1.0657	-19.0359		
10	1.0647	-18.94	1.0647	-18.9414		
11	1.0486	-21.61	1.0486	-21.6094		
12	1.0247	-24.64	1.0247	-24.6375		
13	1.0247	-24.32	1.0247	-24.3165		
14	1.0291	-22.30	1.0291	-22.3042		

Tabla 21: Resultado tensiones y fases nodos, caso A.2 del IEEE14

I.1.3 CASO B.1

Nudo PV	Tensión especificada V_g (p.u.)	Qg (MVAr) PSSE	Qg (MVAr) ALGORITMO MATLAB
2	1.045	33.3324	33.3355
3	1.01	19.4578	19.4592
6	1.07	40.3044	40.3078
8	1.09	19.4632	19.4661

Tabla 22: Resultado generadores, caso B.1 del IEEE14

Departamento de Ingeniería Eléctrica

Nudo Primario	Nudo Secundario	Tensión especificada V _s (p.u.)	a NRPF PSSE	a ALGORITMO MATLAB
4	7	1.06	1	1
5	10	1.057	1	1

Tabla 23: Resultado transformadores con cambio de tomas, caso B.1 del IEEE14

Nudo PV	NRPF		ALGO	RITMO				
	PSSE		PSSE		PSSI		MA	TLAB
1	1.0600	0.00	1.06	0				
2	1.0450	-5.03	1.045	-5.0255				
3	1.0100	-12.80	1.01	-12.7955				
4	1.0252	-10.59	1.0252	-10.5933				
5	1.0298	-8.92	1.0298	-8.9208				
6	1.0700	-25.65	1.07	-25.6465				

7	1.0585	-16.56	1.0585	-16.5626
8	1.0900	-16.56	1.09	-16.5626
9	1.0609	-19.59	1.0609	-19.593
10	1.0586	-19.53	1.0586	-19.5325
11	1.0607	-22.65	1.0607	-22.6505
12	1.0540	-26.03	1.054	-26.0318
13	1.0515	-25.62	1.0515	-25.6206
14	1.0379	-23.20	1.0379	-23.2

Tabla 24: Resultado tensiones y fases nodos, caso B.1 del IEEE14 I.1.4 CASO B.2

Nudo PV	Tensión especificada V_g (p.u.)	Qg (MVAr) PSSE	Qg (MVAr) ALGORITMO MATLAB
2	1.045	33.7960	33.8094
3	1.01	21.0545	21.062
6	1.07	45.4360	45.4444
8	1.09	16.1672	16.184

Tabla 25: Resultado generadores, caso B.2 del IEEE14

Nudo	Nudo	Tensión especificada	а	а
Primario	Secundario	<i>V_s</i> (p.u.)	NRPF PSSE	ALGORITMO MATLAB
4	7	1.06	0.9667	0.9667
5	10	1.01	1.1000	1.1

Tabla 26: Resultado transformadores	con cambio de tomas	, caso B.2 del IEEE14
-------------------------------------	---------------------	-----------------------

Nudo PV	NRPF		ALGO	RITMO
	PSSE		MA	TLAB
1	1.0600	0.00	1.06	0
2	1.0450	-5.04	1.045	-5.0369
3	1.0100	-12.84	1.01	-12.8375
4	1.0225	-10.60	1.0225	-10.5982
5	1.0318	-8.94	1.0318	-8.9386
6	1.0700	-26.32	1.07	-26.3196

7	1.0639	-16.70	1.0638	-16.7023
8	1.0900	-16.70	1.09	-16.7023
9	1.0556	-19.91	1.0556	-19.9156
10	1.0439	-19.80	1.0439	-19.8031
11	1.0530	-23.13	1.053	-23.1344
12	1.0535	-26.69	1.0535	-26.6874
13	1.0507	-26.25	1.0507	-26.2478
14	1.0343	-23.67	1.0343	-23.6667

Tabla 27: Resultado tensiones y fases nodos, caso B.2 del IEEE14

I.1.5 CASO C.1

Nudo PV	Tensión especificada V_g (p.u.)	Qg (MVAr) PSSE	Qg (MVAr) ALGORITMO MATLAB
2	1.045	43.4879	43.5215
3	1.01	24.4082	24.4264
6	1.07	24.0000	24
8	1.09	13.8624	13.9135

Tabla 28: Resultado generadores, caso C.1 del IEEE14

Departamento de Ingeniería Eléctrica

Nudo Primario	Nudo Secundario	Tensión especificada V _s (p.u.)	a NRPF PSSE	a ALGORITMO MATLAB
4	7	1.011	0.9667	0.9667
5	10	1.011	0.9333	0.9333

Tabla 29: Resultado transformadores con cambio de tomas, caso C.1 del IEEE14

Nudo PV	NRPF		ALGO	
	FJ	3E	PIA	ILAD
1	1.0600	0.00	1.06	0
2	1.0450	-5.03	1.045	-5.0319
3	1.0100	-12.84	1.01	-12.8434
4	1.0169	-10.48	1.0168	-10.476
5	1.0208	-8.80	1.0208	-8.7978
6	1.0382	-24.18	1.0381	-24.181

7	1.0676	-16.11	1.0675	-16.1125
8	1.0900	-16.11	1.09	-16.1125
9	1.0658	-19.03	1.0657	-19.0357
10	1.0648	-18.94	1.0647	-18.9407
11	1.0486	-21.61	1.0485	-21.6089
12	1.0248	-24.63	1.0247	-24.6371
13	1.0248	-24.31	1.0247	-24.3162
14	1.0292	-22.30	1.0291	-22.3039

Tabla 30: Resultado tensiones y fases nodos, caso C.1 del IEEE14

I.1.6 CASO C.2

Nudo PV	Tensión especificada	Qg (MVAr)	Qg (MVAr)
	V_g (p.u.)	PSSE	ALGORITMO MATLAB
2	1.045	44.0868	44.0874
3	1.01	26.8953	26.8956
6	1.07	24.0000	24
8	1.09	18.2397	18.2404

 Tabla 31: Resultado generadores, caso C.2 del IEEE14

Nudo	Nudo	Tensión especificada	а	а
Primario	Secundario	<i>V_s</i> (p.u.)	NRPF PSSE	ALGORITMO MATLAB
4	7	1.06	0.9333	0.9333
5	10	1.01	1.1000	1.1

Tabla 32: Resultado transformadores con cambio de tomas, caso C.2 del IEEE14

Nudo PV	NR	PF	ALGO	RITMO		7	1.0605	-16.53	1.0605	-16.5327
	PS	PSSE		MATLAB		8	1.0900	-16.53	1.09	-16.5327
1	1.0600	0.00	1.06	0		9	1.0342	-19.87	1.0342	-19.8698
2	1.0450	-5.05	1.045	-5.046		10	1.0154	-19.63	1.0154	-19.6328
3	1.0100	-12.90	1.01	-12.9047		11	1.0013	-22.56	1.0013	-22.5594
4	1.0127	-10.48	1.0127	-10.4789		12	0.9803	-25.87	0.9803	-25.8699
5	1.0241	-8.82	1.0241	-8.8163		13	0.9812	-25.53	0.9812	-25.5334
6	0.9935	-25.38	0.9935	-25.3778		14	0.9915	-23.36	0.9915	-23.3625

 Tabla 33: Resultado tensiones y fases nodos, caso C.2 del IEEE14

I.2 RED BRASILEÑA 136 NODOS I.2.1 Caso A.1

Figura 40: Red brasileña mallada caso A.1

PSS Algoritmo Matlab 0.9912 0.9912 -0.4551 1 -0.46 0.9912 -0.46 0.9912 -0.4577 2 0.9854 -0.76 0.9854 -0.762 3 4 0.9829 -0.90 0.9829 -0.8961 5 0.9791 -1.10 0.9791 -1.0993 -1.28 6 0.9757 0.9757 -1.2833 7 0.9753 -1.31 0.9753 -1.3114 8 0.9750 -1.30 0.975 -1.2959 9 0.9750 -1.29 0.975 -1.288 0.9739 -1.32 0.9739 -1.3206 10 11 0.9736 -1.32 0.9736 -1.3226 12 0.9725 -1.32 0.9725 -1.3167 13 0.9731 -1.34 0.9731 -1.3362 14 0.9721 -1.34 0.9721 -1.3424 15 0.9729 -1.34 0.9729 -1.3372 16 0.9726 -1.34 0.9725 -1.3396 17 0.9903 -0.49 0.9903 -0.4935 18 0.9902 -0.50 0.9902 -0.4964 19 0.9837 -0.83 0.9837 -0.8337 20 0.9805 -1.00 0.9805 -0.9998 21 0.9794 -1.00 0.9794 -1.0017 22 0.9758 -1.25 0.9758 -1.2526 23 0.9753 -1.25 -1.2534 0.9753 24 0.9753 -1.28 0.9753 -1.2826 25 0.9744 -1.33 0.9744 -1.3303 26 0.9741 -1.34 0.9741 -1.3426 27 0.9730 -1.36 0.973 -1.362 0.9728 0.9728 -1.3645 28 -1.36 0.9726 -1.36 0.9726 -1.3649 29 30 0.9725 -1.37 0.9725 -1.3651 31 0.9726 -1.37 0.9726 -1.3688 32 0.9723 -1.37 0.9723 -1.3693

0.9711

0.9708 -1.37

33

34

-1.37

0.9711

-1.3713

0.9708 -1.3718

35	0.9725	-1.37	0.9725	-1.3686
36	0.9714	-1.37	0.9714	-1.3704
37	0.9710	-1.37	0.971	-1.3712
38	0.9726	-1.36	0.9726	-1.3645
39	0.9887	-0.58	0.9887	-0.5825
40	0.9848	-0.79	0.9848	-0.7931
41	0.9847	-0.79	0.9846	-0.7923
42	0.9847	-0.80	0.9847	-0.7965
43	0.9824	-0.92	0.9824	-0.9206
44	0.9820	-0.92	0.982	-0.9222
45	0.9804	-1.03	0.9804	-1.0284
46	0.9765	-1.24	0.9765	-1.2385
47	0.9749	-1.32	0.9749	-1.321
48	0.9742	-1.35	0.9742	-1.3457
49	0.9741	-1.35	0.9741	-1.3467
50	0.9740	-1.35	0.974	-1.3476
51	0.9741	-1.35	0.9741	-1.3482
52	0.9738	-1.36	0.9738	-1.3601
53	0.9737	-1.37	0.9737	-1.3673
54	0.9736	-1.37	0.9736	-1.3662
55	0.9737	-1.36	0.9736	-1.3647
56	0.9733	-1.39	0.9733	-1.3917
57	0.9725	-1.40	0.9725	-1.3957
58	0.9712	-1.40	0.9712	-1.402
59	0.9701	-1.41	0.9701	-1.4071
60	0.9699	-1.41	0.9699	-1.4081
61	0.9699	-1.41	0.9699	-1.4081
62	0.9745	-1.34	0.9745	-1.3398
63	0.9998	-0.01	0.9998	-0.0087
64	0.9939	-0.32	0.9939	-0.3224
65	0.9867	-0.71	0.9867	-0.7069
66	0.9808	-1.03	0.9808	-1.0266
67	0.9774	-1.21	0.9774	-1.2082
68	0.9758	-1.29	0.9758	-1.2923
69	0.9755	-1.29	0.9755	-1.2942

70	0.9754	-1.31	0.9754	-1.3119
71	0.9753	-1.31	0.9753	-1.3128
72	0.9753	-1.31	0.9753	-1.313
73	0.9752	-1.32	0.9752	-1.3247
74	0.9719	-1.32	0.9719	-1.3152
75	0.9998	-0.01	0.9998	-0.0108
76	0.9866	-0.73	0.9866	-0.7264
77	0.9835	-0.88	0.9835	-0.8822
78	0.9806	-1.04	0.9806	-1.0416
79	0.9800	-1.08	0.98	-1.0751
80	0.9755	-1.23	0.9755	-1.2324
81	0.9734	-1.31	0.9734	-1.3108
82	0.9731	-1.31	0.9731	-1.3124
83	0.9730	-1.33	0.973	-1.3286
84	0.9726	-1.35	0.9726	-1.3485
85	0.9997	-0.02	0.9997	-0.0158
86	0.9886	-0.61	0.9886	-0.6131
87	0.9876	-0.65	0.9876	-0.6453
88	0.9827	-0.94	0.9827	-0.9362
89	0.9823	-0.93	0.9823	-0.9345
90	0.9819	-0.95	0.9819	-0.9533
91	0.9770	-1.22	0.977	-1.2185
92	0.9764	-1.24	0.9764	-1.242
93	0.9752	-1.30	0.9752	-1.3028
94	0.9745	-1.33	0.9745	-1.3255
95	0.9741	-1.34	0.9741	-1.3395
96	0.9741	-1.35	0.9741	-1.3453
97	0.9746	-1.33	0.9746	-1.3271
98	0.9737	-1.36	0.9737	-1.359
99	0.9998	-0.01	0.9998	-0.0115
100	0.9958	-0.22	0.9958	-0.2185
101	0.9930	-0.36	0.993	-0.3609
102	0.9929	-0.36	0.9929	-0.3603
103	0.9829	-0.90	0.9829	-0.8992
104	0.9762	-1.24	0.9762	-1.2412

105	0.9688	-1.59	0.9688	-1.5929
106	0.9689	-1.58	0.9689	-1.5755
107	0.9695	-1.54	0.9695	-1.5385
108	0.9679	-1.55	0.9679	-1.5466
109	0.9670	-1.55	0.967	-1.551
110	0.9699	-1.52	0.9699	-1.5238
111	0.9696	-1.53	0.9695	-1.5255
112	0.9693	-1.53	0.9693	-1.527
113	0.9693	-1.53	0.9693	-1.527
114	0.9671	-1.55	0.9671	-1.5505
115	0.9671	-1.55	0.9671	-1.5505
116	0.9651	-1.56	0.9651	-1.5601
117	0.9651	-1.56	0.9651	-1.5601
118	0.9751	-1.30	0.9751	-1.3022
119	0.9748	-1.32	0.9748	-1.3238
120	0.9745	-1.34	0.9745	-1.3398
121	0.9998	-0.01	0.9998	-0.0115
122	0.9867	-0.69	0.9867	-0.687
123	0.9859	-0.73	0.9859	-0.7322
124	0.9855	-0.73	0.9855	-0.7293
125	0.9855	-0.75	0.9855	-0.7508
126	0.9862	-0.73	0.9862	-0.7325
127	0.9838	-0.85	0.9838	-0.851
128	0.9835	-0.87	0.9835	-0.8741
129	0.9818	-0.97	0.9818	-0.9653
130	0.9811	-1.00	0.9811	-1.0021
131	0.9799	-1.08	0.9799	-1.0787
132	0.9769	-1.23	0.9769	-1.2253
133	0.9746	-1.29	0.9746	-1.2893
134	0.9733	-1.34	0.9733	-1.3352
135	0.9729	-1.36	0.9729	-1.3574
136	1.0000	0.00	1.0000	0.00

Tabla 34: Resultado tensiones y fases nodos, caso A.1 de red brasileña mallada

Ĭ Departamento de Ingeniería Eléctrica

u

I.2.2 CASO A.2

	PSS		Algoritmo Matlab	
1	0.9708	-0.52	0.9708	-0.518
2	0.9707	-0.52	0.9707	-0.521
3	0.9647	-0.87	0.9647	-0.8682
4	0.9620	-1.02	0.962	-1.0216
5	0.9580	-1.25	0.958	-1.2549
6	0.9544	-1.47	0.9544	-1.4696
7	0.9541	-1.49	0.9541	-1.4869
8	0.9537	-1.49	0.9537	-1.4889
9	0.9532	-1.49	0.9532	-1.4916
10	0.9524	-1.52	0.9524	-1.5216
11	0.9521	-1.52	0.9521	-1.5237
12	0.9510	-1.52	0.951	-1.5175
13	0.9515	-1.55	0.9515	-1.5454
14	0.9505	-1.55	0.9505	-1.5519
15	0.9513	-1.55	0.9513	-1.5501
16	0.9509	-1.55	0.9509	-1.5526
17	0.9711	-0.43	0.9711	-0.4317
18	0.9711	-0.43	0.9711	-0.4342
19	0.9651	-0.73	0.9651	-0.729
20	0.9622	-0.87	0.9622	-0.874
21	0.9611	-0.88	0.9611	-0.876
22	0.9579	-1.09	0.9579	-1.0901
23	0.9575	-1.09	0.9575	-1.091
24	0.9566	-1.16	0.9566	-1.1578
25	0.9563	-1.18	0.9563	-1.1755
26	0.9548	-1.21	0.9548	-1.2059
27	0.9543	-1.21	0.9543	-1.2109
28	0.9542	-1.21	0.9542	-1.2112
29	0.9538	-1.22	0.9538	-1.2204
30	0.9526	-1.22	0.9526	-1.2225
31	0.9523	-1.22	0.9523	-1.223
32	0.9538	-1.23	0.9538	-1.2262
33	0.9527	-1.23	0.9527	-1.2281
34	0.9523	-1.23	0.9523	-1.229

35	0.9538	-1.23	0.9538	-1.2269
36	0.9706	-0.51	0.9706	-0.5071
37	0.9673	-0.69	0.9673	-0.69
38	0.9672	-0.69	0.9672	-0.6891
39	0.9673	-0.69	0.9673	-0.6929
40	0.9653	-0.80	0.9653	-0.8005
41	0.9650	-0.80	0.965	-0.8021
42	0.9637	-0.89	0.9637	-0.8928
43	0.9605	-1.07	0.9605	-1.07
44	0.9594	-1.14	0.9594	-1.1364
45	0.9578	-1.22	0.9578	-1.2248
46	0.9576	-1.23	0.9576	-1.2307
47	0.9573	-1.24	0.9573	-1.2365
48	0.9574	-1.25	0.9574	-1.2501
49	0.9571	-1.26	0.9571	-1.2649
50	0.9569	-1.28	0.9569	-1.2779
51	0.9569	-1.28	0.9569	-1.2796
52	0.9568	-1.28	0.9568	-1.2798
53	0.9565	-1.30	0.9565	-1.2976
54	0.9557	-1.30	0.9557	-1.3018
55	0.9544	-1.31	0.9544	-1.3083
56	0.9531	-1.31	0.9531	-1.3145
57	0.9531	-1.31	0.9531	-1.3145
58	0.9590	-1.16	0.959	-1.1558
59	0.9799	-0.01	0.9799	-0.007
60	0.9754	-0.26	0.9754	-0.2587
61	0.9704	-0.55	0.9704	-0.5505
62	0.9663	-0.79	0.9663	-0.7878
63	0.9604	-1.12	0.9604	-1.1154
64	0.9603	-1.14	0.9603	-1.1398
65	0.9602	-1.14	0.9602	-1.1406
66	0.9601	-1.14	0.9601	-1.1408
67	0.9599	-1.16	0.9599	-1.16
68	0.9566	-1.15	0.9566	-1.1501
69	0.9798	-0.01	0.9798	-0.0109

70	0.9666	-0.73	0.9666	-0.7291
71	0.9628	-0.94	0.9628	-0.9409
72	0.9596	-1.12	0.9596	-1.1198
73	0.9590	-1.16	0.959	-1.1575
74	0.9541	-1.27	0.9541	-1.2746
75	0.9518	-1.33	0.9518	-1.3303
76	0.9515	-1.33	0.9515	-1.3319
77	0.9514	-1.34	0.9514	-1.3405
78	0.9797	-0.02	0.9797	-0.0183
79	0.9670	-0.71	0.967	-0.7101
80	0.9660	-0.74	0.966	-0.7438
81	0.9597	-1.12	0.9597	-1.122
82	0.9592	-1.12	0.9592	-1.1197
83	0.9561	-1.29	0.9561	-1.2947
84	0.9555	-1.33	0.9555	-1.3267
85	0.9548	-1.37	0.9548	-1.3702
86	0.9531	-1.41	0.9531	-1.4107
87	0.9528	-1.42	0.9528	-1.4179
88	0.9547	-1.38	0.9547	-1.3751
89	0.9546	-1.38	0.9546	-1.3815
90	0.9797	-0.02	0.9797	-0.0165
91	0.9737	-0.31	0.9737	-0.3147
92	0.9696	-0.52	0.9696	-0.5221
93	0.9695	-0.52	0.9695	-0.5214
94	0.9543	-1.32	0.9543	-1.3186
95	0.9152	-3.47	0.9152	-3.469
96	0.9118	-3.54	0.9118	-3.5352
97	0.9108	-3.54	0.9108	-3.5402
98	0.9134	-3.53	0.9134	-3.5305
99	0.9131	-3.53	0.9131	-3.5324
100	0.9128	-3.53	0.9128	-3.534
101	0.9128	-3.53	0.9128	-3.534
102	0.9109	-3.54	0.9109	-3.5396
103	0.9109	-3.54	0.9109	-3.5396
104	0.9089	-3.55	0.9089	-3.5503

105 0.9307 -2.62 0.9307 -2.6183 106 0.9305 -2.63 0.9305 -2.6271 107 0.9304 -2.63 0.9305 -2.6271 107 0.9304 -2.63 0.9304 -2.6321 108 0.9797 -0.01 0.9797 -0.0128 109 0.9644 -0.77 0.9644 -0.7657 110 0.9630 -0.81 0.963 -0.813 111 0.9630 -0.84 0.963 -0.813 112 0.9630 -0.84 0.963 -0.833 114 0.9613 -0.92 0.9613 -0.9245 115 0.9612 -0.93 0.9612 -0.9297 116 0.9500 -1.04 0.959 -1.0411 117 0.9524 -1.22 0.9524 -1.2287 119 0.9528 -1.26 0.9528 -1.2754 120 0.9526 -1.01 0.9625 -1.0089					
106 0.9305 -2.63 0.9305 -2.6271 107 0.9304 -2.63 0.9304 -2.6321 108 0.9797 -0.01 0.9797 -0.0128 109 0.9644 -0.77 0.9644 -0.7657 110 0.9634 -0.82 0.9634 -0.8133 111 0.9630 -0.84 0.963 -0.8133 112 0.9630 -0.84 0.9625 -0.8333 114 0.9613 -0.92 0.9613 -0.9245 115 0.9612 -0.93 0.9612 -0.9297 116 0.9500 -1.04 0.959 -1.216 118 0.9528 -1.22 0.9524 -1.226 119 0.9528 -1.28 0.9528 -1.2754 120 0.9528 -1.28 0.9528 -1.2105 122 0.9625 -1.01 0.9625 -10089 123 0.9541 -1.22 0.9546 -1.2155	105	0.9307	-2.62	0.9307	-2.6183
107 0.9304 -2.63 0.9304 -2.6321 108 0.9797 -0.01 0.9797 -0.0128 109 0.9644 -0.77 0.9644 -0.7657 110 0.9634 -0.82 0.9634 -0.8133 111 0.9630 -0.81 0.963 -0.8133 112 0.9625 -0.84 0.9625 -0.8343 113 0.9625 -0.84 0.9625 -0.8383 114 0.9613 -0.92 0.9613 -0.9245 115 0.9612 -0.93 0.9612 -0.9297 116 0.9590 -1.04 0.959 -1.0411 117 0.9514 -1.22 0.9524 -1.2216 118 0.9528 -1.28 0.9528 -1.257 120 0.9528 -1.28 0.9528 -1.215 121 0.9546 -1.21 0.9546 -1.2109 124 0.9607 -1.11 0.9607 -1.1134	106	0.9305	-2.63	0.9305	-2.6271
108 0.9797 -0.01 0.9797 -0.0128 109 0.9644 -0.77 0.9644 -0.7657 110 0.9634 -0.82 0.9634 -0.8133 111 0.9630 -0.81 0.963 -0.8133 112 0.9630 -0.84 0.963 -0.8334 113 0.9625 -0.84 0.9625 -0.8333 114 0.9613 -0.92 0.9613 -0.9245 115 0.9612 -0.93 0.9612 -0.9297 116 0.9590 -1.04 0.959 -1.0411 117 0.9554 -1.22 0.9554 -1.2216 118 0.9528 -1.28 0.9528 -1.2754 120 0.9528 -1.28 0.9528 -1.2754 121 0.9546 -1.21 0.9546 -1.2105 122 0.9625 -1.01 0.9625 -1.0089 123 0.9541 -1.22 0.9546 -1.2155 <tr< td=""><td>107</td><td>0.9304</td><td>-2.63</td><td>0.9304</td><td>-2.6321</td></tr<>	107	0.9304	-2.63	0.9304	-2.6321
109 0.9644 -0.77 0.9644 -0.7657 110 0.9634 -0.82 0.9634 -0.8163 111 0.9630 -0.81 0.963 -0.8133 112 0.9630 -0.84 0.963 -0.8374 113 0.9625 -0.84 0.9625 -0.8383 114 0.9613 -0.92 0.9613 -0.9245 115 0.9612 -0.93 0.9612 -0.9297 116 0.9590 -1.04 0.959 -1.0411 117 0.9554 -1.22 0.9554 -1.2216 118 0.9528 -1.28 0.9528 -1.2587 119 0.9528 -1.28 0.9528 -1.2754 120 0.9528 -1.28 0.9528 -1.2754 121 0.9546 -1.21 0.9546 -1.2105 122 0.9607 -1.11 0.9607 -1.1134 125 0.9586 -1.15 0.9586 -1.525	108	0.9797	-0.01	0.9797	-0.0128
110 0.9634 -0.82 0.9634 -0.8163 111 0.9630 -0.81 0.963 -0.8133 112 0.9630 -0.84 0.963 -0.8133 112 0.9630 -0.84 0.963 -0.8374 113 0.9625 -0.84 0.9625 -0.8383 114 0.9612 -0.92 0.9613 -0.9245 115 0.9612 -0.93 0.9612 -0.9297 116 0.9590 -1.04 0.959 -1.0411 117 0.9554 -1.22 0.9554 -1.2216 118 0.9528 -1.28 0.9528 -1.2587 119 0.9528 -1.28 0.9528 -1.2754 120 0.9526 -1.01 0.9526 -1.0051 122 0.9625 -1.01 0.9526 -1.0089 123 0.9546 -1.21 0.9546 -1.525 126 0.9538 -1.15 0.9563 -1.1525	109	0.9644	-0.77	0.9644	-0.7657
111 0.9630 -0.81 0.963 -0.8133 112 0.9630 -0.84 0.963 -0.8374 113 0.9625 -0.84 0.9625 -0.8383 114 0.9613 -0.92 0.9613 -0.9245 115 0.9612 -0.93 0.9612 -0.9297 116 0.9500 -1.04 0.959 -1.0411 10.9554 -1.22 0.9554 -1.2216 118 0.9528 -1.22 0.9528 -1.2587 119 0.9528 -1.28 0.9528 -1.2754 120 0.9528 -1.28 0.9528 -1.2754 121 0.9546 -1.21 0.9546 -1.2105 122 0.9625 -1.01 0.9625 -1.0089 123 0.9541 -1.22 0.9541 -1.2199 124 0.9607 -1.11 0.9607 -1.1134 125 0.9586 -1.55 0.9089 -3.5503 128 <td>110</td> <td>0.9634</td> <td>-0.82</td> <td>0.9634</td> <td>-0.8163</td>	110	0.9634	-0.82	0.9634	-0.8163
112 0.9630 -0.84 0.963 -0.8374 113 0.9625 -0.84 0.9625 -0.8383 114 0.9613 -0.92 0.9613 -0.9245 115 0.9612 -0.93 0.9612 -0.9297 116 0.9590 -1.04 0.959 -1.0411 117 0.9554 -1.22 0.9536 -1.2587 118 0.9536 -1.26 0.9538 -1.2587 119 0.9528 -1.28 0.9528 -1.2754 120 0.9546 -1.21 0.9546 -1.2105 122 0.9625 -1.01 0.9625 -1.0089 123 0.9541 -1.22 0.9541 -1.2109 124 0.9607 -1.11 0.9607 -1.1134 125 0.9586 -1.15 0.9588 -1.3952 126 0.9538 -3.55 0.9089 -3.5503 128 0.9135 -3.53 0.9135 -3.5261 <t< td=""><td>111</td><td>0.9630</td><td>-0.81</td><td>0.963</td><td>-0.8133</td></t<>	111	0.9630	-0.81	0.963	-0.8133
113 0.9625 -0.84 0.9625 -0.8383 114 0.9613 -0.92 0.9613 -0.9245 115 0.9612 -0.93 0.9612 -0.9245 115 0.9612 -0.93 0.9612 -0.9245 115 0.9512 -1.04 0.959 -1.0411 117 0.9554 -1.22 0.9554 -1.2216 118 0.9528 -1.26 0.9528 -1.2587 119 0.9528 -1.28 0.9528 -1.2754 120 0.9528 -1.28 0.9528 -1.2754 121 0.9546 -1.21 0.9546 -1.2105 122 0.9546 -1.21 0.9546 -1.2105 123 0.9541 -1.22 0.9541 -1.2109 124 0.9607 -1.11 0.9607 -1.1134 125 0.9586 -1.152 0.9513 -3.350 126 0.9538 -3.55 0.9089 -3.5503 <	112	0.9630	-0.84	0.963	-0.8374
114 0.9613 -0.92 0.9613 -0.9245 115 0.9612 -0.93 0.9612 -0.9297 116 0.9590 -1.04 0.959 -1.0411 117 0.9554 -1.22 0.9554 -1.2216 118 0.9536 -1.22 0.9534 -1.2286 119 0.9528 -1.28 0.9528 -1.2754 120 0.9528 -1.28 0.9528 -1.2754 121 0.9546 -1.21 0.9546 -1.2105 122 0.9625 -1.01 0.9625 -1.0089 123 0.9541 -1.22 0.9541 -1.2199 124 0.9607 -1.11 0.9607 -1.1134 125 0.9586 -1.450 0.9538 -1.3952 127 0.9089 -3.55 0.9089 -3.5503 128 0.9135 -3.533 0.9135 -3.5261 129 0.9800 0.00 0.988 0	113	0.9625	-0.84	0.9625	-0.8383
115 0.9612 -0.93 0.9612 -0.9297 116 0.9590 -1.04 0.959 -1.0411 117 0.9554 -1.22 0.9554 -1.2216 118 0.9536 -1.22 0.9534 -1.2216 118 0.9536 -1.28 0.9528 -1.287 119 0.9528 -1.28 0.9528 -1.2754 120 0.9528 -1.28 0.9528 -1.2754 121 0.9546 -1.21 0.9546 -1.2159 122 0.9625 -1.01 0.9625 -1.0089 123 0.9541 -1.22 0.9541 -1.2199 124 0.9607 -1.11 0.9607 -1.1134 125 0.9538 -1.400 0.9538 -1.3525 126 0.9538 -1.40 0.9538 -1.3553 127 0.9080 -3.55 0.9089 -3.5503 128 0.9132 -2.58 0.9312 -2.584 <t< td=""><td>114</td><td>0.9613</td><td>-0.92</td><td>0.9613</td><td>-0.9245</td></t<>	114	0.9613	-0.92	0.9613	-0.9245
116 0.9590 -1.04 0.959 -1.0411 117 0.9554 -1.22 0.9554 -1.2216 118 0.9536 -1.26 0.9536 -1.2587 119 0.9528 -1.28 0.9528 -1.2754 120 0.9528 -1.28 0.9528 -1.2754 121 0.9546 -1.21 0.9546 -1.2157 122 0.9625 -1.01 0.9625 -1.0089 123 0.9541 -1.22 0.9541 -1.2199 124 0.9607 -1.11 0.9607 -1.1134 125 0.9586 -1.15 0.9586 -1.555 126 0.9538 -1.40 0.9538 -1.3952 127 0.9089 -3.55 0.9089 -3.5503 128 0.9135 -3.53 0.9135 -3.5261 129 0.9800 0.00 0.988 0 130 0.9312 -2.58 0.9312 -2.584	115	0.9612	-0.93	0.9612	-0.9297
117 0.9554 -1.22 0.9554 -1.2216 118 0.9536 -1.26 0.9536 -1.2587 119 0.9528 -1.28 0.9528 -1.2754 120 0.9528 -1.28 0.9528 -1.2754 120 0.9528 -1.28 0.9528 -1.2754 121 0.9546 -1.21 0.9528 -1.2754 121 0.9528 -1.21 0.9528 -1.2754 121 0.9528 -1.21 0.9528 -1.2754 122 0.9625 -1.01 0.9625 -1.0089 123 0.9541 -1.22 0.9541 -1.219 124 0.9607 -1.11 0.9607 -1.1134 125 0.9586 -1.15 0.9507 -1.134 126 0.9538 -1.40 0.9538 -1.3952 127 0.9089 -3.55 0.9089 -3.5503 128 0.9135 -3.53 0.9135 -3.5261 <t< td=""><td>116</td><td>0.9590</td><td>-1.04</td><td>0.959</td><td>-1.0411</td></t<>	116	0.9590	-1.04	0.959	-1.0411
118 0.9536 -1.26 0.9536 -1.2587 119 0.9528 -1.28 0.9528 -1.2754 120 0.9528 -1.28 0.9528 -1.2754 121 0.9546 -1.21 0.9526 -1.2754 121 0.9546 -1.21 0.9526 -1.005 122 0.9625 -1.01 0.9625 -1.0089 123 0.9541 -1.22 0.9541 -1.2199 124 0.9607 -1.11 0.9607 -1.1131 125 0.9586 -1.15 0.9586 -1.1525 126 0.9538 -1.40 0.9538 -1.3952 127 0.9089 -3.55 0.9089 -3.5503 128 0.9135 -3.53 0.9135 -3.5261 129 0.9800 0.00 0.98 0 130 0.9312 -2.58 0.9312 -2.584 131 0.9584 -1.07 0.9584 -1.0715	117	0.9554	-1.22	0.9554	-1.2216
119 0.9528 -1.28 0.9528 -1.2754 120 0.9528 -1.28 0.9528 -1.2754 121 0.9528 -1.21 0.9528 -1.2754 121 0.9526 -1.21 0.9526 -1.2105 122 0.9625 -1.01 0.9625 -1.009 123 0.9541 -1.22 0.9541 -1.2199 124 0.9607 -1.11 0.9607 -1.1134 125 0.9586 -1.15 0.9588 -1.352 126 0.9538 -1.40 0.9538 -1.352 127 0.9089 -3.55 0.9089 -3.5503 128 0.9135 -3.53 0.9135 -3.5261 129 0.9800 0.00 0.98 0 130 0.9312 -2.58 0.9312 -2.584 131 0.9584 -1.07 0.9584 -1.0715 132 0.9173 -3.400 0.9173 -3.3951	118	0.9536	-1.26	0.9536	-1.2587
120 0.9528 -1.28 0.9528 -1.2754 121 0.9546 -1.21 0.9546 -1.2105 122 0.9625 -1.01 0.9625 -1.0099 123 0.9541 -1.22 0.9541 -1.2199 124 0.9607 -1.11 0.9607 -1.1134 125 0.9586 -1.15 0.9588 -1.3952 126 0.9538 -1.40 0.9538 -1.3952 127 0.9089 -3.55 0.9089 -3.5503 128 0.9135 -3.53 0.9135 -3.5261 129 0.9800 0.00 0.98 0 130 0.9312 -2.58 0.9312 -2.584 131 0.9584 -1.07 0.9584 -1.0715 132 0.9173 -3.40 0.9173 -3.3951 133 0.9572 -1.13 0.9572 -1.1346 134 0.9504 -1.35 0.9504 -1.3453	119	0.9528	-1.28	0.9528	-1.2754
121 0.9546 -1.21 0.9546 -1.2105 122 0.9625 -1.01 0.9625 -1.0089 123 0.9541 -1.22 0.9541 -1.2199 124 0.9607 -1.11 0.9608 -1.1134 125 0.9586 -1.15 0.9586 -1.1525 126 0.9538 -1.40 0.9538 -1.3952 127 0.9089 -3.55 0.9089 -3.553 128 0.9135 -3.53 0.9135 -3.5261 129 0.9800 0.00 0.98 0 130 0.9312 -2.58 0.9312 -2.584 131 0.9584 -1.07 0.9584 -1.0715 132 0.9173 -3.40 0.9173 -3.3951 133 0.9575 -1.13 0.9572 -1.1346 134 0.9504 -1.35 0.9575 -1.12 136 0.9533 -1.131 0.9573 -1.115	120	0.9528	-1.28	0.9528	-1.2754
122 0.9625 -1.01 0.9625 -1.0089 123 0.9541 -1.22 0.9541 -1.2199 124 0.9607 -1.11 0.9607 -1.1134 125 0.9586 -1.15 0.9586 -1.1525 126 0.9538 -1.400 0.9538 -1.3952 127 0.9089 -3.55 0.9089 -3.5503 128 0.9135 -3.53 0.9135 -3.5261 129 0.9800 0.00 0.98 0 130 0.9312 -2.58 0.9312 -2.584 131 0.9584 -1.07 0.9584 -1.0715 132 0.9173 -3.40 0.9173 -3.3951 133 0.9572 -1.13 0.9572 -1.1346 134 0.9504 -1.35 0.9505 -1.151 136 0.9533 -1.31 0.9573 -1.1315	121	0.9546	-1.21	0.9546	-1.2105
123 0.9541 -1.22 0.9541 -1.2199 124 0.9607 -1.11 0.9607 -1.1134 125 0.9586 -1.15 0.9586 -1.1525 126 0.9538 -1.40 0.9538 -1.3952 127 0.9089 -3.55 0.9089 -3.5503 128 0.9135 -3.53 0.9135 -3.5261 129 0.9800 0.00 0.98 0 130 0.9312 -2.58 0.9312 -2.584 131 0.9584 -1.07 0.9584 -1.0715 132 0.9173 -3.40 0.9173 -3.3951 133 0.9572 -1.13 0.9572 -1.1346 134 0.9504 -1.35 0.9504 -1.3453 135 0.9575 -1.12 0.9575 -1.115 136 0.9533 -1.31 0.9533 -1.3136	122	0.9625	-1.01	0.9625	-1.0089
124 0.9607 -1.11 0.9607 -1.1134 125 0.9586 -1.15 0.9586 -1.1525 126 0.9538 -1.40 0.9538 -1.3952 127 0.9089 -3.55 0.9089 -3.553 128 0.9135 -3.53 0.9135 -3.5261 129 0.9800 0.00 0.98 0 130 0.9312 -2.58 0.9312 -2.584 131 0.9584 -1.07 0.9584 -1.0715 132 0.9173 -3.40 0.9173 -3.3951 133 0.9572 -1.13 0.9572 -1.1346 134 0.9504 -1.35 0.9504 -1.3453 135 0.9575 -1.12 0.9575 -1.115 136 0.9533 -1.31 0.9533 -1.315	123	0.9541	-1.22	0.9541	-1.2199
125 0.9586 -1.15 0.9586 -1.1525 126 0.9538 -1.40 0.9538 -1.3952 127 0.9089 -3.55 0.9089 -3.553 128 0.9135 -3.53 0.9135 -3.5261 129 0.9800 0.00 0.98 0 130 0.9312 -2.58 0.9312 -2.584 131 0.9584 -1.07 0.9584 -1.0715 132 0.9173 -3.40 0.9173 -3.3951 133 0.9572 -1.13 0.9572 -1.1346 134 0.9504 -1.35 0.9504 -1.345 135 0.9575 -1.12 0.9575 -1.115 136 0.9533 -1.31 0.9533 -1.313	124	0.9607	-1.11	0.9607	-1.1134
126 0.9538 -1.40 0.9538 -1.3952 127 0.9089 -3.55 0.9089 -3.553 128 0.9135 -3.53 0.9135 -3.5261 129 0.9800 0.00 0.98 0 130 0.9312 -2.58 0.9312 -2.584 131 0.9584 -1.07 0.9584 -1.0715 132 0.9173 -3.40 0.9173 -3.3951 133 0.9572 -1.13 0.9572 -1.1346 134 0.9504 -1.35 0.9505 -1.115 136 0.9575 -1.12 0.9575 -1.115	125	0.9586	-1.15	0.9586	-1.1525
127 0.9089 -3.55 0.9089 -3.5503 128 0.9135 -3.53 0.9135 -3.5261 129 0.9800 0.00 0.98 0 130 0.9312 -2.58 0.9312 -2.584 131 0.9584 -1.07 0.9584 -1.0715 132 0.9173 -3.40 0.9173 -3.3951 133 0.9572 -1.13 0.9572 -1.1346 134 0.9504 -1.35 0.9505 -1.12 135 0.9575 -1.12 0.9575 -1.115 136 0.9533 -1.31 0.9533 -1.315	126	0.9538	-1.40	0.9538	-1.3952
128 0.9135 -3.53 0.9135 -3.5261 129 0.9800 0.00 0.98 0 130 0.9312 -2.58 0.9312 -2.584 131 0.9584 -1.07 0.9584 -1.0715 132 0.9173 -3.40 0.9173 -3.3951 133 0.9572 -1.13 0.9572 -1.1346 134 0.9504 -1.35 0.9505 -1.12 135 0.9575 -1.12 0.9575 -1.135 136 0.9533 -1.31 0.9533 -1.315	127	0.9089	-3.55	0.9089	-3.5503
129 0.9800 0.00 0.98 0 130 0.9312 -2.58 0.9312 -2.584 131 0.9584 -1.07 0.9584 -1.0715 132 0.9173 -3.40 0.9173 -3.3951 133 0.9572 -1.13 0.9572 -1.1346 134 0.9504 -1.35 0.9505 -1.115 136 0.9573 -1.12 0.9575 -1.1315	128	0.9135	-3.53	0.9135	-3.5261
130 0.9312 -2.58 0.9312 -2.584 131 0.9584 -1.07 0.9584 -1.0715 132 0.9173 -3.40 0.9173 -3.3951 133 0.9572 -1.13 0.9572 -1.1346 134 0.9504 -1.35 0.9504 -1.3453 135 0.9575 -1.12 0.9575 -1.115 136 0.9533 -1.31 0.9533 -1.315	129	0.9800	0.00	0.98	0
131 0.9584 -1.07 0.9584 -1.0715 132 0.9173 -3.40 0.9173 -3.3951 133 0.9572 -1.13 0.9572 -1.1346 134 0.9504 -1.35 0.9504 -1.3453 135 0.9575 -1.12 0.9575 -1.115 136 0.9533 -1.31 0.9533 -1.315	130	0.9312	-2.58	0.9312	-2.584
132 0.9173 -3.40 0.9173 -3.3951 133 0.9572 -1.13 0.9572 -1.1346 134 0.9504 -1.35 0.9504 -1.3453 135 0.9575 -1.12 0.9575 -1.115 136 0.9533 -1.31 0.9533 -1.315	131	0.9584	-1.07	0.9584	-1.0715
133 0.9572 -1.13 0.9572 -1.1346 134 0.9504 -1.35 0.9504 -1.3453 135 0.9575 -1.12 0.9575 -1.115 136 0.9533 -1.31 0.9533 -1.315	132	0.9173	-3.40	0.9173	-3.3951
134 0.9504 -1.35 0.9504 -1.3453 135 0.9575 -1.12 0.9575 -1.115 136 0.9533 -1.31 0.9533 -1.315	133	0.9572	-1.13	0.9572	-1.1346
135 0.9575 -1.12 0.9575 -1.115 136 0.9533 -1.31 0.9533 -1.3135	134	0.9504	-1.35	0.9504	-1.3453
136 0.9533 -1.31 0.9533 -1.3135	135	0.9575	-1.12	0.9575	-1.115
	136	0.9533	-1.31	0.9533	-1.3135

Tabla 35: Resultado tensiones y fases nodos, caso A.2 de red brasileña radial

Departamento de Ingeniería Eléctrica

I.2.3 CASO B.1

Figura 42: Red brasileña radial con generadores casos B

Trabajo fin de master

Departamento de Ingeniería Eléctrica

	PSS		Algoritmo Matlab	
1	0.9910	-0.50	0.991	-0.4972
2	0.9909	-0.50	0.9909	-0.5001
3	0.9850	-0.83	0.985	-0.8332
4	0.9824	-0.98	0.9824	-0.9803
5	0.9785	-1.20	0.9785	-1.204
6	0.9750	-1.41	0.975	-1.4098
7	0.9747	-1.43	0.9747	-1.4263
8	0.9742	-1.43	0.9742	-1.4282
9	0.9738	-1.43	0.9738	-1.4308
10	0.9730	-1.46	0.973	-1.4596
11	0.9727	-1.46	0.9727	-1.4616
12	0.9716	-1.46	0.9716	-1.4556
13	0.9721	-1.48	0.9721	-1.4824
14	0.9711	-1.49	0.9711	-1.4886
15	0.9719	-1.49	0.9719	-1.4869
16	0.9715	-1.49	0.9715	-1.4893
17	0.9997	-0.56	0.9997	-0.5615
18	0.9997	-0.56	0.9997	-0.5647
19	0.9995	-0.94	0.9995	-0.9423
20	0.9994	-1.13	0.9994	-1.1264
21	0.9983	-1.13	0.9983	-1.1282
22	0.9999	-1.41	0.9999	-1.4082
23	0.9994	-1.41	0.9994	-1.409
24	0.9992	-1.48	0.9992	-1.4813
25	0.9989	-1.50	0.9989	-1.4975
26	0.9974	-1.53	0.9974	-1.5253
27	0.9970	-1.53	0.997	-1.5299
28	0.9969	-1.53	0.9969	-1.5302
29	0.9965	-1.54	0.9965	-1.5387
30	0.9954	-1.54	0.9954	-1.5405
31	0.9951	-1.54	0.9951	-1.541
32	0.9965	-1.54	0.9965	-1.544
33	0.9955	-1.55	0.9955	-1.5457
34	0.9950	-1.55	0.995	-1.5465

35	0.9965	-1.54	0.9965	-1.5446
36	0.9970	-0.57	0.997	-0.5684
37	0.9960	-0.77	0.996	-0.7716
38	0.9959	-0.77	0.9959	-0.7708
39	0.9960	-0.77	0.996	-0.7749
40	0.9954	-0.89	0.9954	-0.8941
41	0.9950	-0.90	0.995	-0.8956
42	0.9949	-1.00	0.9949	-0.9971
43	0.9943	-1.20	0.9943	-1.1967
44	0.9943	-1.27	0.9943	-1.2744
45	0.9949	-1.39	0.9949	-1.386
46	0.9947	-1.39	0.9947	-1.3914
47	0.9944	-1.40	0.9944	-1.3969
48	0.9953	-1.42	0.9953	-1.421
49	0.9955	-1.44	0.9955	-1.4413
50	0.9953	-1.45	0.9953	-1.4533
51	0.9953	-1.45	0.9953	-1.4549
52	0.9953	-1.46	0.9953	-1.4551
53	0.9970	-1.50	0.997	-1.4994
54	0.9975	-1.60	0.9975	-1.6019
55	0.9984	-1.77	0.9984	-1.7685
56	0.9998	-1.97	0.9998	-1.9672
57	0.9998	-1.97	0.9998	-1.9672
58	0.9940	-1.29	0.994	-1.2925
59	0.9999	-0.01	0.9999	-0.0067
60	0.9955	-0.25	0.9955	-0.2484
61	0.9906	-0.53	0.9906	-0.5285
62	0.9866	-0.76	0.9866	-0.7561
63	0.9808	-1.07	0.9808	-1.0703
64	0.9807	-1.09	0.9807	-1.0937
65	0.9806	-1.09	0.9806	-1.0945
66	0.9805	-1.09	0.9805	-1.0947
67	0.9804	-1.11	0.9804	-1.1131
68	0.9771	-1.10	0.9771	-1.1036
69	1.0000	-0.01	1	-0.0118

71 0.9977 -1.01 0.9977 -1.0061 72 0.9977 -1.20 0.9977 -1.1973 73 0.9978 -1.24 0.9976 -1.2378 74 0.9976 -1.49 0.9976 -1.4932 75 0.9979 -1.63 0.9976 -1.6323 76 0.9976 -1.63 0.9976 -1.6268 77 0.9983 -1.66 0.9983 -1.6605 78 0.9999 -0.02 0.9999 -0.0165 79 0.9966 -0.64 0.9966 -0.6351 80 0.9997 -0.67 0.9957 -0.6667 81 0.9989 -1.00 0.9989 -1.023 83 0.9997 -1.10 0.9997 -1.1023 84 0.9997 -1.11 0.9997 -1.1127 85 0.9994 -1.16 0.9994 -1.1617 87 0.9991 -1.17 0.9997 -1.138	/0	0.9980	-0./8	0.998	-0./811
72 0.9977 -1.20 0.9977 -1.1973 73 0.9978 -1.24 0.9978 -1.2378 74 0.9976 -1.49 0.9976 -1.4932 75 0.9976 -1.63 0.9979 -1.6233 76 0.9976 -1.63 0.9979 -1.6268 77 0.9983 -1.66 0.9983 -1.6605 78 0.9999 -0.02 0.9999 -0.0165 79 0.9966 -0.64 0.9999 -0.6667 81 0.9989 -0.98 0.9989 -1.0023 83 0.9997 -1.10 0.9989 -1.023 84 0.9997 -1.11 0.9997 -1.1127 85 0.9994 -1.161 0.9994 -1.1617 86 0.9994 -1.161 0.9994 -1.16182 88 0.9997 -1.13 0.9997 -1.138 90 1.0000 -0.02 1 -0.015 91<	71	0.9977	-1.01	0.9977	-1.0061
73 0.9978 -1.24 0.9978 -1.2378 74 0.9976 -1.49 0.9976 -1.4932 75 0.9979 -1.63 0.9976 -1.6253 76 0.9976 -1.63 0.9976 -1.6268 77 0.9983 -1.66 0.9983 -1.6268 77 0.9983 -0.64 0.9966 -0.6351 80 0.9997 -0.67 0.9997 -0.6667 81 0.9989 -0.02 0.9989 -0.9778 82 0.9989 -0.067 0.9997 -1.0023 83 0.9997 -1.10 0.9997 -1.023 84 0.9997 -1.11 0.9997 -1.127 85 0.9998 -1.13 0.9997 -1.1617 84 0.9997 -1.13 0.9997 -1.1617 85 0.9994 -1.17 0.9994 -1.1628 86 0.9997 -1.13 0.9997 -1.138	72	0.9977	-1.20	0.9977	-1.1973
74 0.9976 -1.49 0.9976 -1.4932 75 0.9979 -1.63 0.9979 -1.6253 76 0.9976 -1.63 0.9979 -1.6268 77 0.9983 -1.66 0.9983 -1.6605 78 0.9996 -0.64 0.9966 -0.651 79 0.9966 -0.67 0.9957 -0.6667 81 0.9989 -0.02 0.9999 -0.023 83 0.9997 -0.67 0.9989 -0.023 83 0.9997 -1.10 0.9997 -1.0981 84 0.9997 -1.11 0.9997 -1.127 85 0.9998 -1.13 0.9997 -1.1682 86 0.9994 -1.16 0.9997 -1.138 89 0.9996 -1.17 0.9991 -1.1582 80 0.9997 -1.13 0.9997 -0.2851 90 1.0000 -0.02 1 -0.015 91	73	0.9978	-1.24	0.9978	-1.2378
75 0.9979 -1.63 0.9979 -1.6253 76 0.9976 -1.63 0.9976 -1.6268 77 0.9983 -1.66 0.9983 -1.6605 78 0.9999 -0.02 0.9983 -1.6605 78 0.9996 -0.02 0.9996 -0.0351 79 0.9966 -0.67 0.9957 -0.667 80 0.9989 -0.08 0.9989 -0.0778 81 0.9997 -1.10 0.9997 -1.0023 83 0.9997 -1.11 0.9997 -1.1127 84 0.9997 -1.11 0.9997 -1.1127 85 0.9998 -1.13 0.9997 -1.162 86 0.9991 -1.17 0.9991 -1.162 87 0.9991 -1.17 0.9991 -1.162 88 0.9997 -1.13 0.9997 -0.1538 90 1.0000 -0.02 1 -0.015 91	74	0.9976	-1.49	0.9976	-1.4932
76 0.9976 -1.63 0.9976 -1.6268 77 0.9983 -1.66 0.9983 -1.6605 78 0.9999 -0.02 0.9999 -0.0165 79 0.9966 -0.64 0.9966 -0.6351 80 0.9957 -0.67 0.9957 -0.6667 81 0.9989 -1.00 0.9989 -1.0023 82 0.9989 -1.00 0.9989 -1.0023 83 0.9997 -1.11 0.9997 -1.127 85 0.9998 -1.13 0.9997 -1.1127 85 0.9994 -1.16 0.9997 -1.1127 86 0.9994 -1.16 0.9997 -1.1323 86 0.9994 -1.16 0.9997 -1.133 87 0.9991 -1.17 0.9991 -1.1682 88 0.9997 -1.13 0.9997 -1.138 90 1.0000 -0.02 1 -0.015 91	75	0.9979	-1.63	0.9979	-1.6253
77 0.9983 -1.66 0.9983 -1.6605 78 0.9999 -0.02 0.9999 -0.0165 79 0.9966 -0.64 0.9969 -0.0165 80 0.9957 -0.67 0.9957 -0.667 81 0.9989 -0.08 0.9989 -0.028 82 0.9989 -1.00 0.9989 -1.0023 83 0.9997 -1.10 0.9997 -1.127 85 0.9998 -1.13 0.9997 -1.1127 85 0.9994 -1.16 0.9997 -1.133 86 0.9997 -1.13 0.9997 -1.138 87 0.9991 -1.17 0.9991 -1.138 88 0.9997 -1.13 0.9997 -1.138 89 0.9996 -1.14 0.9996 -1.1396 90 1.0000 -0.02 1 -0.0155 91 0.9992 -0.29 0.9983 -0.4704 92	76	0.9976	-1.63	0.9976	-1.6268
78 0.9999 -0.02 0.9999 -0.0165 79 0.9966 -0.64 0.9966 -0.6351 80 0.9957 -0.67 0.9957 -0.667 81 0.9989 -0.98 0.9989 -0.9778 82 0.9989 -1.00 0.9989 -1.023 83 0.9997 -1.10 0.9997 -1.081 84 0.9997 -1.11 0.9997 -1.123 85 0.9998 -1.13 0.9998 -1.123 86 0.9991 -1.17 0.9991 -1.1682 88 0.9997 -1.13 0.9997 -1.138 89 0.9996 -1.14 0.9997 -1.138 89 0.9997 -0.13 0.9997 -0.295 90 1.0000 -0.02 1 -0.015 91 0.9998 -0.471 0.9987 -0.4704 92 0.9987 -0.47 0.9987 -0.4704 93	77	0.9983	-1.66	0.9983	-1.6605
79 0.9966 -0.64 0.9966 -0.6351 80 0.9957 -0.67 0.9957 -0.6667 81 0.9989 -0.98 0.9989 -0.9778 82 0.9989 -1.00 0.9989 -1.0023 83 0.9997 -1.10 0.9997 -1.0023 84 0.9997 -1.11 0.9997 -1.1127 85 0.9998 -1.11 0.9997 -1.1127 85 0.9994 -1.16 0.9994 -1.1617 85 0.9994 -1.16 0.9994 -1.1617 87 0.9991 -1.17 0.9991 -1.1632 88 0.9997 -1.13 0.9997 -1.138 89 0.9996 -1.14 0.9996 -1.1396 90 1.0000 -0.02 1 -0.0151 91 0.9992 -0.290 0.9992 -0.281 92 0.9987 -0.47 0.9987 -0.4704 93 </td <td>78</td> <td>0.9999</td> <td>-0.02</td> <td>0.9999</td> <td>-0.0165</td>	78	0.9999	-0.02	0.9999	-0.0165
80 0.9957 -0.67 0.9957 -0.6667 81 0.9989 -0.98 0.9989 -0.9778 82 0.9989 -1.00 0.9989 -1.0023 83 0.9997 -1.10 0.9989 -1.0023 84 0.9997 -1.10 0.9997 -1.1027 85 0.9998 -1.11 0.9997 -1.1127 85 0.9998 -1.13 0.9998 -1.123 86 0.9994 -1.16 0.9994 -1.167 87 0.9991 -1.17 0.9991 -1.1682 88 0.9997 -1.13 0.9997 -1.138 89 0.9996 -1.14 0.9996 -1.1396 90 1.0000 -0.02 1 -0.015 91 0.9992 -0.290 0.9992 -0.281 92 0.9982 -0.471 0.9987 -0.471 93 0.9987 -3.00 0.9977 -3.0043 94	79	0.9966	-0.64	0.9966	-0.6351
81 0.9989 -0.98 0.9989 -0.978 82 0.9989 -1.00 0.9989 -1.0023 83 0.9997 -1.10 0.9997 -1.0981 84 0.9997 -1.11 0.9997 -1.023 85 0.9997 -1.11 0.9997 -1.127 85 0.9994 -1.16 0.9994 -1.127 86 0.9994 -1.16 0.9994 -1.167 87 0.9991 -1.17 0.9991 -1.1682 88 0.9997 -1.13 0.9997 -1.138 90 1.0000 -0.02 1 -0.015 91 0.9992 -0.29 0.9982 -0.2851 92 0.9987 -0.47 0.9982 -0.471 93 0.9977 -3.00 0.9977 -3.0043 94 0.9976 -1.17 0.9987 -3.0043 95 0.9991 -3.100 0.9992 -2.9983 97	80	0.9957	-0.67	0.9957	-0.6667
82 0.9989 -1.00 0.9989 -1.0023 83 0.9997 -1.10 0.9997 -1.0981 84 0.9997 -1.11 0.9997 -1.1127 85 0.9998 -1.13 0.9997 -1.1127 85 0.9994 -1.13 0.9994 -1.127 86 0.9994 -1.16 0.9994 -1.162 87 0.9991 -1.17 0.9991 -1.138 88 0.9997 -1.13 0.9997 -1.138 89 0.9996 -1.14 0.9996 -1.139 90 1.0000 -0.02 1 -0.015 91 0.9992 -0.29 0.9992 -0.2851 92 0.9988 -0.471 0.9982 -0.471 93 0.9977 -3.00 0.9977 -3.0043 94 0.9976 -1.171 0.9963 -2.9983 95 0.9991 -3.101 0.9992 -2.8999 98	81	0.9989	-0.98	0.9989	-0.9778
83 0.9997 -1.10 0.9997 -1.0981 84 0.9997 -1.11 0.9997 -1.1127 85 0.9998 -1.13 0.9998 -1.127 85 0.9998 -1.13 0.9994 -1.127 86 0.9994 -1.16 0.9994 -1.127 87 0.9991 -1.17 0.9991 -1.168 88 0.9997 -1.13 0.9997 -1.138 89 0.9996 -1.14 0.9997 -1.338 89 0.9992 -0.29 0.9992 -0.2851 90 1.0000 -0.02 1 -0.015 91 0.9992 -0.29 0.9982 -0.2851 92 0.9988 -0.47 0.9988 -0.471 93 0.9977 -3.000 0.9977 -3.0043 94 0.9979 -3.00 0.9997 -3.0987 95 0.9999 -3.101 0.9999 -3.0037 94	82	0.9989	-1.00	0.9989	-1.0023
84 0.9997 -1.11 0.9997 -1.1127 85 0.9998 -1.13 0.9998 -1.1293 86 0.9994 -1.16 0.9994 -1.1617 87 0.9991 -1.17 0.9991 -1.162 88 0.9997 -1.13 0.9997 -1.138 89 0.9996 -1.14 0.9996 -1.1396 90 1.0000 -0.02 1 -0.015 91 0.9992 -0.29 0.9992 -0.2851 92 0.9988 -0.47 0.9988 -0.471 93 0.9987 -0.47 0.9987 -0.4704 94 0.9977 -3.00 0.9973 -3.004 95 0.9977 -3.00 0.9993 -2.9983 96 0.9993 -3.00 0.9993 -2.9983 97 0.9992 -2.00 0.9993 -3.003 98 0.9999 -3.100 0.9999 -3.003 99	83	0.9997	-1.10	0.9997	-1.0981
85 0.9998 -1.13 0.9998 -1.1293 86 0.9994 -1.16 0.9994 -1.1617 87 0.9991 -1.17 0.9991 -1.1617 87 0.9991 -1.17 0.9991 -1.1682 88 0.9997 -1.13 0.9997 -1.1388 89 0.9996 -1.14 0.9997 -1.1380 90 1.0000 -0.02 1 -0.015 91 0.9992 -0.29 0.9992 -0.2851 92 0.9988 -0.47 0.9988 -0.471 93 0.9997 -0.47 0.9988 -0.471 94 0.9976 -1.17 0.9976 -1.1711 95 0.9977 -3.00 0.9993 -2.9983 96 0.9993 -3.00 0.9993 -2.9983 97 0.9994 -3.101 0.9993 -3.1017 98 0.9995 -3.102 0.9993 -3.1017 99 </td <td>84</td> <td>0.9997</td> <td>-1.11</td> <td>0.9997</td> <td>-1.1127</td>	84	0.9997	-1.11	0.9997	-1.1127
86 0.9994 -1.16 0.9994 -1.167 87 0.9991 -1.17 0.9991 -1.1682 88 0.9997 -1.13 0.9997 -1.138 89 0.9996 -1.14 0.9996 -1.138 90 1.0000 -0.02 1 -0.015 91 0.9998 -0.47 0.9988 -0.471 92 0.9988 -0.47 0.9987 -0.4704 94 0.9976 -1.17 0.9976 -1.1711 95 0.9977 -3.00 0.9973 -2.9983 96 0.9993 -3.00 0.9993 -2.9983 97 0.9992 -2.90 0.9993 -2.9983 97 0.9992 -2.90 0.9993 -3.0987 98 0.9999 -3.101 0.9993 -3.0987 99 0.9993 -3.101 0.9993 -3.1017 100 0.9993 -3.101 0.9993 -3.1017 101<	85	0.9998	-1.13	0.9998	-1.1293
87 0.9991 -1.17 0.9991 -1.1682 88 0.9997 -1.13 0.9997 -1.138 89 0.9996 -1.14 0.9996 -1.138 90 1.000 -0.02 1 -0.015 91 0.9998 -0.29 0.9998 -0.215 92 0.9988 -0.47 0.9988 -0.471 93 0.9977 -0.47 0.9987 -0.470 94 0.9976 -1.17 0.9976 -1.1711 95 0.9977 -3.00 0.9973 -3.0043 96 0.9993 -3.00 0.9993 -2.9983 97 0.9992 -2.90 0.9993 -2.9983 98 0.9993 -3.10 0.9993 -3.0987 99 0.9996 -3.10 0.9993 -3.1017 90 0.9993 -3.10 0.9993 -3.1017 91 0.9993 -3.10 0.9993 -3.1017 910	86	0.9994	-1.16	0.9994	-1.1617
88 0.9997 -1.13 0.9997 -1.138 89 0.9996 -1.14 0.9996 -1.1396 90 1.0000 -0.02 1 -0.015 91 0.9992 -0.29 0.9992 -0.2851 92 0.9982 -0.47 0.9982 -0.471 93 0.9987 -0.47 0.9987 -0.470 94 0.9977 -3.00 0.9977 -3.0043 95 0.9977 -3.00 0.9977 -3.0043 96 0.9993 -3.00 0.9993 -2.9983 97 0.9992 -2.90 0.9993 -2.9983 97 0.9992 -3.00 0.9993 -3.0987 98 0.9999 -3.101 0.9999 -3.0987 99 0.9996 -3.102 0.9993 -3.1017 100 0.9993 -3.101 0.9993 -3.1017 101 0.9993 -3.101 0.9993 -3.1017 1	87	0.9991	-1.17	0.9991	-1.1682
89 0.9996 -1.14 0.9996 -1.1396 90 1.0000 -0.02 1 -0.015 91 0.9992 -0.29 0.9992 -0.2851 92 0.9988 -0.47 0.9988 -0.471 93 0.9987 -0.47 0.9987 -0.470 94 0.9976 -1.17 0.9976 -1.1711 95 0.9977 -3.00 0.9977 -3.0043 96 0.9993 -3.00 0.9977 -3.0043 97 0.9992 -2.90 0.9993 -2.9983 97 0.9992 -2.90 0.9992 -2.8999 98 0.9999 -3.100 0.9999 -3.003 90 0.9996 -3.10 0.9996 -3.1003 100 0.9993 -3.101 0.9993 -3.1017 101 0.9993 -3.101 0.9993 -3.002 102 0.9985 -3.000 0.9985 -3.002 10	88	0.9997	-1.13	0.9997	-1.1338
90 1.0000 -0.02 1 -0.015 91 0.9920 -0.29 0.9920 -0.2851 92 0.9988 -0.47 0.9988 -0.471 93 0.9987 -0.47 0.9987 -0.470 94 0.9976 -1.17 0.9976 -1.171 95 0.9977 -3.00 0.9977 -3.0043 96 0.9973 -3.00 0.9973 -2.9983 97 0.9992 -2.90 0.9992 -2.8999 98 0.9999 -3.101 0.9999 -3.0987 99 0.9996 -3.102 0.9999 -3.0031 100 0.9993 -3.101 0.9994 -3.1017 101 0.9993 -3.101 0.9993 -3.1017 101 0.9985 -3.000 0.9985 -3.002 103 0.9985 -3.000 0.9985 -3.002 104 0.9992 -2.700 0.9992 -2.6996	89	0.9996	-1.14	0.9996	-1.1396
91 0.9992 -0.29 0.9992 -0.2851 92 0.9988 -0.47 0.9988 -0.471 93 0.9987 -0.47 0.9987 -0.470 94 0.9976 -1.17 0.9987 -1.171 95 0.9977 -3.00 0.9973 -3.004 96 0.9993 -3.00 0.9993 -2.9983 97 0.9992 -2.90 0.9993 -3.0987 98 0.9999 -3.10 0.9999 -3.0987 99 0.9990 -3.10 0.9999 -3.0087 99 0.9990 -3.10 0.9999 -3.1003 100 0.9993 -3.10 0.9993 -3.1017 101 0.9985 -3.00 0.9985 -3.002 103 0.9985 -3.00 0.9985 -3.002 104 0.9992 -2.70 0.9992 -2.6996	90	1.0000	-0.02	1	-0.015
92 0.9988 -0.47 0.9988 -0.471 93 0.9987 -0.47 0.9987 -0.470 94 0.9976 -1.17 0.9976 -1.171 95 0.9977 -3.00 0.9977 -3.0043 96 0.9993 -3.00 0.9993 -2.9983 97 0.9992 -2.90 0.9993 -2.9983 98 0.9999 -3.100 0.9992 -2.8999 98 0.9999 -3.101 0.9992 -2.8983 99 0.9990 -3.102 0.9993 -3.108 100 0.9993 -3.101 0.9993 -3.1017 101 0.9993 -3.100 0.9993 -3.1017 102 0.9985 -3.00 0.9985 -3.002 103 0.9985 -3.00 0.9985 -3.002 104 0.9992 -2.70 0.9992 -2.6996	91	0.9992	-0.29	0.9992	-0.2851
93 0.9987 -0.47 0.9987 -0.4704 94 0.9976 -1.17 0.9976 -1.171 95 0.9977 -3.00 0.9977 -3.0043 96 0.9993 -3.00 0.9993 -2.9983 97 0.9992 -2.90 0.9993 -2.9983 98 0.9992 -2.90 0.9992 -2.8999 98 0.9992 -3.100 0.9993 -3.002 99 0.9993 -3.10 0.9994 -3.1003 100 0.9993 -3.10 0.9993 -3.1017 101 0.9993 -3.10 0.9993 -3.1017 102 0.9985 -3.00 0.9985 -3.002 103 0.9985 -3.00 0.9985 -3.002 104 0.9992 -2.70 0.9992 -2.6996	92	0.9988	-0.47	0.9988	-0.471
94 0.9976 -1.17 0.9976 -1.1711 95 0.9977 -3.00 0.9977 -3.0043 96 0.9993 -3.00 0.9993 -2.9983 97 0.9992 -2.90 0.9992 -2.8999 98 0.9999 -3.100 0.9999 -3.0987 99 0.9999 -3.100 0.9999 -3.1003 100 0.9993 -3.10 0.9993 -3.1017 101 0.9993 -3.10 0.9993 -3.1017 101 0.9993 -3.100 0.9993 -3.1017 101 0.9993 -3.100 0.9993 -3.1017 102 0.9985 -3.000 0.9985 -3.002 103 0.9992 -2.700 0.9992 -2.6996	93	0.9987	-0.47	0.9987	-0.4704
95 0.9977 -3.00 0.9977 -3.0043 96 0.9993 -3.00 0.9993 -2.9983 97 0.9992 -2.90 0.9992 -2.8999 98 0.9999 -3.10 0.9992 -3.087 99 0.9990 -3.10 0.9993 -3.1003 100 0.9993 -3.10 0.9993 -3.1017 101 0.9993 -3.10 0.9993 -3.1017 101 0.9993 -3.10 0.9993 -3.1017 101 0.9993 -3.10 0.9993 -3.1017 102 0.9985 -3.00 0.9985 -3.002 103 0.9993 -3.00 0.9985 -3.002 104 0.9992 -2.70 0.9992 -2.6996	94	0.9976	-1.17	0.9976	-1.1711
96 0.9993 -3.00 0.9993 -2.9983 97 0.9992 -2.90 0.9992 -2.8999 98 0.9999 -3.10 0.9999 -3.0987 99 0.9996 -3.10 0.9999 -3.003 100 0.9993 -3.10 0.9993 -3.1017 101 0.9993 -3.10 0.9993 -3.1017 102 0.9985 -3.002 -3.002 103 0.9985 -3.00 0.9985 -3.002 104 0.9992 -2.70 0.9992 -2.6996	95	0.9977	-3.00	0.9977	-3.0043
97 0.9992 -2.90 0.9992 -2.8999 98 0.9999 -3.10 0.9999 -3.0987 99 0.9996 -3.10 0.9999 -3.1003 100 0.9993 -3.10 0.9993 -3.1017 101 0.9993 -3.10 0.9993 -3.1017 102 0.9985 -3.00 0.9985 -3.002 103 0.9995 -3.00 0.9985 -3.002 104 0.9992 -2.70 0.9992 -2.6996	96	0.9993	-3.00	0.9993	-2.9983
98 0.9999 -3.10 0.9999 -3.0987 99 0.9996 -3.10 0.9996 -3.103 100 0.9993 -3.10 0.9993 -3.101 101 0.9993 -3.10 0.9993 -3.101 102 0.9985 -3.00 0.9985 -3.002 103 0.9992 -2.70 0.9992 -2.6996	97	0.9992	-2.90	0.9992	-2.8999
99 0.9996 -3.10 0.9996 -3.100 100 0.9993 -3.10 0.9993 -3.101 101 0.9993 -3.10 0.9993 -3.101 102 0.9985 -3.00 0.9985 -3.002 103 0.9995 -3.00 0.9985 -3.002 104 0.9992 -2.70 0.9992 -2.6996	98	0.9999	-3.10	0.9999	-3.0987
100 0.9993 -3.10 0.9993 -3.101 101 0.9993 -3.10 0.9993 -3.101 102 0.9985 -3.00 0.9985 -3.002 103 0.9992 -3.00 0.9985 -3.002 104 0.9992 -2.70 0.9992 -2.6996	99	0.9996	-3.10	0.9996	-3.1003
101 0.9993 -3.10 0.9993 -3.1017 102 0.9985 -3.00 0.9985 -3.002 103 0.9985 -3.00 0.9985 -3.002 104 0.9992 -2.70 0.9992 -2.6996	100	0.9993	-3.10	0.9993	-3.1017
102 0.9985 -3.00 0.9985 -3.002 103 0.9985 -3.00 0.9985 -3.002 104 0.9992 -2.70 0.9992 -2.6996	101	0.9993	-3.10	0.9993	-3.1017
103 0.9985 -3.00 0.9985 -3.002 104 0.9992 -2.70 0.9992 -2.6996	102	0.9985	-3.00	0.9985	-3.002
104 0.9992 -2.70 0.9992 -2.6996	103	0.9985	-3.00	0.9985	-3.002
	104	0.9992	-2.70	0.9992	-2.6996

105	0.9954	-2.27	0.9954	-2.2723
106	0.9953	-2.28	0.9953	-2.28
107	0.9952	-2.28	0.9952	-2.2844
108	0.9997	-0.01	0.9997	-0.0123
109	0.9848	-0.73	0.9848	-0.7348
110	0.9838	-0.78	0.9838	-0.7834
111	0.9834	-0.78	0.9834	-0.7805
112	0.9834	-0.80	0.9834	-0.8036
113	0.9829	-0.80	0.9829	-0.8045
114	0.9817	-0.89	0.9817	-0.8871
115	0.9816	-0.89	0.9816	-0.8922
116	0.9794	-1.00	0.9794	-0.9989
117	0.9760	-1.17	0.976	-1.172
118	0.9742	-1.21	0.9742	-1.2075
119	0.9734	-1.22	0.9734	-1.2235
120	0.9734	-1.22	0.9734	-1.2235
121	1.0000	-3.09	1	-3.095
122	0.9972	-1.53	0.9972	-1.5296
123	0.9829	-0.97	0.9829	-0.9682
124	0.9968	-1.54	0.9968	-1.5382
125	0.9811	-1.07	0.9811	-1.0684
126	1.0000	0.00	1	0
127	0.9960	-2.24	0.996	-2.2423
128	0.9789	-1.03	0.9788	-1.0281
129	0.9959	-2.90	0.9959	-2.9009
130	0.9776	-1.09	0.9776	-1.0886
131	1.0000	-1.44	1	-1.4421
132	1.0000	-1.97	1	-1.9662
133	1.0000	-2.61	1	-2.6097
134	1.0000	-1.82	1	-1.8243
135	1.0000	-1.03	1	-1.0253
136	1.0000	-1.15	1	-1.1476

	PSS	Algoritmo Matlab			
Generadores					
121	2.266109	2.2661			
131	1.9674	1.9674			
132	1.4066	1.4066			
133	-0.3673	-0.3672			
134	1.0879	1.0879			
135	1.0741	1.0741			
136	0.3479	0.3479			

Tabla 36: Resultado generadores, tensiones y fases nodos, caso B.1 de red brasileña radial

Departamento de Ingeniería Eléctrica

I.2.4 CASO B.2

	PSS		Algoritmo Matlab	
1	0.9910	-0.50	0.99	-0.50
2	0.9909	-0.50	0.99	-0.50
3	0.9850	-0.83	0.99	-0.83
4	0.9824	-0.98	0.98	-0.98
5	0.9785	-1.20	0.98	-1.20
6	0.9750	-1.41	0.98	-1.41
7	0.9747	-1.43	0.97	-1.43
8	0.9742	-1.43	0.97	-1.43
9	0.9738	-1.43	0.97	-1.43
10	0.9730	-1.46	0.97	-1.46
11	0.9727	-1.46	0.97	-1.46
12	0.9716	-1.46	0.97	-1.46
13	0.9721	-1.48	0.97	-1.48
14	0.9711	-1.49	0.97	-1.49
15	0.9719	-1.49	0.97	-1.49
16	0.9715	-1.49	0.97	-1.49
17	0.9958	-0.47	1.00	-0.47
18	0.9958	-0.47	1.00	-0.47
19	0.9930	-0.79	0.99	-0.79
20	0.9917	-0.94	0.99	-0.94
21	0.9906	-0.94	0.99	-0.94
22	0.9900	-1.17	0.99	-1.17
23	0.9896	-1.18	0.99	-1.17
24	0.9891	-1.24	0.99	-1.24
25	0.9887	-1.26	0.99	-1.26
26	0.9873	-1.29	0.99	-1.29
27	0.9869	-1.29	0.99	-1.29
28	0.9867	-1.29	0.99	-1.29
29	0.9863	-1.30	0.99	-1.30
30	0.9852	-1.30	0.99	-1.30
31	0.9849	-1.30	0.98	-1.30
32	0.9863	-1.31	0.99	-1.30
33	0.9853	-1.31	0.99	-1.31
34	0.9849	-1.31	0.98	-1.31

35	0.9863	-1.31	0.99	-1.30
36	0.9970	-0.57	1.00	-0.57
37	0.9960	-0.77	1.00	-0.77
38	0.9959	-0.77	1.00	-0.77
39	0.9960	-0.77	1.00	-0.77
40	0.9954	-0.89	1.00	-0.89
41	0.9950	-0.90	1.00	-0.90
42	0.9949	-1.00	0.99	-1.00
43	0.9943	-1.20	0.99	-1.20
44	0.9943	-1.27	0.99	-1.27
45	0.9949	-1.39	0.99	-1.39
46	0.9947	-1.39	0.99	-1.39
47	0.9944	-1.40	0.99	-1.40
48	0.9953	-1.42	1.00	-1.42
49	0.9955	-1.44	1.00	-1.44
50	0.9953	-1.45	1.00	-1.45
51	0.9953	-1.45	1.00	-1.45
52	0.9953	-1.46	1.00	-1.46
53	0.9970	-1.50	1.00	-1.50
54	0.9975	-1.60	1.00	-1.60
55	0.9984	-1.77	1.00	-1.77
56	0.9998	-1.97	1.00	-1.97
57	0.9998	-1.97	1.00	-1.97
58	0.9940	-1.29	0.99	-1.29
59	0.9999	-0.01	1.00	-0.01
60	0.9955	-0.25	1.00	-0.25
61	0.9906	-0.53	0.99	-0.53
62	0.9866	-0.76	0.99	-0.76
63	0.9808	-1.07	0.98	-1.07
64	0.9807	-1.09	0.98	-1.09
65	0.9806	-1.09	0.98	-1.09
66	0.9805	-1.09	0.98	-1.09
67	0.9804	-1.11	0.98	-1.11
68	0.9771	-1.10	0.98	-1.10
69	1 0000	-0.01	1.00	-0.01

70	0.9980	-0.78	1.00	-0.78
71	0.9977	-1.01	1.00	-1.01
72	0.9977	-1.20	1.00	-1.20
73	0.9978	-1.24	1.00	-1.24
74	0.9976	-1.49	1.00	-1.49
75	0.9979	-1.63	1.00	-1.63
76	0.9976	-1.63	1.00	-1.63
77	0.9983	-1.66	1.00	-1.66
78	0.9999	-0.02	1.00	-0.02
79	0.9966	-0.64	1.00	-0.64
80	0.9957	-0.67	1.00	-0.67
81	0.9989	-0.98	1.00	-0.98
82	0.9989	-1.00	1.00	-1.00
83	0.9997	-1.10	1.00	-1.10
84	0.9997	-1.11	1.00	-1.11
85	0.9998	-1.13	1.00	-1.13
86	0.9994	-1.16	1.00	-1.16
87	0.9991	-1.17	1.00	-1.17
88	0.9997	-1.13	1.00	-1.13
89	0.9996	-1.14	1.00	-1.14
90	1.0000	-0.01	1.00	-0.02
91	0.9992	-0.28	1.00	-0.28
92	0.9988	-0.47	1.00	-0.47
93	0.9987	-0.47	1.00	-0.47
94	0.9976	-1.17	1.00	-1.17
95	0.9977	-3.00	1.00	-3.00
96	0.9998	-3.05	1.00	-3.05
97	1.0004	-3.01	1.00	-3.01
98	0.9999	-3.09	1.00	-3.09
99	0.9996	-3.09	1.00	-3.09
100	0.9993	-3.09	1.00	-3.10
101	0.9993	-3.09	1.00	-3.10
102	0.9990	-3.05	1.00	-3.06
103	0.9990	-3.05	1.00	-3.06
104	1.0015	-2.93	1.00	-2.94

105	0.9954	-2.27	1.00	-2.27
106	0.9953	-2.27	1.00	-2.28
107	0.9952	-2.28	1.00	-2.28
108	0.9997	-0.01	1.00	-0.01
109	0.9848	-0.73	0.98	-0.73
110	0.9838	-0.78	0.98	-0.78
111	0.9834	-0.78	0.98	-0.78
112	0.9834	-0.80	0.98	-0.80
113	0.9829	-0.80	0.98	-0.80
114	0.9817	-0.89	0.98	-0.89
115	0.9816	-0.89	0.98	-0.89
116	0.9794	-1.00	0.98	-1.00
117	0.9760	-1.17	0.98	-1.17
118	0.9742	-1.21	0.97	-1.21
119	0.9734	-1.22	0.97	-1.22
120	0.9734	-1.22	0.97	-1.22
121	0.9871	-1.29	0.99	-1.29
122	0.9829	-0.97	0.98	-0.97
123	0.9866	-1.30	0.99	-1.30
124	0.9811	-1.07	0.98	-1.07
125	0.9959	-2.24	1.00	-2.24
126	0.9789	-1.03	0.98	-1.03
127	0.9959	-2.89	1.00	-2.90
128	0.9776	-1.09	0.98	-1.09
129	0.9899	-1.20	0.99	-1.20
130	1.0000	-1.97	1.00	-1.97
131	1.0000	0.00	1.00	0.00
132	1.0000	-1.82	1.00	-1.82
133	1.0000	-1.03	1.00	-1.03
134	1.0000	-1.15	1.00	-1.15
135	1.0000	-3.09	1.00	-3.09
136	1.0027	-2.90	1.00	-2.90

	PSS		Algoritmo Matlab	
	Generadores	Límites	Generadores	Límites
129	1.0000	Х	1.0000	Х
130	1.4066		1.4066	
132	1.0879		1.0879	
133	1.0741		1.0741	
134	0.3479		0.3479	
135	1.8936		1.8957	
136	0.0000	Х	0.0000	Х

Tabla 37: Resultado generadores, tensiones y fases nodos, caso B.2 de red brasileña radial

Departamento de Ingeniería Eléctrica

I.2.5 CASO C.1

Figura 43: Red brasileña radial con transformadores LTC, casos C

Departamento de Ingeniería Eléctrica

	PS	S	Algoritm	o Matlab
1	1.0435	-3.61	1.0434	-3.6146
2	1.0434	-3.61	1.0433	-3.6172
3	1.0378	-3.91	1.0377	-3.9174
4	1.0354	-4.05	1.0353	-4.0499
5	1.0317	-4.25	1.0316	-4.2512
6	1.0283	-4.43	1.0282	-4.4363
7	1.0280	-4.45	1.028	-4.4511
8	1.0276	-4.45	1.0276	-4.4528
9	1.0272	-4.45	1.0272	-4.4552
10	1.0264	-4.48	1.0264	-4.481
11	1.0262	-4.48	1.0261	-4.4828
12	1.0251	-4.47	1.025	-4.4775
13	1.0256	-4.50	1.0255	-4.5015
14	1.0246	-4.50	1.0246	-4.5071
15	1.0254	-4.50	1.0254	-4.5055
16	1.0251	-4.50	1.025	-4.5077
17	1.0438	-3.54	1.0437	-3.5398
18	1.0438	-3.54	1.0437	-3.542
19	1.0383	-3.79	1.0381	-3.7969
20	1.0356	-3.92	1.0355	-3.9222
21	1.0346	-3.92	1.0344	-3.9239
22	1.0317	-4.10	1.0315	-4.1087
23	1.0312	-4.10	1.0311	-4.1094
24	1.0312	-4.12	1.031	-4.1301
25	1.0305	-4.16	1.0303	-4.167
26	1.0301	-4.18	1.0299	-4.1823
27	1.0288	-4.20	1.0286	-4.2084
28	1.0283	-4.21	1.0281	-4.2128
29	1.0282	-4.21	1.028	-4.213
30	0.9967	-4.22	0.9965	-4.2215
31	0.9956	-4.22	0.9954	-4.2234
32	0.9953	-4.22	0.9951	-4.2239
33	0.9967	-4.22	0.9965	-4.2268
34	0.9956	-4.22	0.9954	-4.2286
35	0.9952	-4.22	0.995	-4.2293

36	0.9966	-4.22	0.9964	-4.2275
37	1.0433	-3.60	1.0433	-3.6052
38	1.0403	-3.76	1.0402	-3.7634
39	1.0402	-3.76	1.0401	-3.7626
40	1.0402	-3.76	1.0402	-3.7659
41	1.0384	-3.86	1.0384	-3.859
42	1.0381	-3.86	1.038	-3.8604
43	1.0369	-3.94	1.0368	-3.9387
44	1.0340	-4.09	1.0339	-4.0917
45	1.0329	-4.15	1.0328	-4.149
46	1.0314	-4.22	1.0314	-4.2253
47	1.0312	-4.23	1.0311	-4.2303
48	1.0310	-4.23	1.0309	-4.2354
49	1.0310	-4.24	1.031	-4.2471
50	1.0308	-4.26	1.0307	-4.2598
51	1.0306	-4.27	1.0305	-4.271
52	1.0305	-4.27	1.0305	-4.2725
53	1.0305	-4.27	1.0305	-4.2727
54	1.0302	-4.28	1.0302	-4.2881
55	1.0295	-4.29	1.0294	-4.2916
56	1.0283	-4.29	1.0282	-4.2972
57	1.0273	-4.30	1.0272	-4.3017
58	1.0271	-4.30	1.027	-4.3026
59	1.0271	-4.30	1.027	-4.3026
60	1.0326	-4.16	1.0325	-4.1658
61	1.0519	-3.17	1.0518	-3.1718
62	1.0478	-3.39	1.0477	-3.3901
63	1.0431	-3.64	1.043	-3.6428
64	1.0393	-3.84	1.0392	-3.8481
65	0.9964	-4.13	0.9963	-4.1381
66	0.9962	-4.16	0.9961	-4.1607
67	0.9961	-4.16	0.996	-4.1615
68	0.9961	-4.16	0.996	-4.1617
69	0.9959	-4.18	0.9958	-4.1795
70	0.9927	-4.17	0.9926	-4.1704
71	1.0518	-3.17	1.0518	-3.1751

72	1.0396	-3.79	1.0395	-3.7971
73	1.0361	-3.98	1.036	-3.98
74	1.0331	-4.13	1.0331	-4.1343
75	1.0325	-4.16	1.0325	-4.1669
76	1.0280	-4.26	1.0279	-4.2678
77	1.0259	-4.31	1.0258	-4.3158
78	1.0256	-4.31	1.0255	-4.3172
79	1.0255	-4.32	1.0254	-4.3246
80	1.0246	-4.33	1.0245	-4.3287
81	1.0517	-3.18	1.0516	-3.1816
82	1.0400	-3.78	1.0399	-3.7809
83	1.0391	-3.81	1.039	-3.8099
84	1.0332	-4.13	1.0331	-4.1366
85	1.0327	-4.13	1.0326	-4.1347
86	1.0322	-4.16	1.0321	-4.163
87	1.0298	-4.28	1.0298	-4.2855
88	1.0293	-4.31	1.0293	-4.3131
89	1.0286	-4.35	1.0286	-4.3506
90	1.0277	-4.37	1.0276	-4.3722
91	1.0271	-4.38	1.027	-4.3855
92	1.0268	-4.39	1.0267	-4.3917
93	1.0285	-4.35	1.0285	-4.3548
94	1.0284	-4.36	1.0284	-4.3603
95	1.0517	-3.18	1.0516	-3.1801
96	1.0462	-3.44	1.0462	-3.4386
97	1.0425	-3.61	1.0424	-3.618
98	1.0424	-3.61	1.0423	-3.6174
99	1.0284	-4.30	1.0284	-4.3054
100	0.9925	-6.14	0.9924	-6.1455
101	0.9910	-6.19	0.9909	-6.194
102	0.9893	-6.20	0.9892	-6.2017
103	0.9884	-6.20	0.9884	-6.2059
104	0.9908	-6.19	0.9908	-6.1977
105	0.9905	-6.20	0.9904	-6.1994
106	0.9903	-6.20	0.9902	-6.2007
107	0.9903	-6.20	0.9902	-6.2007

108	0.9885	-6.20	0.9884	-6.2054
109	0.9885	-6.20	0.9884	-6.2054
110	0.9867	-6.21	0.9866	-6.2146
111	0.9867	-6.21	0.9866	-6.2146
112	1.0067	-5.42	1.0066	-5.4202
113	1.0066	-5.42	1.0065	-5.4278
114	1.0065	-5.43	1.0064	-5.432
115	1.0518	-3.17	1.0517	-3.1768
116	1.0376	-3.83	1.0375	-3.8287
117	1.0367	-3.87	1.0366	-3.8725
118	1.0363	-3.87	1.0362	-3.8698
119	1.0363	-3.89	1.0362	-3.8907
120	1.0358	-3.89	1.0357	-3.8915
121	1.0347	-3.96	1.0346	-3.9659
122	1.0346	-3.97	1.0345	-3.9704
123	1.0326	-4.06	1.0325	-4.0665
124	0.9919	-4.23	0.9978	-4.2304
125	0.9902	-4.26	0.9961	-4.2644
126	0.9894	-4.28	0.9953	-4.2797
127	0.9894	-4.28	0.9953	-4.2797
128	1.0286	-4.21	1.0284	-4.2124
129	1.0358	-4.04	1.0357	-4.0391
130	1.0073	-5.39	1.0072	-5.3909
131	1.0320	-4.09	1.0319	-4.0928
132	1.0000	0.00	1	-0.0011
133	0.9970	-4.22	0.9968	-4.221
134	0.9967	-4.13	0.9966	-4.1363
135	0.9944	-6.08	0.9943	-6.0826
136	0.9935	-4.15	0.9994	-4.1506
137	1.0520	-3.16	1.0519	-3.1657
138	1.0000	0.00	1	0

		PSS		Algoritmo Matlab	
		Tomas	Límites	Tomas	Límites
128	133	1.0313		1.0313	
129	134	1.0375		1.0375	
130	135	1.0000		1.0000	
131	136	1.0313		1.0313	
132	137	0.9250		0.9250	

Tabla 38: Resultado transformadores, tensiones y fases nodos, caso C.1, red brasileña radial

I.2.6 CASO C.2

	PS	SS	Algoritmo Matlab		36	0.9930	-4.25
1	1.0400	-3.64	1.0399	-3.638	37	1.0398	-3.63
2	1.0399	-3.64	1.0399	-3.6406	38	1.0368	-3.79
3	1.0343	-3.94	1.0343	-3.9428	39	1.0366	-3.79
4	1.0318	-4.07	1.0318	-4.0762	40	1.0367	-3.79
5	1.0281	-4.28	1.0281	-4.2789	41	1.0349	-3.88
6	1.0248	-4.46	1.0247	-4.4652	42	1.0346	-3.88
7	1.0245	-4.48	1.0245	-4.4802	43	1.0334	-3.96
8	1.0241	-4.48	1.024	-4.4819	44	1.0304	-4.12
9	1.0237	-4.48	1.0236	-4.4842	45	1.0293	-4.17
10	1.0229	-4.51	1.0229	-4.5103	46	1.0279	-4.25
11	1.0226	-4.51	1.0226	-4.5121	47	1.0277	-4.26
12	1.0215	-4.51	1.0215	-4.5067	48	1.0274	-4.26
13	1.0220	-4.53	1.022	-4.5309	49	1.0275	-4.27
14	1.0211	-4.54	1.0211	-4.5365	50	1.0272	-4.29
15	1.0219	-4.53	1.0218	-4.535	51	1.0270	-4.30
16	1.0215	-4.54	1.0215	-4.5372	52	1.0270	-4.30
17	1.0403	-3.56	1.0403	-3.5628	53	1.0270	-4.30
18	1.0402	-3.56	1.0402	-3.5649	54	1.0267	-4.31
19	1.0347	-3.82	1.0347	-3.8215	55	1.0259	-4.32
20	1.0320	-3.95	1.032	-3.9476	56	1.0247	-4.32
21	1.0309	-3.95	1.0309	-3.9494	57	1.0237	-4.33
22	1.0280	-4.13	1.028	-4.1354	58	1.0235	-4.33
23	1.0276	-4.13	1.0276	-4.1361	59	1.0235	-4.33
24	1.0276	-4.16	1.0276	-4.157	60	1.0290	-4.19
25	1.0268	-4.19	1.0268	-4.1941	61	1.0484	-3.19
26	1.0265	-4.21	1.0264	-4.2095	62	1.0443	-3.41
27	1.0251	-4.23	1.0251	-4.2358	63	1.0396	-3.67
28	1.0247	-4.24	1.0246	-4.2402	64	1.0357	-3.87
29	1.0245	-4.24	1.0245	-4.2405	65	0.9929	-4.16
30	0.9931	-4.25	0.9931	-4.249	66	0.9928	-4.19
31	0.9920	-4.25	0.992	-4.2509	67	0.9927	-4.19
32	0.9917	-4.25	0.9917	-4.2514	68	0.9926	-4.19
33	0.9931	-4.25	0.9931	-4.2544	69	0.9925	-4.21
34	0.9920	-4.25	0.992	-4.2561	70	0.9892	-4.20
35	0.9916	-4.26	0.9916	-4.2569	71	1.0483	-3.19

5	0.9930	-4.25	0.993	-4.255
'	1.0398	-3.63	1.0398	-3.6285
}	1.0368	-3.79	1.0367	-3.7878
)	1.0366	-3.79	1.0366	-3.787
)	1.0367	-3.79	1.0367	-3.7904
	1.0349	-3.88	1.0349	-3.884
2	1.0346	-3.88	1.0346	-3.8854
}	1.0334	-3.96	1.0333	-3.9643
ŀ	1.0304	-4.12	1.0304	-4.1183
;	1.0293	-4.17	1.0293	-4.176
;	1.0279	-4.25	1.0279	-4.2528
'	1.0277	-4.26	1.0276	-4.2579
}	1.0274	-4.26	1.0274	-4.263
)	1.0275	-4.27	1.0275	-4.2748
)	1.0272	-4.29	1.0272	-4.2876
	1.0270	-4.30	1.027	-4.2988
2	1.0270	-4.30	1.027	-4.3003
;	1.0270	-4.30	1.027	-4.3005
ŀ	1.0267	-4.31	1.0267	-4.316
;	1.0259	-4.32	1.0259	-4.3196
5	1.0247	-4.32	1.0247	-4.3252
7	1.0237	-4.33	1.0237	-4.3298
}	1.0235	-4.33	1.0235	-4.3306
)	1.0235	-4.33	1.0235	-4.3306
)	1.0290	-4.19	1.029	-4.1929
	1.0484	-3.19	1.0484	-3.1922
2	1.0443	-3.41	1.0443	-3.412
1	1.0396	-3.67	1.0395	-3.6664
ł	1.0357	-3.87	1.0357	-3.873
;	0.9929	-4.16	0.9929	-4.165
;	0.9928	-4.19	0.9928	-4.1878
'	0.9927	-4.19	0.9926	-4.1886
;	0.9926	-4.19	0.9926	-4.1888
)	0.9925	-4.21	0.9924	-4.2067
)	0.9892	-4.20	0.9892	-4.1975
	1.0483	-3.19	1.0483	-3.1956

72	1.0361	-3.82	1.0361	-3.8217
73	1.0326	-4.00	1.0325	-4.0058
74	1.0296	-4.16	1.0296	-4.1612
75	1.0290	-4.19	1.029	-4.194
76	1.0244	-4.29	1.0244	-4.2956
77	1.0223	-4.34	1.0223	-4.3439
78	1.0220	-4.34	1.022	-4.3453
79	1.0219	-4.35	1.0219	-4.3528
80	1.0210	-4.36	1.021	-4.3569
81	1.0482	-3.20	1.0482	-3.2021
82	1.0365	-3.80	1.0365	-3.8054
83	1.0355	-3.83	1.0355	-3.8346
84	1.0296	-4.16	1.0296	-4.1635
85	1.0292	-4.16	1.0292	-4.1616
86	1.0286	-4.19	1.0286	-4.1901
87	1.0263	-4.31	1.0263	-4.3134
88	1.0258	-4.34	1.0258	-4.3413
89	1.0251	-4.38	1.0251	-4.379
90	1.0241	-4.40	1.0241	-4.4007
91	1.0235	-4.41	1.0235	-4.4141
92	1.0232	-4.42	1.0232	-4.4204
93	1.0250	-4.38	1.025	-4.3832
94	1.0249	-4.39	1.0249	-4.3888
95	1.0482	-3.20	1.0482	-3.2006
96	1.0427	-3.46	1.0427	-3.4608
97	1.0390	-3.64	1.039	-3.6414
98	1.0389	-3.64	1.0388	-3.6408
99	1.0249	-4.33	1.0248	-4.3334
100	0.9952	-6.18	0.9951	-6.177
101	0.9937	-6.22	0.9937	-6.2252
102	0.9920	-6.23	0.992	-6.2329
103	0.9912	-6.24	0.9911	-6.2371
104	0.9936	-6.23	0.9935	-6.2289
105	0.9932	-6.23	0.9932	-6.2306
106	0.9930	-6.23	0.993	-6.2319
107	0.9930	-6.23	0.993	-6.2319

108	0.9912	-6.24	0.9912	-6.2366
109	0.9912	-6.24	0.9912	-6.2366
110	0.9894	-6.24	0.9894	-6.2457
111	0.9894	-6.24	0.9894	-6.2457
112	1.0031	-5.45	1.0031	-5.456
113	1.0029	-5.46	1.0029	-5.4637
114	1.0029	-5.47	1.0028	-5.4679
115	1.0483	-3.20	1.0483	-3.1973
116	1.0341	-3.85	1.034	-3.8536
117	1.0331	-3.90	1.0331	-3.8976
118	1.0327	-3.89	1.0327	-3.895
119	1.0327	-3.91	1.0327	-3.916
120	1.0322	-3.92	1.0322	-3.9167
121	1.0311	-3.99	1.0311	-3.9917
122	1.0310	-3.99	1.031	-3.9962
123	1.0290	-4.09	1.029	-4.093
124	0.9944	-4.26	0.9944	-4.258
125	0.9927	-4.29	0.9927	-4.2922
126	0.9919	-4.31	0.9919	-4.3076
127	0.9919	-4.31	0.9919	-4.3076
128	1.0249	-4.24	1.0249	-4.2399
129	1.0322	-4.06	1.0322	-4.0653
130	1.0036	-5.43	1.0036	-5.4265
131	1.0284	-4.12	1.0284	-4.1194
132	0.9700	0.00	0.97	-0.0011
133	0.9934	-4.25	0.9934	-4.2485
134	0.9932	-4.16	0.9932	-4.1632
135	0.9971	-6.11	0.9971	-6.1145
136	0.9961	-4.18	0.9961	-4.1776
137	1.0485	-3.18	1.0485	-3.1861
138	0.9700	0.00	0.97	0

		PSS		Algoritmo Matlab	
		Tomas	Límites	Tomas	Límites
128	133	1.0313		1.0313	
129	134	1.0375		1.0375	
130	135	0.9938		0.9938	
131	136	1.0313		1.0313	
132	137	0.9000	Х	0.9000	Х
-					

Tabla 39: Resultado transformadores, tensiones y fases nodos, caso C.2 de red brasileña radial

Departamento de Ingeniería Eléctrica

I.2.7 CASO D.1

Figura 44: Red brasileña radial con transformadores LTC y generadores, caso D.1

Trabajo fin de master

Departamento de Ingeniería Eléctrica

	PSS		Algoritmo Matlab	
1	1.0399	-3.20	1.0399	-3.1967
2	1.0399	-3.20	1.0399	-3.1993
3	1.0342	-3.50	1.0343	-3.5015
4	1.0318	-3.63	1.0318	-3.6349
5	1.0281	-3.84	1.0281	-3.8376
6	1.0247	-4.02	1.0247	-4.0239
7	1.0245	-4.04	1.0245	-4.0389
8	1.0240	-4.04	1.024	-4.0406
9	1.0236	-4.04	1.0236	-4.0429
10	1.0228	-4.07	1.0228	-4.069
11	1.0226	-4.07	1.0226	-4.0708
12	1.0215	-4.06	1.0215	-4.0654
13	1.0220	-4.09	1.022	-4.0896
14	1.0210	-4.09	1.021	-4.0952
15	1.0218	-4.09	1.0218	-4.0937
16	1.0215	-4.10	1.0215	-4.0959
17	1.0298	-2.84	1.0298	-2.8373
18	1.0297	-2.84	1.0297	-2.8378
19	1.0171	-2.90	1.0171	-2.902
20	1.0110	-2.93	1.011	-2.9339
21	1.0099	-2.93	1.0099	-2.9357
22	1.0012	-2.96	1.0012	-2.9625
23	1.0008	-2.96	1.0008	-2.9632
24	0.9992	-3.00	0.9992	-3.0017
25	0.9989	-3.02	0.9989	-3.0179
26	0.9974	-3.04	0.9974	-3.0457
27	0.9970	-3.05	0.997	-3.0503
28	0.9969	-3.05	0.9969	-3.0506
29	0.9964	-3.06	0.9965	-3.0591
30	0.9953	-3.06	0.9954	-3.0609
31	0.9950	-3.06	0.9951	-3.0614
32	0.9964	-3.06	0.9965	-3.0644
33	0.9954	-3.07	0.9955	-3.0661
34	0.9950	-3.07	0.995	-3.0669
35	0.9964	-3.06	0.9965	-3.065

36	1.0337	-2.99	1.0337	-2.9911
37	1.0284	-3.08	1.0284	-3.0805
38	1.0283	-3.08	1.0283	-3.0797
39	1.0283	-3.08	1.0283	-3.0819
40	1.0252	-3.13	1.0252	-3.1345
41	1.0249	-3.14	1.0249	-3.136
42	1.0225	-3.18	1.0225	-3.177
43	1.0171	-3.25	1.0171	-3.2527
44	1.0149	-3.27	1.0149	-3.2731
45	1.0113	-3.28	1.0113	-3.28
46	1.0111	-3.28	1.0111	-3.2853
47	1.0108	-3.29	1.0108	-3.2905
48	1.0101	-3.27	1.0101	-3.2742
49	1.0093	-3.27	1.0093	-3.2707
50	1.0091	-3.28	1.0091	-3.2824
51	1.0091	-3.28	1.0091	-3.2839
52	1.0091	-3.28	1.0091	-3.2842
53	1.0068	-3.23	1.0068	-3.2308
54	1.0052	-3.10	1.0052	-3.1019
55	1.0026	-2.89	1.0026	-2.8908
56	0.9998	-2.63	0.9998	-2.6339
57	0.9998	-2.63	0.9998	-2.6339
58	1.0145	-3.29	1.0146	-3.2905
59	1.0484	-2.75	1.0484	-2.7509
60	1.0443	-2.97	1.0443	-2.9707
61	1.0395	-3.22	1.0395	-3.2251
62	1.0357	-3.43	1.0357	-3.4317
63	0.9929	-3.72	0.9929	-3.7237
64	0.9928	-3.75	0.9928	-3.7465
65	0.9926	-3.75	0.9926	-3.7473
66	0.9926	-3.75	0.9926	-3.7475
67	0.9924	-3.76	0.9924	-3.7654
68	0.9892	-3.76	0.9892	-3.7562
69	1.0482	-2.75	1.0482	-2.7487
70	1.0269	-3.01	1.0269	-3.0107
71	1.0205	-3.08	1.0205	-3.0815

/2	1.0150	-3.13	1.015	-3.1314
73	1.0138	-3.14	1.0138	-3.1403
74	1.0064	-2.98	1.0064	-2.9824
75	1.0027	-2.89	1.0027	-2.8865
76	1.0024	-2.89	1.0024	-2.888
77	1.0018	-2.85	1.0018	-2.8489
78	1.0478	-2.75	1.0479	-2.7469
79	1.0235	-2.83	1.0235	-2.8291
80	1.0225	-2.86	1.0225	-2.8591
81	1.0034	-2.62	1.0034	-2.6217
82	1.0028	-2.55	1.0028	-2.5512
83	0.9997	-2.55	0.9997	-2.5499
84	0.9997	-2.56	0.9997	-2.5645
85	0.9998	-2.58	0.9998	-2.5811
86	0.9994	-2.61	0.9994	-2.6135
87	0.9991	-2.62	0.9991	-2.62
88	0.9997	-2.58	0.9997	-2.5856
89	0.9996	-2.59	0.9996	-2.5914
90	1.0485	-2.76	1.0486	-2.7605
91	1.0493	-3.04	1.0493	-3.0428
92	1.0499	-3.23	1.0499	-3.2371
93	1.0498	-3.23	1.0498	-3.2365
94	1.0526	-3.96	1.0527	-3.9677
95	0.9965	-5.97	0.9965	-6.0045
96	0.9993	-6.01	0.9993	-6.0498
97	0.9992	-5.92	0.9992	-5.9514
98	0.9999	-6.12	0.9999	-6.1502
99	0.9996	-6.12	0.9996	-6.1518
100	0.9993	-6.12	0.9993	-6.1532
101	0.9993	-6.12	0.9993	-6.1532
102	0.9985	-6.02	0.9985	-6.0535
103	0.9985	-6.02	0.9985	-6.0535
104	0.9992	-5.72	0.9992	-5.7511
105	1.0566	-5.08	1.0568	-5.1013
106	1.0565	-5.09	1.0567	-5.1082
107	1.0564	-5.09	1.0566	-5.112

108	1.0483	-2.76	1.0483	-2.756
109	1.0340	-3.41	1.034	-3.4122
110	1.0331	-3.46	1.0331	-3.4563
111	1.0327	-3.45	1.0327	-3.4536
112	1.0327	-3.47	1.0327	-3.4746
113	1.0322	-3.47	1.0322	-3.4754
114	1.0311	-3.55	1.0311	-3.5503
115	1.0310	-3.55	1.031	-3.5549
116	1.0289	-3.65	1.0289	-3.6517
117	0.9944	-3.82	0.9944	-3.8167
118	0.9927	-3.85	0.9927	-3.8509
119	0.9919	-3.87	0.9919	-3.8663
120	0.9919	-3.87	0.9919	-3.8663
121	0.9972	-3.05	0.9972	-3.05
122	1.0322	-3.62	1.0322	-3.624
123	1.0571	-5.05	1.0574	-5.0747
124	1.0284	-3.68	1.0284	-3.6781
125	1.0000	0.00	1	0
126	0.9967	-3.06	0.9968	-3.0586
127	0.9932	-3.72	0.9932	-3.7218
128	0.9937	-5.82	0.9937	-5.8516
129	0.9960	-3.74	0.996	-3.7363
130	1.0485	-2.74	1.0485	-2.7448
131	1.0000	-2.96	1	-2.9625
132	1.0000	-2.63	1	-2.6329
133	1.0000	-2.63	1	-2.6314
134	1.0000	-2.48	1	-2.4771
135	1.0000	-2.60	1	-2.5994
136	1.0000	-6.11	1	-6.1465
137	1.0000	-5.63	1	-5.6612
138	1.0000	0.00	1	0

		PSS		Algoritmo	Matlab
		Tomas	Límites	Tomas	Límites
121	126	1.0000		1	
122	127	1.0375		1.0375	
123	128	1.0688		1.0688	
124	129	1.0312		1.0313	
125	130	0.9125		0.9125	

	PSS		Algoritmo Matlab	
	Generadores	Límites	Generadores	Límites
131	-2.6498		-2.6503	
132	-1.6112		-1.6113	
133	-1.1409		-1.1411	
134	-3.1297		-3.1301	
135	0.3479		0.3479	
136	3.0414		3.0616	
137	-0.3672		-0.3672	

Tabla 40: Resultado generadores, transformadores, tensiones y fases nodos, caso D.1 de red brasileña radial

I.2.8 CASO D.2

Figura 45: Red brasileña mallada con transformadores LTC y generadores, caso D.1

Departamento de Ingeniería Eléctrica

	PSS		Algoritmo Matlab	
1	1.0123	-3.31	1.0123	-3.3088
2	1.0123	-3.31	1.0123	-3.3111
3	1.0071	-3.58	1.0071	-3.5786
4	1.0048	-3.70	1.0048	-3.6962
5	1.0014	-3.87	1.0014	-3.8736
6	0.9983	-4.03	0.9983	-4.0316
7	0.9972	-4.05	0.9972	-4.0471
8	0.9980	-4.05	0.998	-4.0493
9	0.9992	-4.05	0.9992	-4.0491
10	0.9971	-4.09	0.9971	-4.0872
11	0.9968	-4.09	0.9968	-4.0891
12	0.9957	-4.08	0.9957	-4.0835
13	0.9965	-4.12	0.9965	-4.1177
14	0.9955	-4.12	0.9955	-4.1236
15	0.9965	-4.13	0.9965	-4.1262
16	0.9961	-4.13	0.9961	-4.1285
17	1.0122	-3.35	1.0122	-3.3483
18	1.0122	-3.35	1.0122	-3.3508
19	1.0068	-3.65	1.0068	-3.6513
20	1.0042	-3.80	1.0042	-3.799
21	1.0032	-3.80	1.0032	-3.8008
22	1.0004	-4.02	1.0004	-4.0216
23	1.0000	-4.02	1	-4.0224
24	0.9996	-4.09	0.9996	-4.0915
25	0.9994	-4.11	0.9994	-4.107
26	0.9985	-4.14	0.9985	-4.1432
27	0.9982	-4.15	0.9982	-4.1495
28	0.9980	-4.15	0.998	-4.1498
29	0.9979	-4.16	0.9979	-4.1623
30	0.9968	-4.16	0.9968	-4.1642
31	0.9965	-4.16	0.9965	-4.1647
32	0.9983	-4.17	0.9983	-4.1731
33	0.9972	-4.17	0.9972	-4.1748
34	0.9968	-4.17	0.9968	-4.1756
35	0.9985	-4.18	0.9985	-4.1778

36	1.0114	-3.41	1.0114	-3.4121
37	1.0083	-3.59	1.0083	-3.594
38	1.0082	-3.59	1.0082	-3.5931
39	1.0082	-3.60	1.0082	-3.5969
40	1.0064	-3.70	1.0064	-3.7039
41	1.0061	-3.70	1.0061	-3.7053
42	1.0048	-3.80	1.0048	-3.7961
43	1.0019	-3.97	1.0019	-3.9742
44	1.0008	-4.04	1.0008	-4.0424
45	0.9998	-4.08	0.9998	-4.0856
46	0.9996	-4.07	0.9996	-4.0745
47	0.9994	-4.06	0.9994	-4.0634
48	0.9997	-4.10	0.9997	-4.0983
49	0.9996	-4.11	0.9996	-4.1096
50	0.9993	-4.12	0.9993	-4.1177
51	0.9993	-4.12	0.9993	-4.1174
52	0.9992	-4.12	0.9992	-4.1163
53	0.9999	-4.14	0.9999	-4.1374
54	0.9998	-4.17	0.9998	-4.1704
55	0.9996	-4.22	0.9996	-4.2238
56	0.9998	-4.29	0.9998	-4.2868
57	0.9998	-4.29	0.9998	-4.2868
58	0.9998	-4.04	0.9998	-4.0454
59	1.0201	-2.91	1.0201	-2.9141
60	1.0131	-3.16	1.0131	-3.1622
61	1.0045	-3.45	1.0045	-3.4556
62	0.9973	-3.70	0.9973	-3.6971
63	0.9956	-4.00	0.9956	-4.0048
64	0.9959	-4.03	0.9959	-4.0276
65	0.9958	-4.03	0.9958	-4.0284
66	0.9958	-4.03	0.9958	-4.0286
67	0.9961	-4.05	0.9961	-4.0466
68	0.9929	-4.04	0.9929	-4.0375
69	1.0201	-2.91	1.0201	-2.9148
70	1.0061	-3.41	1.0061	-3.4142
71	1.0023	-3.53	1.0023	-3.5329

73 0.9950 -3.70 0.995 -3.7043 74 0.9956 -3.96 0.9956 -3.9655 75 0.9963 -4.10 0.9956 -4.1021 77 0.9968 -4.10 0.9968 -4.1021 77 0.9968 -4.14 0.9968 -4.1021 77 0.9968 -4.14 0.9969 -4.1021 78 1.0199 -2.922 1.0199 -2.9182 79 1.0079 -3.33 1.0079 -3.334 80 1.0069 -3.46 1.0008 -3.4757 82 1.0008 -3.47 1.0008 -3.4757 83 0.9982 -3.83 0.9982 -3.827 84 0.9978 -3.87 0.9999 -3.9748 85 0.9990 -4.05 0.9994 -4.0551 88 0.9991 -4.03 0.9992 -4.102 90 1.0127 -3.122 1.0124 -2.9142	72	0.9963	-3.67	0.9963	-3.6746
74 0.9956 -3.96 0.9956 -3.9655 75 0.9963 -4.10 0.9963 -4.1005 76 0.9960 -4.10 0.9963 -4.1021 77 0.9968 -4.14 0.9968 -4.1021 77 0.9968 -4.14 0.9968 -4.1367 78 1.0199 -2.9182 1.0199 -2.9182 79 1.0079 -3.33 1.0069 -3.364 80 1.0069 -3.36 1.0069 -3.364 81 1.0008 -3.47 1.0008 -3.4757 82 1.0006 -3.461 1.0006 -3.4619 83 0.9982 -3.87 0.9978 -3.8733 85 0.9990 -3.97 0.9997 -4.0551 84 0.9991 -4.05 0.9991 -4.035 85 0.9991 -4.05 0.9991 -4.035 86 0.9991 -4.03 0.9991 -4.035	73	0.9950	-3.70	0.995	-3.7043
75 0.9963 -4.10 0.9963 -4.1005 76 0.9960 -4.10 0.9968 -4.1021 77 0.9968 -4.14 0.9968 -4.1021 77 0.9968 -4.14 0.9968 -4.1021 78 1.0199 -2.222 1.0199 -2.9182 79 1.0079 -3.33 1.0079 -3.334 80 1.0069 -3.36 1.0068 -3.472 81 1.0008 -3.47 1.0008 -3.4757 82 1.0006 -3.46 1.0006 -3.4619 83 0.9982 -3.87 0.9998 -3.8733 85 0.9990 -3.97 0.9991 -4.0351 84 0.9991 -4.05 0.9992 -4.1102 90 1.0200 -2.91 1.02 -2.9142 91 1.0157 -3.04 1.0157 -3.0403 92 1.0127 -3.1253 94 1.0157 -3.0413	74	0.9956	-3.96	0.9956	-3.9655
76 0.9960 -4.10 0.996 -4.1021 77 0.9968 -4.14 0.9968 -4.1367 78 1.0199 -2.92 1.0199 -2.9182 79 1.0079 -3.33 1.0079 -3.344 80 1.0069 -3.36 1.0069 -3.364 81 1.0008 -3.47 1.0008 -3.4757 82 1.0006 -3.464 1.0006 -3.4619 83 0.9982 -3.83 0.9982 -3.8731 85 0.9990 -3.97 0.9997 -3.9748 86 0.9991 -4.05 0.9992 -4.0471 87 0.9994 -4.05 0.9995 -4.0471 88 0.9991 -4.03 0.9992 -4.0171 89 0.9992 -4.11 0.9992 -4.035 90 1.0200 -2.914 1.012 -2.9142 91 1.0157 -3.040 1.0127 -3.1253	75	0.9963	-4.10	0.9963	-4.1005
77 0.9968 -4.14 0.9968 -4.1367 78 1.0199 -2.92 1.0199 -2.9182 79 1.0079 -3.33 1.0079 -3.334 80 1.0069 -3.36 1.0069 -3.364 81 1.0006 -3.461 1.0006 -3.461 82 1.0006 -3.461 1.0006 -3.4619 83 0.9982 -3.83 0.9982 -3.871 84 0.9978 -3.87 0.9978 -3.8733 85 0.9990 -3.97 0.9991 -4.0371 86 0.9992 -4.113 0.9992 -4.0171 87 0.9992 -4.11 0.9992 -4.102 90 1.0200 -2.914 1.027 -3.125 91 1.0157 -3.041 1.0127 -3.1253 92 1.0127 -3.125 1.0126 -3.1253 93 1.0126 -3.125 1.0126 -3.443 <td< td=""><td>76</td><td>0.9960</td><td>-4.10</td><td>0.996</td><td>-4.1021</td></td<>	76	0.9960	-4.10	0.996	-4.1021
78 1.0199 -2.92 1.0199 -2.9182 79 1.0079 -3.33 1.0079 -3.334 80 1.0069 -3.33 1.0079 -3.334 80 1.0069 -3.337 1.0079 -3.334 80 1.0069 -3.347 1.0008 -3.4757 81 1.0006 -3.464 1.0006 -3.4619 83 0.9982 -3.83 0.9982 -3.8271 84 0.9978 -3.87 0.9978 -3.8733 85 0.9990 -3.974 0.9999 -4.0471 87 0.9994 -4.05 0.9994 -4.0551 88 0.9991 -4.03 0.9992 -4.102 90 1.0200 -2.9142 1.012 -2.9142 91 1.0157 -3.040 1.012 -3.1253 94 1.0015 -3.44 1.0015 -3.443 95 0.9992 -4.03 0.9992 -4.031 <td< td=""><td>77</td><td>0.9968</td><td>-4.14</td><td>0.9968</td><td>-4.1367</td></td<>	77	0.9968	-4.14	0.9968	-4.1367
79 1.0079 -3.33 1.0079 -3.344 80 1.0069 -3.36 1.0069 -3.364 81 1.0008 -3.47 1.0008 -3.4757 82 1.0006 -3.46 1.0006 -3.461 83 0.9982 -3.83 0.9982 -3.827 84 0.9978 -3.87 0.9998 -3.871 84 0.9978 -3.87 0.9998 -3.873 85 0.9990 -3.97 0.9991 -3.9748 86 0.9995 -4.05 0.9995 -4.0471 87 0.9994 -4.05 0.9994 -4.0551 88 0.9991 -4.03 0.9991 -4.0355 89 0.9992 -4.11 0.9992 -4.102 90 1.0157 -3.041 1.0127 -3.1259 91 1.0157 -3.041 1.0127 -3.1259 93 1.0126 -3.123 1.0126 -3.423 94<	78	1.0199	-2.92	1.0199	-2.9182
80 1.0069 -3.36 1.0069 -3.3649 81 1.0008 -3.47 1.0008 -3.4757 82 1.0008 -3.47 1.0008 -3.4757 82 1.0008 -3.47 1.0008 -3.4757 82 1.0008 -3.47 1.0008 -3.4757 82 1.0982 -3.83 0.9982 -3.8271 84 0.9978 -3.87 0.9999 -3.9738 85 0.9990 -3.97 0.999 -3.9748 86 0.9995 -4.05 0.9994 -4.0551 88 0.9991 -4.03 0.9991 -4.0355 89 0.9992 -4.11 0.9992 -4.102 90 1.0127 -3.12 1.0127 -3.1259 91 1.0127 -3.12 1.0127 -3.1259 92 1.0126 -3.12 1.0127 -3.1253 94 1.0015 -3.44 1.0015 -3.443 9	79	1.0079	-3.33	1.0079	-3.334
81 1.0008 -3.47 1.0008 -3.4757 82 1.0006 -3.461 1.0006 -3.4619 83 0.9982 -3.83 0.9982 -3.8271 84 0.9978 -3.87 0.9982 -3.8733 85 0.9990 -3.97 0.9999 -3.9748 86 0.9995 -4.05 0.9994 -4.0711 87 0.9994 -4.05 0.9994 -4.0551 88 0.9991 -4.03 0.9994 -4.0355 89 0.9992 -4.11 0.9992 -4.1102 90 1.0200 -2.911 1.02 -2.9142 91 1.0157 -3.04 1.0157 -3.0403 92 1.0127 -3.12 1.0127 -3.1259 93 1.0126 -3.123 0.9978 -4.2342 95 0.9978 -4.23 0.9993 -4.131 95 0.9993 -4.13 0.9993 -4.1316 <t< td=""><td>80</td><td>1.0069</td><td>-3.36</td><td>1.0069</td><td>-3.3649</td></t<>	80	1.0069	-3.36	1.0069	-3.3649
82 1.0006 -3.46 1.0006 -3.4619 83 0.9982 -3.83 0.9982 -3.8271 84 0.9978 -3.87 0.9978 -3.8733 85 0.9990 -3.97 0.9995 -4.0371 86 0.9990 -4.05 0.9999 -4.0471 87 0.9994 -4.05 0.9994 -4.0551 88 0.9991 -4.03 0.9991 -4.0351 88 0.9991 -4.03 0.9991 -4.035 90 1.0200 -2.91 1.02 -2.9142 91 1.0157 -3.04 1.0157 -3.0403 92 1.0127 -3.12 1.0127 -3.1259 93 1.0126 -3.123 1.0126 -3.1253 94 1.0015 -3.441 1.0015 -3.443 95 0.9978 -4.13 0.9993 -4.131 94 1.0000 -4.21 1 -4.2161 97 <td>81</td> <td>1.0008</td> <td>-3.47</td> <td>1.0008</td> <td>-3.4757</td>	81	1.0008	-3.47	1.0008	-3.4757
83 0.9982 -3.83 0.9982 -3.8271 84 0.9978 -3.87 0.9978 -3.873 85 0.9990 -3.97 0.999 -3.9748 86 0.9995 -4.05 0.9994 -4.0571 87 0.9991 -4.05 0.9994 -4.0551 88 0.9991 -4.03 0.9992 -4.112 90 0.9992 -4.11 0.9992 -4.1102 90 1.0200 -2.91 1.02 -2.9142 91 1.0157 -3.04 1.0157 -3.0403 92 1.0127 -3.12 1.0127 -3.1259 93 1.0126 -3.12 1.0127 -3.1253 94 1.0015 -3.44 1.0015 -3.442 95 0.9993 -4.13 0.9993 -4.131 94 1.0015 -4.213 0.9994 -4.2161 97 0.9992 -4.03 0.9992 -4.031 98 <td>82</td> <td>1.0006</td> <td>-3.46</td> <td>1.0006</td> <td>-3.4619</td>	82	1.0006	-3.46	1.0006	-3.4619
84 0.9978 -3.87 0.9978 -3.8733 85 0.9990 -3.97 0.999 -3.9748 86 0.9995 -4.05 0.9995 -4.0471 87 0.9994 -4.05 0.9995 -4.0471 87 0.9994 -4.05 0.9995 -4.0471 88 0.9991 -4.03 0.9991 -4.0335 89 0.9992 -4.11 0.9992 -4.110 90 1.0200 -2.91 1.02 -2.9142 91 1.0157 -3.04 1.0157 -3.0403 92 1.0127 -3.12 1.0126 -3.1253 94 1.0157 -3.44 1.0015 -3.443 95 0.9978 -4.23 0.9978 -4.2342 96 0.9993 -4.13 0.9992 -4.031 97 0.9992 -4.03 0.9992 -4.031 98 1.0000 -4.21 1 -4.2161 99	83	0.9982	-3.83	0.9982	-3.8271
85 0.9990 -3.97 0.9999 -3.9748 86 0.9995 -4.05 0.9995 -4.0471 87 0.9994 -4.05 0.9994 -4.0551 88 0.9991 -4.03 0.9994 -4.0551 88 0.9992 -4.11 0.9992 -4.013 90 1.0200 -2.911 1.02 -2.9142 91 1.0157 -3.04 1.0157 -3.0403 92 1.0127 -3.12 1.0127 -3.1259 93 1.0126 -3.12 1.0126 -3.1253 94 1.0015 -3.44 1.0015 -3.443 95 0.9978 -4.23 0.9993 -4.1316 97 0.9992 -4.03 0.9992 -4.031 98 1.0000 -4.21 1 -4.2161 99 0.9994 -4.22 0.9994 -4.219 101 0.9994 -4.22 0.9994 -4.219 101	84	0.9978	-3.87	0.9978	-3.8733
86 0.9995 -4.05 0.9995 -4.0471 87 0.9994 -4.05 0.9994 -4.0551 88 0.9991 -4.03 0.9991 -4.0335 89 0.9992 -4.11 0.9992 -4.1102 90 1.0200 -2.91 1.02 -2.9142 91 1.0157 -3.04 1.0157 -3.0403 92 1.0127 -3.12 1.0127 -3.1259 93 1.0126 -3.12 1.0126 -3.1253 94 1.0015 -3.44 1.0015 -3.443 95 0.9978 -4.23 0.9978 -4.2342 96 0.9992 -4.03 0.9992 -4.031 97 0.9992 -4.03 0.9992 -4.031 98 1.0000 -4.21 1 -4.2161 99 0.9992 -4.22 0.9994 -4.219 101 0.9994 -4.22 0.9994 -4.219 102	85	0.9990	-3.97	0.999	-3.9748
87 0.9994 -4.05 0.9994 -4.0551 88 0.9991 -4.03 0.9991 -4.035 89 0.9992 -4.11 0.9992 -4.1102 90 1.0200 -2.91 1.02 -2.9142 91 1.0157 -3.04 1.0157 -3.043 92 1.0127 -3.12 1.0127 -3.1259 93 1.0126 -3.12 1.0127 -3.1259 93 1.0126 -3.12 1.0126 -3.1253 94 1.0015 -3.44 1.0015 -3.443 95 0.9978 -4.23 0.9978 -4.2342 96 0.9993 -4.13 0.9993 -4.1316 97 0.9994 -4.23 0.9993 -4.2316 98 1.0000 -4.211 1 -4.2161 99 0.9994 -4.22 0.9994 -4.2177 100 0.9994 -4.22 0.9994 -4.219 101 <td>86</td> <td>0.9995</td> <td>-4.05</td> <td>0.9995</td> <td>-4.0471</td>	86	0.9995	-4.05	0.9995	-4.0471
88 0.9991 -4.03 0.9991 -4.0335 89 0.9992 -4.11 0.9992 -4.1102 90 1.0200 -2.91 1.02 -2.9142 91 1.0157 -3.04 1.0157 -3.0403 92 1.0127 -3.12 1.0127 -3.1259 93 1.0126 -3.12 1.0127 -3.1253 94 1.0015 -3.44 1.0015 -3.443 95 0.9978 -4.23 0.9978 -4.2342 96 0.9993 -4.13 0.9993 -4.2342 96 0.9992 -4.03 0.9992 -4.031 97 0.9992 -4.03 0.9992 -4.031 98 1.0000 -4.21 1 -4.2161 99 0.9994 -4.22 0.9994 -4.219 101 0.9994 -4.22 0.9994 -4.219 101 0.9995 -4.13 0.9985 -4.1352 102	87	0.9994	-4.05	0.9994	-4.0551
89 0.9992 -4.11 0.9992 -4.1102 90 1.0200 -2.91 1.02 -2.9142 91 1.0157 -3.04 1.0157 -3.0403 92 1.0127 -3.12 1.0127 -3.1259 93 1.0126 -3.12 1.0127 -3.1259 93 1.0126 -3.12 1.0127 -3.1253 94 1.0015 -3.44 1.0015 -3.443 95 0.9978 -4.23 0.9978 -4.2342 96 0.9993 -4.13 0.9993 -4.1316 97 0.9992 -4.03 0.9992 -4.0311 98 1.0000 -4.21 1 -4.2161 99 0.9994 -4.22 0.9994 -4.219 101 0.9994 -4.22 0.9994 -4.219 101 0.9994 -4.22 0.9994 -4.219 101 0.9995 -4.13 0.9985 -4.1352 103 <td>88</td> <td>0.9991</td> <td>-4.03</td> <td>0.9991</td> <td>-4.0335</td>	88	0.9991	-4.03	0.9991	-4.0335
90 1.0200 -2.91 1.02 -2.9142 91 1.0157 -3.04 1.0157 -3.0403 92 1.0127 -3.12 1.0127 -3.1259 93 1.0126 -3.12 1.0127 -3.1253 94 1.0015 -3.44 1.0015 -3.443 95 0.9978 -4.23 0.9978 -4.2342 96 0.9993 -4.13 0.9993 -4.1316 97 0.9992 -4.03 0.9992 -4.0331 98 1.0000 -4.21 1 -4.2161 99 0.9994 -4.22 0.9994 -4.219 101 0.9994 -4.22 0.9994 -4.219 101 0.9994 -4.22 0.9994 -4.219 101 0.9995 -4.13 0.9985 -4.1352 103 0.9985 -4.13 0.9985 -4.1352 103 0.9985 -3.37 0.9988 -3.9697 106<	89	0.9992	-4.11	0.9992	-4.1102
91 1.0157 -3.04 1.0157 -3.0403 92 1.0127 -3.12 1.0127 -3.1259 93 1.0126 -3.12 1.0127 -3.1253 94 1.0015 -3.44 1.0015 -3.443 95 0.9978 -4.23 0.9978 -4.2342 96 0.9993 -4.13 0.9992 -4.0331 97 0.9992 -4.03 0.9992 -4.031 98 1.0000 -4.21 1 -4.2161 99 0.9994 -4.22 0.9994 -4.219 101 0.9994 -4.22 0.9994 -4.219 101 0.9994 -4.22 0.9994 -4.219 101 0.9994 -4.22 0.9994 -4.219 102 0.9985 -4.13 0.9985 -4.1352 103 0.9985 -4.13 0.9985 -4.1352 104 0.9992 -3.832 0.9992 -3.8328 10	90	1.0200	-2.91	1.02	-2.9142
92 1.0127 -3.12 1.0127 -3.1259 93 1.0126 -3.12 1.0126 -3.1253 94 1.0015 -3.44 1.0015 -3.443 95 0.9978 -4.23 0.9978 -4.2342 96 0.9993 -4.13 0.9993 -4.1316 97 0.9992 -4.03 0.9992 -4.031 98 1.0000 -4.21 1 -4.2161 99 0.9994 -4.22 0.9994 -4.219 101 0.9994 -4.22 0.9994 -4.219 101 0.9994 -4.22 0.9994 -4.219 101 0.9994 -4.22 0.9994 -4.219 102 0.9985 -4.13 0.9985 -4.1352 103 0.9985 -4.13 0.9985 -4.1352 104 0.9992 -3.83 0.9992 -3.8328 105 0.9988 -3.97 0.9988 -3.9697 10	91	1.0157	-3.04	1.0157	-3.0403
93 1.0126 -3.12 1.0126 -3.1253 94 1.0015 -3.44 1.0015 -3.443 95 0.9978 -4.23 0.9978 -4.232 96 0.9993 -4.13 0.9992 -4.031 97 0.9992 -4.03 0.9992 -4.031 98 1.0000 -4.21 1 -4.2161 99 0.9994 -4.22 0.9994 -4.219 101 0.9994 -4.22 0.9994 -4.219 101 0.9994 -4.22 0.9994 -4.219 101 0.9994 -4.22 0.9994 -4.219 102 0.9985 -4.13 0.9985 -4.1352 103 0.9985 -4.13 0.9985 -4.1352 104 0.9992 -3.33 0.9992 -3.8328 105 0.9988 -3.97 0.9988 -3.9697 106 0.9992 -4.01 0.9992 -4.0097	92	1.0127	-3.12	1.0127	-3.1259
94 1.0015 -3.44 1.0015 -3.443 95 0.9978 -4.23 0.9978 -4.2342 96 0.9993 -4.13 0.9993 -4.1316 97 0.9992 -4.03 0.9992 -4.0311 98 1.0000 -4.21 1 -4.2161 99 0.9996 -4.22 0.9996 -4.2177 100 0.9994 -4.22 0.9994 -4.219 101 0.9994 -4.22 0.9994 -4.219 102 0.9985 -4.13 0.9985 -4.1352 103 0.9985 -4.13 0.9985 -4.1352 104 0.9992 -3.8328 0.9992 -3.8328 105 0.9988 -3.97 0.9988 -3.9697 106 0.9992 -4.01 0.9992 -4.007	93	1.0126	-3.12	1.0126	-3.1253
95 0.9978 -4.23 0.9978 -4.2342 96 0.9993 -4.13 0.9993 -4.1316 97 0.9992 -4.03 0.9992 -4.0311 98 1.0000 -4.21 1 -4.2161 99 0.9996 -4.22 0.9996 -4.2177 100 0.9994 -4.22 0.9994 -4.219 101 0.9994 -4.22 0.9994 -4.219 102 0.9985 -4.13 0.9985 -4.132 103 0.9985 -4.13 0.9985 -4.132 104 0.9992 -3.832 0.9992 -3.8328 105 0.9988 -3.97 0.9988 -3.9697 106 0.9992 -4.01 0.9992 -4.0097	94	1.0015	-3.44	1.0015	-3.443
96 0.9993 -4.13 0.9993 -4.1316 97 0.9992 -4.03 0.9992 -4.0331 98 1.0000 -4.21 1 -4.2161 99 0.9996 -4.22 0.9996 -4.2177 100 0.9994 -4.22 0.9996 -4.219 101 0.9994 -4.22 0.9994 -4.219 102 0.9995 -4.13 0.9985 -4.1352 103 0.9985 -4.13 0.9985 -4.1352 104 0.9992 -3.83 0.9992 -3.8328 105 0.9988 -3.97 0.9988 -3.9697 106 0.9992 -4.01 0.9992 -4.007	95	0.9978	-4.23	0.9978	-4.2342
97 0.9992 -4.03 0.9992 -4.0311 98 1.0000 -4.21 1 -4.2161 99 0.9996 -4.22 0.9996 -4.2177 100 0.9994 -4.22 0.9994 -4.219 101 0.9994 -4.22 0.9994 -4.219 102 0.9994 -4.22 0.9994 -4.219 102 0.9995 -4.13 0.9985 -4.1352 103 0.9985 -4.13 0.9985 -4.1352 104 0.9992 -3.833 0.9992 -3.8328 105 0.9988 -3.97 0.9988 -3.9697 106 0.9992 -4.01 0.9992 -4.0097	96	0.9993	-4.13	0.9993	-4.1316
98 1.0000 -4.21 1 -4.2161 99 0.9996 -4.22 0.9996 -4.2177 100 0.9994 -4.22 0.9994 -4.219 101 0.9994 -4.22 0.9994 -4.219 102 0.9994 -4.22 0.9985 -4.13 103 0.9985 -4.13 0.9985 -4.132 104 0.9992 -3.832 0.9992 -3.8328 105 0.9988 -3.97 0.9988 -3.9697 106 0.9992 -4.01 0.9992 -4.007	97	0.9992	-4.03	0.9992	-4.0331
99 0.9996 -4.22 0.9996 -4.2177 100 0.9994 -4.22 0.9994 -4.219 101 0.9994 -4.22 0.9994 -4.219 101 0.9994 -4.22 0.9994 -4.219 102 0.9985 -4.13 0.9985 -4.1352 103 0.9985 -4.13 0.9985 -4.1352 104 0.9992 -3.83 0.9992 -3.8328 105 0.9988 -3.97 0.9988 -3.9697 106 0.9992 -4.01 0.9992 -4.0097	98	1.0000	-4.21	1	-4.2161
100 0.9994 -4.22 0.9994 -4.219 101 0.9994 -4.22 0.9994 -4.219 102 0.9985 -4.13 0.9985 -4.132 103 0.9985 -4.13 0.9985 -4.132 104 0.9992 -3.83 0.9992 -3.8328 105 0.9988 -3.97 0.9988 -3.9697 106 0.9992 -4.01 0.9992 -4.0097	99	0.9996	-4.22	0.9996	-4.2177
101 0.9994 -4.22 0.9994 -4.219 102 0.9985 -4.13 0.9985 -4.132 103 0.9985 -4.13 0.9985 -4.132 104 0.9992 -3.83 0.9992 -3.8328 105 0.9988 -3.97 0.9988 -3.9697 106 0.9992 -4.01 0.9992 -4.007	100	0.9994	-4.22	0.9994	-4.219
102 0.9985 -4.13 0.9985 -4.132 103 0.9985 -4.13 0.9985 -4.132 104 0.9992 -3.83 0.9992 -3.832 105 0.9988 -3.97 0.9988 -3.9697 106 0.9992 -4.01 0.9992 -4.0097	101	0.9994	-4.22	0.9994	-4.219
103 0.9985 -4.13 0.9985 -4.1352 104 0.9992 -3.83 0.9992 -3.8328 105 0.9988 -3.97 0.9988 -3.9697 106 0.9992 -4.01 0.9992 -4.0097	102	0.9985	-4.13	0.9985	-4.1352
104 0.9992 -3.83 0.9992 -3.8328 105 0.9988 -3.97 0.9988 -3.9697 106 0.9992 -4.01 0.9992 -4.0097	103	0.9985	-4.13	0.9985	-4.1352
105 0.9988 -3.97 0.9988 -3.9697 106 0.9992 -4.01 0.9992 -4.0097	104	0.9992	-3.83	0.9992	-3.8328
106 0.9992 -4.01 0.9992 -4.0097	105	0.9988	-3.97	0.9988	-3.9697
	106	0.9992	-4.01	0.9992	-4.0097
107 0.9996 -4.04 0.9996 -4.0412	107	0.9996	-4.04	0.9996	-4.0412

108	1.0200	-2.91	1.02	-2.9153
109	1.0072	-3.39	1.0072	-3.3887
110	1.0064	-3.42	1.0064	-3.4197
111	1.0060	-3.42	1.006	-3.4169
112	1.0061	-3.43	1.0061	-3.432
113	1.0060	-3.42	1.006	-3.4187
114	1.0046	-3.49	1.0046	-3.4893
115	1.0030	-3.52	1.0029	-3.5209
116	1.0045	-3.53	1.0045	-3.5322
117	0.9966	-3.86	0.9966	-3.8576
118	0.9966	-3.99	0.9966	-3.9899
119	0.9976	-4.11	0.9976	-4.1081
120	0.9989	-4.18	0.9989	-4.184
121	0.9984	-4.15	0.9984	-4.1492
122	0.9962	-3.90	0.9962	-3.905
123	0.9980	-3.87	0.998	-3.8685
124	1.0070	-3.58	1.007	-3.5859
125	1.0000	0.00	1	-0.0009
126	0.9982	-4.16	0.9982	-4.1618
127	0.9959	-4.00	0.9959	-4.003
128	0.9962	-4.22	0.9962	-4.2231
129	0.9942	-3.70	0.9942	-3.7018
130	1.0203	-2.91	1.0203	-2.9072
131	1.0000	-4.05	1	-4.0477
132	1.0000	-4.28	1	-4.2858
133	1.0000	-4.36	1	-4.3655
134	1.0000	-4.03	1	-4.0318
135	1.0000	-4.23	1	-4.2283
136	1.0000	-3.45	1	-3.4502
137	1.0000	-3.74	1	-3.7429
138	1.0000	0.00	1	0

		PSS		Algoritme	o Matlab
		Tomas	Límites	Tomas	Límites
121	126	1.0000		1	
122	127	1.0000		1	
123	128	1.0000		1	
124	129	1.0188		1.0188	
125	130	0.9500		0.95	

	PSS		Algoritmo M	latlab
	Generadores	Límites	Generadores	Límites
131	-0.2885		-0.2878	
132	0.5101		0.5102	
133	3.2823		3.2827	
134	0.7669		0.767	
135	1.9280		1.9281	
136	-6.7134		-6.7123	
137	-0.3672		-0.3672	

Tabla 41: Resultado generadores, transformadores, tensiones y fases nodos, caso D.2 de red brasileña malla